JP7502461B2 - Method for producing compound having fluorene skeleton and compound having fluorene skeleton - Google Patents

Method for producing compound having fluorene skeleton and compound having fluorene skeleton Download PDF

Info

Publication number
JP7502461B2
JP7502461B2 JP2022560676A JP2022560676A JP7502461B2 JP 7502461 B2 JP7502461 B2 JP 7502461B2 JP 2022560676 A JP2022560676 A JP 2022560676A JP 2022560676 A JP2022560676 A JP 2022560676A JP 7502461 B2 JP7502461 B2 JP 7502461B2
Authority
JP
Japan
Prior art keywords
compound
fluorene skeleton
formula
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022560676A
Other languages
Japanese (ja)
Other versions
JPWO2022097396A1 (en
Inventor
和徳 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPWO2022097396A1 publication Critical patent/JPWO2022097396A1/ja
Application granted granted Critical
Publication of JP7502461B2 publication Critical patent/JP7502461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、フルオレン骨格を有する化合物の製造方法およびフルオレン骨格を有する化合物に関する。The present invention relates to a method for producing a compound having a fluorene skeleton and a compound having a fluorene skeleton.

近年、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンなどのフルオレン骨格を有する化合物は、耐熱性、透明性に優れ、高屈折率を備えたポリマー(例えばエポキシ樹脂、ポリエステル、ポリエーテル、ポリカーボネート等)を製造するための原料として有望であり、光学レンズ、フィルム、プラスチック光ファイバー、光ディスク基盤、耐熱性樹脂やエンジニヤリングプラスチックなどの素材原料として期待されている(特許文献1)。また、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(特許文献2)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]-2,7-ジフェニルフルオレン(特許文献3)等、各種フルオレン骨格を有する化合物が開発されている。これら化合物の開発により素材の高機能化が進む一方、フルオレン骨格を有する化合物の構造が複雑化しているため、その製造方法も複雑化しており、製造方法の複雑化による得られる化合物の色相劣化の改善や、製造方法自体の効率化などが求められている。In recent years, compounds having a fluorene skeleton, such as 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene, are promising as raw materials for producing polymers (e.g., epoxy resins, polyesters, polyethers, polycarbonates, etc.) with excellent heat resistance and transparency and high refractive index, and are expected to be used as raw materials for optical lenses, films, plastic optical fibers, optical disk substrates, heat-resistant resins, engineering plastics, etc. (Patent Document 1). In addition, various compounds having a fluorene skeleton, such as 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]fluorene (Patent Document 2) and 9,9-bis[4-(2-hydroxyethoxy)phenyl]-2,7-diphenylfluorene (Patent Document 3), have been developed. While the development of these compounds has led to the development of high performance materials, the structures of compounds having a fluorene skeleton have become more complex, and the manufacturing methods for these compounds have also become more complex. There is a demand for improvements in the hue deterioration of the resulting compounds due to the complexity of the manufacturing methods, as well as for improvements in the efficiency of the manufacturing methods themselves.

特許第4140975号公報Patent No. 4140975 特開2014-28806号公報JP 2014-28806 A 国際公開第2019/151264号International Publication No. 2019/151264

本発明の目的は、色相の改善されたフルオレン骨格を有する化合物の製造方法および色相の改善されたフルオレン骨格を有する化合物を提供することにある。また、本発明の目的は、収率および生産性を向上させるフルオレン骨格を有する化合物の製造方法を提供することにある。 The object of the present invention is to provide a method for producing a compound having a fluorene skeleton with improved hue, and a compound having a fluorene skeleton with improved hue. Another object of the present invention is to provide a method for producing a compound having a fluorene skeleton that improves yield and productivity.

本発明者らは、以下の態様を有する本発明により、上記課題を解決できることを見出した。
《態様1》
下記式(1)で表される化合物と下記式(2)または(3)で表されるボロン酸類とを反応溶媒中、塩基およびパラジウム系触媒の存在下で反応し、下記式(4)で表されるフルオレン骨格を有する化合物を得る工程において、反応溶媒として少なくともジメチルホルムアミドを使用することを特徴とするフルオレン骨格を有する化合物の製造方法。
The present inventors have found that the above problems can be solved by the present invention having the following aspects.
<<Aspect 1>>
A method for producing a compound having a fluorene skeleton, comprising reacting a compound represented by the following formula (1) with a boronic acid represented by the following formula (2) or (3) in a reaction solvent in the presence of a base and a palladium-based catalyst to obtain a compound having a fluorene skeleton represented by the following formula (4), the method comprising using at least dimethylformamide as a reaction solvent.

Figure 0007502461000001
Figure 0007502461000001

(式中、X1、X2はそれぞれ独立にハロゲン原子を示す。) (In the formula, X1 and X2 each independently represent a halogen atom.)

Figure 0007502461000002
Figure 0007502461000002

Figure 0007502461000003
Figure 0007502461000003

(式中、Zはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。) (In the formula, each Z independently represents an aromatic group having 6 to 20 carbon atoms, which may have a substituent.)

Figure 0007502461000004
Figure 0007502461000004

(式中、Ar1、Ar2はそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
《態様2》
反応溶媒として少なくともジメチルホルムアミドおよび芳香族炭化水素系溶媒を使用することを特徴とする態様1に記載のフルオレン骨格を有する化合物の製造方法。
《態様3》
ジメチルホルムアミドに溶解させた5重量%溶液のハーゼン単位色数(APHA)が50以下である下記式(4)で示されるフルオレン骨格を有する化合物。
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
Aspect 2
2. The method for producing a compound having a fluorene skeleton according to claim 1, wherein at least dimethylformamide and an aromatic hydrocarbon solvent are used as a reaction solvent.
Aspect 3
A compound having a fluorene skeleton represented by the following formula (4), which has a Hazen color number (APHA) of 50 or less when dissolved in a 5% by weight solution in dimethylformamide:

Figure 0007502461000005
Figure 0007502461000005

(式中、Ar1、Ar2はそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
《態様4》
熱可塑性樹脂の原料としての、態様3に記載のフルオレン骨格を有する化合物の使用方法。
《態様5》
態様3に記載のフルオレン骨格を有する化合物を重合することにより得られる熱可塑性樹脂。
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
Aspect 4
A method for using the compound having a fluorene skeleton according to embodiment 3 as a raw material for a thermoplastic resin.
Aspect 5
A thermoplastic resin obtained by polymerizing the compound having a fluorene skeleton according to embodiment 3.

本発明によれば、色相に優れたフルオレン骨格を有する化合物を得ることができる。
また、フルオレン骨格を有する化合物を製造する際の収率および生産性を向上させることができる。
According to the present invention, a compound having a fluorene skeleton and excellent hue can be obtained.
Furthermore, the yield and productivity in producing a compound having a fluorene skeleton can be improved.

《フルオレン骨格を有する化合物の製造方法》
本発明の製造方法は、下記式(1)で表される化合物と下記式(2)または(3)で表されるボロン酸類とを反応溶媒中、塩基およびパラジウム系触媒の存在下で反応し、下記式(4)で表されるフルオレン骨格を有する化合物を得る工程において、反応溶媒として少なくともジメチルホルムアミドを使用することを特徴とするフルオレン骨格を有する化合物の製造方法である。
<<Method for producing a compound having a fluorene skeleton>>
The production method of the present invention is a production method of a compound having a fluorene skeleton, characterized in that in a step of reacting a compound represented by the following formula (1) with a boronic acid represented by the following formula (2) or (3) in a reaction solvent in the presence of a base and a palladium-based catalyst to obtain a compound having a fluorene skeleton represented by the following formula (4), at least dimethylformamide is used as a reaction solvent.

