JP7352353B2 - 導電材料及び接続構造体 - Google Patents

導電材料及び接続構造体 Download PDF

Info

Publication number
JP7352353B2
JP7352353B2 JP2018529182A JP2018529182A JP7352353B2 JP 7352353 B2 JP7352353 B2 JP 7352353B2 JP 2018529182 A JP2018529182 A JP 2018529182A JP 2018529182 A JP2018529182 A JP 2018529182A JP 7352353 B2 JP7352353 B2 JP 7352353B2
Authority
JP
Japan
Prior art keywords
flux
solder
conductive
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529182A
Other languages
English (en)
Other versions
JPWO2018221587A1 (ja
Inventor
士輝 宋
将大 伊藤
周治郎 定永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2018221587A1 publication Critical patent/JPWO2018221587A1/ja
Application granted granted Critical
Publication of JP7352353B2 publication Critical patent/JP7352353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Description

本発明は、導電部の外表面部分にはんだを有する導電性粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が開示されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)、銀(Ag)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。
特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電材料を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電材料が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。
また、下記の特許文献2には、フラックスと、スズが主成分である合金粉末とを含むはんだペースト(導電材料)が開示されている。上記フラックスは、溶剤中に、活性剤を添加して、分散させたフラックスである。上記溶剤は、水酸基を2~4個有する多価アルコールである。上記活性剤は、水酸基を4~6個有する糖類である。上記活性剤の平均粒子径は、100μm以下である。
また、下記の特許文献3には、鉛フリーSnZn系合金と、はんだ付け用フラックスとを含むはんだ組成物(導電材料)が開示されている。上記はんだ付け用フラックスは、エポキシ樹脂と、有機カルボン酸とを含む。上記有機カルボン酸は、室温(25℃)において上記はんだ組成物中に固体で分散している。
特開2004-260131号公報 特開2007-216296号公報 WO2003/002290A1
特許文献1~3に記載のような従来の導電材料では、導電性粒子又ははんだ粒子の電極(ライン)上への移動速度が遅く、接続されるべき上下の電極間にはんだを効率的に凝集させることが困難な場合がある。結果として、電極間の導通信頼性及び絶縁信頼性が低くなり易い。
電極上にはんだを効率的に凝集させる方法としては、導電材料中のフラックスの配合量を増加させる方法等が挙げられる。
しかしながら、導電材料中におけるフラックスの含有量を増加させると、フラックスと導電材料中の熱硬化性化合物とが反応して、導電材料の保存安定性が低下することがある。また、導電材料中におけるフラックスの含有量を増加させると、導電材料の硬化物の耐熱性が低下することがある。
特許文献1~3に記載のような従来の導電材料では、導電材料の保存安定性を高めることと、導電接続時のはんだの凝集性を高めることと、硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることは困難である。
本発明の目的は、導電材料の保存安定性を効果的に高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。
本発明の広い局面によれば、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、以下の第1の構成及び第2の構成のいずれか1以上を備える、導電材料が提供される。
第1の構成:前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する。
第2の構成:前記導電材料から前記導電性粒子を取り除いた組成物がコロイドであり、前記フラックスがコロイド粒子として存在する。
本発明に係る導電材料のある特定の局面では、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在する。
本発明に係る導電材料のある特定の局面では、前記フラックスの平均粒子径が、1μm以下である。
本発明に係る導電材料のある特定の局面では、前記熱硬化性化合物100重量部に対して、前記フラックスの含有量が、1重量部以上20重量部以下である。
本発明に係る導電材料のある特定の局面では、導電材料100重量%中、前記フラックスの含有量が、0.05重量%以上20重量%以下である。
本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。
本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、上記第1の構成及び上記第2の構成のいずれか1以上を備える。本発明に係る導電材料では、上記の構成が備えられているので、導電材料の保存安定性を効果的に高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる。
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。 図3は、接続構造体の変形例を示す断面図である。 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。
以下、本発明の詳細を説明する。
(導電材料)
本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含む。本発明に係る導電材料は、以下の第1の構成及び第2の構成のいずれか1以上を備える。本発明に係る導電材料は、以下の第1の構成のみを備えていてもよく、以下の第2の構成のみを備えていてもよく、以下の第1の構成及び以下の第2の構成の双方の構成を備えていてもよい。
第1の構成:上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する
第2の構成:上記導電材料から上記導電性粒子を取り除いた組成物がコロイドであり、上記フラックスがコロイド粒子として存在する
