JPH01212879A - Ice machine - Google Patents

Ice machine

Info

Publication number
JPH01212879A
JPH01212879A JP3918288A JP3918288A JPH01212879A JP H01212879 A JPH01212879 A JP H01212879A JP 3918288 A JP3918288 A JP 3918288A JP 3918288 A JP3918288 A JP 3918288A JP H01212879 A JPH01212879 A JP H01212879A
Authority
JP
Japan
Prior art keywords
ice
water
ice making
making
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3918288A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takeda
武田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3918288A priority Critical patent/JPH01212879A/en
Publication of JPH01212879A publication Critical patent/JPH01212879A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To reduce an ice making cost and to improve the quality of ice cube, by a method wherein a rotary type injection nozzle is positioned in a manner that a water injection position is asymmetrical and is diffused in a fan-shape, and that a part of a water flow is caused to cross an ice making surface. CONSTITUTION:A hollow arm is supported on a longitudinal shaft 15 rotatably in a horizontal plane and is connected to an ice-making water feed line to form a rotary type injection nozzle 1, which is disposed below an ice maker 13. Nozzles 14 are formed in a slitform manner such that water is diffused in a fan-shape in the longitudinal direction of the arm in positions on both sides situated asymmetrically about the rotary center of the hollow arm and a part of diffused water can cross an ice-making surface. The injection nozzle 1 is rotated at the given number of revolutions, preferably in a range of 20-120 per min. Ice-making water is uniformly injected against all cubic lattices. Since the two nozzles 14 and 14 are different in a position to each ice-making cubic lattice and difference in an injection angle of water, a dead angle region where no water is collided is completely absent, and as a result, ice having the same thickness is formed in each cubic lattice.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は巣(中空部)や凹みが存しない透明中実体の角
氷を製氷器に均一に氷結させることが可能なオープンセ
ル方式の製氷機に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an open-cell type ice making system that is capable of uniformly freezing transparent solid ice cubes without cavities (hollow parts) or dents in an ice maker. Regarding machines.

(従来の技術) 喫茶店、レストラン等で使用する角氷を連続的に製造す
る製氷機には、下向きに開口した多数の製氷小室に、下
方から製氷水を噴水供給するオープンセル方式のものが
多く、例えば実開昭59−174580号公報等によっ
て公知であるが、これは水用原水の貯溜水槽内に、水面
に出没しながら水平軸の周りに櫂を回転させる構造の散
水装置を設けた形態であって、速く回転する散水装置に
より各製氷小室に連続的に製氷水を噴射させて製氷する
ものである。
(Conventional technology) Many ice makers that continuously produce ice cubes used in coffee shops, restaurants, etc. are of the open-cell type, in which ice-making water is fed from below into a large number of ice-making chambers that open downward. , for example, is known from Japanese Utility Model Application Publication No. 59-174580, etc., and this is a form in which a water sprinkler device having a structure in which a paddle rotates around a horizontal axis while appearing and disappearing on the water surface is installed in a water storage tank for raw water. Ice is made by continuously spraying ice making water into each ice making chamber using a rapidly rotating water sprinkler.

(発明が解決しようとする問題点) このように水用原水を各製氷小室に連続的に噴射させる
と、水の当たった個所が水圧を常に受けるのと、氷の薄
い層を形成しようとしたものに対して温度の高い水が噴
き当たるのとによって角氷の露出表面の中央が凹んで平
坦面が得難く、かつ製氷効率が悪い等の問題があった。
(Problem to be solved by the invention) When raw water is continuously injected into each ice-making chamber in this way, the areas where the water hits are constantly under water pressure, and there is a problem in forming a thin layer of ice. There were problems such as the exposed center of the ice cube becoming depressed due to the high temperature water being sprayed against the object, making it difficult to obtain a flat surface and poor ice making efficiency.

さらに、複数個の櫂を定位置において水平軸の周りに回
転させる方式では多数の製氷小室に対し均一に散水させ
ることが難しく、特に小室間を仕切る仕切壁に沿う個所
に水が噴き当たらない死角領域が生じて製氷速度に「む
ら」があったりするのも難点であった。
Furthermore, with the method in which multiple paddles are rotated around a horizontal axis in a fixed position, it is difficult to spray water uniformly to a large number of ice-making compartments, and there are dead spots where water does not spray, especially along the partition walls that separate the compartments. Another problem was that the ice making speed was uneven due to the formation of areas.

