JP7067319B2 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP7067319B2
JP7067319B2 JP2018123931A JP2018123931A JP7067319B2 JP 7067319 B2 JP7067319 B2 JP 7067319B2 JP 2018123931 A JP2018123931 A JP 2018123931A JP 2018123931 A JP2018123931 A JP 2018123931A JP 7067319 B2 JP7067319 B2 JP 7067319B2
Authority
JP
Japan
Prior art keywords
opening degree
expansion valve
refrigerant
opening
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018123931A
Other languages
English (en)
Other versions
JP2020003155A (ja
Inventor
慎太郎 真田
佑 廣崎
亮 ▲高▼岡
光哉 青木
達朗 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018123931A priority Critical patent/JP7067319B2/ja
Publication of JP2020003155A publication Critical patent/JP2020003155A/ja
Application granted granted Critical
Publication of JP7067319B2 publication Critical patent/JP7067319B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和機に関わり、より詳細には、高圧側に気液分離器を備える空気調和機に関する。
近年、地球温暖化防止の観点から、冷媒回路に地球温暖化係数の小さい冷媒、例えば、プロパンやイソブタンなどの炭化水素冷媒やR32冷媒を充填する空気調和機が提案されている。しかし、これらの冷媒は可燃性冷媒であるので、冷媒回路から冷媒が漏洩した際に漏洩量を減らすために、冷媒回路に充填する冷媒量が削減される。冷媒の充填量を削減する方法として、室外機と室内機とを接続する液管を細くする方法がある。液管を細くすれば、液管が太い場合と比べて冷房運転時に液管を流れる冷媒量が少なくなるので、冷媒回路に充填する冷媒量を削減することができる。
しかし、冷房運転時に、液冷媒とガス冷媒とが混ざった気液二相冷媒、つまり、密度の低い冷媒が液管を流れる際に、液管を流れる冷媒の速度が速くなって圧力損失が大きくなる。また、液管が細くなるほど冷媒が液管を流れる際の圧力損失が大きくなる。従って、液管を細くした空気調和機で冷房運転を行ったときに、液管を冷媒が流れる際の圧力損失が大きくなることに起因して、膨張弁の開度を全開としても室内機の室内熱交換器における蒸発能力が低下して室内機で要求される冷房能力を発揮できない恐れがある。
上記の問題を解決する方法として、室外機の室外熱交換器と室内機の室内熱交換器とを接続する液管に気液分離器を備え、冷房運転時に凝縮器として機能する室外熱交換器から流出して気液分離器に流入した冷媒を液冷媒とガス冷媒とに分離し、液冷媒のみを気液分離器から液管に流出させることが考えられる(例えば、特許文献1)。このように、気液分離器を用いて液管に液冷媒、つまり、密度の高い冷媒を流すことで、液管を冷媒が流れる際の圧力損失を低減できる。これにより、冷媒充填量の削減のために液管を細くしても、この液管の細さに起因する圧力損失の影響を低減でき、室内機で要求される冷房能力を発揮するのに必要な量の冷媒を室内機に流すことができる。
特開2004-278825号公報
しかし、気液分離器を用いて液管を流れる冷媒の密度を高くすれば、冷房運転時に冷媒回路を循環する冷媒のうちの多くが液管に存在することとなる。この場合、冷媒回路には、冷房運転時に液管に存在する冷媒量を考慮して、室内機で要求される冷房能力を発揮するのに必要な量の冷媒を充填しなければならない。従って、液管を細くしたにもかかわらず冷媒回路に充填する冷媒量の削減効果が小さくなるという問題があった。
本発明は以上述べた問題点を解決するものであって、冷房運転時に室内機で要求される冷房能力を発揮するために必要な量の冷媒を室内機に供給しつつ、冷媒充填量を削減できる空気調和機を提供することを目的とする。
上記の課題を解決するために、本発明の空気調和機は、冷房運転時に、圧縮機、室外熱交換器、第1膨張弁、気液分離器、室内熱交換器の順で冷媒が循環する冷媒回路と、第2膨張弁を備え気液分離器から圧縮機へと冷媒を導くバイパス管と、第1膨張弁の開度や第2膨張弁の開度を調整する制御手段とを有する。制御手段は、冷房運転を行っているとき、第1膨張弁の開度を、圧縮機から吐出された冷媒の温度である吐出温度が所定の目標温度となるように調整する。そして、制御手段は、冷房運転を行っているとき、第2膨張弁の開度を、第1膨張弁の開度が予め定められた第1所定開度より大きい場合は、現在の開度より大きくし、第1膨張弁の開度が第2所定開度より小さい予め定められた第2所定開度より小さい場合は、現在の開度より小さくする。
