JPH01210784A - Vaporizer for ice-making - Google Patents

Vaporizer for ice-making

Info

Publication number
JPH01210784A
JPH01210784A JP63035629A JP3562988A JPH01210784A JP H01210784 A JPH01210784 A JP H01210784A JP 63035629 A JP63035629 A JP 63035629A JP 3562988 A JP3562988 A JP 3562988A JP H01210784 A JPH01210784 A JP H01210784A
Authority
JP
Japan
Prior art keywords
ice
blade
making
rotary drum
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63035629A
Other languages
Japanese (ja)
Other versions
JP2585687B2 (en
Inventor
Yoshinori Inoue
良則 井上
Narikazu Miyake
三宅 斉和
Akira Kurata
倉多 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Original Assignee
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Takenaka Komuten Co Ltd filed Critical Daikin Industries Ltd
Priority to JP63035629A priority Critical patent/JP2585687B2/en
Publication of JPH01210784A publication Critical patent/JPH01210784A/en
Application granted granted Critical
Publication of JP2585687B2 publication Critical patent/JP2585687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform reliable peeling off of ice during ice-making, by a method wherein a straight line for interconnecting the blade part and the tip part of a blade is extended in an inclined state radially of a rotary drum and brought into contact with the inner peripheral surface of an inner pipe, and a rotation control means to rotate forward and reverse the rotary drum is provided. CONSTITUTION:A base end part 41 of a blade 4 is mounted on a rotary drum 5 by means of a mounting piece 51, and a tip part 42 is brought into contact with an inner peripheral surface 20 of an inner pipe 2. A straight line for interconnecting a base end part 41 and a tip part 42 of the blade 4 is extended in a manner to be inclined with respect to the rotary drum 5, and during forward rotation of the drum 5, the tip part 42 is positioned on the front side in a rotation direction. In this constitution, when, during ice-making, the rotary drum 5 is rotated forward, the tip part 42 of the blade 4 is brought into a state to make firm contact with the inner peripheral surface 20 of the inner pipe 2, and ice adhered on the inner peripheral surface 20 is reliably peeled off. During non-ice-making, the rotary drum 5 is reversed, and since the tip part 42 only makes slight contact with the inner peripheral surface 20, wear between the blade 4 and the inner peripheral surface 20 is reduced, and a rotation load is also decreased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製氷用溶液からシャーベット杖の氷を生成し
て、例えば冷房等の冷熱源として利用できるようにした
製氷用蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ice-making evaporator that generates sherbet cane ice from an ice-making solution so that it can be used as a cold source for, for example, air conditioning.

(従来の技術) 従来、この種の製氷用蒸発器は、例えば特開昭56−2
587号公報に開示され、又、第8図に余すように、製
氷用溶液を供給する内管(A)内に、外周部にブレード
(F)を備えた回転ドラム(D)を内装すると共に、内
管(A)と外管(B)との間に、圧縮機を用いて構成さ
れる冷凍装置における蒸発用熱交換器(E)をコイル状
にして内装し、蒸発用熱交換器(E)からの冷却作用と
、/レード(F)による氷の剥ぎ取り作用とにより、前
記溶液をシャーベット状の氷と成し、下方に配設する蓄
熱槽(C)に、室内ユニット(U)・・・・へ供給する
冷房用冷熱源として蓄えるようにしている。
(Prior Art) Conventionally, this type of ice-making evaporator has been disclosed, for example, in Japanese Patent Application Laid-Open No. 56-2
587, and as shown in FIG. 8, a rotary drum (D) equipped with a blade (F) on the outer periphery is installed inside the inner tube (A) for supplying the ice-making solution. , an evaporative heat exchanger (E) in a refrigeration system configured using a compressor is installed in the form of a coil between the inner tube (A) and the outer tube (B). By the cooling action from E) and the ice stripping action from /rad (F), the solution is turned into sherbet-like ice, and the ice is transferred to the heat storage tank (C) located below from the indoor unit (U). It is stored as a cold heat source for air conditioning to be supplied to...

尚、第8図中、(P)は蓄熱4!(C)の液域から内管
(A)の上方に溶液を汲上げる循環ポンプである。
In addition, in Figure 8, (P) is heat storage 4! This is a circulation pump that pumps the solution from the liquid area in (C) above the inner tube (A).