本発明に係る導電材料は、上記第1の構成として、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないという構成(第1aの構成)を備えていてもよい。本発明に係る導電材料は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在するという構成(第1bの構成)を備えていてもよい。
本発明に係る導電材料は、上記第1aの構成のみを備えていてもよく、上記第1bの構成のみを備えていてもよく、上記第2の構成のみを備えていてもよく、上記第1aの構成と上記第2の構成とを備えていてもよく、上記第1bの構成と上記第2の構成とを備えていてもよい。
本発明では、上記の構成が備えられているので、導電材料の保存安定性を高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる。
本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、複数の導電性粒子を電極(ライン)上に効率的に配置することができ、接続されるべき上下の電極間にはんだを効率的に凝集させることができる。また、複数の導電性粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置される導電性粒子の量をかなり少なくすることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
フラックスは、主として、導電性粒子におけるはんだの表面及び電極の表面等に存在する酸化物を除去したり、該酸化物の形成を防止したりするために導電材料中に配合されている。本発明では、フラックスは比較的凝集し難く、フラックスの粒子径は比較的小さい。さらに、本発明では、フラックスは比較的良好に分散している。このため、本発明では、導電材料中におけるフラックスの含有量が比較的少量であっても、導電性粒子におけるはんだの表面及び電極の表面等に存在する酸化物を除去することができ、該酸化物の形成を防止することができる。本発明では、導電材料中におけるフラックスの含有量が比較的少量であっても、導電接続時のはんだの凝集性を効果的に高めることができる。本発明では、導電材料中におけるフラックスの含有量を比較的少量にすることができる。
フラックスが同じ含有量での対比において、本発明におけるフラックスの存在状態である場合に、本発明におけるフラックスの存在状態ではない場合と比べて、導電接続時のはんだの凝集性を効果的に高めることができる。
本発明では、導電材料中におけるフラックスの含有量を多量にしなくてもよく、比較的少量にすることができるので、導電材料中における熱硬化性化合物とフラックスとの反応を効果的に抑制することができる。結果として、導電材料の保存安定性を効果的に高めることができる。
また、導電材料中におけるフラックスの融点(活性温度)は、導電材料中における熱硬化性化合物のTgよりも低い場合が多く、導電材料中におけるフラックスの含有量が多くなるほど、導電材料の硬化物の耐熱性が低下する傾向がある。本発明では、導電材料中におけるフラックスの含有量を多量にしなくてもよく、比較的少量にすることができるので、導電材料の硬化物の耐熱性を効果的に高めることができる。
本発明では、上記の構成を備えているので、導電材料の保存安定性を高めることと、導電接続時のはんだの凝集性を高めることと、硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることができる。
さらに、本発明では、電極間の位置ずれを防ぐことができる。導電接続時には、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる。この際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、本発明では、ずれを補正できる。結果として、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。
はんだの凝集性をより一層高める観点からは、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。
はんだの凝集性をより一層高める観点からは、上記導電材料の25℃での粘度(η25)は、好ましくは20Pa・s以上、より好ましくは30Pa・s以上であり、好ましくは500Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。はんだの凝集性をより一層高める観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
以下、導電材料に含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。
(導電性粒子)
上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。上記導電性粒子は、はんだにより形成されたはんだ粒子であってもよい。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性の外表面のいずれもがはんだである粒子である。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。
上記導電性粒子は、導電部の外表面部分にはんだを有する。上記基材粒子は、はんだにより形成されたはんだ粒子であってもよい。上記導電性粒子は、基材粒子及び導電部の外表面部分のいずれもがはんだであるはんだ粒子であってもよい。
なお、上記はんだ粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と、該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。さらに、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだにより形成されたはんだ粒子であることが好ましい。
次に図面を参照しつつ、導電性粒子の具体例を説明する。
図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。
図4に示す導電性粒子21は、はんだ粒子である。導電性粒子21は、全体がはんだにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コアシェル粒子ではない。導電性粒子21は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。
図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。
図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33とを備える。導電部33は、基材粒子32の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆された被覆粒子である。
導電部33は、第2の導電部33Aと、はんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの外表面上に配置されたはんだ部33Bとを備える。
図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。
図5における導電性粒子31の導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42とを備える。
