JPH0215633B2 - - Google Patents

Info

Publication number
JPH0215633B2
JPH0215633B2 JP21490481A JP21490481A JPH0215633B2 JP H0215633 B2 JPH0215633 B2 JP H0215633B2 JP 21490481 A JP21490481 A JP 21490481A JP 21490481 A JP21490481 A JP 21490481A JP H0215633 B2 JPH0215633 B2 JP H0215633B2
Authority
JP
Japan
Prior art keywords
container
cathode
heater
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21490481A
Other languages
Japanese (ja)
Other versions
JPS58117870A (en
Inventor
Takeshi Yasui
Masahiko Hirose
Yoshiharu Ochi
Masatoshi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21490481A priority Critical patent/JPS58117870A/en
Publication of JPS58117870A publication Critical patent/JPS58117870A/en
Publication of JPH0215633B2 publication Critical patent/JPH0215633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、直流のグロー放電を利用して各種皮
膜を高効率で大規模に形成する皮膜形成装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating forming apparatus that forms various coatings on a large scale with high efficiency using direct current glow discharge.

従来、基体表面を被覆する技術としては、一般
に知られているものとして、気相反応を利用した
化学蒸着法(CVD法)と物理蒸着法(PVD法)
がある。
Conventionally, the two commonly known techniques for coating the surface of a substrate are chemical vapor deposition (CVD) and physical vapor deposition (PVD), which utilize gas phase reactions.
There is.

CVD法は、加熱された基体表面に処理用原料
ガスを導入し、気相と固相との界面における化学
反応によつて基体上に析出物を合成する方法であ
るが、基体温度が一般に900〜1400℃という、か
なりの高温で処理される。この方法は、熱的に原
料ガスを活性化させるため、エネルギー損失が大
きく効率が悪く、又、高温で処理するため基体材
料及び基体材料の形状等が種々制限される。又、
ガス導入口側と排出口側で濃度勾配が生じ、被膜
特性のばらつきが大きく品質管理上問題がある。
The CVD method is a method in which a processing raw material gas is introduced onto the heated substrate surface and a precipitate is synthesized on the substrate through a chemical reaction at the interface between the gas phase and the solid phase. It is processed at a fairly high temperature of ~1400℃. Since this method thermally activates the raw material gas, energy loss is large and efficiency is poor, and since the process is carried out at high temperatures, there are various restrictions on the substrate material and the shape of the substrate material. or,
A concentration gradient occurs between the gas inlet side and the gas outlet side, resulting in large variations in film properties and problems in terms of quality control.

一方、PVD法は、CVD法に比し処理温度を
200〜600℃と低くできることが特徴であるが、反
応容器内圧力が通常10-2Torr以下とかなり低圧
であるため、平均自由行程(mean free path)
が長く、粒子が他の粒子に衝突することなく直進
し、平板でも片側だけ被覆されたり、さらに形状
が複雑になると、全面に均一に被覆するために
は、何らかの手段、例えば回転させるなどの工夫
が必要となる。このため装置が複雑となり、大量
の処理を行なうには問題が多い。
On the other hand, the PVD method requires a lower processing temperature than the CVD method.
It is characterized by being able to achieve temperatures as low as 200 to 600°C, but since the pressure inside the reaction vessel is usually quite low, below 10 -2 Torr, the mean free path
If the particles are long, the particles travel straight without colliding with other particles, and even a flat plate is coated on only one side, or if the shape becomes more complex, some means, such as rotation, must be used to coat the entire surface uniformly. Is required. This makes the device complicated, and there are many problems when processing a large amount.