Figure 0007502461000006
Figure 0007502461000006

(式中、X1、X2はそれぞれ独立にハロゲン原子を示す。) (In the formula, X1 and X2 each independently represent a halogen atom.)

Figure 0007502461000007
Figure 0007502461000007

Figure 0007502461000008
Figure 0007502461000008

(式中、Zはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)(In the formula, each Z independently represents an aromatic group having 6 to 20 carbon atoms, which may have a substituent.)

Figure 0007502461000009
Figure 0007502461000009

(式中、Ar1、Ar2はそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
本発明の製造方法では、反応溶媒として少なくともジメチルホルムアミドを使用する。ジメチルホルムアミドは、塩基として使用する化合物の水溶液との親和性と上記式(4)で表される化合物の溶解性を両立することができる。また、反応温度を高くすることができ、反応速度の向上やパラジウム触媒量を低減することができる。
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
In the production method of the present invention, at least dimethylformamide is used as a reaction solvent. Dimethylformamide can achieve both affinity with the aqueous solution of the compound used as a base and solubility of the compound represented by the above formula (4). In addition, the reaction temperature can be increased, and the reaction rate can be improved and the amount of palladium catalyst can be reduced.

本発明の製造方法では、反応溶媒として、ジメチルホルムアミドに加え、トルエン等の芳香族炭化水素系溶媒を併用することが好ましい。芳香族炭化水素系溶媒を併用することで、反応後に有機層と水層に分離することができ、反応後の精製が容易になる。In the production method of the present invention, it is preferable to use an aromatic hydrocarbon solvent such as toluene in addition to dimethylformamide as a reaction solvent. By using an aromatic hydrocarbon solvent in combination, the organic layer and the aqueous layer can be separated after the reaction, making purification after the reaction easier.

本発明の製造方法で使用する芳香族炭化水素系溶媒の具体例として、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、イソプロピルベンゼン等が挙げられ、トルエンが好ましい。 Specific examples of aromatic hydrocarbon solvents used in the manufacturing method of the present invention include benzene, toluene, xylene, ethylbenzene, mesitylene, isopropylbenzene, etc., with toluene being preferred.

本発明の製造方法で使用する反応溶媒の使用量は、前記式(1)で示される化合物1重量部に対して好ましくは0.1~100重量部、より好ましくは1~50重量部であり、さらに好ましくは2~10重量部である。The amount of the reaction solvent used in the production method of the present invention is preferably 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and even more preferably 2 to 10 parts by weight, per 1 part by weight of the compound represented by formula (1).

反応溶媒中、ジメチルホルムアミドは5重量%以上使用することが好ましく、10重量%以上使用することがより好ましく、20重量%以上使用することがさらに好ましく、30重量%以上使用することが特に好ましい。In the reaction solvent, it is preferable to use 5% by weight or more of dimethylformamide, more preferably 10% by weight or more, even more preferably 20% by weight or more, and particularly preferably 30% by weight or more.

本発明の製造方法において芳香族炭化水素系溶媒を併用する場合、芳香族炭化水素系溶媒の使用割合は、ジメチルホルムアミド1重量部に対して好ましくは0.1~10重量部、より好ましくは0.5~5重量部であり、さらに好ましくは1~3重量部である。When an aromatic hydrocarbon solvent is used in combination in the manufacturing method of the present invention, the proportion of the aromatic hydrocarbon solvent used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, and even more preferably 1 to 3 parts by weight, per 1 part by weight of dimethylformamide.

反応溶媒としてジメチルホルムアミドと芳香族炭化水素系溶媒を併用する場合、反応溶媒中、ジメチルホルムアミドと芳香族炭化水素系溶媒との合計量は、70重量%以上使用することがより好ましく、80重量%以上使用することがさらに好ましく、90重量%以上使用することが特に好ましい。When dimethylformamide and an aromatic hydrocarbon solvent are used in combination as a reaction solvent, it is more preferable that the total amount of dimethylformamide and aromatic hydrocarbon solvent in the reaction solvent is 70% by weight or more, even more preferable that the total amount is 80% by weight or more, and particularly preferable that the total amount is 90% by weight or more.

本発明の上記式(1)において、X1、X2はそれぞれ独立にハロゲン原子を示し、塩素原子または臭素原子であると好ましく、臭素原子であるとより好ましい。 In the above formula (1) of the present invention, X 1 and X 2 each independently represent a halogen atom, preferably a chlorine atom or a bromine atom, and more preferably a bromine atom.

本発明の上記式(2)および(3)において、Zはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基である。上記式(2)または(3)で表されるボロン酸類の具体例として、2-アントラセンボロン酸、9-アントラセンボロン酸、ベンジルボロン酸、2-ビフェニルボロン酸、3-ビフェニルボロン酸、4-ビフェニルボロン酸、2,3-ジメチルフェニルボロン酸、2,4-ジメチルフェニルボロン酸、2,5-ジメチルフェニルボロン酸、2,6-ジメチルフェニルボロン酸、3,4-ジメチルフェニルボロン酸、3,5-ジメチルフェニルボロン酸、2-エトキシフェニルボロン酸、3-エトキシフェニルボロン酸、4-エトキシフェニルボロン酸、6-メトキシ-2-ナフタレンボロン酸、2-メチルフェニルボロン酸、3-メチルフェニルボロン酸、4-メチルフェニルボロン酸、1-ナフタレンボロン酸、2-ナフタレンボロン酸、9-フェナントレンボロン酸、10-フェニル-9-アントラセンボロン酸、フェニルボロン酸、フェニルエタンボロン酸、4-フェニル(ナフタレン-1-イル)ボロン酸、3-プロポキシフェニルボロン酸、3-イソ-プロポキシフェニルボロン酸、4-イソ-プロポキシフェニルボロン酸、4-プロピルフェニルボロン酸、4-イソ-プロピルフェニルボロン酸、10-(ナフタレン-1-イル)-9-アントラセンボロン酸、10-(ナフタレン-2-イル)-9-アントラセンボロン酸、ベンゾフラン-2-ボロン酸、ジベンゾフラン-4-ボロン酸、5-フォルミル-2-フランボロン酸、5-フォルミルチオフェン-2-ボロン酸、フラン-2-ボロン酸、フラン-3-ボロン酸、ピリジン-3-ボロン酸、ピリジン-4-ボロン酸、キノリン-2-ボロン酸、キノリン-3-ボロン酸、キノリン-4-ボロン酸、キノリン-5-ボロン酸、キノリン-6-ボロン酸、キノリン-8-ボロン酸、イソ-キノリン-4-ボロン酸、2-チオフェンボロン酸、3-チオフェンボロン酸、5-ピリミジンボロン酸、ベンゾチオフェン-2-ボロン酸、ジベンゾチオフェン-2-ボロン酸、ベンゾチオフェン-4-ボロン酸やこれらの無水物が含まれる。これらは単独で使用してもよく、または2種以上を混合してもよく、目的により任意に選ぶことができる。本発明では好ましくはフェニルボロン酸、1-ナフタレンボロン酸、2-ナフタレンボロン酸またはその無水物であり、特に好ましくはフェニルボロン酸またはその無水物である。In the above formulas (2) and (3) of the present invention, Z is each independently an aromatic group having 6 to 20 carbon atoms which may have a substituent. Specific examples of boronic acids represented by the above formulas (2) and (3) include 2-anthraceneboronic acid, 9-anthraceneboronic acid, benzylboronic acid, 2-biphenylboronic acid, 3-biphenylboronic acid, 4-biphenylboronic acid, 2,3-dimethylphenylboronic acid, 2,4-dimethylphenylboronic acid, 2,5-dimethylphenylboronic acid, 2,6-dimethylphenylboronic acid, 3,4-dimethylphenylboronic acid, 3,5-dimethylphenylboronic acid, 2-ethoxyphenylboronic acid, and the like. Boronic acid, 3-ethoxyphenylboronic acid, 4-ethoxyphenylboronic acid, 6-methoxy-2-naphthaleneboronic acid, 2-methylphenylboronic acid, 3-methylphenylboronic acid, 4-methylphenylboronic acid, 1-naphthaleneboronic acid, 2-naphthaleneboronic acid, 9-phenanthreneboronic acid, 10-phenyl-9-anthraceneboronic acid, phenylboronic acid, phenylethaneboronic acid, 4-phenyl(naphthalen-1-yl)boronic acid, 3-propoxyphenylboronic acid , 3-iso-propoxyphenylboronic acid, 4-iso-propoxyphenylboronic acid, 4-propylphenylboronic acid, 4-iso-propylphenylboronic acid, 10-(naphthalen-1-yl)-9-anthraceneboronic acid, 10-(naphthalen-2-yl)-9-anthraceneboronic acid, benzofuran-2-boronic acid, dibenzofuran-4-boronic acid, 5-formyl-2-furanboronic acid, 5-formylthiophene-2-boronic acid, furan-2-boronic acid, furan-3- Boronic acid, pyridine-3-boronic acid, pyridine-4-boronic acid, quinoline-2-boronic acid, quinoline-3-boronic acid, quinoline-4-boronic acid, quinoline-5-boronic acid, quinoline-6-boronic acid, quinoline-8-boronic acid, iso-quinoline-4-boronic acid, 2-thiopheneboronic acid, 3-thiopheneboronic acid, 5-pyrimidineboronic acid, benzothiophene-2-boronic acid, dibenzothiophene-2-boronic acid, benzothiophene-4-boronic acid, and anhydrides thereof are included. These may be used alone or in combination of two or more, and may be selected arbitrarily depending on the purpose. In the present invention, preferred are phenylboronic acid, 1-naphthaleneboronic acid, 2-naphthaleneboronic acid, or anhydrides thereof, and particularly preferred is phenylboronic acid or anhydrides thereof.