(発明が解決しようとする課題) 所で、内管(A)を流通する製氷用溶液は、その内周面
を伝熱面として冷媒により冷却されて氷の結晶を生成す
るに至るのであるが、この場合、内管(A)の内周面に
付着する氷をブレード(F)で確実に剥ぎ取るようにし
ないと、該内周面に付着した氷が成長し、溶液の流通が
阻害されて氷の生成が行いがたくなると共に、回転ドラ
ム(D)の回転も阻害され、場合によっては、該回転ド
ラムの凍結ロックが起こるのであった。
(Problem to be Solved by the Invention) However, the ice-making solution flowing through the inner tube (A) is cooled by the refrigerant using its inner peripheral surface as a heat transfer surface, leading to the formation of ice crystals. In this case, if the ice adhering to the inner circumferential surface of the inner tube (A) is not removed reliably with the blade (F), the ice adhering to the inner circumferential surface will grow and impede the flow of the solution. This makes it difficult to generate ice, and the rotation of the rotating drum (D) is also inhibited, and in some cases, the rotating drum freezes and locks.

これに対し、ブレード(F)により内周面に付着する氷
を確実に剥ぎ取るようにするために、例えばブレード(
F)の先端と内周面との間の隙間が極めて小さくなるよ
うに、該ブレード(F)を回転ドラム(D)に取付ける
ことが考えられる。しかし、運転開始当初は、内管(A
)内に供給される溶液温度も、蒸発用熱交換器(E)に
供給される冷媒温度も未だ十分に低温杖態に達しておら
ず、氷の生成は運転開始から時間遅れで起こるものであ
るから、氷を剥き取る必要のない時でもブレード(F)
の内周面への接触摩擦力によって該内周面の摩耗が大き
くなうたり、又、回転ドラム(D)の回転負荷が不必要
に太き(なり、運転全般からみた場合得策だとはいいが
たい。
On the other hand, in order to ensure that the ice adhering to the inner circumferential surface is removed by the blade (F), for example, the blade (
It is conceivable to attach the blade (F) to the rotating drum (D) so that the gap between the tip of the blade (F) and the inner peripheral surface becomes extremely small. However, at the beginning of operation, the inner pipe (A
) and the temperature of the refrigerant supplied to the evaporative heat exchanger (E) have not yet reached a sufficiently low temperature, and the formation of ice occurs with a delay from the start of operation. Because there is a blade (F) even when there is no need to peel off ice.
The frictional force of contact with the inner circumferential surface of the rotary drum (D) will increase wear on the inner circumferential surface, and the rotational load on the rotating drum (D) will become unnecessarily large (which is not a good idea from the overall operational point of view). It's hard to say.

°本発明では、氷の生成のない非製氷時と氷が生成され
る製氷時との2つの運転ステージがある点、及び、回転
ドラムの回転に伴いブレードには溶液からの反力が作用
する点に着目し、非製氷時と製氷時とに、ブレードの内
管内周面に対する接触摩擦力を変えることができる構造
にし、全体としてブレード及び内管の耐久性を向上でき
るようにすると共に、非製氷時には回転ドラムの回転負
荷を低減でき、又、製氷時には確実な氷の剥ぎ取りが行
える製氷用蒸発器を提供することを目的とする。
°In the present invention, there are two operating stages: non-ice making when ice is not produced and ice making when ice is produced, and a reaction force from the solution acts on the blade as the rotating drum rotates. Focusing on this point, we created a structure that can change the contact friction force of the blade against the inner circumferential surface of the inner tube when not making ice and when making ice, thereby improving the durability of the blade and inner tube as a whole. To provide an evaporator for ice making that can reduce the rotational load of a rotating drum during ice making and can reliably remove ice during ice making.

(課題を解決するための手段) そこで、本発明では、製氷用溶液を流通させる内管(2
)と、冷媒を流通させる外管(3)とを備え、前記内管
(2)に、該内管(2)の内周面(20)に摺接するブ
レード(4)を備えた回転ドラム(5)を内装し、前記
内周面(20)を伝熱面として前記溶液と冷媒との熱交
換を行わせ、前記外管(3)に供給する冷媒の温度によ
り前記溶液の製氷運転と非製氷運転とを可能にした製氷
用蒸発器であって、前記ブレード(4)を前記回転ドラ
ム(5)に、該ブレード(4)の基端部(41)と先端
部(42)とを結ぶ直線が、前記回転ドラム(5)の径
方向に対し傾斜伏に延びて、前記先端部(42)が前記
内周面(20)に接触するごとく支持すると共に、製氷
運転時、前記回転ドラム(5)を、前記ブレード(4)
の先端部(42)が基端部(41)に対し回転方向前゛
方便に位置されるように正転させ、又、非製氷運転時、
前記回転ドラム(5)を、前記ブレー□ド(4)の先端
部(42)が基端部(41)に対し回転方向後方側に位
置されるように逆転させる回転制御手段(“9)を設け
たことを特徴とするものである。
(Means for Solving the Problems) Therefore, in the present invention, an inner tube (2
) and an outer tube (3) through which a refrigerant flows, and the inner tube (2) is equipped with a blade (4) that comes into sliding contact with the inner circumferential surface (20) of the inner tube (2). 5) is installed inside, and the inner circumferential surface (20) is used as a heat transfer surface to perform heat exchange between the solution and the refrigerant, and the temperature of the refrigerant supplied to the outer tube (3) is used to control ice-making operation and non-ice-making operation of the solution. An ice-making evaporator that enables ice-making operation, wherein the blade (4) is connected to the rotating drum (5), and the base end (41) and tip end (42) of the blade (4) are connected. A straight line extends obliquely with respect to the radial direction of the rotating drum (5), supports the tip (42) so as to contact the inner circumferential surface (20), and supports the rotating drum (5) during ice-making operation. 5), the blade (4)
It is rotated in the forward direction so that the tip end (42) is conveniently located in the front direction of rotation with respect to the base end (41), and during non-ice making operation,
Rotation control means ("9") for reversing the rotating drum (5) so that the tip end (42) of the blade (4) is located on the rear side in the rotational direction with respect to the base end (41). It is characterized by the fact that it has been provided.