さらに、直流のグロー放電による表面被覆法が
提案されているが、この方法では、処理用原料ガ
スのイオンが基体(陰極)近傍の急激な電位勾配
により加速され基体表面で化学反応が起り、金属
窒化物が形成され基体に堆積する。このとき、イ
オン衝撃により飛び出した電子(2次電子)が陽
極側へと加速され途中でガス分子と衝突を繰り返
す。このとき、ガス分子をイオンに電離させるに
充分なエネルギーをもつた電子により新たにイオ
ンが増殖され、これらの連続反応が放電を持続さ
せるわけである。熱的に解離された原子に比し、
このように高エネルギーのイオンを利用するため
エネルギー効率がよい。このため、基体温度は
CVD法に比し、低温で処理が可能である。この
とき、窒化物の堆積と同時にイオン衝撃によるス
パツタリングも生じており、堆積速度がスパツタ
リング速度よりも大きいときに堆積が進行し被覆
層が形成される。ただし、PVD法よりも処理ガ
ス圧力が高く数Torrオーダーであるので粒子間
の衝突頻度も高く、基体全体にグローが形成され
基体への被覆層のつきまわりは、はるかに良い。
又、高周波電源よりも直流電源を使つたグロー放
電処理の方が、操作も簡単で、大量に均一に処理
するには適している。このように直流のグロー放
電被覆法では、種々の利点が多いが、低圧雰囲気
で処理を行なうためバツチ処理によつており、装
置面でより効率化、量産性のあるものが望まれて
いるのが現状である。
Furthermore, a surface coating method using direct current glow discharge has been proposed, but in this method, ions in the processing raw material gas are accelerated by a sharp potential gradient near the substrate (cathode), and a chemical reaction occurs on the substrate surface, causing metal Nitride is formed and deposited on the substrate. At this time, electrons (secondary electrons) ejected by ion bombardment are accelerated toward the anode and repeatedly collide with gas molecules on the way. At this time, new ions are multiplied by electrons with sufficient energy to ionize gas molecules into ions, and these continuous reactions sustain the discharge. Compared to thermally dissociated atoms,
Energy efficiency is high because high-energy ions are used in this way. Therefore, the substrate temperature is
Compared to the CVD method, processing can be performed at lower temperatures. At this time, sputtering due to ion bombardment occurs simultaneously with the deposition of nitride, and when the deposition rate is higher than the sputtering rate, the deposition progresses and a coating layer is formed. However, since the processing gas pressure is higher than in the PVD method, on the order of several Torr, the frequency of collisions between particles is high, and a glow is formed over the entire substrate, resulting in much better coverage of the coating layer on the substrate.
In addition, glow discharge treatment using a DC power source is easier to operate than a high-frequency power source, and is suitable for uniformly treating a large amount. Although the direct current glow discharge coating method has many advantages, it requires batch processing because it is carried out in a low-pressure atmosphere, and there is a need for equipment that is more efficient and can be mass-produced. is the current situation.

本発明の目的は、直流グロー放電被覆法の長所
に注目し、より効率的処理を行なうことを可能に
した直流のグロー放電被覆装置を提供することに
ある。
An object of the present invention is to provide a direct current glow discharge coating apparatus that focuses on the advantages of the DC glow discharge coating method and enables more efficient processing.

本発明は、すなわち、排気手段を有する反応容
器と、この容器内に収納された陰極と、この陰極
上に配置した試料と、この試料を加熱するヒータ
ーと、前記陰極に間隔を置いて配置した陽極と、
前記容器内に連通した原料ガス供給手段とを具備
し、前記ヒーターが、所定皮膜形成の終了と同時
に除去される構造を有することを特徴とする皮膜
形成装置に係るものである。
In other words, the present invention provides a reaction container having an exhaust means, a cathode housed in the container, a sample placed on the cathode, a heater for heating the sample, and a heater placed at a distance from the cathode. an anode;
The present invention relates to a film forming apparatus, comprising a source gas supply means communicating with the inside of the container, and having a structure in which the heater is removed at the same time as the formation of a predetermined film is completed.

次に、図面によつて本発明を説明すれば、第1
図は、本発明の実施例を示す一部断面図で、排気
口11を有する反応容器12と、この容器内に垂
直方向に延長して配置された治具よりなる陰極1
3と、この陰極上に配置された複数の試料14
と、前記陰極の内部にあつて略筒状で容器の下壁
に一端が開口し、且つ外部と気密に他端が閉塞し
て配置されたヒーター導入管15と、その内部に
配置され外部に装脱自在に取着されて、前記試料
を加熱する筒状ヒーター16と、このヒーターを
加熱する外部電源17と、前記陰極13に接続さ
れ絶縁として容器外に導出する陰極端子18と、
この陰極端子に一端が接続され、他端は陽極端子
19となつて容器内にグロー放電を生成せしめる
高圧電源20と、前記容器壁の一部に設けたガス
供給口21に連通して原料ガスである、例えば四
塩化チタンを充填した容器24及びN2ガスを充
填したボンベ22、H2ガスを充填したボンベ2
3及び温度コントローラ25よりなる原料ガス供
給手段26によつて、容器内に均質な原料ガスを
供給する。
Next, the present invention will be explained with reference to the drawings.
The figure is a partial cross-sectional view showing an embodiment of the present invention, which includes a reaction vessel 12 having an exhaust port 11, and a cathode 1 made of a jig disposed vertically extending inside the vessel.
3 and a plurality of samples 14 arranged on this cathode.
and a heater introduction tube 15 disposed inside the cathode, which is approximately cylindrical and has one end open at the lower wall of the container and whose other end is closed airtightly from the outside; A cylindrical heater 16 that is detachably attached and heats the sample, an external power source 17 that heats this heater, and a cathode terminal 18 connected to the cathode 13 and led out of the container as an insulator.
One end is connected to this cathode terminal, and the other end becomes an anode terminal 19, which communicates with a high-voltage power source 20 that generates a glow discharge in the container, and a gas supply port 21 provided in a part of the container wall to supply raw material gas. For example, a container 24 filled with titanium tetrachloride, a cylinder 22 filled with N 2 gas, and a cylinder 2 filled with H 2 gas.
3 and a temperature controller 25, a homogeneous source gas is supplied into the container.