本発明の上記式(4)において、Ar1、Ar2は前記式(2)または(3)で表される化合物のZと対応しており、Ar1、Ar2の好ましい態様はZの好ましい態様と同様である。 In the above formula (4) of the present invention, Ar 1 and Ar 2 correspond to Z in the compound represented by the above formula (2) or (3), and preferred embodiments of Ar 1 and Ar 2 are the same as the preferred embodiments of Z.

本発明の製造方法で使用する前記式(2)で表される化合物の使用比率は、前記式(1)で表される化合物1モルに対して好ましくは2~5モル、より好ましくは、2.05~3.0モル、さらに好ましくは2.1~2.5モルである。また、前記式(3)で表される化合物の使用比率は、前記式(1)で表される化合物1モルに対して好ましくは0.7~5モル、より好ましくは0.8~3モル、さらに好ましくは1~2モルである。The ratio of the compound represented by formula (2) used in the production method of the present invention is preferably 2 to 5 moles, more preferably 2.05 to 3.0 moles, and even more preferably 2.1 to 2.5 moles, relative to 1 mole of the compound represented by formula (1). The ratio of the compound represented by formula (3) used is preferably 0.7 to 5 moles, more preferably 0.8 to 3 moles, and even more preferably 1 to 2 moles, relative to 1 mole of the compound represented by formula (1).

本発明の製造方法で使用する塩基としては、例えば、水酸化ナトリウム、水酸化カリウムなどの水酸化物、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸セシウム(Cs2CO3)などの炭酸塩、酢酸ナトリウム、酢酸カリウムなどの酢酸塩、リン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)などのリン酸塩などの無機塩、トリエチルアミン類、ピリジン、モルホリン、キノリン、ピペリジン、アニリン類、テトラnブチルアンモニウムアセテートなどのアンモニウム塩などの有機塩などが挙げられる。なかでも、炭酸塩が好ましく用いられ、炭酸カリウム、炭酸ナトリウムが好ましく、炭酸カリウムがより好ましい。これら塩基は、単独で用いてもよく、また、2種類以上併用して用いることもできる。 Examples of the base used in the production method of the present invention include hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), and cesium carbonate (Cs 2 CO 3 ), acetates such as sodium acetate and potassium acetate, phosphates such as sodium phosphate (Na 3 PO 4 ), and potassium phosphate (K 3 PO 4 ), and other inorganic salts, and organic salts such as triethylamines, pyridine, morpholine, quinoline, piperidine, anilines, and ammonium salts such as tetra-n-butylammonium acetate. Among these, carbonates are preferably used, with potassium carbonate and sodium carbonate being more preferred, and potassium carbonate being more preferred. These bases may be used alone or in combination of two or more.

本発明の製造方法で使用する塩基の使用量は、前記式(1)で表される化合物1モルに対して好ましくは1~30モルであり、より好ましくは2~10モルであり、さらに好ましくは2~5モルである。塩基は通常、水溶液として添加することが好ましい。The amount of the base used in the production method of the present invention is preferably 1 to 30 moles, more preferably 2 to 10 moles, and even more preferably 2 to 5 moles, per mole of the compound represented by formula (1). The base is usually preferably added as an aqueous solution.

本発明の製造方法で使用するパラジウム系触媒としては、鈴木カップリングで使用されるパラジウム化合物が好ましく、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、酢酸パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウム、ビス[4-(N, N-ジメチルアミノ)フェニル]ジ-tert-ブチルホスフィンパラジウムジクロリド、ビス(ジ-tert-ブチルプレニルホスフィン)パラジウムジクロリド、ビス(ジ-tert-クロチルホスフィン)パラジウムジクロリド、Pd/SiO2で表されるパラジウム系触媒などが挙げられる。なかでも、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。このようなパラジウム系触媒は、単独で用いてもよく、また、2種以上併用して用いることもできる。 The palladium catalyst used in the production method of the present invention is preferably a palladium compound used in the Suzuki coupling, such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium dichloride, palladium acetate, tris(dibenzylideneacetone)dipalladium, bis(dibenzylideneacetone)palladium, bis[4-(N,N-dimethylamino)phenyl]di-tert-butylphosphinepalladium dichloride, bis(di-tert-butylprenylphosphine)palladium dichloride, bis(di-tert-crotylphosphine)palladium dichloride, and a palladium catalyst represented by Pd/SiO 2. Among these, tetrakis(triphenylphosphine)palladium is preferred. Such palladium catalysts may be used alone or in combination of two or more.

本発明の製造方法で使用するパラジウム系触媒の使用量は、前記式(1)で示される化合物1モルに対して、パラジウム金属原子換算で好ましくは0.1~10ミリモルであり、より好ましくは0.5~5ミリモルである。The amount of the palladium catalyst used in the production method of the present invention is preferably 0.1 to 10 millimoles, more preferably 0.5 to 5 millimoles, in terms of palladium metal atoms, per mole of the compound represented by formula (1).

本発明では、反応終了後、得られた反応混合物は、洗浄、ろ過、濃縮、抽出、晶析、再結晶、再沈殿、活性炭処理あるいはそれと酷似した金属の除去処理、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製しても良い。In the present invention, after completion of the reaction, the reaction mixture obtained may be separated and purified by separation means such as washing, filtration, concentration, extraction, crystallization, recrystallization, reprecipitation, activated carbon treatment or similar metal removal treatment, column chromatography, or a combination of these.