(作用) 非製氷運転時、ブレード(4)の先端部(42)が基端
部(41)に対し回転方向後方側に位置されるように逆
転される。この時、ブレード(ト)には内管(2)内の
溶液の反力が作用するが、この反力は、該ブレード(4
)を伝熱面(20)から離間させる方向に働くことにな
る。このため、ブレード(4)の先端部(42)と内周
面(20)との間の接触力が低減され、先端部(42)
と内周面(20)との間の摺動摩耗が低減できる。又、
回転ドラム(5)の回転負荷も低減できる。尚、内管(
2)内の溶液は、ブレード(4)が回転することにより
撹拌され、その熱交換は促進される。
(Function) During non-ice-making operation, the blade (4) is reversed so that its tip (42) is located on the rear side in the rotational direction with respect to its base (41). At this time, the reaction force of the solution in the inner tube (2) acts on the blade (T), but this reaction force
) will act in the direction of separating the heat transfer surface (20) from the heat transfer surface (20). Therefore, the contact force between the tip (42) of the blade (4) and the inner peripheral surface (20) is reduced, and the tip (42)
Sliding wear between the inner peripheral surface (20) and the inner peripheral surface (20) can be reduced. or,
The rotational load on the rotating drum (5) can also be reduced. In addition, the inner tube (
The solution in 2) is stirred by the rotation of the blade (4), and its heat exchange is promoted.

製氷運転時、ブレード(4)の先端部(42)が基端部
(41)に対し回転方向前方側に位置されるように正転
される。このため、ブレード(4)の先端部(42)は
、溶液からの反力で、内周面(20)に押し付けらる。
During ice-making operation, the blade (4) is rotated normally so that the tip (42) of the blade (4) is positioned forward in the rotational direction with respect to the base (41). Therefore, the tip (42) of the blade (4) is pressed against the inner peripheral surface (20) by the reaction force from the solution.

よって内周面(20)に付着する水は確実に剥ぎ取られ
て、回転ドラム(5)の凍結は防止できる。
Therefore, water adhering to the inner circumferential surface (20) is reliably removed, and freezing of the rotating drum (5) can be prevented.

(実施例) 第6図及び第7図に示す製氷用蒸発器(1)は、軸方向
一端に製氷用溶液の流入口(21)を、他端に前記溶液
の流出口(22)を設けた内管(2)と、冷媒の取入口
(31)と取出口(32)とを設けた外管(3)とを備
え、前記内管(2)に、該内管(2)の内周面(20)
に摺接するブレード(4)を備えた回転ドラム(5)を
内装し、前記内周面(20)を伝熱面として前記冷媒に
より溶液を冷却するようにしている。
(Example) The ice-making evaporator (1) shown in FIGS. 6 and 7 is provided with an inlet (21) for an ice-making solution at one end in the axial direction and an outlet (22) for the solution at the other end. an inner pipe (2), and an outer pipe (3) provided with a refrigerant inlet (31) and an outlet (32); Peripheral surface (20)
A rotary drum (5) equipped with a blade (4) that comes into sliding contact with is installed inside, and the solution is cooled by the refrigerant with the inner circumferential surface (20) serving as a heat transfer surface.

伝熱面となる内周面(20)は、所謂ホーニング加工等
の鏡面加工により、高精度に仕上げている。
The inner circumferential surface (20), which serves as a heat transfer surface, is finished with high precision by mirror finishing such as so-called honing.