かゝる皮膜形成装置において、本発明は前記試
料を加熱するヒーターを試料上への所定の皮膜形
成の完了と同時にヒーター導入管外に取出して除
去するようにしたものである。ヒーター部は第1
図の如く、着脱可能なことに加え、ヒーター部が
反応容器内側にあるので、外部から容器全体を加
熱する場合に比べ、次のような利点がある。1つ
は、容器全体を加熱するわけではないので熱ロス
が少ないことである。さらに、従来の装置では容
器全体を加熱する場合、被処理物の処理温度以上
に外部容器を加熱しなければならない。そこで、
例えば、被処理物温度600℃(通常、放電CVDで
は500〜600℃での処理が一般)とすると、当然外
部容器はその温度以上に加熱されている。する
と、外部容器内壁に皮膜形成される。この反応
は、いわゆるCVD、つまり熱的反応による皮膜
形成である。従つて、容器はアノード(陽極)と
なつており、陽極と陰極との絶縁部にも皮膜は次
第に堆積する。皮膜が導体であると(例えば、
TiNは良好な導体)、陽極と陰極が短絡してしま
う危険性が大である。これを防止するために、陰
極導入部の構造が複雑になつたり、過熱防止のた
めのデツドスペースが広くなりすぎたりして、装
置全体が大きなわりに処理個数が多くないなどの
欠点があつた。又、外部容器内壁に皮膜が徐々に
堆積してくると、加熱冷却サイクル中に内壁付着
皮膜がはがれ落ちてきて被処理物の処理に支障を
来すことになり、この現象は内壁上部からのはが
れ落ちが問題となる。ところが、本発明の皮膜形
成装置では、試料を所定のガス圧力で処理後、ヒ
ーター部16を抜き出され、必要に応じて冷却媒
体をこの凹部に導入してもよい。このようにして
処理時間の短縮や、場合によつては、材質により
急冷が必要なときには最適な装置となる。
In such a film forming apparatus, the present invention is such that the heater for heating the sample is taken out of the heater introduction tube and removed at the same time as the formation of a predetermined film on the sample is completed. The heater part is the first
As shown in the figure, in addition to being removable, the heater section is located inside the reaction vessel, which has the following advantages over heating the entire vessel from the outside. One is that the entire container is not heated, so there is less heat loss. Furthermore, in conventional apparatuses, when heating the entire container, the outer container must be heated to a temperature higher than the processing temperature of the object to be processed. Therefore,
For example, if the temperature of the object to be processed is 600°C (normally, discharge CVD is generally processed at 500 to 600°C), the outer container is naturally heated above that temperature. Then, a film is formed on the inner wall of the outer container. This reaction is so-called CVD, that is, film formation by thermal reaction. Therefore, the container serves as an anode, and a film is gradually deposited on the insulating part between the anode and the cathode. If the film is a conductor (e.g.
TiN is a good conductor), but there is a high risk of shorting between the anode and cathode. In order to prevent this, the structure of the cathode introduction part has become complicated, and the dead space for preventing overheating has become too large, resulting in disadvantages such as the fact that the overall size of the apparatus is large and the number of objects that can be processed is not large. In addition, if the film gradually accumulates on the inner wall of the outer container, the film will peel off during the heating and cooling cycle, causing problems in the processing of the object to be processed. Peeling off becomes a problem. However, in the film forming apparatus of the present invention, after the sample is treated with a predetermined gas pressure, the heater section 16 may be pulled out, and a cooling medium may be introduced into the recessed section if necessary. In this way, the processing time can be shortened, and in some cases, the apparatus becomes optimal when rapid cooling is required depending on the material.

第2図は、複数の皮膜形成装置31,32,3
3を設け、共通の排気系34によつて共通に装置
内の容器を排気し、夫々に設けたヒーター導入管
35,36,37の反応を希望する容器、例えば
31内にのみヒーター38を導入して試料を加熱
してグロー放電を生成させて皮膜形成を行なわ
せ、他は休止させ必要な準備作業をすることがで
きる。この場合、直流電源39及び原料ガス供給
手段40は共用することができる。
FIG. 2 shows a plurality of film forming devices 31, 32, 3.
3, the containers in the apparatus are commonly evacuated by a common exhaust system 34, and the heater 38 is introduced only into the container, for example, 31, in which the reaction is desired through heater introduction pipes 35, 36, and 37 provided respectively. The sample can be heated to generate a glow discharge to form a film, while other operations are stopped and necessary preparatory work can be carried out. In this case, the DC power supply 39 and the raw material gas supply means 40 can be used in common.