このような問題点に鑑みて、本発明は噴射口が比較的少
なくて済む回転式噴射ノズルの長所を活用し、水用原水
を薄氷層の迅速な生成に対し適切なインターバルが保持
される如き間欠噴射させると共に、死角領域の生じない
部分交差拡散水力式を採用することによって製氷コスト
面での改善ならびに角氷の品質向上に寄与せしめる製氷
機を提供することを発明の特徴とするものである。
In view of these problems, the present invention takes advantage of the advantages of a rotary injection nozzle that requires relatively few injection ports, and uses the advantage of a rotary injection nozzle to inject raw water into water such that an appropriate interval is maintained for the rapid formation of a thin ice layer. A feature of the invention is to provide an ice making machine that contributes to improvements in ice making cost and quality of ice cubes by employing intermittent injection and a partial cross-diffusion hydraulic system that does not create blind areas. .

(問題点を解決するための手段) そこで本発明は実施例を示す図面により明らかな如く、
製氷面を下向きにさせた立方格子状をなす製氷器Q3)
の前記製氷面に製氷水タンク(8)内の水を循環送給し
、蒸発器により冷却される前記製氷面に製氷水を氷結さ
せる製氷機において、中空アームを水平面内での回転可
能に縦軸αつに支持し、かつ、製氷水送給ラインに接続
して形成した回転式噴射ノズル(1)を前記製氷器0争
の下方に配設せしめるとともに、噴射口α船を前記中空
アームの回転中心に対し非対称となる両側位置において
アーム長手方向の扇状に拡散永し、かつ、該拡散水の一
部が前記製氷面で交差し得るスリット状に開設せしめて
、前記噴射ノズル(1)を所定の回転数、好ましくは2
0乃至120回/分の範囲内の回転数で回転せしめる如
くしたことを特徴とする。
(Means for Solving the Problems) Therefore, as is clear from the drawings showing the embodiments, the present invention has the following features:
Ice maker Q3) in the shape of a cubic grid with the ice making surface facing downwards
In an ice making machine that circulates water in an ice making water tank (8) to the ice making surface of the ice making surface and freezes the ice making water on the ice making surface that is cooled by an evaporator, the hollow arm is vertically rotatable in a horizontal plane. A rotary injection nozzle (1) supported on one axis α and connected to an ice-making water supply line is disposed below the ice maker, and the injection nozzle α is connected to the hollow arm. The injection nozzle (1) is diffused in a fan shape in the longitudinal direction of the arm at positions on both sides asymmetrical with respect to the center of rotation, and is opened in a slit shape so that a part of the diffused water can intersect with the ice making surface. a predetermined number of rotations, preferably 2
It is characterized in that it rotates at a rotational speed within the range of 0 to 120 times/minute.

また、回転式噴射ノズル(1)としては、別途回転駆動
源を設けることなく、噴射口(14)又は別途設けた噴
水口からの噴水の水圧反力で回動される自転形であるこ
とが好ましい。
Further, the rotary injection nozzle (1) may be of an autorotating type that is rotated by the water pressure reaction force of the fountain from the injection port (14) or a separately provided water fountain, without providing a separate rotational drive source. preferable.

(作用) 回転式噴射ノズル(1)から噴射される水は角氷を生成
する各製氷面に対して連続でなく間欠的に噴き当たるの
で、水が当たらない1秒前後の所定時間の間に製氷面に
付着した水は急速に冷却されて氷膜を形成し、また、水
圧が加わらないので、下面はフラットになり、かくして
中央に凹みが生じ難く、かつ氷層内に巣も発生しない。
(Function) The water sprayed from the rotary spray nozzle (1) hits each ice-making surface that produces ice cubes not continuously but intermittently, so that during a predetermined period of around 1 second when water does not hit the ice cubes, The water adhering to the ice-making surface is rapidly cooled to form an ice film, and since no water pressure is applied, the bottom surface is flat, making it difficult to form a dent in the center and preventing the formation of cavities within the ice layer.