本発明では、反応で塩基を使用するため、その中和処理を行うことが好ましい。また、反応で副生する塩の除去処理を行うことが好ましい。中和処理や塩の除去処理は、反応混合物に蒸留水を加え撹拌、分液、水層除去を繰り返す方法(分液水洗法と省略することがある)や結晶に蒸留水を加えリパルプ洗浄、ろ過を繰り返す方法等があり、分液水洗法が工業的に好ましい。In the present invention, since a base is used in the reaction, it is preferable to neutralize the base. It is also preferable to remove the salt that is a by-product of the reaction. The neutralization and salt removal processes include a method in which distilled water is added to the reaction mixture and stirred, separated, and the aqueous layer is removed repeatedly (sometimes abbreviated as the separation and washing method), or a method in which distilled water is added to the crystals and repulp washing and filtration are repeated, with the separation and washing method being industrially preferable.

本発明では、パラジウム化合物を使用するため、その除去処理を行うことが好ましい。パラジウムの除去処理は反応混合物に活性炭や金属スカベンジャーを加え撹拌後、活性炭や金属スカベンジャーを濾別することが好ましい。In the present invention, since a palladium compound is used, it is preferable to carry out a removal treatment of the palladium compound. The removal treatment of palladium is preferably carried out by adding activated carbon or a metal scavenger to the reaction mixture, stirring the mixture, and then filtering out the activated carbon or the metal scavenger.

本発明では、反応副生物や未反応原料等の不純物を除去するため、再結晶や晶析を行うことが好ましい。再結晶を行う場合、再結晶溶媒として、トルエン等の芳香族炭化水素系溶媒が好ましく、特にトルエンが好ましい。また、晶析を行う場合、フルオレン骨格を有する化合物をトルエン等の芳香族炭化水素系溶媒に溶解後、貧溶媒としてメタノール等のアルコール系溶媒を使用することが好ましい。本発明では、晶析を行うと色相がより良いフルオレノン骨格を有する化合物を得ることができ好ましい。
《フルオレン骨格を有する化合物》
本発明の製造方法で製造される化合物は、下記式(4)で表されるフルオレン骨格を有する化合物である。
In the present invention, it is preferable to carry out recrystallization or crystallization in order to remove impurities such as reaction by-products and unreacted raw materials. When carrying out recrystallization, aromatic hydrocarbon solvents such as toluene are preferable as recrystallization solvents, and toluene is particularly preferable. In addition, when carrying out crystallization, it is preferable to dissolve a compound having a fluorene skeleton in an aromatic hydrocarbon solvent such as toluene, and then use an alcohol solvent such as methanol as a poor solvent. In the present invention, it is preferable to carry out crystallization because it is possible to obtain a compound having a fluorenone skeleton with a better hue.
<<Compounds having a fluorene skeleton>>
The compound produced by the production method of the present invention is a compound having a fluorene skeleton represented by the following formula (4).

Figure 0007502461000010
Figure 0007502461000010

(式中、Ar1、Ar2はそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
上記式(4)において、Ar1およびAr2は、それぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示し、フェニル基およびナフチル基が好ましく、フェニル基がより好ましい。すなはち、下記式(5)で表される9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)-2,7-ジフェニルフルオレンがより好ましい。
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
In the above formula (4), Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent, and are preferably a phenyl group or a naphthyl group, more preferably a phenyl group, that is, 9,9-bis(4-(2-hydroxyethoxy)phenyl)-2,7-diphenylfluorene represented by the following formula (5) is more preferred.

Figure 0007502461000011
Figure 0007502461000011

本発明のフルオレン骨格を有する化合物は、ジメチルホルムアミドに溶解させた5重量%溶液のAPHAが50以下であると好ましく、40以下であるとより好ましく、30以下であるとさらに好ましい。APHAが50以下であると前記式(4)で表される原料からなる樹脂の色相やそれを使った光学部材の色相が良好になり好ましい。The compound having a fluorene skeleton of the present invention preferably has an APHA of 50 or less, more preferably 40 or less, and even more preferably 30 or less, in a 5 wt % solution dissolved in dimethylformamide. An APHA of 50 or less is preferable because it improves the hue of the resin made from the raw material represented by formula (4) and the hue of the optical component using the resin.

本発明のフルオレン骨格を有する化合物は、硫黄元素の含有量が200ppm以下であると好ましく、100ppm以下であるとより好ましく、50ppm以下であるとさらに好ましく、30ppm以下であると特に好ましい。硫黄元素の含有量が200ppm以下であると前記式(4)で表される原料からなる樹脂の色相やそれを使った光学部材の色相が良好になり好ましい。The compound having a fluorene skeleton of the present invention preferably has a sulfur element content of 200 ppm or less, more preferably 100 ppm or less, even more preferably 50 ppm or less, and particularly preferably 30 ppm or less. If the sulfur element content is 200 ppm or less, the hue of the resin made of the raw material represented by the formula (4) and the hue of the optical member using the resin are improved, which is preferable.

本発明のフルオレン骨格を有する化合物は、臭素元素の含有量が150ppm以下であると好ましく、50ppm以下であるとより好ましく、20ppm以下であるとさらに好ましい。臭素元素の含有量が150ppm以下であると前記式(4)で表される原料からなる樹脂の色相やそれを使った光学部材の色相が良好になり好ましい。The compound having a fluorene skeleton of the present invention preferably has a bromine element content of 150 ppm or less, more preferably 50 ppm or less, and even more preferably 20 ppm or less. If the bromine element content is 150 ppm or less, the hue of the resin made from the raw material represented by the formula (4) and the hue of the optical member using the resin will be good, which is preferable.

また、本発明のフルオレン骨格を有する化合物は、ジフェニルフルオレノンの含有量が0.2%以下であると好ましく、0.1%以下であるとより好ましく、0.05%以下であるとさらに好ましい。ジフェニルフルオレンの含有量が0.2%以下であると前記式(4)で表される原料からなる樹脂の色相やそれを使った光学部材の色相が良好になり好ましい。In addition, the compound having a fluorene skeleton of the present invention preferably has a diphenylfluorenone content of 0.2% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. When the diphenylfluorene content is 0.2% or less, the hue of the resin made of the raw material represented by the formula (4) and the hue of the optical member using the resin are improved, which is preferable.

本発明のフルオレン骨格を有する化合物は、好ましくはジフェニルフルオレン骨格およびジナフチルフルオレン骨格とアレーン環を組み合わせているため、屈折率、耐熱性が高いだけでなくポリマーにした際に複屈折を軽減させることができる。本発明のフルオレン骨格を有する化合物は、ジフェニルフルオレン骨格およびジナフチルフルオレン骨格を有しているため、屈折率が高いにも関わらず、複屈折も小さくなる。さらに、アレーン環には、1つ以上のヒドロキシル基を有し、フルオレン化合物全体で複数のヒドロキシル基を有しているため、反応性が高い。そのため、本発明のフルオレン骨格を有する化合物は、種々の樹脂の原料(モノマー)として利用できる。例えば、熱可塑性樹脂(例えば、ポリエステル樹脂、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、ポリウレタン樹脂など)や熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、熱硬化性ポリウレタン樹脂、(メタ)アクリレート((メタ)アクリル酸エステル)など)のポリオール成分として用いることができる。本発明のフルオレン骨格を有する化合物をポリオール成分として用いると、フルオレン骨格の9位にナフタレン環が置換され、かつフルオレン骨格にジアリール基を有しているためか、得られる樹脂は高い屈折率と低複屈折性とを高レベルで両立できるという利点を備える。また、本発明のフルオレン骨格を有する化合物は色相に優れるため、得られる樹脂の色相も優れるため、光学レンズ等の光学部材に好適に用いられる。樹脂の色相としては、ペレットのb*値で5.0以下が好ましく、4.5以下がより好ましく、4.0以下がさらに好ましい。The compound having a fluorene skeleton of the present invention preferably combines a diphenylfluorene skeleton and a dinaphthylfluorene skeleton with an arene ring, so that not only does it have a high refractive index and heat resistance, but it also reduces birefringence when made into a polymer. The compound having a fluorene skeleton of the present invention has a diphenylfluorene skeleton and a dinaphthylfluorene skeleton, so that it has a high refractive index but also a small birefringence. Furthermore, the arene ring has one or more hydroxyl groups, and the fluorene compound as a whole has multiple hydroxyl groups, so it is highly reactive. Therefore, the compound having a fluorene skeleton of the present invention can be used as a raw material (monomer) for various resins. For example, it can be used as a polyol component for thermoplastic resins (e.g., polyester resins, polycarbonate resins, polyester carbonate resins, polyurethane resins, etc.) and thermosetting resins (e.g., epoxy resins, phenolic resins, thermosetting polyurethane resins, (meth)acrylates ((meth)acrylic acid esters), etc.). When the compound having the fluorene skeleton of the present invention is used as a polyol component, the 9-position of the fluorene skeleton is substituted with a naphthalene ring, and the fluorene skeleton has a diaryl group, so that the resin obtained has the advantage of being able to achieve both a high refractive index and low birefringence at a high level.In addition, the compound having the fluorene skeleton of the present invention has excellent hue, so that the resin obtained has excellent hue, so that it is suitable for use in optical components such as optical lenses.As for the hue of the resin, the b* value of pellet is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.0 or less.