以上説明した如く、本発明の皮膜形成装置によ
れば、熱ロス、時間ロスの少ない省エネルギー型
の直流グロー放電装置の提供が可能となり、さら
には被処理品の健全なものが得られることが可能
となつた。
As explained above, according to the film forming apparatus of the present invention, it is possible to provide an energy-saving DC glow discharge device with little heat loss and time loss, and furthermore, it is possible to obtain healthy products to be treated. It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の一実施例を示す構成図
であり、第2図は、本発明装置を複数個設けた実
施例を示す構成図である。 11……排気口、12……反応容器、13……
陰極、14……試料、15……ヒーター導入管、
16,38……ヒーター、17……外部電源、1
8……陰極端子、19……陽極端子、20……高
圧電源、21……ガス供給口、22,23……ボ
ンベ、24……密閉容器、25……温度コントロ
ーラ、26,40……原料ガス供給手段、31,
32,33……皮膜形成装置、34……排気系、
35,36,37……ヒーター導入管、39……
直流電源。
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG. 2 is a block diagram showing an embodiment in which a plurality of devices of the present invention are provided. 11...Exhaust port, 12...Reaction container, 13...
Cathode, 14...sample, 15...heater introduction tube,
16, 38...Heater, 17...External power supply, 1
8... Cathode terminal, 19... Anode terminal, 20... High voltage power supply, 21... Gas supply port, 22, 23... Cylinder, 24... Sealed container, 25... Temperature controller, 26, 40... Raw material gas supply means, 31,
32, 33...Film forming device, 34...Exhaust system,
35, 36, 37... Heater introduction pipe, 39...
DC power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 排気手段を有する反応容器と、この容器内に
収納された陰極と、この陰極上に配置した試料
と、この試料を加熱するヒーターと、前記陰極に
間隔を置いて配置した陽極と、前記容器内に連通
した原料ガス供給手段とを具備し、前記ヒーター
が、所定皮膜形成の終了と同時に除去される構造
を有することを特徴とする皮膜形成装置。
1. A reaction container having an exhaust means, a cathode housed in the container, a sample placed on the cathode, a heater for heating the sample, an anode placed at a distance from the cathode, and the container. 1. A film forming apparatus, comprising: a raw material gas supply means communicating with the interior of the film, and having a structure in which the heater is removed at the same time as the formation of a predetermined film is completed.
JP21490481A 1981-12-28 1981-12-28 Film forming device Granted JPS58117870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21490481A JPS58117870A (en) 1981-12-28 1981-12-28 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21490481A JPS58117870A (en) 1981-12-28 1981-12-28 Film forming device

Publications (2)

Publication Number Publication Date
JPS58117870A JPS58117870A (en) 1983-07-13
JPH0215633B2 true JPH0215633B2 (en) 1990-04-12

Family

ID=16663481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21490481A Granted JPS58117870A (en) 1981-12-28 1981-12-28 Film forming device

Country Status (1)

Country Link
JP (1) JPS58117870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335980A (en) * 1993-05-28 1994-12-06 Daiichi Jitsugyo:Kk Fold forming device and method of corrugated cardboard

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172719A (en) * 1986-01-25 1987-07-29 Toshiba Mach Co Ltd Processor for vapor growth and the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335980A (en) * 1993-05-28 1994-12-06 Daiichi Jitsugyo:Kk Fold forming device and method of corrugated cardboard

Also Published As

Publication number Publication date
JPS58117870A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
US3540993A (en) Sputtering apparatus
EP0095887B2 (en) Apparatus for plasma chemical vapour deposition
JPH0387372A (en) Formation of deposited film
US6176982B1 (en) Method of applying a coating to a metallic article and an apparatus for applying a coating to a metallic article
JPH07335626A (en) Plasma processing device and method
JPS62180069A (en) Method for coating inside surface of pipe
US5491112A (en) Method and arrangement for treating silicon plates
JPH0215633B2 (en)
JPH06196410A (en) Plasma treatment device
US3595773A (en) Process for depositing on surfaces
JPS6147645A (en) Formation of thin film
JP2807674B2 (en) Processing apparatus and cleaning method for processing apparatus
JPS58117868A (en) Film forming device
JPH04228566A (en) Conductive fiber coating method and apparatus by sputter ion plating
JPH0462389A (en) Vacuum heating apparatus
JPS6358226B2 (en)
JPH0111721Y2 (en)
JPS62180078A (en) Method for coating inside surface of pipe
EP0193338A2 (en) A method of and apparatus for producing multilayered coatings
JPH0214522A (en) Treatment by plasma
JPS586255B2 (en) Tube inner surface treatment method
JPH0411628B2 (en)
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JPS58117869A (en) Film forming device
JP3099801B2 (en) Film forming method and apparatus