前記回転式噴射ノズル(1)は、噴水位置が非対称であ
って、扇状に拡散し、かつ一部の水流が製氷面で交差す
るようになるので、回転による均敗作用と相俟って製氷
面、特に垂直に存する製氷仕切りに接する前側、後側の
空間に第3図で交差斜線で示す如き死角領域を作らなく
て、形の整った直方体の角氷が製造される。
The rotary injection nozzle (1) has an asymmetrical fountain position, spreads in a fan shape, and some of the water flows intersect on the ice-making surface, so that, together with the equalization effect due to rotation, the ice-making process is improved. Well-shaped rectangular parallelepiped ice cubes are produced without creating blind areas as shown by cross hatching in FIG. 3 in the front and rear spaces in contact with the vertical ice-making partitions.

また、噴射ノズル(1)を自転形とすることによって駆
動装置が不要となり、コンパクトな構造となると共に製
氷面に当たる水圧を適正値となるよう緩和し得る。
Moreover, by making the injection nozzle (1) of an autorotating type, a driving device is not required, resulting in a compact structure and the water pressure hitting the ice making surface can be reduced to an appropriate value.

(実施例) 実施例について図面を参照しつつ説明する。(Example) Examples will be described with reference to the drawings.

第2図において、(2)は上部水タンクであって、立方
格子状をなす製氷器0濁の上向きに開口する凹部に介挿
して設けており、製氷器α濁に゛よりタンク内貯溜水が
予冷される。
In Fig. 2, (2) is an upper water tank, which is inserted into a recess that opens upward in the ice maker and has a cubic lattice shape. is pre-cooled.

この上部水タンク(2)には、電磁弁(4)を備えた給
水管(5)が臨まされていると共に、上部オーバフロー
管(6)を垂下して接続させている。
A water supply pipe (5) equipped with a solenoid valve (4) faces the upper water tank (2), and an upper overflow pipe (6) is connected thereto by hanging down.

製氷器(13)は第2図に拡大示されるが、熱伝導性の
良好な材料からなる底板と垂直に垂れ下がる仕切板とか
らなる立方格子状をなした製氷面を有して下向きに開口
させた構造であって、該製氷器α■は略水平に横設する
と共に底板の上面に蒸発器の冷却管(3)を添着してい
て、冷却管(3)を通る低圧冷媒によって氷点下の所定
温度まで冷却されるようになっている。
The ice maker (13) is shown enlarged in Fig. 2, and has an ice making surface in the shape of a cubic lattice consisting of a bottom plate made of a material with good thermal conductivity and partition plates hanging vertically, and opens downward. The ice maker α■ is installed horizontally horizontally and has an evaporator cooling pipe (3) attached to the top surface of the bottom plate. It is designed to be cooled down to temperature.

(1)は後述する回転式噴射ノズルであって、製氷器α
濁の直下方に水平面内での回転可能に配設される。
(1) is a rotary injection nozzle, which will be described later, and is an ice maker α.
It is arranged directly below the turbidity so that it can rotate in a horizontal plane.

(7)は前記ノズル(1)の下方に傾斜して設けた水落
下用レールであり、製氷器0濁で製造した角氷の最短辺
寸法よりも狭い間隔を存した多列の平行に棒状のレール
材を配置してなり、製氷を受止して滑り落す一方、水は
レール材間から下へ落下するようになっている。
(7) is a water falling rail installed at an angle below the nozzle (1), and is arranged in parallel bar-like shapes in multiple rows with an interval narrower than the shortest side dimension of the ice cubes produced by the ice maker. The ice is made of ice and slides down, while water falls between the rails and falls downward.

(8)は前記レール(7)の直下方に落下水の受止可能
に横設した製氷水タンクであって一部を深底とした2段
底タンクに形成し、深底部には、水循環ポンプ(9)を
配管によって底部に接続すると共に、下部オーバフロー
管αυを側壁上部に接続し、一方、タンク内部に水位検
知用フロートスイッチα0)を配設しており、さらに前
記上部オーバフロー管(6)の下端部を該タンク内部に
垂下せしめて、上部水タンク(2)で予冷した冷水の一
部を上部オーバフロー管(6)を経、タンク内に貯溜し
得るようになっている。
(8) is an ice-making water tank installed horizontally directly below the rail (7) to catch falling water, and is formed into a two-tier bottom tank with a partially deep bottom. The pump (9) is connected to the bottom part by piping, and the lower overflow pipe αυ is connected to the upper part of the side wall. On the other hand, a float switch α0) for water level detection is arranged inside the tank, and the upper overflow pipe (6 ) is allowed to hang down inside the tank, so that a portion of the cold water pre-cooled in the upper water tank (2) can be stored in the tank via the upper overflow pipe (6).