以下、導電性粒子の他の詳細について説明する。
(基材粒子)
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることがさらに好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、本発明の効果がより一層効果的に発揮され、電極間の電気的な接続により一層適した導電性粒子が得られる。
上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。
上記樹脂粒子の材料として、種々の樹脂が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。
導電材料に適した任意の圧縮特性を有する樹脂粒子を設計及び合成することができ、かつ樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子の材料である無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。
上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。
上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下である。上記基材粒子の粒子径が、上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗をより一層効果的に低くすることができる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。上記基材粒子の粒子径が、上記上限以下であると、導電性粒子が十分に圧縮されやすく、導電性粒子を介して接続された電極間の接続抵抗をより一層効果的に低くすることができる。
上記基材粒子の粒子径は、5μm以上40μm以下であることが特に好ましい。上記基材粒子の粒子径が、5μm以上40μm以下の範囲内であると、電極間の間隔をより小さくすることができ、かつ導電部の厚みを厚くしても、小さい導電性粒子を得ることができる。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。
(導電部)
上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部及び上記はんだ部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
上記基材粒子の融点は、上記導電部及び上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。
上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。上記導電部が2層以上の場合、上記導電性粒子は、導電部の外表面部分にはんだを有することが好ましい。
上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。上記低融点金属とは、融点が450℃以下の金属を示す。上記低融点金属の融点は、好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは、錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ部及び上記導電性粒子におけるはんだに含まれる錫の含有量が、上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。
なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。
上記はんだを導電部の外表面部分に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電部の外表面部分に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性が効果的に高くなる。
上記はんだ部及び上記はんだを構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金としては、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。
はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部又は導電性粒子におけるはんだと電極との接合強度をさらに一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、さらに一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点をよりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。
上記はんだ部の融点と上記第2の導電部との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。
上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層、金層又は銅層であることがより好ましく、銅層であることがさらに好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層、金層又は銅層を有することがより好ましく、銅層を有することがさらに好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。
上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。はんだ部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。
上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下、特に好ましくは40μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。
上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。
上記導電性粒子の粒子径のCV値は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記粒子径のCV値が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記導電性粒子の粒子径のCV値は、5%未満であってもよい。
上記導電性粒子の粒子径のCV値(変動係数)は、以下のようにして測定できる。
CV値(%)=(ρ/Dn)×100
ρ:導電性粒子の粒子径の標準偏差
Dn:導電性粒子の粒子径の平均値
上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状等の球状以外の形状であってもよい。
上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、さらに好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは95重量%以下、より好ましくは90重量%以下、さらに好ましくは85重量%以下である。上記導電材料100重量%中、上記導電性粒子の含有量は、80重量%未満であってもよい。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。