前記ブレード(4)は、回転ドラム(5)の軸方向長さ
に沿って4分割して4対(4a+4a)(4b、4b)
(4c、4c)(4d、4d)配設され、各一対は互い
に回転ドラム(5)の円周上180’隔てて対向状に設
けられ、又、6対は該回転ドラム(5)の軸方向長さに
沿って互いに45℃づづ偏位させて設けている。
The blades (4) are divided into four along the axial length of the rotating drum (5) and are divided into four pairs (4a+4a) (4b, 4b).
(4c, 4c) (4d, 4d), each pair is provided facing each other at a distance of 180' from each other on the circumference of the rotating drum (5), and six pairs are arranged on the axis of the rotating drum (5). They are provided so as to be offset by 45° from each other along the directional length.

又、ブレード(4)は回転ドラム(5)に、第1図に明
示するように、該ブレード(4)の基端部(41)と先
端部(42)とを結ぶ直線が、回転ドラム(5)の径方
向に対し傾斜状に延びて、先端部(42)が内周面(2
0)に接触するように支持している。その支持は、第2
図に示すように、回転ドラム(5)の外周面に突設する
取付片(51)に、基端部(41)をシャフト(52)
で挿通して行うもので、該シャフト(52)を中心にブ
レード(4)は揺動自由とされる。
In addition, the blade (4) is attached to the rotating drum (5), as shown in FIG. 5), and extends obliquely with respect to the radial direction of the
0). That support is the second
As shown in the figure, the base end (41) is attached to the shaft (52) on the mounting piece (51) that protrudes from the outer peripheral surface of the rotating drum (5).
The blade (4) is allowed to swing freely around the shaft (52).

又、シャフト(52)には、一端を取付片(51)に係
止し、他端をブレード(4)に当接するコイルバネ(5
3)を套嵌し、常時、ブレード(4)の先端部(42)
を内周面(20)に弾接させるようにしている。
The shaft (52) also has a coil spring (5) whose one end is locked to the mounting piece (51) and whose other end is in contact with the blade (4).
3) and always keep the tip (42) of the blade (4)
is brought into elastic contact with the inner circumferential surface (20).

更に、ブレード(4)は、全体をポリエチレン等の硬質
合成樹脂で形成するものであり、先端部(42)は、先
鋭にカットされて内周面(20)の接線方向に鋭角状に
当接されている。
Further, the blade (4) is entirely made of hard synthetic resin such as polyethylene, and the tip (42) is cut into a sharp point and abuts at an acute angle in the tangential direction of the inner circumferential surface (20). has been done.

以上構成する蒸発器(1)は、第5図に示すように、2
台を一対にして、各回転ドラム(5)(5)の駆動軸(
50)(50)を1台のモータ(M2)で駆動している
。又、各内管(2)(2)は連絡管(63)で直列に接
続され、初段側の流入口(21)と後段側の流出口(2
2)とに、溶液の供給管(61)及び戻し管(62)を
結合して蓄熱槽(6)を接続し、供給管(61)に介装
する循環ポンプ(7)を介して蓄熱槽(8)と各内管(
2)(2)との間で溶液を循環させるようにしている。
The evaporator (1) configured above has two
The drive shafts (
50) (50) is driven by one motor (M2). In addition, the inner pipes (2) (2) are connected in series by a connecting pipe (63), with an inlet (21) on the first stage side and an outlet (21) on the latter stage.
2), a solution supply pipe (61) and a return pipe (62) are connected to the heat storage tank (6), and the heat storage tank is connected to the heat storage tank (6) through a circulation pump (7) installed in the supply pipe (61). (8) and each inner tube (
2) The solution is circulated between (2) and (2).

一方、各外管(3)(3)は互いに並列に接続されて、
圧縮機(8)を備える冷凍装置(10)に連結されてい
る。
On the other hand, each outer tube (3) (3) is connected in parallel to each other,
It is connected to a refrigeration system (10) that includes a compressor (8).

冷凍装置(10)は、圧縮機(8)の吐出側から、油分
離器(11) 、水冷式凝縮器(12)を介装すると共
に、分流器(13)を介して2系統の分岐路(14)(
14)を並列に設け、該名分岐路に、凝縮した高圧液冷
媒を膨張させるエジェクター(15)と、膨張後の低圧
液冷媒の蒸発作用を行わせる前記外管(3)とを介装し
て、その出口をヘッダ(16)で統合し、更にアキュム
レータ(17)を介して圧縮機(8)の吸入側に接続し
て成るものである。
The refrigeration system (10) is equipped with an oil separator (11) and a water-cooled condenser (12) from the discharge side of the compressor (8), and is connected to two branch lines via a flow divider (13). (14)(
14) are provided in parallel, and an ejector (15) for expanding the condensed high-pressure liquid refrigerant and the outer tube (3) for evaporating the expanded low-pressure liquid refrigerant are interposed in the branch path. The outlet is integrated with a header (16) and further connected to the suction side of the compressor (8) via an accumulator (17).