上記水循環ポンプ(9)は吐出口を製氷水送給管によっ
て回転式噴射ノズル(1)に連結せしめていて、上記製
氷水タンク(8)内の冷水を回転式噴射ノズルfilに
供給可能となしている。
The water circulation pump (9) has a discharge port connected to the rotary injection nozzle (1) through an ice-making water supply pipe, so that the cold water in the ice-making water tank (8) can be supplied to the rotary injection nozzle fil. ing.

(2)は貯水庫であり、ケーシング内の最下部で製氷水
タンク(8)の下方に設けられて氷落下用レール(7)
により滑り落とされてきた角氷を貯氷し得るよう形成し
ている。
(2) is a water storage, which is installed below the ice-making water tank (8) at the lowest part of the casing, and has ice falling rails (7).
It is designed to store ice cubes that have been slid down.

前記回転式噴射ノズル(1)は第2図に示されるように
、噴射口α優を上部に斜め上方向に開設して有する中空
アーム(IA)を、前記製氷水送給管に兼用させた中空
状の縦軸Q5)の上端に、前記アーム(IA)の中央部
に突設した短管部を被冠させることによって水平面内で
の回転可能に支持せしめた構造をなし、この支持部に水
封装置aψを囲繞させて設けて水密をはからせている。
As shown in Fig. 2, the rotary injection nozzle (1) has a hollow arm (IA) having an injection port α opened diagonally upward in the upper part, which also serves as the ice-making water supply pipe. The upper end of the hollow vertical shaft Q5 is supported rotatably in a horizontal plane by covering the short pipe part protruding from the center of the arm (IA). Water-tightness is achieved by surrounding the water sealing device aψ.

しかして中空アーム(LA )は製氷器α濁の横幅寸法
に比して稍々短かい長さであって、2個の噴射口(14
)を中央の支点部から両側に振り分けて一方が端部寄り
に他方が支点部寄りに位置し得る非対称関係を有せしめ
て開設せしめている。
However, the hollow arm (LA) has a slightly shorter length than the width of the ice maker, and has two injection ports (14
) are distributed from the central fulcrum to both sides, creating an asymmetrical relationship in which one is located closer to the end and the other closer to the fulcrum.

同項射口α0は拡がり角が例えば50°程度となる扇状
の拡散水となって噴水拡散し、しかもこの拡散水例えば
水幕の一部が前記製氷器αJの製氷面の個所で交差し得
る如き所定幅のスリット状に開口せしめていて、図示例
はさらに、水幕を回転式噴射ノズル+11の回転方向に
対して同位相の後方斜め上向きに噴出し得る如く斜行さ
せて開設せしめている。
The jet opening α0 diffuses into a fan-shaped diffused water with a spreading angle of, for example, about 50°, and a part of this diffused water, for example, a water curtain, may intersect at a location on the ice making surface of the ice maker αJ. The water curtain is opened in the shape of a slit with a predetermined width, and in the illustrated example, the water curtain is opened in a diagonal manner so that the water curtain can be ejected diagonally backward and upward in the same phase with respect to the rotational direction of the rotary injection nozzle +11. .

なお、噴射口(14)としては中空アーム(IA)にス
リットを直接切設する他、適宜製切口を有する噴射ロチ
ツブを取り付ける等種々の構造を採用することが可能で
ある。
In addition to directly cutting a slit in the hollow arm (IA) as the injection port (14), it is possible to adopt various structures such as attaching an injection rod having a suitable cut.

かく構成した製氷機の製氷運転は次の如く行われる。The ice-making operation of the ice-making machine configured as described above is performed as follows.