以下、本発明を実施例により詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。The present invention will now be described in detail with reference to examples, but the present invention is not limited to the following examples as long as it does not depart from the gist of the invention.

なお、実施例において、各種測定は以下のように行った。
(1)HPLC測定
日立製高速液体クロマトグラフL-2350を用い、表1の測定条件で測定した。実施例中、特に断らない限り%はHPLCにおける溶媒を除いて補正した面積百分率値である。
In the examples, various measurements were carried out as follows.
(1) HPLC Measurement Measurement was performed using a Hitachi high performance liquid chromatograph L-2350 under the measurement conditions shown in Table 1. In the examples, unless otherwise specified, % is an area percentage value corrected by excluding the solvent in HPLC.

Figure 0007502461000012
Figure 0007502461000012

(2)ICP測定
実施例で得られた化合物を下記の装置にて測定した。
使用機器:Agilent Technologies
装置:Agilent5100 ICP-OES
(3)燃焼イオンクロマトグラフィー測定
三菱ケミカル製自動試料燃焼装置AQF-2100およびサーモフィッシャー製イオンクロマトグラフィーシステムDIONEX AQUIONを用い、下記測定条件で、硫黄元素の含有量(S量)および臭素元素の含有量(Br量)の測定を行った。尚、検量線作成は、WAKO製臭化物イオン標準液(Br-1000)および硫酸イオン標準液(SO4(2-):1000)を用い行った。
(2) ICP Measurement The compounds obtained in the examples were measured using the following device.
Equipment used: Agilent Technologies
Apparatus: Agilent 5100 ICP-OES
(3) Combustion Ion Chromatography Measurement The sulfur element content (S amount) and bromine element content (Br amount) were measured under the following measurement conditions using an automatic sample combustion device AQF-2100 manufactured by Mitsubishi Chemical and an ion chromatography system DIONEX AQUION manufactured by Thermo Fisher. The calibration curve was created using a bromide ion standard solution (Br-1000) and a sulfate ion standard solution (SO4(2-):1000) manufactured by WAKO.

測定温度:900℃→1000℃
吸収液:過酸化水素入り超純水
カラム:AS-17/AG-17
流速:1ml/min
セル温度:40℃、カラム温度:35℃
(4)APHA測定
測定試料0.5gをジメチルホルムアミド10mlに溶解させた溶液をφ25mmの試験管に入れ、日本電色製工業(株)製TZ6000を用いて測定した。
(5)ガラス転移温度(Tg)測定、示差走査熱量測定(DSC)
実施例で得られた樹脂を下記の装置、条件にて測定した。
装置:TA Instruments製Discovery DSC25
条件:昇温速度20℃/min
(6)ペレットb*値測定
実施例で得られた樹脂を下記の装置にて測定した。
装置: X-Rite社製 積分球分光光度計CE-7000A
(7)屈折率(nD)、アッベ数測定
実施例で得られた樹脂を下記の装置、手法にて測定した。
装置:ATAGO社製 DR-M2アッベ屈折計
手法:重合終了後に得られた樹脂ペレットを塩化メチレンに溶解させ、ガラスシャーレ上にキャスト、乾燥し、作成したフイルムの25℃における屈折率(波長:589nm)およびアッベ数(波長:486nm、589nm、656nmにおける屈折率から下記式を用いて算出)を測定した。
Measurement temperature: 900°C → 1000°C
Absorption solution: Ultrapure water containing hydrogen peroxide Column: AS-17/AG-17
Flow rate: 1 ml/min
Cell temperature: 40°C, column temperature: 35°C
(4) APHA Measurement 0.5 g of a measurement sample was dissolved in 10 ml of dimethylformamide and placed in a test tube with a diameter of 25 mm, and the APHA was measured using a TZ6000 manufactured by Nippon Denshoku Seikogyo Co., Ltd.
(5) Glass transition temperature (Tg) measurement, differential scanning calorimetry (DSC)
The resins obtained in the examples were measured using the following apparatus and conditions.
Apparatus: Discovery DSC25 manufactured by TA Instruments
Conditions: heating rate 20°C/min
(6) Measurement of pellet b* value The resins obtained in the examples were measured using the following device.
Equipment: X-Rite integrating sphere spectrophotometer CE-7000A
(7) Measurement of Refractive Index (nD) and Abbe Number The resins obtained in the examples were measured using the following devices and methods.
Apparatus: DR-M2 Abbe refractometer manufactured by ATAGO. Method: After the polymerization was completed, the resin pellets obtained were dissolved in methylene chloride, cast on a glass petri dish, and dried. The refractive index (wavelength: 589 nm) and Abbe number (calculated from the refractive indexes at wavelengths of 486 nm, 589 nm, and 656 nm using the following formula) of the film thus produced were measured.

ν=(nD-1)/(nF-nC)
なお、本発明においては、
nD:波長589nmでの屈折率、
nC:波長656nmでの屈折率、
nF:波長486nmでの屈折率を意味する。
[参考例1]
撹拌機、冷却器、水分離器、さらには温度計を備え付けたフラスコに2,7-ジブロモフルオレノン(以下、DBFNと略記することがある)28.1g(0.08モル)、2-ナフトール28.8g(0.20モル)、n-ドデカンチオール1.8g(0.01モル)、12タングスト(VI)リン酸n水和物(H3[PW1240]・nH2O)0.4g(0.12ミリモル)、トルエン30ml、エチレンカーボネート7.7gを加えたのち、50kPaに減圧後、100℃まで昇温し、同温度で5時間撹拌した。反応の進行具合はHPLCにて確認し、DBFNの残存量が0.0%であることを確認し反応を終了させた。
v = (nD-1)/(nF-nC)
In the present invention,
nD: refractive index at a wavelength of 589 nm,
nC: refractive index at a wavelength of 656 nm,
nF: refers to the refractive index at a wavelength of 486 nm.
[Reference Example 1]
28.1 g (0.08 mol) of 2,7-dibromofluorenone (hereinafter sometimes abbreviated as DBFN), 28.8 g (0.20 mol) of 2-naphthol, 1.8 g (0.01 mol) of n-dodecanethiol, 0.4 g (0.12 mmol) of 12-tungsto(VI)phosphate n-hydrate ( H3 [ PW12O40 ] .nH2O ), 30 ml of toluene, and 7.7 g of ethylene carbonate were added to a flask equipped with a stirrer, a cooler, a water separator, and a thermometer, and the pressure was reduced to 50 kPa, and the mixture was heated to 100°C and stirred at the same temperature for 5 hours. The progress of the reaction was confirmed by HPLC, and the reaction was terminated when it was confirmed that the remaining amount of DBFN was 0.0%.