尚、第5図中、(18)は、凝縮器(12)の出口管(
120)と圧縮機(8)の吸入管(8O)とを熱交換可
能に付設して成る吸入熱交換器、(19)は各エジェク
ター(15)の均圧管、又、(M3)は圧縮機モータ、
(SV)は閉鎖弁、(BV)は逆止弁、(RI)はリキ
ッドアイ、(DF)はドライヤフィルタ、(HPS)は
高圧圧力検出器、(HG)は同高圧圧力ゲージ、(LP
S)は低圧圧力検出器、(LG)は同低圧圧力ゲージで
ある。又、(Th)は製氷用溶液の出口温度を検出する
サーミスタ、(Ml)は循環ポンプ(7)の駆動モータ
である。
In Fig. 5, (18) is the outlet pipe (12) of the condenser (12).
120) and the suction pipe (8O) of the compressor (8) are attached to enable heat exchange, (19) is the pressure equalization pipe of each ejector (15), and (M3) is the compressor motor,
(SV) is a closing valve, (BV) is a check valve, (RI) is a liquid eye, (DF) is a dryer filter, (HPS) is a high-pressure pressure detector, (HG) is a high-pressure pressure gauge, (LP
S) is a low-pressure pressure detector, and (LG) is a low-pressure pressure gauge. Further, (Th) is a thermistor that detects the outlet temperature of the ice-making solution, and (Ml) is a drive motor for the circulation pump (7).

そして、各外管(3)の出口を統合するヘッダ(18)
の出口近くに、蒸発圧力を検出する蒸発圧力検出W (
PS)を設けて、冷媒の蒸発圧力を検出可能にする。尚
、蒸発圧力検出には、前記低圧圧力検出器(LPS)で
代用できるが、外管(3)の出口に近い前記検出器(P
S)の方がより正確な値が検出できる。
and a header (18) that integrates the outlet of each outer tube (3).
An evaporation pressure detection W (
PS) to enable detection of the evaporation pressure of the refrigerant. Note that the low pressure detector (LPS) described above can be used in place of the evaporation pressure detection, but the detector (P
S) allows more accurate values to be detected.

又、回転ドラム(5)を駆動するモータ(M2)は、例
えば三相誘導電動機を用い、相入れ替えにより正逆転可
能にする。
The motor (M2) that drives the rotating drum (5) is, for example, a three-phase induction motor, and can be rotated in forward and reverse directions by changing the phases.

こうして、前記蒸発圧力検出器(PS)の検出結果から
、非製氷時と製氷時とを峻別し、モータ(M2)を相入
れ替えにより正転又は逆転させる回転制御手段(9)を
設け、製氷運転の開始から、第3図に示す手順に従って
回転ドラム(5)の回転制御を行う。
In this way, based on the detection result of the evaporation pressure detector (PS), a rotation control means (9) is provided to distinguish between non-ice making and ice making, and rotate the motor (M2) forward or reverse by changing the phase. From the start, the rotation of the rotating drum (5) is controlled according to the procedure shown in FIG.

まず、運転開始頭初は、溶液温度及び冷媒温度が共に高
く、又、その冷媒の蒸発圧力も高く、未だ各内管(2)
内に氷の発生はなく、非製氷時であり、回転ドラム(5
)を、第1図中点線矢印で示す向き、すなわち、ブレー
ド(4)の先端部(42)が基端部(41)に対し回転
方向後方側に位置されるように逆転させる。この時、ブ
レード(4)には内管(2)内の溶液の反力が作用する
が、この溶液の反力は、該ブレード(4)を伝熱面(2
0)から離間させる方向に働くことになるため、該ブレ
ード(4)の先端部(42)と内周面(20)との間の
接触力が低減され、先端部(42)と内周面(20)と
の間の摺動摩耗が低減できると共に、回転ドラムの回転
負荷すな′わちモータ(M2)の負荷軽減もなし得る。
First, at the beginning of operation, both the solution temperature and the refrigerant temperature are high, and the evaporation pressure of the refrigerant is also high, so that each inner pipe (2)
There was no ice forming inside the drum, and it was not ice making, and the rotating drum (5
) is reversed in the direction shown by the dotted line arrow in FIG. 1, that is, so that the tip end (42) of the blade (4) is located on the rear side in the rotational direction with respect to the base end (41). At this time, the reaction force of the solution in the inner tube (2) acts on the blade (4), but the reaction force of this solution causes the blade (4) to move toward the heat transfer surface (2).
0), the contact force between the tip (42) of the blade (4) and the inner circumferential surface (20) is reduced, and the contact force between the tip (42) and the inner circumferential surface is reduced. (20) can be reduced, and the rotational load on the rotating drum, ie, the load on the motor (M2), can also be reduced.