製氷器(2)を冷却運転するとともに、水循環ポンプ(
9)を運転せしめると、前記噴射ノズル(1)の噴射口
Q4)から噴射されて扇状に拡散する製氷水はその水圧
反作用で前記ノズル(11を所定方向に回転させながら
、第2図に示される通り、全ての立方格子にまんべなく
噴射され、しかも2つの噴射口(14)。
While cooling the ice maker (2), the water circulation pump (
9), the ice-making water is injected from the injection port Q4) of the injection nozzle (1) and diffused in a fan shape due to the water pressure reaction.While rotating the nozzle (11) in a predetermined direction, As shown, it is sprayed evenly onto all the cubic grids, and there are two injection ports (14).

(14)が各製氷立方格子に対する位置を異にして水の
噴き当て角度が違っているために、水が当たらない死角
領域は全然存しなく、その結果、各立方格子内には同厚
の氷が形成されて行く。
(14) is placed at a different position with respect to each ice-making cubic grid and the water spray angle is different, so there is no blind area where water does not hit, and as a result, each cubic grid has the same thickness. Ice is forming.

そして一定厚の氷(立方体)が出来上がると製氷水タン
ク(8)内の水位が降下して前記フロートスイッチαΦ
が低水位信号を発信するため、製氷は完了し、電磁弁(
4)が開いて上部水タンク(2)内の予冷水が常温水と
置換される結果、この保有熱量で離氷が成される。
When ice (cube) of a certain thickness is made, the water level in the ice making water tank (8) drops and the float switch αΦ
sends a low water level signal, ice making is completed and the solenoid valve (
4) is opened and the pre-cooled water in the upper water tank (2) is replaced with room temperature water, and as a result, ice is removed using this retained heat amount.

離氷運転はこの他に給水を製氷水タンク(8)に貯めて
今一つのポンプ(図示せず)により上部水タンク(2)
に循環させるようにしても良い。
In addition to this operation, water is stored in the ice-making water tank (8) and pumped to the upper water tank (2) using another pump (not shown).
It is also possible to circulate it.

ここでホットガスデフロスト方式での離氷を行わないの
は、この方式では夏期等の高外気高水温時と冬期等の低
外気低水温時とではデフロスト時間に差があって氷が溶
けてしまうことが起こり得るからであり、むしろ補助的
に利用することが好ましいといえる。
The reason why the hot gas defrost method is not used for ice removal is that with this method, the ice melts due to the difference in defrost time between when the outside air and water temperature is high, such as in the summer, and when the outside air and water temperature is low, such as in the winter. This is because such things can happen, so it can be said that it is preferable to use it in an auxiliary manner.

しかして前記噴射ノズル(1)は回転しながら噴射口Q
41から水を噴射するので、製氷水は連続的でなく断続
的に各立方格子に噴き当てることになり、表面に凍結し
ようとしている水を昇温させかつ洗い流してしまう連続
方式の欠点を解消し得て効率良く、しかも下面が平坦な
氷を製造することが可能である。
Therefore, the injection nozzle (1) rotates while the injection nozzle Q
Since the water is injected from 41, the ice-making water is not continuously but intermittently injected onto each cubic lattice, which eliminates the disadvantage of the continuous method of raising the temperature of water that is about to freeze on the surface and washing it away. It is possible to efficiently produce ice with a flat bottom surface.

このことは角氷の下面が全部つながるよりも早く製氷を
止めて、形の整った角氷を分離状態で確実に取り出し得
る利点につながるものであり、さらに例えば6×6列=
30個の立方格子に対して給水に必要な噴射口Q4)は
2個あれば十分であって、その分、ノズル径を大きくで
きて、口詰まりに強い構造となる。
This leads to the advantage that ice making can be stopped before the bottom surfaces of the ice cubes are all connected, and that well-shaped ice cubes can be reliably taken out in a separated state.
Two injection ports Q4) are sufficient for water supply to 30 cubic grids, and the nozzle diameter can be increased accordingly, resulting in a structure that is resistant to clogging.

なお、製氷量が多くなれば噴射ノズル(1)の長さ、噴
射口α旬の数又は噴射拡散角度を大きくすれば良く、対
応が容易かつ簡単である。
Incidentally, if the amount of ice to be made increases, the length of the injection nozzle (1), the number of injection ports α, or the injection diffusion angle may be increased, which is easy and simple.