反応後、25重量%水酸化ナトリウム水溶液を加えて12タングスト(VI)リン酸n水和物(H3[PW1240]・nH2O)を中和したのち、120℃で系内の水を留去した。その後、炭酸カリウム0.6g(4.16ミリモル)、エチレンカーボネート28.9g(0.33モル)、ジメチルホルムアミド100mLを加えて、110℃で5時間撹拌し反応をおこなった。反応の進行具合をHPLCで確認し、9,9’-ビス(6-ヒドロキシ-2-ナフチル)-2,7-ジブロモフルオレンの残存量が0.0%であることを確認して反応を終了させた。反応終了後、得られた反応液に水および25重量%水酸化ナトリウム水溶液を加え85℃で1.5時間撹拌した後、水層を分離した。得られた反応液を濃縮し、トルエンを加え溶解させた後、温水洗浄を5回行った。その後、メタノールで再結晶を2回行い、一晩減圧加熱乾燥し、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジブロモフルオレン(以下、BNDBと略記することがある)の白色結晶を収率77%、純度97.4%で得た。
[実施例1]
撹拌機、冷却器、さらには温度計を備え付けたフラスコに、参考例1で製造したBNDB44.7g(0.06モル)、フェニルボロン酸17.2g(0.14モル)、テトラキス(トリフェニルホスフィン)パラジウム0.09g(0.08ミリモル)、2M炭酸カリウム水溶液71ml、トルエン154ml、ジメチルホルムアミド77mlを加えた後、100℃で3時間撹拌した。反応の進行具合はHPLCにて確認し、BNDBの残存量が0.0%であることを確認し反応を終了させた。反応終了後、トルエンを加え反応液を希釈した後、撹拌を停止しトルエン層と水層を分離し、回収したトルエン層を温水で5回洗浄した。洗浄後のトルエン層にテトラヒドロフランを加え活性炭処理を行った後、テトラヒドロフランを留去し、トルエンで再結晶を行い、得られた結晶を一晩減圧加熱乾燥し、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジフェニルフルオレン(以下、BNDPと略記することがある)の白色結晶を収率80%、純度98.0%で得た。また、APHAは50、Sは25ppm、Brは1ppm、Pdは1ppm、ジフェニルフルオレノン(以下、DPFNと省略することがある)はHPLCにて測定し0.0%だった。
[実施例2]
撹拌機、冷却器、さらには温度計を備え付けたフラスコに、参考例1で製造したBNDB44.7g(0.06モル)、フェニルボロン酸17.2g(0.14モル)、テトラキス(トリフェニルホスフィン)パラジウム0.09g(0.08ミリモル)、2M炭酸カリウム水溶液71ml、トルエン154ml、ジメチルホルムアミド77mlを加えた後、100℃で3時間撹拌した。反応の進行具合はHPLCにて確認し、BNDBの残存量が0.0%であることを確認し反応を終了させた。反応終了後、トルエンを加え反応液を希釈した後、撹拌を停止しトルエン層と水層を分離し、回収したトルエン層を温水で5回洗浄した。洗浄後のトルエン層にテトラヒドロフランを加え活性炭処理を行った後、テトラヒドロフランを留去し、トルエン溶液に貧溶媒としてメタノールおよび蒸留水を加え再結晶し、得られた結晶を一晩減圧加熱乾燥し、BNDPの白色結晶を収率78%、純度99.7%で得た。また、APHAは20、Sは9ppm、Brは0ppm、Pdは1ppm、DPFNはHPLCにて測定し0.0%だった。
[実施例3]
実施例1で合成した9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジフェニルフルオレンを25.91質量部、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンを16.44質量部、ジフェニルカーボネート16.23質量部、及び炭酸水素ナトリウム3.15×10-3質量部を撹拌機および留出装置付きの反応釜に入れ、窒素置換を3度行った後、ジャケットを200℃に加熱し、原料を溶融させた。完全溶解後、5分かけて20kPaまで減圧すると同時に、60℃/hrの速度でジャケットを260℃まで昇温し、エステル交換反応を行った。その後、ジャケットを260℃に保持したまま、50分かけて0.13kPaまで減圧し、260℃、0.13kPa以下の条件下で所定のトルクに到達するまで重合反応を行った。反応終了後、生成した樹脂をペレタイズしながら抜き出し、ポリカーボネート樹脂のペレットを得た。得られたポリカーボネート樹脂を、1H NMRにより分析し、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジフェニルフルオレン成分が全モノマー成分に対して、50mol%導入されていることを確認した。得られたポリカーボネート樹脂の屈折率は1.682、アッベ数は17.1、Tgは177℃、ペレットb*値は4.0であった。
[比較例1]
撹拌機、冷却器、さらには温度計を備え付けたフラスコに、参考例1で製造したBNDB44.7g(0.06モル)、フェニルボロン酸17.2g(0.14モル)、テトラキス(トリフェニルホスフィン)パラジウム0.7g(0.64ミリモル)、2M炭酸カリウム水溶液78ml、トルエン292ml、エタノール96mlを加えた後、80℃で3時間撹拌した。反応の進行具合はHPLCにて確認し、BNDBの残存量が0.0%であることを確認し反応を終了させた。反応後、BNDPは析出していた。反応液を冷却後、貧溶媒として蒸留水およびメタノールを加え、BNDPを完全に析出させ、ろ過回収した。回収したBNDP結晶を蒸留水でリパルプ洗浄し、BNDP結晶をろ過回収する操作を2回繰り返した後、BNDP結晶をテトラヒドロフランに溶解させ活性炭処理を行った。その後、トルエンで再結晶を行い、得られた結晶を一晩減圧加熱乾燥し、BNDPの白色結晶を収率74%、純度99.2%で得た。また、APHAは60、Sは20ppm、Brは8ppm、Pdは5ppm、DPFNはHPLCにて測定し0.0%だった。
After the reaction, 25% by weight aqueous sodium hydroxide solution was added to neutralize 12-tungsto(VI)phosphate n-hydrate (H 3 [PW 12 O 40 ].nH 2 O), and water in the system was distilled off at 120° C. Then, 0.6 g (4.16 mmol) of potassium carbonate, 28.9 g (0.33 mol) of ethylene carbonate, and 100 mL of dimethylformamide were added, and the reaction was carried out by stirring at 110° C. for 5 hours. The progress of the reaction was confirmed by HPLC, and the reaction was terminated when it was confirmed that the remaining amount of 9,9'-bis(6-hydroxy-2-naphthyl)-2,7-dibromofluorene was 0.0%. After the reaction was completed, water and 25% by weight aqueous sodium hydroxide solution were added to the obtained reaction solution, and the mixture was stirred at 85° C. for 1.5 hours, and the aqueous layer was separated. The obtained reaction solution was concentrated, toluene was added to dissolve it, and the mixture was washed with hot water five times. Thereafter, recrystallization was performed twice from methanol and dried overnight under reduced pressure with heating to obtain white crystals of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-dibromofluorene (hereinafter sometimes abbreviated as BNDB) in a yield of 77% and a purity of 97.4%.
[Example 1]
In a flask equipped with a stirrer, a cooler, and a thermometer, 44.7 g (0.06 mol) of BNDB produced in Reference Example 1, 17.2 g (0.14 mol) of phenylboronic acid, 0.09 g (0.08 mmol) of tetrakis(triphenylphosphine)palladium, 71 ml of 2M potassium carbonate aqueous solution, 154 ml of toluene, and 77 ml of dimethylformamide were added, and the mixture was stirred at 100° C. for 3 hours. The progress of the reaction was confirmed by HPLC, and the reaction was terminated when it was confirmed that the remaining amount of BNDB was 0.0%. After the reaction was completed, toluene was added to dilute the reaction solution, and then stirring was stopped, the toluene layer and the water layer were separated, and the collected toluene layer was washed five times with warm water. Tetrahydrofuran was added to the toluene layer after washing and treated with activated carbon, after which the tetrahydrofuran was distilled off and recrystallization was carried out with toluene, and the resulting crystals were dried overnight under reduced pressure and heat to obtain white crystals of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-diphenylfluorene (hereinafter sometimes abbreviated as BNDP) with a yield of 80% and a purity of 98.0%. In addition, APHA was 50, S was 25 ppm, Br was 1 ppm, Pd was 1 ppm, and diphenylfluorenone (hereinafter sometimes abbreviated as DPFN) was 0.0% as measured by HPLC.
[Example 2]
In a flask equipped with a stirrer, a cooler, and a thermometer, 44.7 g (0.06 mol) of BNDB produced in Reference Example 1, 17.2 g (0.14 mol) of phenylboronic acid, 0.09 g (0.08 mmol) of tetrakis(triphenylphosphine)palladium, 71 ml of 2M potassium carbonate aqueous solution, 154 ml of toluene, and 77 ml of dimethylformamide were added, and the mixture was stirred at 100° C. for 3 hours. The progress of the reaction was confirmed by HPLC, and the reaction was terminated after confirming that the remaining amount of BNDB was 0.0%. After the reaction was completed, toluene was added to dilute the reaction solution, and then stirring was stopped to separate the toluene layer and the water layer, and the collected toluene layer was washed five times with warm water. Tetrahydrofuran was added to the toluene layer after washing and treated with activated carbon, and then tetrahydrofuran was distilled off, and methanol and distilled water were added as poor solvents to the toluene solution to recrystallize, and the obtained crystals were dried overnight under reduced pressure and heating to obtain white crystals of BNDP with a yield of 78% and a purity of 99.7%. In addition, APHA was 20, S was 9 ppm, Br was 0 ppm, Pd was 1 ppm, and DPFN was 0.0% as measured by HPLC.
[Example 3]
25.91 parts by mass of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-diphenylfluorene synthesized in Example 1, 16.44 parts by mass of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 16.23 parts by mass of diphenyl carbonate, and 3.15×10 −3 parts by mass of sodium hydrogen carbonate were placed in a reaction vessel equipped with a stirrer and a distillation device, and nitrogen replacement was performed three times, after which the jacket was heated to 200 ° C. to melt the raw materials. After complete dissolution, the pressure was reduced to 20 kPa over 5 minutes, and at the same time, the jacket was heated to 260 ° C. at a rate of 60 ° C./hr to perform an ester exchange reaction. Thereafter, while maintaining the jacket at 260 ° C., the pressure was reduced to 0.13 kPa over 50 minutes, and a polymerization reaction was performed until a predetermined torque was reached under conditions of 260 ° C. and 0.13 kPa or less. After the reaction was completed, the produced resin was pelletized and extracted to obtain polycarbonate resin pellets. The obtained polycarbonate resin was analyzed by 1 H NMR, and it was confirmed that 50 mol % of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-diphenylfluorene was introduced based on the total monomer components. The refractive index of the obtained polycarbonate resin was 1.682, the Abbe number was 17.1, the Tg was 177° C., and the pellet b* value was 4.0.
[Comparative Example 1]
In a flask equipped with a stirrer, a cooler, and a thermometer, 44.7 g (0.06 mol) of BNDB produced in Reference Example 1, 17.2 g (0.14 mol) of phenylboronic acid, 0.7 g (0.64 mmol) of tetrakis (triphenylphosphine) palladium, 78 ml of 2M potassium carbonate aqueous solution, 292 ml of toluene, and 96 ml of ethanol were added, and the mixture was stirred at 80 ° C. for 3 hours. The progress of the reaction was confirmed by HPLC, and the reaction was terminated after confirming that the remaining amount of BNDB was 0.0%. After the reaction, BNDP was precipitated. After cooling the reaction solution, distilled water and methanol were added as poor solvents to completely precipitate BNDP, which was then collected by filtration. The collected BNDP crystals were repulped and washed with distilled water, and the operation of collecting the BNDP crystals by filtration was repeated twice, after which the BNDP crystals were dissolved in tetrahydrofuran and treated with activated carbon. Then, recrystallization was performed with toluene, and the obtained crystals were dried overnight under reduced pressure, to obtain white crystals of BNDP with a yield of 74% and a purity of 99.2%. In addition, APHA was 60, S was 20 ppm, Br was 8 ppm, Pd was 5 ppm, and DPFN was 0.0% as measured by HPLC.