又、内管(2)内の溶液は、ブレード(4)が回転する
ことにより、撹拌され、該溶液の冷却作用が促進されて
、該溶液の温度低下を促進できる。
Further, the solution in the inner tube (2) is stirred by the rotation of the blade (4), and the cooling effect of the solution is promoted, so that the temperature of the solution can be reduced.

時間経過に伴い、第4図に示すように、溶液の出口温度
は低下していき、又、冷媒の蒸発圧力も低下していく。
As time passes, as shown in FIG. 4, the outlet temperature of the solution decreases, and the evaporation pressure of the refrigerant also decreases.

溶液が凍り始めると、伝熱面たる内周面(20)に氷が
付着するため、該内周面(20)での伝熱性能が低下し
、冷媒の蒸発圧力は、−時的に急激に低下することにな
る。この急激な圧力変化は、蒸発圧力検出器(PS)で
時々刻々検出される蒸発圧力の変化割合が急激に増加す
ることにより検出される。この急激な圧力低下の後、回
転ドラム(5)を、第1図中実線矢印で示す向き、すな
わち、ブレード(4)の先端部(42)が基端部(41
)に対し回転方向前方側に位置されるように正転させる
。従って、ブレード(4)の先端部(42)は、溶液か
らの反力と、コイルスプリング(53)の付勢力とで、
内周面(20)に押し付けられ、該内周面(20)に付
着する氷を確実に剥ぎ取ることができ、回転ドラム(5
)の凍結は防止できる。
When the solution begins to freeze, ice adheres to the inner circumferential surface (20), which is the heat transfer surface, so the heat transfer performance on the inner circumferential surface (20) decreases, and the evaporation pressure of the refrigerant decreases rapidly. This will result in a decline in This sudden pressure change is detected by a sudden increase in the rate of change in the evaporation pressure detected moment by moment by the evaporation pressure detector (PS). After this rapid pressure drop, the rotating drum (5) is moved in the direction shown by the solid arrow in FIG.
) in the forward direction in the rotational direction. Therefore, the tip (42) of the blade (4) is affected by the reaction force from the solution and the biasing force of the coil spring (53).
The ice that is pressed against the inner peripheral surface (20) and adhered to the inner peripheral surface (20) can be reliably peeled off,
) can be prevented from freezing.

尚、上記実施例では、検出蒸発圧力が一時的に低下する
時を検出して、非製氷運転と製氷、運転とを峻別したが
、この−時的な圧力低下後は、溶液温度はその氷結のた
めほぼ一定となり、又、溶液と冷媒との熱の授受は、溶
液の氷結のための潜熱のみで、冷媒の蒸発圧力もほぼ一
定となることから、数分程度の粗いサンプリング時間で
、サーミスタ(Th)により溶液出口温度を検出するか
、あるいは、その粗いサンプリング時間で、前記蒸発圧
力検出器(PS)により蒸発圧力を検出し、その時系列
で検出される検出結果に変化があるかどうかを調べ、一
定であるならば製氷運転に移行゛するようにしてもよい
In the above embodiment, the time when the detected evaporation pressure temporarily decreases is detected to clearly distinguish between non-ice-making operation and ice-making operation, but after this temporary pressure decrease, the solution temperature becomes In addition, the exchange of heat between the solution and the refrigerant is only through the latent heat due to the freezing of the solution, and the evaporation pressure of the refrigerant is also approximately constant. (Th) to detect the solution outlet temperature, or detect the evaporation pressure by the evaporation pressure detector (PS) at that rough sampling time, and check whether there is a change in the detection results detected in time series. You may check the temperature and, if it is constant, shift to ice-making operation.