また、前記ノズル(1)の回転速度は20〜120回/
分の範囲内が好適であって、50回/分が製氷速度を向
上するための適切なタイミングをとる上で好適な回転速
度であることが実験的に解明されている。
Further, the rotation speed of the nozzle (1) is 20 to 120 times/
It has been experimentally determined that a rotation speed of 50 times/minute is suitable for obtaining appropriate timing to improve the ice making speed.

なお、前記ノズル(1)を自転形とするためには、前記
噴射口Q4)以外に別途専用の噴水口を形成するように
しも良い。
In addition, in order to make the nozzle (1) of an autorotating type, a dedicated water fountain may be formed separately in addition to the jet nozzle Q4).

(発明の効果) 本発明は上述のとおりの構成であるので、以下に記載す
る効果を奏する。
(Effects of the Invention) Since the present invention has the configuration as described above, it produces the effects described below.

請求項1の製氷機においては、噴射口(14)回転中心
に対して非対策位置に存し、各立方格子に噴射角の異な
った2種の水流を噴射し得るので、水が当たらない死角
領域を生ぜしめず平均に噴射可能であり、従って同等の
大きさ、速さの角氷を一斉に製造し得る。
In the ice making machine according to claim 1, the injection port (14) is located at a non-protection position with respect to the center of rotation, and two types of water streams with different injection angles can be injected into each cubic grid, so that there is no blind spot where water does not hit. It is possible to spray ice cubes evenly without creating an area, so ice cubes of the same size and speed can be produced all at once.

また、回転方式であるので多くの立方格子に対して必要
な噴射口(14)は少なくてよく、その分、当然に口径
が大きいので、口詰まりが起こらなく、長期間安定した
製氷性能を維持し得る。
In addition, since it is a rotating method, fewer injection ports (14) are required for many cubic lattices, and the diameter is naturally large, so no clogging occurs and stable ice-making performance is maintained for a long time. It is possible.

さらに、連続的でなく断続的に噴射する方式であるから
、生長中の氷表面の温度を下げさせて急速に凍結層を作
ることが可能であり、従って水圧の常時印加による凹み
の発生がないことと相俟って表面が平坦な角氷を効率よ
く製氷できる。
Furthermore, since it is a method that sprays intermittently rather than continuously, it is possible to lower the temperature of the growing ice surface and quickly create a frozen layer, so there is no denting caused by constant application of water pressure. Combined with this, ice cubes with a flat surface can be made efficiently.

請求項2の製氷機においては、特に噴射ノズル(1)の
回転数を特定したことによって、水散布のタイミングが
適切にとることができ製氷効果をより高め得る。
In the ice making machine according to the second aspect of the present invention, by specifically specifying the rotation speed of the injection nozzle (1), the water spraying can be timed appropriately and the ice making effect can be further enhanced.