実施例1および実施例2の製造方法は、目的物が溶媒に溶解しているため、精製処理時のろ過回数が減り、目的物の収率および生産性を向上させることができる。また、得られた結晶の色相がより良好であり、光学部材を構成する樹脂を形成するモノマーとして好適である。
[比較例2]
比較例1で合成した9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジフェニルフルオレンを25.91質量部、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンを16.44質量部、ジフェニルカーボネート16.23質量部、及び炭酸水素ナトリウム3.15×10-3質量部を撹拌機および留出装置付きの反応釜に入れ、窒素置換を3度行った後、ジャケットを200℃に加熱し、原料を溶融させた。完全溶解後、5分かけて20kPaまで減圧すると同時に、60℃/hrの速度でジャケットを260℃まで昇温し、エステル交換反応を行った。その後、ジャケットを260℃に保持したまま、50分かけて0.13kPaまで減圧し、260℃、0.13kPa以下の条件下で所定のトルクに到達するまで重合反応を行った。反応終了後、生成した樹脂をペレタイズしながら抜き出し、ポリカーボネート樹脂のペレットを得た。得られたポリカーボネート樹脂を、1H NMRにより分析し、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]-2,7-ジフェニルフルオレン成分が全モノマー成分に対して、50mol%導入されていることを確認した。得られたポリカーボネート樹脂の屈折率は1.682、アッベ数は17.1、Tgは177℃、ペレットb*値は5.9であった。
In the manufacturing methods of Examples 1 and 2, since the target substance is dissolved in a solvent, the number of filtrations during purification can be reduced, and the yield and productivity of the target substance can be improved. In addition, the color of the obtained crystals is better, and the product is suitable as a monomer for forming a resin constituting an optical component.
[Comparative Example 2]
25.91 parts by mass of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-diphenylfluorene synthesized in Comparative Example 1, 16.44 parts by mass of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 16.23 parts by mass of diphenyl carbonate, and 3.15×10 −3 parts by mass of sodium hydrogen carbonate were placed in a reaction kettle equipped with a stirrer and a distillation device, and nitrogen replacement was performed three times, after which the jacket was heated to 200 ° C. to melt the raw materials. After complete dissolution, the pressure was reduced to 20 kPa over 5 minutes, and at the same time, the jacket was heated to 260 ° C. at a rate of 60 ° C./hr to perform an ester exchange reaction. Thereafter, while maintaining the jacket at 260 ° C., the pressure was reduced to 0.13 kPa over 50 minutes, and a polymerization reaction was performed until a predetermined torque was reached under conditions of 260 ° C. and 0.13 kPa or less. After the reaction was completed, the produced resin was pelletized and extracted to obtain polycarbonate resin pellets. The obtained polycarbonate resin was analyzed by 1 H NMR, and it was confirmed that 50 mol % of 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]-2,7-diphenylfluorene was introduced based on the total monomer components. The refractive index of the obtained polycarbonate resin was 1.682, the Abbe number was 17.1, the Tg was 177° C., and the pellet b* value was 5.9.

本発明の製造方法で得られる新規なフルオレン誘導体は、光学レンズや光学フィルムに代表される光学部材を構成する樹脂を形成するモノマーとして好適である。The novel fluorene derivative obtained by the manufacturing method of the present invention is suitable as a monomer for forming resins that constitute optical components such as optical lenses and optical films.

Claims (9)

下記式(1)で表される化合物と下記式(2)または(3)で表されるボロン酸類とを反応溶媒中、塩基およびパラジウム系触媒の存在下で反応し、下記式(4)で表されるフルオレン骨格を有する化合物を得る工程において、反応溶媒として少なくともジメチルホルムアミドおよび芳香族炭化水素系溶媒を使用することを特徴とするフルオレン骨格を有する化合物の製造方法。
(式中、X、Xはそれぞれ独立にハロゲン原子を示す。)
(式中、Zはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
(式中、Ar、Arはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
A method for producing a compound having a fluorene skeleton, comprising reacting a compound represented by the following formula (1) with a boronic acid represented by the following formula (2) or (3) in a reaction solvent in the presence of a base and a palladium-based catalyst to obtain a compound having a fluorene skeleton represented by the following formula (4), the method comprising using at least dimethylformamide and an aromatic hydrocarbon-based solvent as the reaction solvent.
(In the formula, X 1 and X 2 each independently represent a halogen atom.)
(In the formula, each Z independently represents an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
反応溶媒の使用量は、前記式(1)で示される化合物1重量部に対して0.1~100重量部である請求項1に記載のフルオレン骨格を有する化合物の製造方法。 2. The method for producing a compound having a fluorene skeleton according to claim 1 , wherein the amount of the reaction solvent used is 0.1 to 100 parts by weight per 1 part by weight of the compound represented by formula (1) . 反応溶媒中、ジメチルホルムアミドは5重量%以上使用する請求項1に記載のフルオレン骨格を有する化合物の製造方法。2. The method for producing a compound having a fluorene skeleton according to claim 1, wherein dimethylformamide is used in an amount of 5% by weight or more in the reaction solvent. 芳香族炭化水素系溶媒の使用割合は、ジメチルホルムアミド1重量部に対して0.1~10重量部である請求項1に記載のフルオレン骨格を有する化合物の製造方法。2. The method for producing a compound having a fluorene skeleton according to claim 1, wherein the aromatic hydrocarbon solvent is used in an amount of 0.1 to 10 parts by weight per 1 part by weight of dimethylformamide. 反応溶媒中、ジメチルホルムアミドと芳香族炭化水素系溶媒との合計量は、70重量%以上である請求項1に記載のフルオレン骨格を有する化合物の製造方法。2. The method for producing a compound having a fluorene skeleton according to claim 1, wherein the total amount of dimethylformamide and the aromatic hydrocarbon solvent in the reaction solvent is 70% by weight or more. ジメチルホルムアミドに溶解させた5重量%溶液のハーゼン単位色数(APHA)が50以下である下記式(4)で示されるフルオレン骨格を有する化合物。
(式中、Ar、Arはそれぞれ独立に炭素数が6~20の置換基を有してもよい芳香族基を示す。)
A compound having a fluorene skeleton represented by the following formula (4), which has a Hazen color number (APHA) of 50 or less when dissolved in a 5% by weight solution in dimethylformamide:
(In the formula, Ar 1 and Ar 2 each independently represent an aromatic group having 6 to 20 carbon atoms which may have a substituent.)
熱可塑性樹脂の原料としての、請求項に記載のフルオレン骨格を有する化合物の使用方法。 A method for using the compound having a fluorene skeleton according to claim 6 as a raw material for a thermoplastic resin. 請求項に記載のフルオレン骨格を有する化合物を重合することにより得られる熱可塑性樹脂。 A thermoplastic resin obtained by polymerizing the compound having a fluorene skeleton according to claim 6 . 熱可塑性樹脂の色相が、ペレットのb*値で5.0以下である請求項8記載の熱可塑性樹脂。9. The thermoplastic resin according to claim 8, wherein the color of the thermoplastic resin is 5.0 or less in terms of b* value of pellets.
JP2022560676A 2020-11-04 2021-10-01 Method for producing compound having fluorene skeleton and compound having fluorene skeleton Active JP7502461B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020184218 2020-11-04
JP2020184218 2020-11-04
PCT/JP2021/036373 WO2022097396A1 (en) 2020-11-04 2021-10-01 Method for producing compound having fluorene skeleton, and compound having fluorene skeleton

Publications (2)

Publication Number Publication Date
JPWO2022097396A1 JPWO2022097396A1 (en) 2022-05-12
JP7502461B2 true JP7502461B2 (en) 2024-06-18

Family

ID=81457823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022560676A Active JP7502461B2 (en) 2020-11-04 2021-10-01 Method for producing compound having fluorene skeleton and compound having fluorene skeleton

Country Status (3)

Country Link
JP (1) JP7502461B2 (en)
CN (1) CN116438153A (en)
WO (1) WO2022097396A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151264A1 (en) 2018-01-31 2019-08-08 帝人株式会社 Compound having fluorene skeleton, and method for manufacturing same
JP2020083813A (en) 2018-11-26 2020-06-04 帝人株式会社 Production method of compound having fluorene skeleton and compound having fluorene skeleton of less impurity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151264A1 (en) 2018-01-31 2019-08-08 帝人株式会社 Compound having fluorene skeleton, and method for manufacturing same
JP2020083813A (en) 2018-11-26 2020-06-04 帝人株式会社 Production method of compound having fluorene skeleton and compound having fluorene skeleton of less impurity

Also Published As

Publication number Publication date
WO2022097396A1 (en) 2022-05-12
CN116438153A (en) 2023-07-14
JPWO2022097396A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP7012751B2 (en) Compounds having a fluorene skeleton and methods for producing them
TWI834822B (en) optical lens
JP7491980B2 (en) Method for producing compound having fluorene skeleton and compound having fluorene skeleton with few impurities
WO2020226126A1 (en) Compound having fluorene skeleton and method for producing same
JP2010248095A (en) Method of producing 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene
TWI673262B (en) Polycondensation resin and optical film formed from the resin
JP2023113714A (en) Compound having fluorene skeleton and method for producing the same
JP7502461B2 (en) Method for producing compound having fluorene skeleton and compound having fluorene skeleton
TWI824040B (en) Crystallization of a compound having a fluorine skeleton and its production method
CN113474321B (en) Compound having binaphthyl skeleton and method for producing compound having binaphthyl skeleton
JP7303055B2 (en) Compound having fluorene skeleton and method for producing the same
TW202104147A (en) Compound having fluorene skeleton and method for producing same
JP2023101603A (en) Compound having fluorene skeleton and production method of the same
TWI596105B (en) Phosphorus-series (meth) acrylate compound and its manufacturing method
CN106458817A (en) Novel bis(hydroxyalkoxyphenyl)diphenylmethane
JP2636042B2 (en) 4,4 &#39;&#34;&#34;-dihydroxyquarterphenyl derivative and method for producing the same
JP2021014426A (en) Compound having binaphthalene skelton
JP2007291041A (en) Method for producing adamantyl (meth)acrylate compound
KR101447456B1 (en) Method for Preparing Phosphinate Flame Retardant
JP2023070321A (en) Dihydroxy compound and method for producing the same
WO2013176090A1 (en) Method for producing 9,9-bis(hydroxyalkoxyphenyl)fluorene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240606

R150 Certificate of patent or registration of utility model

Ref document number: 7502461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150