上記のように構成した本発明の空気調和機によれば、冷房運転時に第1膨張弁の開度を吐出温度に基づいて調整し、第2膨張弁の開度を第1膨張弁の開度に基づいて調整する。これにより、冷房運転時に室内機で要求される冷房能力を発揮しつつ、冷媒充填量を削減できる。
本発明の実施形態における、空気調和機の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。 本発明の実施形態における、冷房運転時の処理の流れを示すフローチャートである。
以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機と1台の室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
図1(A)に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4およびガス管5で接続された室内機3を備えている。詳細には、室外機2の閉鎖弁25と室内機3の液管接続部33とが液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34とがガス管5で接続されている。以上により、空気調和機1の冷媒回路10が形成されている。なお、本実施形態の空気調和機1では、冷媒回路10に充填する冷媒量を削減するために、液管4が細くされている。例えば、空気調和装置1の冷房運転時の定格能力が10kWである場合は、通常は液管4の内径が9.5mmであるのに対し、本実施形態では6.4mmとする。
<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外ファン24と、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、第1膨張弁27aと、第2膨張弁27bと、気液分離器28と、開閉弁29と、第1逆止弁30aと、第2逆止弁30bとを備えている。そして、室外ファン24を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。
圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側と四方弁22のポートaとが、吐出管61で接続されている。また、圧縮機21の冷媒吸入側と四方弁22のポートcとが、吸入管66で接続されている。
四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。
室外熱交換器23は、冷媒と、後述する室外ファン24の回転により室外機2の内部に取り込まれた外気とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、空気調和機1が冷房運転を行う場合は凝縮器として機能し、暖房運転を行う場合は蒸発器として機能する。
第1膨張弁27aは、例えば電子膨張弁であり、室外機液管63に設けられている。第1膨張弁27aの開度が調整されることで、室内機3を流れる冷媒量が調整される。なお、第1膨張弁27aの具体的な開度の調整方法については、後述する。
室外ファン24は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン24は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。
気液分離器28は、略円筒形状の密閉容器であり、流入した気液二相冷媒をガス冷媒と液冷媒とに分離するものである。気液分離器28の密閉容器の天面に設けられた冷媒流入口と、室外機液管63における第1膨張弁27aと閉鎖弁25の間とが第1液分管67で接続されており、冷房運転時に第1液分管67から気液分離器28の内部に気液二相冷媒が流入する。また、気液分離器28の密閉容器の側面下方に設けられた液冷媒流出口と、室外機液管63における第1液分管67の接続部と閉鎖弁25の間とが第2液分管68で接続されており、気液分離器28で分離されて密閉容器の底部に溜まった液冷媒が第2液分管68へと流出する。そして、気液分離器28の底面に設けられたガス冷媒流出口と吸入管66とがバイパス菅69で接続されており、気液分離器28で分離されたガス冷媒がバイパス管69へと流出する。なお、バイパス管69の一部はガス冷媒流出口を通して気液分離器28の内部に挿入されており、バイパス管69の気液分離器28の内部に開口する端部は、液冷媒流出口よりも高い位置に配置される。
開閉弁29は、第1液分管67に設けられている。開閉弁29は、冷房運転時は開かれ、暖房運転時は閉じられる。第1逆止弁30aは、室外機液管63における第1液分管67の接続部と第2液分管68の接続部との間に設けられており、室外機液管63を閉鎖弁25から第1膨張弁27aに向かう方向にのみ冷媒が流れるようにするものである。第2逆止弁30bは、第2液分管68に設けられており、第2液分管68を気液分離器28から室外機液管63に向かう方向にのみ冷媒が流れるようにするものである。