請求項3の製氷機においては、噴射水圧利用による自転
形のノズル構造であるので、回転機構は著しく簡素化さ
れると共に装置全体のコンパクト化も果たされる。
In the ice making machine according to the third aspect of the present invention, since the nozzle structure is of an autorotating type that utilizes water jet pressure, the rotation mechanism is significantly simplified and the entire apparatus is made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例に係る要部構造図及
び全体構造図、第3図は第1図に対する比較装置例の構
造図である。 (1)・・・回転式噴射ノズル、 (8)・・・製氷水タンク、 αり・・・製氷器、 ao・・・噴射口、 αつ・・・縦軸。 第1図 第2図 第3図
FIGS. 1 and 2 are structural diagrams of main parts and an overall structural diagram of an embodiment of the present invention, and FIG. 3 is a structural diagram of an example of a comparative device with respect to FIG. 1. (1)...Rotary injection nozzle, (8)...Ice making water tank, αri...ice maker, ao...spray port, αtsu...vertical axis. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、製氷面を下向きにさせた立方格子状をなす製氷器(
13)の前記製氷面に製氷水タンク(8)内の水を循環
送給し、蒸発器により冷却される前記製氷面に製氷水を
氷結させる製氷機において、中空アームを水平面内での
回転可能に縦軸(15)に支持し、かつ、製氷水送給ラ
インに接続して形成した回転式噴射ノズル(1)を前記
製氷器(13)の下方に配設せしめるとともに、噴射口
(14)を前記中空アームの回転中心に対し非対称とな
る両側位置においてアーム長手方向の扇状に拡散水し、
かつ、該拡散水の一部が前記製氷面で交差し得るスリッ
ト状に開設せしめて、前記噴射ノズル(1)を所定の回
転数で回転せしめる如くしたことを特徴とする製氷機。 2、噴射ノズル(1)の回転数が20乃至120回/分
の範囲内の値である請求項1記載の製氷機。 3、回転式噴射ノズル(1)が、前記噴射口(14)又
は別に設けた噴水口からの噴水の水圧反力で回動せしめ
られる自転形である請求項1又は2記載の製氷機。
[Claims] 1. An ice maker having a cubic grid shape with the ice making surface facing downward (
13) In the ice making machine that circulates and supplies water in an ice making water tank (8) to the ice making surface and freezes the ice making water on the ice making surface that is cooled by an evaporator, the hollow arm is rotatable in a horizontal plane. A rotary injection nozzle (1) supported on a vertical shaft (15) and connected to an ice making water supply line is disposed below the ice maker (13), and the injection nozzle (14) The water is diffused in a fan shape in the longitudinal direction of the arm at positions on both sides asymmetrical with respect to the center of rotation of the hollow arm,
An ice maker characterized in that a slit is formed so that a portion of the diffused water can intersect with the ice making surface, and the injection nozzle (1) is rotated at a predetermined rotation speed. 2. The ice making machine according to claim 1, wherein the number of revolutions of the injection nozzle (1) is within the range of 20 to 120 times/min. 3. The ice making machine according to claim 1 or 2, wherein the rotary injection nozzle (1) is of an autorotating type that is rotated by the water pressure reaction force of a fountain from the injection port (14) or a separately provided water fountain.
JP3918288A 1988-02-22 1988-02-22 Ice machine Pending JPH01212879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3918288A JPH01212879A (en) 1988-02-22 1988-02-22 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3918288A JPH01212879A (en) 1988-02-22 1988-02-22 Ice machine

Publications (1)

Publication Number Publication Date
JPH01212879A true JPH01212879A (en) 1989-08-25

Family

ID=12545970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3918288A Pending JPH01212879A (en) 1988-02-22 1988-02-22 Ice machine

Country Status (1)

Country Link
JP (1) JPH01212879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162137A (en) * 2000-11-21 2002-06-07 Hoshizaki Electric Co Ltd Automatic ice machine
KR20030087852A (en) * 2002-05-10 2003-11-15 캐리어엘지 유한회사 Ice maker
US20220090836A1 (en) * 2018-12-12 2022-03-24 Lg Electronics Inc. Ice machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162137A (en) * 2000-11-21 2002-06-07 Hoshizaki Electric Co Ltd Automatic ice machine
KR20030087852A (en) * 2002-05-10 2003-11-15 캐리어엘지 유한회사 Ice maker
US20220090836A1 (en) * 2018-12-12 2022-03-24 Lg Electronics Inc. Ice machine
EP3894762A4 (en) * 2018-12-12 2022-08-24 LG Electronics Inc. Ice machine

Similar Documents

Publication Publication Date Title
JP2751008B2 (en) Ice making equipment
SU1718734A3 (en) Device for preparation of transparent small-piece ice
JPH01212879A (en) Ice machine
JPH0544586B2 (en)
US2995017A (en) Apparatus for making sundered ice
JP2652639B2 (en) Heat preservation system
JP2002162137A (en) Automatic ice machine
JP4278228B2 (en) Automatic ice machine
JPH0419411Y2 (en)
JPH0117017Y2 (en)
CN208075397U (en) The machine that snows with spiral evaporator
KR20040036314A (en) Ice maker
JPS644053Y2 (en)
JP4095703B2 (en) Ice making equipment
JPH01230969A (en) Mechanical construction of automatic ice making machine
JPH0315986Y2 (en)
JP3133558B2 (en) Ice machine
JP2544670Y2 (en) Sprinkler for cell ice machine
JPH055410Y2 (en)
JP2586200Y2 (en) Ice making machine ice making structure
JP3028833U (en) Tubular ice machine
KR20090113134A (en) Flake ice manufacture device
JPH0357366U (en)
JPH02126062A (en) Ice making apparatus
JPH081422Y2 (en) Automatic ice maker for block ice