又、上記実施例では、一連の製氷運転の中で、運転開始
当初と時間経過後とで非製氷時と製氷時とを峻別するよ
うにしたが、非製氷/製氷の峻別は、これに限るもので
はなく、例えば、製氷用蒸発器(1)が、氷の生成のみ
ならず、冷水の生成あるいは温水の生成などの多目的に
使用されるような場合には、氷を作ろとする運転と、温
水等を生成する運転とで、非製氷時と製氷時とを峻別す
るようにしてもよい。この場合、21類の運転を切換え
るスイッチ等に連動して、回転ドラム(5)の正逆転制
御を行うこともできる。
Furthermore, in the above embodiment, in the series of ice-making operations, the non-ice-making time and the ice-making time are clearly distinguished at the beginning of the operation and after the elapse of time, but the sharp distinction between non-ice-making and ice-making is limited to this. For example, if the ice-making evaporator (1) is used for multiple purposes such as not only ice production but also cold water production or hot water production, the ice-making evaporator (1) may be operated to make ice; Depending on the operation for generating hot water or the like, a distinction may be made between non-ice making and ice making. In this case, the rotating drum (5) can be controlled in forward and reverse directions in conjunction with a switch for switching the type 21 operation.

(発明の効果) 以上、本発明では、ブレード(4)を回転ドラム(5)
に、ブレード(4)の基端部(41)と先端部(42)
とを結ぶ直線が、回転ドラム(5)の放線に対し傾斜状
に延びて、先端部(42)が内管(2)の内周面(20
)に接触するごとく支持すると共に、製氷運転時、回転
ドラム(5)を、ブレード(4)の先端部(42)が基
端部(41)に対し回転方向前方側に位置されるように
正転させ、又、非製氷運転時、回転ドラム(5)を、ブ
レード(4)の先端部(42)が基端部(41)に対し
回転方向後方側に位置されるように逆転させるようにし
たから、製氷運転時には、ブレード(4)の内周面(2
0)への押し付は力を緩和できると共に、回転ドラム(
5)の回転負荷を低減することができ、又、製氷運転時
には、内周面(20)に骨管する氷を確実にかきとるこ
とができ、運転全般からみた、ブレード(4)の先端部
(42)及び内管(2)の内周面(20)の耐久性を向
上でき、それでいて、良好な製氷が行えるのである。
(Effects of the Invention) As described above, in the present invention, the blade (4) is connected to the rotating drum (5).
, the proximal end (41) and the distal end (42) of the blade (4).
A straight line connecting them extends obliquely with respect to the radiation of the rotating drum (5), and the tip (42) is connected to the inner circumferential surface (20) of the inner tube (2).
), and during ice-making operation, the rotating drum (5) is supported so that the tip (42) of the blade (4) is positioned forward in the direction of rotation with respect to the base (41). Also, during non-ice-making operation, the rotating drum (5) is reversed so that the tip (42) of the blade (4) is located on the rear side in the rotational direction with respect to the base end (41). Therefore, during ice making operation, the inner peripheral surface (2) of the blade (4)
0) can reduce the force, and the rotating drum (
It is possible to reduce the rotational load of 5), and during ice making operation, it is possible to reliably scrape off the ice that forms on the inner circumferential surface (20), and the tip of the blade (4) can be reduced from the viewpoint of the overall operation. (42) and the inner circumferential surface (20) of the inner tube (2) can be improved, and at the same time, good ice can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製氷用蒸発器の要部断面図、第2図は同
要部の拡大斜視図、第3図は回転制御手段による制御手
順を示す図、第4図は一連の製氷運転における溶液出口
温度と冷媒の蒸発圧力との経時変化を示す図、第5図は
製氷装置全体の配告系統図、第6図は製氷用蒸発器の全
体を示す一部切欠側断面図、第7図はその縦断面図、第
8図は従来例の配管系統図である。 (2)・・・・・・・・内管 (20)・・・・・・内周面 (3)・・・・・・・・外管 (4)・・・・・・・・ブレード (41)・・・・・・基端部 (42)・・・・・・先端部 (5)・・・・・・・・回転ドラム (9)・・・・・・・・回転制御手段 第1図 第8図 第8図
Fig. 1 is a sectional view of the main parts of the ice-making evaporator of the present invention, Fig. 2 is an enlarged perspective view of the main parts, Fig. 3 is a diagram showing the control procedure by the rotation control means, and Fig. 4 is a series of ice-making operations. Fig. 5 is a distribution system diagram of the entire ice making device; Fig. 6 is a partially cutaway side sectional view showing the entire ice making evaporator; FIG. 7 is a longitudinal sectional view thereof, and FIG. 8 is a piping system diagram of a conventional example. (2) Inner tube (20) Inner circumferential surface (3) Outer tube (4) Blade (41)...Base end (42)...Tip (5)...Rotating drum (9)...Rotation control means Figure 1 Figure 8 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1)製氷用溶液を流通させる内管(2)と、冷媒を流通
させる外管(3)とを備え、前記内管(2)に、該内管
(2)の内周面(20)に摺接するブレード(4)を備
えた回転ドラム(5)を内装し、前記内周面(20)を
伝熱面として前記溶液と冷媒との熱交換を行わせ、前記
外管(3)に供給する冷媒の温度により前記溶液の製氷
運転と非製氷運転とを可能にした製氷用蒸発器であって
、前記ブレード(4)を前記回転ドラム(5)に、該ブ
レード(4)の基端部(41)と先端部(42)とを結
ぶ直線が、前記回転ドラム(5)の径方向に対し傾斜状
に延びて、前記先端部(42)が前記内周面(20)に
接触するごとく支持すると共に、製氷運転時、前記回転
ドラム(5)を、前記ブレード(4)の先端部(42)
が基端部(41)に対し回転方向前方側に位置されるよ
うに正転させ、又、非製氷運転時、前記回転ドラム(5
)を、前記ブレード(4)の先端部(42)が基端部(
41)に対し回転方向後方側に位置されるように逆転さ
せる回転制御手段(9)を設けたことを特徴とする製氷
用蒸発器。
1) An inner tube (2) through which an ice-making solution flows and an outer tube (3) through which a refrigerant flows; A rotating drum (5) equipped with a blade (4) that comes into sliding contact is installed inside, and the inner circumferential surface (20) is used as a heat transfer surface to exchange heat between the solution and the refrigerant, and the solution is supplied to the outer tube (3). An ice-making evaporator that enables ice-making operation and non-ice-making operation of the solution depending on the temperature of the refrigerant, the blade (4) being connected to the rotating drum (5), and the base end of the blade (4) being connected to the rotary drum (5). (41) and the tip (42) extends obliquely with respect to the radial direction of the rotating drum (5), such that the tip (42) contacts the inner circumferential surface (20). In addition to supporting the rotary drum (5) during ice-making operation, the tip (42) of the blade (4)
The rotary drum (5) is rotated in the forward direction with respect to the base end (41).
), the distal end (42) of the blade (4) is connected to the proximal end (
An ice-making evaporator characterized in that it is provided with a rotation control means (9) for rotating the rotation so that it is located on the rear side in the rotational direction with respect to the ice-making evaporator (9).
JP63035629A 1988-02-18 1988-02-18 Ice making evaporator Expired - Fee Related JP2585687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035629A JP2585687B2 (en) 1988-02-18 1988-02-18 Ice making evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035629A JP2585687B2 (en) 1988-02-18 1988-02-18 Ice making evaporator