第2膨張弁27bは例えば電子膨張弁であり、バイパス管69における気液分離器28のガス冷媒流出口の近傍に設けられている。第2膨張弁27bの開度が調整されることで、気液分離器28から吸入管66へと流れるガス冷媒の量が調整される。第2膨張弁27bの具体的な開度の調整方法については、後述する。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74とが設けられている。
室外熱交換器23の図示しない冷媒流路の中間部には、冷媒流路の中間部を流れる冷媒の温度、すなわち室外熱交換器23の温度を検出するための熱交温度センサ75が設けられている。室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。
また、室外機2には、本発明の制御手段である室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。
記憶部220は、例えばフラッシュメモリであり、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外機ファン28の駆動状態、各室内機5から送信される運転情報(運転/停止情報、冷房/暖房等の運転モード等を含む)や室外機2の定格能力および各室内機5の要求能力を記憶する。通信部230は、各室内機5との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
CPU210は、センサ入力部240を介して各種センサでの検出値を定期的(例えば、30秒毎)に取り込むとともに、各室内機5から送信される運転情報を含む信号が通信部230を介して入力される。CPU210は、これら入力された各種情報に基づいて、第1膨張弁24aや第2膨張弁24bの開度調整、圧縮機21や室外機ファン28の駆動制御を行う。
<室内機の構成>
次に、図1(A)を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを構成している。
室内熱交換器31は、冷媒と、後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気とを熱交換させるものであり、一方の冷媒出入口が液管接続部33と室内機液管91で接続され、他方の冷媒出入口がガス管接続部34と室内機ガス管92で接続されている。室内熱交換器31は、空気調和機1が冷房運転を行う場合は蒸発器として機能し、暖房運転を行う場合は凝縮器として機能する。なお、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。
室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。
以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管91には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ81が設けられている。室内機ガス管92には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ82が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ83が備えられている。
<冷媒回路の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について説明する。以下の説明では、まず、図1(A)を用いて、空気調和機1が暖房運転を行う場合について説明し、次に、空気調和機1が冷房運転を行う場合について説明する。
<暖房運転時の冷媒回路の動作>
空気調和機1が暖房運転を行う場合、冷媒回路10は、図1に示すように四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り替えられる。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能する暖房サイクルとなる。なお、前述したように、開閉弁29は暖房運転時は閉じられている。また、第2膨張弁27bの開度は全開とされている。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れ閉鎖弁26を介してガス管5に流出する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。
室内機3に流入した冷媒は、室内機ガス管92を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。
室内熱交換器31から流出した冷媒は室内機液管91を流れ、液管接続部33を介して液管4に流出する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れ第1逆止弁30aを介して第1膨張弁27aへと流れ、第1膨張弁27aを通過する際に減圧される。このとき、第2逆止弁30bにより、液管4から室外機液管63に流入した冷媒は、第2液分管68には流れない。また、開閉弁29が閉じられていることにより、液管4から室外機液管63に流出した冷媒は、第1液分管67には流れない。
第1膨張弁27aは、吐出温度センサ73で検出した吐出温度が、外気温度や室内機3で要求される暖房能力に応じて予め定められている目標温度となるように開度が調整されている。具体的には、検出した吐出温度が目標温度より高い場合は、第1膨張弁27aの開度が現在の開度より大きくされる。第1膨張弁27aの開度が大きくされることで、冷媒回路10から圧縮機21に戻る冷媒量が多くなって吐出温度が低下する。一方、検出した吐出温度が目標温度より低い場合は、第1膨張弁27aの開度が現在の開度より小さくされる。第1膨張弁27aの開度が小さくされることで、冷媒回路10から圧縮機21に戻る冷媒量が少なくなって圧縮機21の内部温度が上昇するので、吐出温度が上昇する。第1膨張弁27aを通過する際に減圧された冷媒は、室外機液管63を流れて室外熱交換器23に流入し、室外熱交換器23で室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<冷房運転時の冷媒回路の動作>
空気調和機1が冷房運転を行う場合、冷媒回路10は、図1に示すように四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替えられる。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する暖房サイクルとなる。なお、前述したように、開閉弁29は冷房運転時は開かれている。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。
室外熱交換器23から室外機液管63に流出した冷媒は、第1膨張弁27aを通過する際に減圧される。第1膨張弁27aの開度は、吐出温度センサ73で検出した吐出温度が、外気温度や室内機3で要求される冷房能力に応じて予め定められている目標温度となるように開度が調整されている。なお、具体的な第1膨張弁27aの開度調整方法については、暖房運転の際に説明した方法と同じであるため、詳細な説明は省略する。また、第1膨張弁27aの開度により、室外熱交換器23から流出する冷媒は、ガス冷媒と液冷媒とが混合された気液二相冷媒となる。
第1膨張弁27aを通過した冷媒は、第1逆止弁30aによって閉鎖弁25側へ流れないこと、および、開閉弁67が開かれていることによって第1液分管67へと流れ、気液分離器28に流入する。このとき、気液分離器28に流入した冷媒は気液分離器28の内部で液冷媒とガス冷媒とに分離される。
気液分離器28の内部に滞留するガス冷媒はバイパス管69へと流出し、第1膨張弁27aの開度に応じた開度とされている第2膨張弁27b(開度調整の詳細については、後述する)を通過する際に減圧されて、吸入管66へと流れる。一方、気液分離器28の内部に滞留する液冷媒は第2液分管68へと流出し、第2逆止弁30bを介して室外機液管63へと流れる。
室外機液管63を流れ閉鎖弁25を介して液管4に流出する。液管4を流れ液管接続部33を介して室内機3に流入した冷媒は、室内機液管91を流れて室内熱交換器31に流入する。室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。
室内熱交換器31から流出した冷媒は、室内機ガス管92を流れガス管接続部34を介してガス管5に流出する。ガス管5を流れて閉鎖弁26を介して室外機2に流入した冷媒は、室外機ガス管64、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<第2膨張弁の開度調整>
前述したように、冷房運転時の第2膨張弁27bの開度は、第1膨張弁27aの開度に応じた開度とされる。具体的には、第1膨張弁27aの開度が予め定められた第1所定開度以上である場合は、第2膨張弁27bの開度を現在の開度より大きくする。一方、第1膨張弁27aの開度が、第1所定開度よりも小さい予め定められた第2所定開度以下である場合は、第2膨張弁27bの開度を現在の開度より小さくする。なお、第1膨張弁27aの開度が第1所定開度よりも小さく、かつ、第2所定開度よりも大きい場合は、現在の第2膨張弁27bの開度を維持する。
以下、第2膨張弁27bの開度を第1膨張弁27aの開度に応じて調整する方法とその効果について説明する。まず、第1膨張弁27aの開度が第1所定開度より大きい場合の第2膨張弁27bの開度調整の方法とその効果について説明し、次に、第1膨張弁27aの開度が第2所定開度より小さい場合の第2膨張弁27bの開度調整の方法とその効果について説明する。
<第1膨張弁の開度が第1所定開度より大きい場合>
前述したように、冷房運転時の第1膨張弁27aの開度は、吐出温度センサ73で検出した吐出温度が予め定められている目標温度となるように開度が調整されており、検出した吐出温度が目標温度より高い場合は、第1膨張弁27aの開度が現在の開度より大きくされる。
本実施形態の空気調和機1のように、冷媒回路10に充填する冷媒量を削減するために液管4を細くしている場合は、液管4が太い場合と比べて冷媒が液管4を流れる際に受ける圧力損失が大きくなる。このため、冷媒回路10における冷媒循環量が少なくなって吐出温度が上昇し、第1膨張弁27aの開度を大きくして全開としても吐出温度を下げて目標温度とすることができなくなる場合がある。
そこで、本実施形態の空気調和機1では、第1膨張弁27aの開度が予め定められた第1所定開度以上である場合は、第2膨張弁27bの開度を現在の開度より大きくする。ここで、第1所定開度とは、第1膨張弁27aの最大開度より少し小さい開度であり、第1膨張弁27aの開度が第1所定開度より大きいときは、液管4を流れる際の圧力損失が大きくなっていることに起因して吐出温度が下がりにくい状態となっていることが、予め行った試験などによって判明している第1膨張弁27aの開度である。なお、一例として、第1膨張弁27aが最大開度であるときに第1膨張弁27aの図示しないステッピングモータに加えられるパルス数を500パルスとしたとき、第1所定開度とするために第1膨張弁27aに加えられるパルス数は、400パルスである。
第1膨張弁27aの開度が第1所定開度以上である場合に第2膨張弁27bの開度を現在の開度より大きくすると、第2膨張弁27bの開度が小さい場合と比べて気液分離器28に滞留するガス冷媒がバイパス管69へと流出する量が増加する。このため、気液分離器28から第2液分管68に流出する液冷媒に対するガス冷媒の割合が少なくなって、第2液分管68から液管4へと流れる冷媒の密度が高くなる。そして、液管4を流れる冷媒の密度が高くなれば、冷媒が液管4を流れる際の圧力損失が冷媒の密度が低い場合と比べて小さくなるので、冷媒回路10における冷媒循環量が多くなって吐出温度が低下する。
<第1膨張弁の開度が第2所定開度より小さい場合>
上述したように、第1膨張弁27aの開度が第1所定開度以上となっているときに、第2膨張弁27bの開度を大きくして第2液分管68から液管4へと流れる冷媒の密度を高くすることで、吐出温度は低下する。そして、検出した吐出温度が目標温度より低くなった場合は、第1膨張弁27aの開度が現在の開度より小さくされる。このとき、第1膨張弁27aの開度が第1所定開度より小さくなったことによって第2膨張弁27bの開度を小さくすれば、第1膨張弁27aの開度が第1所定開度を境として大きくなったり小さくなったりを繰り返し、これに応じて第2膨張弁27bの開度も大きくなったり小さくなったりを繰り返す、所謂ハンチングを起こす恐れがある。
そこで、本実施形態の空気調和機1では、第1膨張弁27aの開度が予め定められた第2所定開度以下である場合に、第2膨張弁27bの開度を現在の開度より小さくする。ここで、第2所定開度は、第1所定開度より小さい開度であり、例えば350パルスである。なお、この第2所定開度は、室内機3で発揮される冷房能力を考慮して決定される。第1膨張弁27aの開度が第2所定開度以下であるときに第2膨張弁27bの開度が大きくされていると、液管4を流れる冷媒における液冷媒に対するガス冷媒の割合が低くなって液管4を流れる冷媒の密度が高くなることに起因して、室内熱交換器31における蒸発能力が低下して室内機3で発揮される冷房能力が低下する恐れがある。そこで、本実施形態では、上述した冷房能力の低下を抑制しつつ、第2膨張弁27bの開度調整のハンチングを防ぐことができるように、第2所定開度が定められる。
以上説明したように、本実施形態の空気調和機1では、第1膨張弁27aの開度が第1所定開度より大きいときは、第2膨張弁27bの開度を現在の開度より大きくして液側配管を流れる冷媒の密度を高くする。一方、第1膨張弁27aの開度が第2所定開度より小さいときは、第2膨張弁27bの開度を現在の開度より小さくして液管4を流れる冷媒の密度を小さくする。これにより、液管4を細くして冷媒回路10に充填する冷媒量を削減しても、冷房運転時に冷媒循環量を確保して要求される冷房能力を発揮させつつ、吐出温度が高い場合はこれを確実に低下させることができる。なお、第2膨張弁27bの開度調整は、予め定められた所定の開度増減値ずつ、例えば第2膨張弁27bに加えるパルス数を50パルスずつ増減すればよい。
<冷房運転時の第2膨張弁の開度調整に関わる処理の流れ>
次に、図3を用いて、冷房運転時の第1膨張弁27aおよび第2膨張弁27bの開度調整に関わる処理について説明する。図3に示すのは、冷房運転時の第1膨張弁27aおよび第2膨張弁27bの開度調整において、室外機制御手段200のCPU210が行う処理の流れを示すフローチャートである。図3のフローチャートにおいて、STは処理のステップを表し、これに続く数字はステップの番号を表している。
また、図3のフローチャートでは、第1膨張弁27aの開度をPe1、第2膨張弁27bの開度をPe2、第1膨張弁27aの冷房運転開始時の初期開度をPed、第1所定開度をPet1、第2所定開度をPet2、第2膨張弁27bの最小開度をPe2min、第2膨張弁27bの最大開度をPe2max、第2膨張弁27bの開度Pe2の開度増減値をDとする。
ここで、初期開度Pedは、冷房運転を開始してから冷媒回路10の各所における圧力や温度が安定するのにかかる所定時間(例えば、3分間)の間、維持される開度であり、冷房運転開始時の外気温度や室内機3で求められる冷房能力によって決定される。また、第2膨張弁27bを最小開度Pe2minとするために第2膨張弁27bに加えられるパルス数は一例として50パルス、第2膨張弁27bを最大開度Pe2maxとするために第2膨張弁27bに加えられるパルス数は一例として500パルスである。さらには、開度増減値Dは、一例として50パルスである。
まず、CPU210は、使用者の運転指示が冷房運転指示であるか否かを判断する(ST1)。使用者の運転指示が冷房運転指示でなければ(ST1-No)、つまり、使用者の運転指示が暖房運転であれば、CPU210は、暖房運転の開始処理である暖房運転開始処理を実行する(ST21)。ここで、暖房運転開始処理とは、CPU210が冷媒回路10を暖房サイクルとすることであり、空気調和装置1が停止している状態から暖房運転を開始するとき、もしくは、冷房運転から暖房運転に切り替えられる際に行われる処理である。
そして、CPU210は、暖房運転の制御を開始し(ST22)、ST10に処理を進める。具体的には、CPU210は、圧縮機21や室外ファン24を室内機3で要求された暖房能力に応じた回転数で駆動する。また、CPU210は、第1膨張弁27aの開度を吐出温度センサ73で検出した吐出温度が予め定められている目標温度となるように調整するとともに、第2膨張弁27bを全開(最大開度)とする。さらには、CPU210は、通信部230を介して室内機3に対し室内ファン32の駆動制御を行うよう指示する。
ST1において、使用者の運転指示が冷房運転指示であれば(ST1-Yes)、CPU210は、冷房運転開始処理を実行する(ST2)。ここで、冷房運転開始処理とは、CPU210が冷媒回路10を冷房サイクルとすることであり、空気調和装置1が停止している状態から冷房運転を開始するとき、もしくは、暖房運転から冷房運転に切り替えられる際に行われる処理である。
次に、CPU210は、タイマー計測を開始し(ST3)、圧縮機21と室外ファン24とを駆動する(ST4)。具体的には、CPU210は、冷房運転を行う室内機3からの要求能力に応じた回転数で圧縮機21や室外ファン24を起動する。なお、CPU210は、内部にタイマー計測機能を有している。
次に、CPU210は、ST3でタイマー計測を開始してから所定時間が経過したか否かを判断する(ST5)。所定時間が経過していなければ(ST5-No)、CPU210は、第1膨張弁27aの開度Pe1を初期開度Pedとするとともに第2膨張弁27bの開度Pe2を全閉として(ST20)、ST10に処理を進める。
所定時間が経過していれば(ST5-Yes)、CPU210は、吐出温度センサ73で検出した吐出温度をセンサ入力部240を介して取り込む(ST6)。なお、CPU210は、吐出温度を定期的(例えば、30秒毎)に取り込み、取り込んだ吐出温度を記憶部220に記憶している。
次に、CPU210は、取り込んだ吐出温度が目標温度となるように、第1膨張弁27aの開度Pe1を調整する(ST7)。具体的には、CPU210は、取り込んだ吐出温度が目標温度よりも高い場合は、第1膨張弁27aの開度Pe1を現在の開度より大きくし、取り込んだ吐出温度が目標温度よりも低い場合は、第1膨張弁27aの開度Pe1を現在の開度より小さくする。なお、目標温度は予め記憶部220に記憶されており、CPU210は、記憶部220から目標温度を読み出して取り込んだ吐出温度と比較する。
次に、CPU210は、第1膨張弁27aの開度Pe1が第1所定開度Pet1以上であるか否かを判断する(ST8)。第1膨張弁27aの開度Pe1が第1所定開度Pet1以上である場合は(ST8-Yes)、CPU210は、第2膨張弁27bの開度Pe2が全閉であるか否かを判断する(ST13)。
第2膨張弁27bの開度Pe2が全閉である場合は(ST13-Yes)、CPU210は、第2膨張弁27bの開度Pe2を最小開度Pe2minとして(ST16)、ST10に処理を進める。第2膨張弁27bの開度Pe2が全閉でない場合は(ST13-No)、CPU210は、第2膨張弁27bの開度Pe2が最大開度Pe2maxであるか否かを判断する(ST14)。
第2膨張弁27bの開度Pe2が最大開度Pe2maxである場合は(ST14-Yes)、ST10に処理を進める。第2膨張弁27bの開度Pe2が最大開度Pe2maxでない場合は(ST14-No)、CPU210は、第2膨張弁27bの開度Pe2を、現在の第2膨張弁27bの開度Pe2に開度増減値Dを加えた開度として(ST15)、ST10に処理を進める。
ST8において、第1膨張弁27aの開度Pe1が第1所定開度Pet1以上でない場合は(ST8-No)、CPU210は、第1膨張弁27aの開度Pe1が第2所定開度Pet2以下であるか否かを判断する(ST9)。第1膨張弁27aの開度Pe1が第2所定開度Pet2以下でない場合は(ST9-No)、CPU210は、第2膨張弁27bの開度を現在の開度に維持して、ST10に処理を進める。
第1膨張弁27aの開度Pe1が第2所定開度Pet2以下である場合は(ST9-Yes)、CPU210は、第2膨張弁27bの開度が最小開度Pe2minであるか否かを判断する(ST17)。第2膨張弁27bの開度が最小開度Pe2minである場合は(ST17-Yes)、CPU210は、第2膨張弁27bの開度を全閉として(ST19)、ST10に処理を進める。第2膨張弁27bの開度が最小開度Pe2minでない場合は(ST17-No)、第2膨張弁27bの開度Pe2を、現在の第2膨張弁27bの開度Pe2から開度増減値Dを減じた開度として(ST18)、ST10に処理を進める。
ST9あるいはST18~20あるいはST22のいずれかの処理を終えたCPU210は、使用者による運転モード切替指示があるか否かを判断する(ST10)。ここで、運転モード切替指示とは、現在の運転(冷房運転あるいは暖房運転)から別の運転(暖房運転あるいは冷房運転)への切替を指示するものである。運転モード切替指示がある場合は(ST10-Yes)、CPU210は、ST1に処理を戻す。運転モード切替指示がない場合は(ST10-No)、CPU210は、使用者による運転停止指示があるか否かを判断する(ST11)。
運転停止指示があれば(ST11-Yes)、CPU210は、運転停止処理を実行するとともにタイマーをリセットして(ST12)、処理を終了する。運転停止処理では、CPU210は、圧縮機21や室外ファン24を停止するとともに第1膨張弁24aおよび第2膨張弁24bをそれぞれ全閉とする。また、CPU210は、室内機3に対し通信部230を介して運転を停止する旨の運転停止信号を送信する。運転停止信号を受信した室内機3は、室内ファン32を停止する。
ST11において運転停止指示がなければ(ST11-No)、CPU210は、現在の運転が冷房運転であるか否かを判断する(ST23)。現在の運転が冷房運転でなければ(ST23-No)、つまり、現在の運転が暖房運転であれば、CPU210は、ST22に処理を戻す。現在の運転が冷房運転であれば(ST23-Yes)、CPU210は、ST4に処理を戻す。
以上説明したように、本実施形態の空気調和機1では、第1膨張弁27aの開度が第1所定開度より大きいときは、第2膨張弁27bの開度を現在の開度より大きくして液側配管を流れる冷媒の密度を高くする。一方、第1膨張弁27aの開度が第2所定開度より小さいときは、第2膨張弁27bの開度を現在の開度より小さくして液管4を流れる冷媒の密度を小さくする。これにより、液管4を細くして冷媒回路10に充填する冷媒量を削減しても、冷房運転時に室内熱交換器31における凝縮能力を確保して要求される冷房能力を発揮させつつ、吐出温度が高い場合はこれを確実に低下させることができる。
また、本実施形態の空気調和機1では、第2膨張弁27bの開度を現在の開度より大きくするときに、現在の第2膨張弁27bの開度が最大開度Pe2maxである場合はこの開度を維持し、現在の第2膨張弁27bの開度が全閉である場合は第2膨張弁27bの開度を最小開度Pe2minとする。これにより、第2膨張弁27bの開度を現在の開度より大きくするときに、確実に現在の開度より大きくできる。また、第2膨張弁27bの開度を現在の開度より小さくするときに、現在の第2膨張弁27bの開度が最小開度Pe2minである場合は、第2膨張弁27bの開度を全閉とする。これにより、第2膨張弁27bの開度を現在の開度より小さくするときに、確実に現在の開度より小さくできる。
1 空気調和機
2 室外機
3 室内機
10 冷媒回路
21 圧縮機
22 四方弁
23 室外熱交換器
27a 第1膨張弁
27b 第2膨張弁
28 気液分離器
29 開閉弁
30a 第1逆止弁
30b 第2逆止弁
67 第一液分管
68 第二液分管
69 バイパス管
73 吐出温度センサ
Pe1 第1膨張弁開度
Ped 初期開度
Pet1 第1所定開度
Pet2 第2所定開度
Pe2 第2膨張弁開度
Pe2min 最小開度
Pe2max 最大開度
D 開度増減値

Claims (3)

  1. 冷房運転時に、圧縮機、室外熱交換器、第1膨張弁、気液分離器、室内熱交換器の順で冷媒が循環する冷媒回路と、
    第2膨張弁を備え前記気液分離器から前記圧縮機へと冷媒を導くバイパス管と、
    前記第1膨張弁の開度や前記第2膨張弁の開度を調整する制御手段と、
    を有する空気調和機であって、
    前記制御手段は、冷房運転を行っているとき、
    前記第1膨張弁の開度を、前記圧縮機から吐出された冷媒の温度である吐出温度が所定の目標温度となるように調整し、
    前記第2膨張弁の開度を、前記第1膨張弁の開度が予め定められた第1所定開度より大きい場合は、現在の開度より大きくし、前記第1膨張弁の開度が前記第1所定開度より小さい予め定められた第2所定開度より小さい場合は、現在の開度より小さくする、
    ことを特徴とする空気調和機。
  2. 前記制御手段は、
    前記第2膨張弁の開度を現在の開度より大きくするとき、同現在の第2膨張弁の開度が最大開度である場合はこの状態を維持し、前記現在の第2膨張弁の開度が全閉である場合は最小開度とする、
    ことを特徴とする請求項1に記載の空気調和機。
  3. 前記制御手段は、
    前記第2膨張弁の開度を現在の開度より小さくするとき、同現在の第2膨張弁の開度が最小開度である場合は、前記第2膨張弁の開度を全閉とする、
    ことを特徴とする請求項1に記載の空気調和機。
JP2018123931A 2018-06-29 2018-06-29 空気調和機 Active JP7067319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123931A JP7067319B2 (ja) 2018-06-29 2018-06-29 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123931A JP7067319B2 (ja) 2018-06-29 2018-06-29 空気調和機

Publications (2)

Publication Number Publication Date
JP2020003155A JP2020003155A (ja) 2020-01-09
JP7067319B2 true JP7067319B2 (ja) 2022-05-16

Family

ID=69099638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123931A Active JP7067319B2 (ja) 2018-06-29 2018-06-29 空気調和機

Country Status (1)

Country Link
JP (1) JP7067319B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535036B1 (ko) 2014-08-25 2015-07-24 현대자동차주식회사 구동모터의 전류지령에 대한 토크 보상장치 및 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442504B (zh) * 2020-04-10 2021-12-07 广东美的制冷设备有限公司 空调器的运行方法、装置、空调器和可读存储介质
CN112254311B (zh) * 2020-10-14 2021-10-08 珠海格力电器股份有限公司 电子膨胀阀的控制方法及空调
US20230331264A1 (en) * 2020-12-14 2023-10-19 Mitsubishi Electric Corporation Air conditioning apparatus for railway vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090165482A1 (en) 2008-01-02 2009-07-02 Lg Electronics Inc. Air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120076A (ja) * 1993-10-20 1995-05-12 Mitsubishi Electric Corp 空気調和機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090165482A1 (en) 2008-01-02 2009-07-02 Lg Electronics Inc. Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535036B1 (ko) 2014-08-25 2015-07-24 현대자동차주식회사 구동모터의 전류지령에 대한 토크 보상장치 및 방법

Also Published As

Publication number Publication date
JP2020003155A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP7067319B2 (ja) 空気調和機
JP2018004216A (ja) 空気調和装置
JP4375171B2 (ja) 冷凍装置
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
EP3415839A1 (en) Refrigeration cycle device
JP2017122557A (ja) 空気調和装置
JP2007093100A (ja) ヒートポンプ給湯機の制御方法及びヒートポンプ給湯機
JP2016061456A (ja) 空気調和装置
JP2017062049A (ja) 空気調和装置
JP2019168151A (ja) 空気調和装置
JP7000902B2 (ja) 空気調和装置
JP2018132219A (ja) 空気調和装置
JP2019168150A (ja) 空気調和装置
JP2018048752A (ja) 空気調和機
JP2017156003A (ja) 空気調和装置
JP2019020061A (ja) 空気調和装置
WO2020189586A1 (ja) 冷凍サイクル装置
JP7067318B2 (ja) 空気調和機
JP6350338B2 (ja) 空気調和装置
JP2020153603A (ja) 空気調和機
JP2018048753A (ja) 空気調和装置
JP2018132218A (ja) 空気調和装置
JP2022070159A (ja) 空気調和装置
JP2021162174A (ja) 空気調和装置
JP2021162252A (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151