(熱硬化性化合物)
本発明に係る導電材料は、熱硬化性化合物を含む。上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電材料は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記エポキシ化合物としては、レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物、フェノールノボラック型エポキシ化合物等の芳香族エポキシ化合物が好ましい。上記エポキシ化合物の溶融温度は、はんだの融点以下であることが好ましい。上記エポキシ化合物の溶融温度は、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは40℃以下である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、粘度を大きく低下させることができ、導電性粒子におけるはんだの凝集を効率よく進行させることができる。
上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、さらに好ましくは50重量%以下、特に好ましくは40重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、導電性粒子におけるはんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑制し、電極間の導通信頼性をより一層高めることができる。
(熱硬化剤)
上記導電材料は、熱硬化剤を含むことが好ましい。上記導電材料は、上記熱硬化性化合物とともに熱硬化剤を含むことが好ましい。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン硬化剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
上記イミダゾール硬化剤は、特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。
上記チオール硬化剤は、特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
上記アミン硬化剤は、特に限定されない。上記アミン硬化剤としては、三フッ化ホウ素-アミン錯体、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
上記熱カチオン硬化剤は、特に限定されない。上記熱カチオン硬化剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
上記熱ラジカル発生剤は、特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは190℃以下、特に好ましくは180℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、電極上にはんだがより一層効率的に配置される。
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。上記熱硬化剤の含有量が、上記下限以上であると、熱硬化性化合物を十分に硬化させることが容易である。上記熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
(フラックス)
本発明に係る導電材料は、フラックスを含む。本発明に係る導電材料は、好ましくは、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないという構成(第1aの構成)を備えていてもよい。本発明に係る導電材料は、好ましくは、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在するという構成(第1bの構成)を備えていてもよい。本発明に係る導電材料は、好ましくは、上記導電材料から上記導電性粒子を取り除いた組成物がコロイドであり、上記フラックスがコロイド粒子として存在するという構成(第2の構成)を備える。
上記導電材料が上記第1aの構成を備える場合において、上記フラックスの平均粒子径の1.8倍以上の粒子径を有するフラックスが存在しないことが好ましく、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないことがより好ましい。上記フラックスの平均粒子径が、上記の好ましい条件を満足すると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。
上記導電材料が上記第1bの構成を備える場合において、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、8%以下の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、6%以下の個数で存在することがより好ましい。上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスの個数の割合が、上記上限以下であると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。
上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、10%以下の個数で存在することがより好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、5%以下の個数で存在することがさらに好ましい。上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスの個数の割合が、上記上限未満及び上記上限以下であると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。
保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスの平均粒子径は、好ましくは1μm以下、より好ましくは1μm未満、さらに好ましくは0.8μm以下である。上記フラックスの平均粒子径の下限は特に限定されない。上記フラックスの平均粒子径は0.1μm以上であってもよい。
上記フラックスの粒子径は、フラックスが真球状である場合には、直径を示し、フラックスが真球状ではない場合には、最大径を示す。
上記フラックスの平均粒子径は、数平均粒子径を示す。上記フラックスの粒子径は、任意のフラックス50個を電子顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。
保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスの粒子径のCV値(変動係数)は、好ましくは40%以下、より好ましくは20%以下である。上記フラックスの粒子径のCV値の下限は特に限定されない。上記フラックスの粒子径のCV値は、0.01%以上であってもよい。
上記フラックスの粒子径のCV値(変動係数)は、以下のようにして測定できる。
CV値(%)=(ρ/Dn)×100
ρ:フラックスの粒子径の標準偏差
Dn:フラックスの粒子径の平均値
上記フラックスの形状は特に限定されない。上記フラックスの形状は、球状であってもよく、扁平状等の球状以外の形状であってもよい。
上記導電材料が上記第2の構成を備える場合において、上記導電材料から上記導電性粒子を取り除いた組成物はコロイドである。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記組成物は、組成物の全体がコロイドであることが好ましい。上記組成物は、コロイドである部分を含んでいればよく、組成物の全体がコロイドでなくてもよい。
上記導電材料が上記第2の構成を備える場合において、上記フラックスはコロイド粒子として存在する。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスはコロイド粒子であることが好ましく、上記フラックスは上記組成物中で上述した平均粒子径を有するコロイド粒子であることがより好ましい。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスは上記組成物中で分散していることが好ましく、上記フラックスは上記組成物中で均一に分散していることがより好ましい。上記導電材料中では、フラックスの全個数の20%以上がコロイド粒子であることが好ましい。上記導電材料中では、フラックスの一部がコロイド粒子であればよく、すべてのフラックスがコロイド粒子でなくてもよい。
上記組成物がコロイドであることを確認する方法としては、上記組成物又は上記組成物と上記フラックスが溶解しない溶媒との混合物を用いて、チンダル現象を観察する方法等が挙げられる。
上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸、リンゴ酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、又は松脂の使用により、電極間の導通信頼性がより一層高くなる。
上記松脂はアビエチン酸を主成分とするロジン類である。上記フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
上記フラックスの融点(活性温度)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、さらに一層好ましくは140℃以下である。上記フラックスの融点(活性温度)が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、導電性粒子におけるはんだが電極上により一層効率的に配置される。上記フラックスの融点(活性温度)は60℃以上190℃以下であることが好ましい。上記フラックスの融点(活性温度)は80℃以上140℃以下であることが特に好ましい。
フラックスの活性温度(融点)が60℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、及びリンゴ酸(融点130℃)等が挙げられる。
また、上記フラックスの沸点は200℃以下であることが好ましい。
上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、導電性粒子におけるはんだを電極上により一層効率的に配置することができる。
上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン硬化剤が挙げられる。
上記フラックスは、酸化合物と塩基化合物との塩であることがさらに好ましい。上記酸化合物は、金属の表面を洗浄する効果を有することが好ましく、上記塩基化合物は、上記酸化合物を中和する作用を有することが好ましい。上記フラックスは、上記酸化合物と上記塩基化合物との中和反応物であることが好ましい。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。
電極上に導電性粒子におけるはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。但し、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも高くてもよい。通常、上記導電材料の使用温度は上記導電性粒子におけるはんだの融点以上であり、上記フラックスの融点が上記導電材料の使用温度以下であれば、上記フラックスの融点が上記導電性粒子におけるはんだの融点よりも高くても、上記フラックスは十分にフラックスとしての性能を発揮することができる。例えば、導電材料の使用温度が150℃以上であり、導電性粒子におけるはんだ(Sn42Bi58:融点139℃)と、リンゴ酸とベンジルアミンとの塩であるフラックス(融点146℃)とを含む導電材料において、上記リンゴ酸とベンジルアミンとの塩であるフラックスは、十分にフラックス作用を示す。
導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。
上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。上記酸化合物は、グルタル酸、アゼライン酸、又はリンゴ酸であることが好ましい。
上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。上記塩基化合物は、ベンジルアミン、2-メチルベンジルアミン、又は3-メチルベンジルアミンであることが好ましい。
上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。フラックス効果をより一層効果的に高める観点からは、上記フラックスは、導電性粒子の表面上に付着していることが好ましい。
上記第1aの構成、上記第1bの構成、及び上記第2の構成を満足するフラックスは、例えば、固形フラックスを溶融させて、その後再析出させることにより得ることができる。再析出を穏やかに進行させることが好ましい。上記フラックスを得る方法は、固形フラックスを融点以上に加熱して、フラックスを完全に溶融させる方法であることが好ましい。上記フラックスを得る方法は、溶融したフラックスを徐々に再析出させる方法であることが好ましい。上記の方法によって、上述した平均粒子径を有する均一なフラックスを簡便に得ることができる。
平均粒子径の比較的小さいフラックスを得る他の方法としては、例えば、固形フラックスを粉砕する方法が挙げられる。しかしながら、固形フラックスを粉砕する方法では、フラックスの平均粒子径を小さくするには限界があり、上述した平均粒子径を有するフラックスを得ることが困難である。さらに、フラックスを粉砕した後にフラックス同士が凝集して、不均一なフラックスとなりやすい。不均一なフラックス(粉砕したフラックス)は、導電材料中で均一に分散させることが困難であり、不均一なフラックスを用いる場合には、はんだの凝集性を高めるために導電材料中のフラックスの含有量が比較的多くなりやすい。結果として、導電材料の保存安定性が低下し、導電材料の硬化物の耐熱性が低下して、本発明の効果を得ることが困難となる。このため、上記フラックスは、固形フラックスを粉砕する方法以外の方法により得ることが好ましく、再析出速度が比較的遅い固形フラックスを溶融させて、その後再析出させることにより得ることが好ましい。
保存安定性をより一層効果的に高め、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物100重量部に対して、上記フラックスの含有量は、好ましくは1重量部以上、より好ましくは2重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下である。
保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記導電材料100重量%中、上記フラックスの含有量は、好ましくは0.05重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。また、上記フラックスの含有量が、上記下限以上及び上記上限以下であると、導電性粒子におけるはんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、導電性粒子におけるはんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
(フィラー)
上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、基板の全電極上に対して、導電性粒子を均一に凝集させることができる。
上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。結晶性熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
上記導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、導電性粒子が電極上により一層効率的に配置される。
(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(接続構造体)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記接続部が、上述した導電材料の硬化物である。本発明に係る接続構造体では、上記接続部が、上述した導電材料により形成されている。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
本発明に係る接続構造体では、特定の導電材料を用いているので、導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
また、導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上であり、好ましくは100%以下である。
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、導電材料は、導電性粒子と、熱硬化性化合物と、フラックスとを含む。本実施形態では、上記導電性粒子として、はんだ粒子を含む。上記熱硬化性化合物と上記熱硬化剤と上記フラックスとを、熱硬化性成分と呼ぶ。
接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。
第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。
図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料に含まれるフラックスは、一般に、加熱により次第に失活する。
なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。
はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみる。この場合に、導通信頼性をより一層高める観点からは、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。
次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。
先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とフラックスとを含む。
第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。
導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされる場合がある。本実施形態では、加圧を行っていないため、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集している溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるためである。そして、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。
はんだの融点での導電材料の粘度は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度が、上記上限以下であれば、導電性粒子におけるはんだを効率的に凝集させることができる。上記粘度が、上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。
はんだの融点での導電材料の粘度は以下のようにして測定される。
上記はんだの融点での導電材料の粘度は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25~200℃(但し、はんだの融点が200℃を超える場合には温度上限をはんだの融点とする)の条件で測定可能である。測定結果から、はんだの融点(℃)での粘度が評価される。
このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。
上記第3の工程における加熱方法としては、導電性粒子におけるはんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
熱硬化性化合物:
三菱ケミカル社製「jER152」、エポキシ樹脂
熱硬化剤(熱硬化促進剤(触媒)):
ステラケミファ社製「BF3-MEA」、三フッ化ホウ素-モノエチルアミン錯体
導電性粒子:
三井金属鉱業社製「Sn42Bi58(DS-10)」
フラックス:
(1)フラックス1
フラックス1の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を140℃で15分間加熱して完全に溶融させ、25℃で30分間かけて徐々に再析出させることで、フラックス1を得た。
(2)フラックス2
フラックス2の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を160℃で5分間加熱して完全に溶融させ、25℃で30分間かけて徐々に再析出させることで、フラックス2を得た。
(3)フラックス3
フラックス3の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を乳鉢にて粉砕することで、フラックス3を得た。
(4)フラックス4
フラックス4の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を日清エンジニアリング社製ジェットミル粉砕機にて粉砕することで、フラックス4を得た。
(実施例1~2及び比較例1~3)
(1)導電材料(異方性導電ペースト)の作製
下記の表1に示す成分を下記の表1に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
(2)第1の接続構造体(L/S=50μm/50μm)の作製
作製直後の導電材料(異方性導電ペースト)を用いて、以下のようにして、第1の接続構造体を作製した。
L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
上記ガラスエポキシ基板と上記フレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。
上記ガラスエポキシ基板の上面に、作製直後の導電材料(異方性導電ペースト)を、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後に139℃(はんだの融点)となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が160℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
(3)第2の接続構造体(L/S=75μm/75μm)の作製
L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第2の接続構造体を得た。
(4)第3の接続構造体(L/S=100μm/100μm)の作製
L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第3の接続構造体を得た。
(評価)
(1)フラックスの存在状態
得られたフラックスの平均粒子径を、レーザー顕微鏡(オリンパス社製「OLS4100」)を用いて、任意のフラックス50個の粒子径を測定し、その平均値から算出した。
得られたフラックスの平均粒子径から、フラックス全個数100%中、フラックスの平均粒子径の2倍以上の粒子径を有するフラックスの個数の割合、及びフラックス全個数100%中、フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスの個数の割合を算出した。
(2)コロイド
得られた導電材料(異方性導電ペースト)をろ過することにより、導電材料(異方性導電ペースト)から導電性粒子を取り除いた。導電性粒子を取り除いた組成物を10mLスクリュー管に入れて、スクリュー管の横からレーザーポインターを照射することにより、フラックスによるチンダル現象が観察されるか否かを確認した。コロイドを以下の基準で判定した。なお、熱硬化性化合物及び熱硬化剤は溶解していることを確認した。
[コロイドの判定基準]
○:フラックスによるチンダル現象が観察される
×:フラックスによるチンダル現象が観察されない
(3)保存安定性
作製直後の導電材料(異方性導電ペースト)の25℃での粘度(η1)を測定した。また、作製直後の導電材料(異方性導電ペースト)を常温で24時間放置し、放置後の導電材料(異方性導電ペースト)の25℃での粘度(η2)を測定した。上記粘度は、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。粘度の測定値から、粘度上昇率(η2/η1)を算出した。保存安定性を以下の基準で判定した。
[保存安定性の判定基準]
○:粘度上昇率(η2/η1)が1.5以下
△:粘度上昇率(η2/η1)が1.5を超え2.0以下
×:粘度上昇率(η2/η1)が2.0を超える
(4)硬化物の耐熱性
得られた導電材料(異方性導電ペースト)を、150℃で2時間加熱することにより、硬化物を得た。得られた硬化物のガラス転移温度(Tg)を、動的粘弾性測定装置(ユービーエム社製「Rheogel-E」)を用いて、昇温速度10℃/分の条件で測定した。硬化物の耐熱性を以下の基準で判定した。
[硬化物の耐熱性の判定基準]
○:硬化物のTgが100℃以上
△:硬化物のTgが90℃以上100℃未満
×:硬化物のTgが90℃未満
(5)電極上のはんだの配置精度(はんだの凝集性)
得られた第1、第2及び第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度(はんだの凝集性)を下記の基準で判定した。
[電極上のはんだの配置精度(はんだの凝集性)の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上70%未満
△:割合Xが50%以上60%未満
×:割合Xが50%未満
(6)上下の電極間の導通信頼性
得られた第1、第2及び第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え70mΩ以下
△:接続抵抗の平均値が70mΩを超え100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
(7)横方向に隣接する電極間の絶縁信頼性
得られた第1、第2及び第3の接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
[絶縁信頼性の判定基準]
○○:接続抵抗の平均値が10Ω以上
○:接続抵抗の平均値が10Ω以上10Ω未満
△:接続抵抗の平均値が10Ω以上10Ω未満
×:接続抵抗の平均値が10Ω未満
結果を下記の表1に示す。
Figure 0007352353000001
フレキシブルプリント基板に代えて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子(導電性粒子)
11B…熱硬化性成分
21…導電性粒子(はんだ粒子)
31…導電性粒子
32…基材粒子
33…導電部(はんだを有する導電部)
33A…第2の導電部
33B…はんだ部
41…導電性粒子
42…はんだ部

Claims (6)

  1. 導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、
    前記フラックスの平均粒子径が1μm以下であり、
    前記熱硬化性化合物100重量部に対して、前記フラックスの含有量が、1重量部以上20重量部以下であり、
    以下の第1の構成を備える、導電材料。
    第1の構成:前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する
  2. 前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在する、請求項1に記載の導電材料。
  3. 導電材料100重量%中、前記フラックスの含有量が、0.05重量%以上15重量%以下である、請求項1又は2に記載の導電材料。
  4. 導電ペーストであり、前記導電ぺーストに前記フラックスがフラックス内包カプセルとして含まれているものを除く、請求項1~のいずれか1項に記載の導電材料。
  5. 第1の電極を表面に有する第1の接続対象部材と、
    第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部の材料が、請求項1~のいずれか1項に記載の導電材料であり、
    前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  6. 前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項に記載の接続構造体。
JP2018529182A 2017-06-01 2018-05-30 導電材料及び接続構造体 Active JP7352353B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017109191 2017-06-01
JP2017109191 2017-06-01
PCT/JP2018/020764 WO2018221587A1 (ja) 2017-06-01 2018-05-30 導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JPWO2018221587A1 JPWO2018221587A1 (ja) 2020-03-26
JP7352353B2 true JP7352353B2 (ja) 2023-09-28

Family

ID=64455131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529182A Active JP7352353B2 (ja) 2017-06-01 2018-05-30 導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP7352353B2 (ja)
KR (1) KR20200015445A (ja)
CN (1) CN110622258A (ja)
TW (1) TWI789395B (ja)
WO (1) WO2018221587A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088308B2 (en) 2019-02-25 2021-08-10 Tdk Corporation Junction structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102077A1 (ja) 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888573B2 (ja) 2001-06-29 2007-03-07 富士電機ホールディングス株式会社 ハンダ組成物
JP4019254B2 (ja) * 2002-04-24 2007-12-12 信越化学工業株式会社 導電性樹脂組成物
JP3769688B2 (ja) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 端子間の接続方法及び半導体装置の実装方法
JP2007044733A (ja) * 2005-08-10 2007-02-22 Miyazaki Prefecture はんだ付け用フラックス
JP2007216296A (ja) 2006-01-17 2007-08-30 Mitsubishi Materials Corp ハンダ用フラックス及び該フラックスを用いたハンダペースト並びに電子部品搭載基板の製造方法
JP5139933B2 (ja) * 2008-09-17 2013-02-06 積水化学工業株式会社 フラックス内包カプセル、フラックス内包カプセル付き導電性粒子、異方性導電材料及び接続構造体
GB201212489D0 (en) * 2012-07-13 2012-08-29 Conpart As Improvements in conductive adhesives
EP3187560B1 (en) * 2014-08-29 2024-01-17 Furukawa Electric Co., Ltd. Electrically conductive adhesive composition
JP2016139757A (ja) * 2015-01-29 2016-08-04 日立化成株式会社 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
CN108028090B (zh) * 2016-01-25 2020-11-13 积水化学工业株式会社 导电材料及连接结构体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102077A1 (ja) 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール

Also Published As

Publication number Publication date
TWI789395B (zh) 2023-01-11
JPWO2018221587A1 (ja) 2020-03-26
KR20200015445A (ko) 2020-02-12
WO2018221587A1 (ja) 2018-12-06
TW201903787A (zh) 2019-01-16
CN110622258A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
JP7425824B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6152043B2 (ja) 導電材料及び接続構造体
JP2014017248A (ja) 導電材料、導電材料の製造方法及び接続構造体
JP7356217B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7280864B2 (ja) 導電材料及び接続構造体
JPWO2019124513A1 (ja) はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
JP6600234B2 (ja) 導電材料及び接続構造体
JP2016126878A (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP2017224602A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7352353B2 (ja) 導電材料及び接続構造体
JP6974137B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JPWO2017179532A1 (ja) 導電材料及び接続構造体
JP2019131634A (ja) 硬化性材料、接続構造体及び接続構造体の製造方法
JPWO2018174066A1 (ja) 導電性粒子、導電材料及び接続構造体
WO2020255874A1 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6329014B2 (ja) 接続構造体及び接続構造体の製造方法
JP2014026963A (ja) 接続構造体の製造方法
JP2019212467A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2019175844A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6166849B2 (ja) 導電材料及び接続構造体
JP7377007B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7425561B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2019099610A (ja) 接続構造体の製造方法、導電材料及び接続構造体
JP7417396B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2020170592A (ja) 導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230111

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230203

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R151 Written notification of patent or utility model registration

Ref document number: 7352353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151