Publications (2)

Publication Number Publication Date
JPH01210784A true JPH01210784A (en) 1989-08-24
JP2585687B2 JP2585687B2 (en) 1997-02-26

Family

ID=12447160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035629A Expired - Fee Related JP2585687B2 (en) 1988-02-18 1988-02-18 Ice making evaporator

Country Status (1)

Country Link
JP (1) JP2585687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090207A (en) * 2014-11-11 2016-05-23 アイスマン株式会社 Artificial snowfall device
WO2019138779A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090207A (en) * 2014-11-11 2016-05-23 アイスマン株式会社 Artificial snowfall device
WO2019138779A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system
CN111602016A (en) * 2018-01-15 2020-08-28 大金工业株式会社 Ice making system
US10995975B2 (en) 2018-01-15 2021-05-04 Daikin Industries, Ltd. Ice making system
CN111602016B (en) * 2018-01-15 2021-06-08 大金工业株式会社 Ice making system

Also Published As

Publication number Publication date
JP2585687B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JP2005061681A (en) Auger type ice-making machine
JPH09509732A (en) Tandem cooling system
JP6575669B2 (en) Ice making system
JPH01210784A (en) Vaporizer for ice-making
JP6627959B1 (en) Ice making system and ice making method
JP5781836B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP2719170B2 (en) Refrigeration equipment for ice making
JP7007573B2 (en) Ice making system
JP2003042610A (en) Auger type icemaker
WO2019138765A1 (en) Ice making system
JP6614250B2 (en) Ice making system
JP3114618B2 (en) Ice storage device
JP2801623B2 (en) Ice making equipment
JPH01210774A (en) Operation control device for ice making device
JPH02213668A (en) Refrigerator for making ice
JPH0776640B2 (en) Method of starting refrigeration system using scroll compressor
JP2019211170A (en) Refrigeration cycle device
JPH04332358A (en) Defrosting operating method for heat pump and defrosting device
JP3349251B2 (en) Refrigeration equipment
JPH01210775A (en) Icing starting detecting device for vaporizer for ice-making
JPH03233262A (en) Freezing cycle
JPH01210776A (en) Icing starting detecting device for vaporizer for ice-making
JPH09126504A (en) Ice heat storage apparatus
JP2023161661A (en) Frozen confectionery manufacturing apparatus
JP2019124445A (en) Ice making system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees