JP6955705B2 - 光学用ポリエステルフィルム及び透明導電性フィルム - Google Patents

光学用ポリエステルフィルム及び透明導電性フィルム Download PDF

Info

Publication number
JP6955705B2
JP6955705B2 JP2018542813A JP2018542813A JP6955705B2 JP 6955705 B2 JP6955705 B2 JP 6955705B2 JP 2018542813 A JP2018542813 A JP 2018542813A JP 2018542813 A JP2018542813 A JP 2018542813A JP 6955705 B2 JP6955705 B2 JP 6955705B2
Authority
JP
Japan
Prior art keywords
reaction
layer
film
acid
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018542813A
Other languages
English (en)
Other versions
JPWO2018062328A1 (ja
Inventor
栄一 本多
栄一 本多
康明 吉村
康明 吉村
敬太 野口
敬太 野口
雄一郎 佐竹
雄一郎 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2018062328A1 publication Critical patent/JPWO2018062328A1/ja
Application granted granted Critical
Publication of JP6955705B2 publication Critical patent/JP6955705B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、光学用ポリエステルフィルム及び透明導電性フィルムに関する。
汎用PETは機械的性質、寸法安定性、透明性、耐熱性などに優れた性質を有することから、包装材料などの多くの用途において基材フィルムとして使用されている。特に近年、フラットパネルディスプレイや透明導電性フィルムなど各種光学用フィルムの需要が高まっている。
従来検討されている二軸配向ポリエステルフィルムでは、延伸時のポリマー複屈折に起因して液晶ディスプレイやタッチパネルとして組み立てた際に干渉色が生じてしまうことから、画面を表示した際の品位が低下するという課題がある。
このような課題に対し、ポリエステル原料の光弾性係数を小さくすることが検討されている(例えば、特許文献1参照)。
特開2011−52190号公報
一方、特許文献1に記載の技術では、液晶ディスプレイとして組み立てた際の干渉色を十分に抑制できておらず、未だ改善の余地がある。なお、シクロオレフィンポリマーを用いた基材フィルムを使用することも考えられるが、かかる基材フィルムによれば良好な光学物性が得られるものの、表面活性が低く、各種コーティングに対する密着性に乏しいという問題がある。上記のとおり、光学物性や密着性をはじめとする諸物性が良好な光学用フィルムは得られていない。
本発明は、以上の従来技術が有する問題点に鑑みなされたものであり、透明性、耐熱性、光学物性、密着性に優れた光学用ポリエステルフィルム及び透明導電性フィルムを提供することを目的とする。
本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、特定の脂環式構造を構成単位として含むポリエステル樹脂を用いることで、優れた耐熱性及び光学特性を発現するのみならず、各種コーティングに対する密着性をも向上させることを見出し、本発明を完成させるに至った。
すなわち、本発明は、以下のとおりである。
[1]
下記一般式(1)で表される単位(A)を含むポリエステル樹脂からなる基材と、
前記基材の少なくとも一方の面に配される、ハードコート層、透明導電層、反射防止層、ガスバリア層及び粘着層からなる群より選択される少なくとも1つの機能性層と、
を有する、光学用ポリエステルフィルム。
Figure 0006955705
(前記一般式(1)において、R1は水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、nは0又は1である。)
[2]
前記一般式(1)におけるnが1である、[1]に記載の光学用ポリエステルフィルム。
[3]
前記一般式(1)におけるR1、R2、及びR3が水素原子である、[1]又は[2]に記載の光学用ポリエステルフィルム。
[4]
前記ポリエステル樹脂が下記(1)〜(3)を満たす、[1]〜[3]のいずれかに記載の光学用ポリエステルフィルム。(1)前記ポリエステル樹脂のガラス転移温度が100℃以上である。(2)前記ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。(3)前記ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。
[5]
[1]〜[4]のいずれかに記載の光学用ポリエステルフィルムを有し、前記機能性層が透明導電層を含む、透明導電性フィルム。
本発明によれば、透明性、耐熱性、光学物性、密着性に優れた光学用ポリエステルフィルム及び透明導電性フィルムを提供することができる。
モノマー合成例で得られた主反応生成物の1H−NMR測定の結果を示す。
モノマー合成例で得られた主反応生成物の13C−NMR測定の結果を示す。
モノマー合成例で得られた主反応生成物のCOSY−NMR測定の結果を示す。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
<光学用ポリエステルフィルム>
本実施形態の光学用ポリエステルフィルムは、下記一般式(1)で表される単位(A)を含むポリエステル樹脂からなる基材と、前記基材の少なくとも一方の面に配される、ハードコート層、透明導電層、反射防止層、ガスバリア層及び粘着層からなる群より選択される少なくとも1つの機能性層と、を有する。
Figure 0006955705
(前記一般式(1)において、R1は水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、nは0又は1である。)
上記のように構成されているため、本実施形態の光学用ポリエステルフィルムは、上記のように構成されているため、透明性、耐熱性、光学物性、密着性に優れる。
なお、本実施形態において、「耐熱性に優れる」とは、後述する実施例に記載の方法により測定されるガラス転移温度(Tg)が十分に高いことを指し、「光学特性に優れる」とは、後述する実施例に記載の方法により測定される光弾性係数の絶対値が十分に低いことを指す。
また、本実施形態において、「フィルム」とは、厳密にはその厚さで区別されうる「フィルム」及び「シート」の双方を含む概念である。
[基材]
本実施形態における基材は、上記ポリエステル樹脂から構成される。本実施形態におけるポリエステル樹脂は、上記一般式(1)で表される単位(A)(以下、「単位(A)」ともいう。)を含むものであり、当該単位(A)のみから構成される単独重合体とすることができ、必要に応じて、ジオール単位(B)(以下、「単位(B)」ともいう。)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)(以下、「単位(C)」ともいう。)を含む共重合体とすることもできる。
一般式(1)において、R1は、好ましくは水素原子又はCH3であり、R2及びR3は、好ましくは水素原子である。本実施形態において、耐熱性の観点から、一般式(1)におけるR1、R2、及びR3が水素原子であることがより好ましい。
上記一般式(1)において、耐熱性をより向上させる観点から、nは1であることが好ましい。
本実施形態において、透明性、耐熱性及び光学特性のバランスを考慮すると、ポリエステル樹脂が有する全構成単位に対する構成単位(A)の含有量は、10〜95mol%であることが好ましい。上記含有量が10mol%以上であると、十分に良好な耐熱性及び光学特性が得られる傾向にある。また、上記含有量が95mol%以下であると、良好な耐熱性及び光学特性を確保しつつ成形性を向上させることができるため好ましい。上記と同様の観点から、単位(A)の含有量は、15〜95mol%であることがより好ましく、さらに好ましくは20〜95mol%である。
構成単位(B)としては、ジオールに由来する単位であれば特に限定されず、その具体例としては、エチレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−デカヒドロナフタレンジメタノール、1,3−デカヒドロナフタレンジメタノール、1,4−デカヒドロナフタレンジメタノール、1,5−デカヒドロナフタレンジメタノール、1,6−デカヒドロナフタレンジメタノール、2,7−デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、ノルボルナンジオール、シクロヘキサンジオール、2,2'-ビス(4-ヒドロキシシクロヘキシル)プロパン、アダマンタンジオール、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス(2−ヒドロキシエチル)フルオレン、キシリレングリコール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール、2,2,4,4−テトラメチル−1,3−シクロブタンジオール等のジオールに由来する単位が挙げられる。
構成単位(B)は、良好な光学特性が得られることから、脂肪族ジオール又はカルド構造を有するジオールに由来する単位であることが好ましい。このような脂肪族ジオールに由来する単位としては、1,4−シクロヘキサンジメタノール、エチレングリコール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール、に由来する単位がより好ましい。また、カルド構造を有するジオールに由来する単位としては、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、に由来する単位がより好ましい。
なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
構成単位(C)としては、ジカルボン酸又はそのエステル形成性誘導体に由来する単位であれば特に限定されず、その具体例としては、テレフタル酸、イソフタル酸、フタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2−メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸及び/又はその誘導体に由来する構成単位;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、3,9−ビス(1,1−ジメチル−2−カルボキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、5−カルボキシ−5−エチル−2−(1,1−ジメチル−2−カルボキシエチル)−1,3−ジオキサン、1,4:5,8−ジメタノデカヒドロナフタレンジカルボン酸、アダマンタンジカルボン酸、ダイマー酸等の脂肪族ジカルボン酸及び/又はその誘導体に由来する単位;9,9−ビス(カルボキシメチル)フルオレン、9,9−ビス(1−カルボキシエチル)フルオレン、9,9−ビス(2−カルボキシエチル)フルオレン、9,9−ビス(1−カルボキシプロピル)フルオレン、9,9−ビス(2−カルボキシプロピル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルエチル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルプロピル)フルオレン、9,9−ビス(2−カルボキシブチル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルブチル)フルオレン、9,9−ビス(5−カルボキシペンチル)フルオレン等のカルド構造を有するジカルボン酸及び/又はその誘導体に由来する単位が挙げられる。
構成単位(C)は、良好な光学特性が得られることから、脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはカルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位であることが好ましい。脂肪族ジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性、耐熱性と光学特性との物性バランスの観点から、1,4−シクロヘキサンジカルボン酸ジメチルに由来する単位がより好ましい。また、カルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性、耐熱性と光学特性との物性バランスの観点から、9,9−ビス(メトキシカルボニルメチル)フルオレン、9,9−ビス(メトキシカルボニルエチル)フルオレン、9,9−ビス(メトキシカルボニルプロピル)フルオレンに由来する単位がより好ましい。
なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
本実施形態において、ポリエステル樹脂は、単位(A)〜(C)以外に、ヒドロキシル基及びカルボン酸又はそのエステル形成性誘導体単位(A1)等の他の単位を含んでもよい。単位(A1)としては、特に限定はされないが、例えば、グリコール酸、乳酸、ヒドロキシ酪酸、2−ヒドロキシイソ酪酸、ヒドロキシ安息香酸、6−ヒドロキシカプロン酸、4−ヒドロキシシクロヘキサンカルボン酸等のオキシ酸及び/又はその誘導体に由来する単位等が挙げられる。
本実施形態において、十分な耐熱性を確保する観点から、ポリエステル樹脂のガラス転移温度(Tg)は、本実施形態の効果を有する限り特に限定されないが、好ましくは90℃以上であり、より好ましくは95℃以上であり、さらに好ましくは100℃以上である。上記Tgは、後述する実施例に記載の方法により測定することができる。また、上記Tgは、例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
本実施形態において、十分な透明性を確保する観点から、ポリエステル樹脂の降温時結晶化発熱量は、本実施形態の効果を有する限り特に限定されないが、好ましくは5J/g以下であり、より好ましくは1J/g以下であり、さらに好ましくは0.3J/g以下である。上記降温時結晶化発熱量は、後述する実施例に記載の方法により測定することができる。また、上記降温時結晶化発熱量は、例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
本実施形態において、十分な光学特性を確保する観点から、ポリエステル樹脂からなる光学フィルムの光弾性係数の絶対値は、本実施形態の効果を有する限り特に限定されないが、好ましくは40×10-12Pa-1以下であり、より好ましくは35×10-12Pa-1以下であり、さらに好ましくは30×10-12Pa-1以下である。上記光弾性係数の絶対値は、後述する実施例に記載の方法により測定することができる。また、上記光弾性係数の絶対値は、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
さらに本実施形態におけるポリエステル樹脂を使用する際には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等の公知の添加剤を添加することが好適に実施される。
(ポリエステル樹脂の製造方法)
本実施形態におけるポリエステル樹脂は、単位(A)を単独重合することにより、また、単位(A)〜(C)に対応する各単量体を共重合することにより、得ることができる。以下、単位(A)に対応する単量体の製造方法について説明する。かかる単量体は、例えば、下記一般式(2)で表される。
Figure 0006955705
上記一般式(2)において、R1は、水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。
式(2)において、R1は、好ましくは水素原子又はCH3である。R2及びR3は、好ましくは水素原子である。上記炭化水素基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、2−ヒドロキシエチル基、4−ヒドロキシブチル基等が挙げられる。
本実施形態における一般式(2)で表される化合物は、ジシクロペンタジエン又はシクロペンタジエンと官能基を有するオレフィンを原料として、例えば、下記式(I)に示すルートで合成することが可能である。
Figure 0006955705
(式(I)中、R1は水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
〔式(I)中の一般式(4)で表される炭素数13〜21のモノオレフィンの製造〕
前記一般式(4)で表される炭素数13〜21のモノオレフィンは、例えば、官能基を有するオレフィンとジシクロペンタジエンのディールスアルダー反応を行うこと等で製造することが可能である。
前記ディールスアルダー反応に用いる官能基を有するオレフィンの具体例としては、以下に限定されないが、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ビニル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−4−ヒドロキシブチル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ビニル、アクリル酸−2−ヒドロキシエチル、アクリル酸−4−ヒドロキシブチル、クロトン酸、クロトン酸メチル、クロトン酸エチル、3−メチルクロトン酸、3−メチルクロトン酸メチル、3−メチルクロトン酸エチル等が挙げられ、好ましいオレフィンとして、メタクリル酸、メタクリル酸メチル、メタクリル酸−2−ヒドロキシエチル、アクリル酸、アクリル酸メチル、アクリル酸−2−ヒドロキシエチルが挙げられ、より好ましいオレフィンとしてメタクリル酸メチル、アクリル酸メチルが挙げられる。
さらに、前記ディールスアルダー反応に用いる官能基を有するオレフィンの例として、アクリロニトリル、メタクリロニトリル、アクロレイン、メタクロレインを挙げられる。これらのオレフィンを原料とする場合、例えば、下記式(II)、式(III)に示すルート等を経て一般式(4')で表されるモノオレフィンを製造することができる。
Figure 0006955705
(式(II)中、R1は水素原子又はCH3である)
Figure 0006955705
(式(III)中、R1は水素原子又はCH3である)
前記ディールスアルダー反応に用いるジシクロペンタジエンは高純度のものが好ましく、ブタジエン、イソプレン等の含有量を低減することが好ましい。ジシクロペンタジエンの純度は、90%以上であることが好ましく、95%以上であることがより好ましい。また、ジシクロペンタジエンは加熱条件下で解重合しシクロペンタジエン(所謂モノシクロペンタジエン)になる傾向にあるため、ジシクロペンタジエンの代わりにシクロペンタジエンを使用することも可能である。尚、一般式(4)で表される炭素数13〜21のモノオレフィンは、実質的に下記一般式(7)で表される炭素数8〜16のモノオレフィン(1段目ディールスアルダー反応生成物)を経由して生成していると考えられ、生成した一般式(7)のモノオレフィンが新たな親ジエン化合物(Dienophile)として反応系内に存在するシクロペンタジエン(Diene)とディールスアルダー反応(2段目ディールスアルダー反応)に預かり、一般式(4)で表される炭素数13〜21のモノオレフィンが生成するものと考えられる。
以上の観点から、例えば、上記式(I)に示す反応ルートにおいて、1段目ディールスアルダー反応の反応条件を適宜制御することにより、式(4)で表される炭素数13〜21のモノオレフィンあるいは式(7)で表される炭素数8〜16のモノオレフィンを選択的に得ることができる。
Figure 0006955705
(式(7)中、R1は水素原子、CH3又はC25を示し、R2及びR3は、それぞれ独立に水素原子又はCH3を示し、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基を示す。)
前記2段階のディールスアルダー反応を効率的に進行させる、すなわち、式(4)で表される炭素数13〜21のモノオレフィンを選択的に得る観点からは、反応系内にシクロペンタジエンが存在することが重要であるため、反応温度として100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。一方で、式(7)で表される炭素数8〜16のモノオレフィンを選択的に得るためには、反応温度として180℃未満が好ましい。なお、いずれの場合においても、高沸物質の副生を抑えるためには250℃以下の温度で反応を行うことが好ましい。
上記のようにして得られた式(4)で表される炭素数13〜21のモノオレフィンを、後述するヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=1である場合に対応する単量体(すなわち、式(2)で表される化合物)を得ることができる。また、上記のようにして得られた式(7)で表される炭素数8〜16のモノオレフィンを、同様のヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=0である場合に対応する単量体(すなわち、式(8)で表される化合物)を得ることができる。
なお、反応溶媒として炭化水素類やアルコール類、エステル類等を使用することも可能であり、炭素数6以上の脂肪族炭化水素類、シクロヘキサン、トルエン、キシレン、エチルベンゼン、メシチレン、プロパノール、ブタノール等が好ましい。また、必要に応じて、AlCl3等公知の触媒を添加してもよい。
Figure 0006955705
(上記式(8)において、R1は、水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
前記ディールスアルダー反応の反応方式としては、槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、管型反応器に反応条件下で基質類を流通させる連続流通式等、多様な反応方式を採ることが可能である。
前記ディールスアルダー反応で得られた反応生成物は、そのまま次のヒドロホルミル化反応の原料として用いることもできるが、蒸留、抽出、晶析などの方法によって精製した後、次工程に供してもよい。
〔式(I)中の(3)で表される炭素数14〜22の二官能性化合物の製造〕
前記式(I)中の一般式(3)で表される炭素数14〜22の二官能性化合物は、例えば、一般式(4)で表される炭素数13〜21モノオレフィンと一酸化炭素及び水素ガスをロジウム化合物、有機リン化合物の存在下でヒドロホルミル化反応させること等で製造することができる。
前記ヒドロホルミル化反応で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、一酸化炭素と水素の存在下でヒドロホルミル化活性を示す化合物であればよく、その前駆体の形態は特に限定されない。例えば、ロジウムアセチルアセトナートジカルボニル(以下、Rh(acac)(CO)2と記す)、Rh23、Rh4(CO)12、Rh6(CO)16、Rh(NO3)3等の触媒前駆物質を有機リン化合物と共に反応混合物中に導入し、反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、予めロジウム金属ヒドリドカルボニルリン錯体を調製してそれを反応器内に導入してもよい。好ましい具体例としてはRh(acac)(CO)2を溶媒の存在下で有機リン化合物と反応させた後、過剰の有機リン化合物と共に反応器に導入し、触媒活性を有するロジウム−有機リン錯体とする方法が挙げられる。
本発明者らの検討により、一般式(4)で表されるような比較的分子量の大きな内部オレフィンを有する2段階ディールスアルダー反応生成物が極めて少量のロジウム触媒でヒドロホルミル化されることがわかっている。本ヒドロホルミル化反応におけるロジウム化合物の使用量は、ヒドロホルミル化反応の基質である一般式(4)で表される炭素数13〜21のモノオレフィン1モルに対して0.1〜60マイクロモルが好ましく、0.1〜30マイクロモルがより好ましく、0.2〜20マイクロモルが更に好ましく、0.5〜10マイクロモルが特に好ましい。ロジウム化合物の使用量が炭素数13〜21のモノオレフィン1モルに対して60マイクロモルより少ない場合、実用上、ロジウム錯体の回収リサイクル設備を設けなくてもよい水準と評価できる。このように、本実施形態によれば、回収リサイクル設備に関わる経済的負担を減らすことができ、ロジウム触媒にかかるコストを低減することが可能である。
本実施形態におけるヒドロホルミル化反応において、ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としては、特に限定されないが、例えば、一般式P(−Ra)(−Rb)(−Rc)で表されるホスフィン又はP(−ORa)(−ORb)(−ORc)で表されるホスファイトが挙げられる。Ra、Rb、Rcの具体例としては、以下に限定されないが、炭素数1〜4のアルキル基又はアルコキシ基で置換され得るアリール基や、炭素数1〜4のアルキル基又はアルコキシ基で置換され得る脂環式アルキル基等が挙げられ、トリフェニルホスフィン、トリフェニルホスファイトが好適に用いられる。有機リン化合物の使用量はロジウム化合物中のロジウム原子に対して300倍モル〜10000倍モルが好ましく、500倍モル〜10000倍モルがより好ましく、更に好ましくは700倍モル〜5000倍モル、特に好ましくは900倍モル〜2000倍モルである。有機リン化合物の使用量がロジウム原子の300倍モル以上である場合、触媒活物質であるロジウム金属ヒドリドカルボニルリン錯体の安定性が十分に確保できる傾向にあり、結果として良好な反応性が確保される傾向にある。また、有機リン化合物の使用量がロジウム原子の10000倍モル以下である場合、有機リン化合物に掛かるコストを十分に低減する観点から好ましい。
前記ヒドロホルミル化反応は溶媒を使用せずに行うことも可能であるが、反応に不活性な溶媒を使用することにより、より好適に実施することができる。ヒドロホルミル化反応に使用できる溶媒としては、一般式(4)で表される炭素数13〜21のモノオレフィン、ジシクロペンタジエン又はシクロペンタジエン、前記ロジウム化合物、及び前記有機リン化合物を溶解するものであれば特に限定されない。具体例としては、以下に限定されないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素類;脂肪族エステル、脂環式エステル、芳香族エステル等のエステル類;脂肪族アルコール、脂環式アルコール等のアルコール類;芳香族ハロゲン化物等の溶媒が挙げられる。これらのうち炭化水素類が好適に用いられ、中でも脂環式炭化水素、芳香族炭化水素がより好適に用いられる。
前記ヒドロホルミル化反応を行う場合の温度としては40℃〜160℃が好ましく、80℃〜140℃がより好ましい。反応温度が40℃以上の場合には十分な反応速度が得られる傾向にある、原料であるモノオレフィンの残留がより抑えられる傾向にある。また、反応温度が160℃以下にすることで原料モノオレフィンや反応生成物由来の副生物の生成を抑え、反応成績の低下を効果的に防止できる傾向にある。
本実施形態におけるヒドロホルミル化反応を行う場合、一酸化炭素(以下「CO」と記載することもある)及び水素(以下「H2」と記載することもある)ガスによる加圧下で反応を行うことが好ましい。その際、CO及びH2ガスは各々独立に反応系内に導入することも、また、予め調製された混合ガスとして反応系内に導入することも可能である。反応系内に導入されるCO及びH2ガスのモル比(=CO/H2)は0.2〜5が好ましく、0.5〜2がより好ましく、0.8〜1.2が更に好ましい。CO及びH2ガスのモル比が上記範囲に調整する場合、ヒドロホルミル化反応の反応活性や目的とするアルデヒドの選択率が良好となる傾向にある。反応系内に導入したCO及びH2ガスは反応の進行に伴い減少していくため、予め調製されたCOとH2の混合ガスを利用すると反応制御が簡便な場合がある。
前記ヒドロホルミル化反応の反応圧力としては、1〜12MPaが好ましく、1.2〜9MPaがより好ましく、1.5〜5MPaが更に好ましい。反応圧力が1MPa以上とすることで十分な反応速度が得られる傾向にあり、原料であるモノオレフィンの残留を十分に抑制できる傾向にある。また、反応圧力が12MPa以下にすることで、耐圧性能に優れる高価な設備を必要としなくなるため経済的に有利である。特に、回分式や半回分式で反応を行う場合、反応終了後にCO及びH2ガスを排出・落圧する必要があり、低圧になるほどCO及びH2ガスの損失が少なくなるため経済的に有利である。
前記ヒドロホルミル化反応を行う場合の反応方式としては、回分式反応や半回分式反応が好適である。半回分式反応はロジウム化合物、有機リン化合物、前記溶媒を反応器に加え、CO/H2ガスによる加圧や加温等を行い、既述の反応条件とした後に原料であるモノオレフィン又はその溶液を反応器に供給することにより行うことが可能である。
前記ヒドロホルミル化反応で得られた反応生成物は、そのまま次の還元反応の原料として用いることも出来るが、例えば蒸留や抽出、晶析等により精製した後、次工程に供してもよい。
〔式(2)で表される炭素数14〜22の化合物の製造〕
前記式(I)中の一般式(2)で表される炭素数14〜22の化合物は、一般式(3)で表される炭素数14〜22の化合物を、水素化能を有する触媒及び水素の存在下で還元することにより製造することが出来る。
前記還元反応では、水素化能を有する触媒として、銅、クロム、鉄、亜鉛、アルミニウム、ニッケル、コバルト、及びパラジウムからなる群より選ばれる少なくとも一つの元素を含む触媒を用いることが好ましい。より好ましい触媒としては、Cu−Cr触媒、Cu−Zn触媒、Cu−Zn−Al触媒等の他、Raney−Ni触媒、Raney−Co触媒等が挙げられ、さらに好ましい触媒はCu−Cr触媒、Raney−Co触媒である。
前記水素化触媒の使用量は、基質である一般式(3)で表される炭素数14〜22の化合物に対して1〜100質量%、好ましくは2〜50質量%、より好ましくは5〜30質量%である。触媒使用量をこれらの範囲とすることで好適に水素化反応を実施することが出来る。触媒使用量が1質量%以上である場合、十分に反応が進行し、結果として目的物の収率を十分に確保できる傾向にある。また、触媒使用量が100質量%以下である場合、反応に供した触媒量と反応速度の向上効果とのバランスが良好となる傾向にある。
前記還元反応の反応温度は60〜200℃が好ましく、80℃〜150℃がより好ましい。反応温度を200℃以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、反応温度を60℃以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。
前記還元反応の反応圧力は、水素分圧として0.5〜10MPaが好ましく、1〜5MPaがより好ましい。水素分圧を10MPa以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、水素分圧を0.5MPa以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。尚、還元反応に不活性なガス(例えば窒素又はアルゴン)を共存させることも可能である。
前記還元反応においては溶媒を使用することが可能である。還元反応に用いられる溶媒としては、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、アルコール類等が挙げられ、中でも脂環式炭化水素類、芳香族炭化水素類、アルコール類が好ましい。その具体例としてはシクロヘキサン、トルエン、キシレン、メタノール、エタノール、1-プロパノール等が挙げられる。
前記還元反応の反応方式としては槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、成型触媒を充填した管型反応器に反応条件下で基質や基質溶液を流通させる連続流通式等、多様な反応方式を採ることが可能である。
前記還元反応で得られた反応生成物は、例えば蒸留や抽出、晶析等により精製することができる。
本実施形態における一般式(2)で表される化合物又は式(8)で表される化合物を単位(A)に対応する単量体とし、単位(B)〜(C)に対応する各単量体と共重合させる方法としては、特に限定されず、従来公知のポリエステルの製造方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
本実施形態におけるポリエステル樹脂の製造時には、通常のポリエステル樹脂の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等を使用することができる。これらの触媒としては特に限定されないが、例えば、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、ゲルマニウム、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウム等が挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。触媒としては、上記した中でマンガン、コバルト、亜鉛、チタン、カルシウム、アンチモン、ゲルマニウム、スズの化合物が好ましく、マンガン、チタン、アンチモン、ゲルマニウム、スズの化合物がより好ましい。これらの触媒の使用量は、特に限定されないが、ポリエステル樹脂の原料に対して金属成分としての量が、好ましくは1〜1000ppm、より好ましくは3〜750ppm、更に好ましくは5〜500ppmである。
前記重合反応における反応温度は触媒の種類、その使用量などによるが、通常150℃から300℃の範囲で選ばれ、反応速度及び樹脂の着色を考慮すると180℃〜280℃が好ましい。反応層内の圧力は、大気雰囲気下から最終的には1kPa以下に調節することが好ましく、最終的には0.5kPa以下とするのがより好ましい。
前記重合反応を行う際には、所望によりリン化合物を添加してもよい。リン化合物としては、以下に限定されないが、例えば、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等を挙げることができる。リン酸エステルとしては、以下に限定されないが、例えば、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル等を挙げることができる。亜リン酸エステルとしては、以下に限定されないが、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ブチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジブチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリフェニル等を挙げることができる。これらは単独で又は二種以上を組み合わせて使用することができる。本実施形態における共重合ポリエステル樹脂中のリン原子の濃度は1〜500ppmが好ましく、5〜400ppmがより好ましく、10〜200ppmがさらに好ましい。
また、本実施形態におけるポリエステル樹脂の製造時には、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等を使用することができる。
本実施形態における共重合ポリエステル樹脂には、本実施形態の目的を損なわない範囲で、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、増量剤、艶消し剤、乾燥調節剤、帯電防止剤、沈降防止剤、界面活性剤、流れ改良剤、乾燥油、ワックス類、フィラー、着色剤、補強剤、表面平滑剤、レベリング剤、硬化反応促進剤、増粘剤等の各種添加剤、成形助剤を添加することができる。
本実施形態の共重合ポリエステル樹脂には、本実施形態の所望とする効果を損なわない範囲で、本実施形態における共重合ポリエステル樹脂以外の樹脂を含むことができる。このような樹脂としては、特に限定されないが、例えば、本実施形態におけるポリエステル樹脂以外のポリエステル樹脂、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート−スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂をさらに含むことができる。これらは種々公知のものを用いることができ、1種を単独で又は2種以上を併用して樹脂組成物に加えることができる。
[基材の製造方法]
本実施形態における基材の製造方法としては、厚みの均一性に優れ、ゲル、フィッシュアイ、スクラッチ等が生じない方法および異物の含有量が少ない方法が好ましく、例えば公知の溶液キャスト法、溶融押出し法、カレンダー法等が挙げられる。フィルムの延伸方法としても公知の方法が使用可能であり、縦一軸、横一軸、多段延伸、同時二軸延伸等を用いてもよい。
延伸加工における延伸倍率は、任意の条件が可能であるが、好ましくは1.1〜5倍、より好ましくは1.2〜3倍である。延伸温度は、ガラス転移温度(Tg)に対し、Tg−30℃〜Tg+50℃の範囲が好ましく、より好ましくはTg−20℃〜Tg+30℃である。
上記のようにして得られる基材の厚みは、特に限定されないが、1〜200μmの範囲とすることができ、好ましくは10〜150μmであり、さらに好ましくは15〜100μmの範囲である。
[機能性層]
本実施形態の光学用ポリエステルフィルムは、基材の少なくとも一方の面に配される、ハードコート層、透明導電層、反射防止層、ガスバリア層及び粘着層からなる群より選択される少なくとも1つの機能性層を有する。
(ハードコート層)
本実施形態におけるハードコート層は、表面平滑性の向上、表面硬度を向上させる目的で基材表面に形成することができる。このハードコート層は、基材表面の他、後述する透明導電層やガスバリア層の表面に積層してもよい。さらに、ハードコート層の表面に、ガスバリア層、透明導電層を積層して構わないし、各層の間に、接着層やプライマー層を設けてもよい。
接着層やプライマー層は、樹脂ワニスを塗布し乾燥により溶剤を除去することで得られる。この際、溶剤除去後に成膜性を有する樹脂、即ち固形の樹脂を添加したワニスが均一塗布という観点から好ましい。このための樹脂の具体例としては、エポキシジアクリレート、ウレタンジアクリレート、ポリエステルジアクリレート等のいわゆるアクリルプレポリマー等の光硬化性樹脂;o−クレゾールノボラック型、ビスフェノール型のエポキシ系や、ウレタン系、アクリル系、尿素系、メラミン系、不飽和ポリエステル系の熱硬化性樹脂;電子線硬化性樹脂;等が挙げられる。これらのうち、生産性およびコストの点から光硬化性樹脂が好ましい。
ハードコート層の構成材料は特に限定されず、従来から用いられているエネルギー線硬化性樹脂や熱硬化性樹脂を含む組成物を用いることが可能である。これらのエネルギー線硬化性樹脂や熱硬化性樹脂を含む組成物は、有機物成分のみからなっていてもよく、無機粒子を含有していてもよい。
無機粒子としては、以下に限定されないが、例えば、コロイダルシリカ微粒子等のシリカ系粒子、炭酸カルシウム等の炭酸塩、酸化チタン等の金属酸化物系粒子などが挙げられる。中でも表面修飾の容易さや入手し易さからシリカ系粒子が好ましく、特に粒子径の制御が容易であることからコロイダルシリカ微粒子が好ましい。無機粒子の平均粒子径は400nm以下が好ましく、特に好ましくは100nm以下、更に好ましくは50nm以下である。
コロイダルシリカ微粒子は、平均粒子径が1〜400nmの範囲の無水ケイ酸の超微粒子を、水または有機溶媒に分散させた状態のものである。このようなコロイダルシリカ微粒子は、公知の方法で製造することもできるが市販もされている。
ここで、無機粒子としては、分散性や強度などの点で重合性不飽和基によって表面処理されていることが好ましく、該重合性不飽和基としては、例えば(メタ)アクリロイル基、スチリル基、ビニル基などが挙げられ、特に反応性が高く、生産性に優れることから(メタ)アクリロイル基が好ましい。
無機粒子の表面処理方法は特に限定はないが、特に重合性不飽和基を有する有機シラン化合物を用いる表面処理方法が好ましい。該表面処理方法としては、例えば無機粒子と重合性不飽和基を有する有機シラン化合物を混合した後、加水分解触媒を加え、常温または加熱下で撹拌する方法などで行われる。ここで無機粒子中の分散触媒と縮合反応で生じる水を常圧または減圧下で共沸留出させ縮合反応を行う。この際、反応を促進させる目的で、水、酸、塩基、塩等の触媒を用いてもよい。このようにして、表面修飾した無機粒子を得ることができる。
表面処理方法に用いる重合性不飽和基を有する有機シラン化合物としては、特に限定されないが、例えば、スチリルトリメトキシラン、スチリルトリエトキシシラン、ビニルトリス(3−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−アクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロイルオキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン等が挙げられる。
これらは、1種または2種以上を併用して用いることができる。また、これらの化合物のエポキシ基やグリシジル基に(メタ)アクリル酸を付加したシラン化合物、アミノ基に(メタ)アクリロイルオキシ基を2個含有する化合物をマイケル付加したシラン化合物、アミノ基やメルカプト基に(メタ)アクリロイルオキシ基およびイソシアネート基を有する化合物を付加したシラン化合物、イソシアネート基に(メタ)アクリロイルオキシ基および3−メタクリロイルオキシプロピルトリメトキシシラン、3−アクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランから選択されるシラン化合物は反応性が優れる点で特に好ましい。
有機物成分としては、以下に限定されないが、例えば、重合性基を有する有機化合物が挙げられる。該重合性基を有する有機化合物としては、(メタ)アクリロイル基を有する有機化合物、スチリル基を有する有機化合物、ビニル基を有する有機化合物等のラジカル重合性基を有する有機化合物;エポキシ基を有する有機化合物、オキセタニル基を有する有機化合物等のイオン重合性基を有する有機化合物が挙げられる。この中でも反応性の高さ、生成する硬化物の熱的な安定性からラジカル重合性基を有する有機化合物が好ましく、特に生産性の点から(メタ)アクリロイル基を有する有機化合物が好ましい。ここで、有機化合物とは、例えばウレタン、エポキシ、ポリエステル、(メタ)アクリレート等が挙げられる。
具体的な(メタ)アクリロイル基を有する有機化合物としては、以下に限定されないが、例えば、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、モノ(メタ)アクリレート、ジ(メタ)アクリレート、モノおよびジ(メタ)アクリルアミド等の単〜多官能(メタ)アクリル酸エステル類等が挙げられる。
ハードコート層は、エネルギー線硬化性樹脂や熱硬化性樹脂を含む組成物を、活性エネルギー線の照射および/または加熱によりラジカル重合および/またはイオン重合して硬化して製造することができる。
ラジカル重合により硬化する際には、重合開始剤を用いることが好ましく、該重合開始剤としては、例えばベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、メチルオルトベンゾイルベンゾエート、4−フェニルベンゾフェノン等のベンゾフェノン類;チオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントン等のチオキサントン類;t−ブチルアントラキノン、2−エチルアントラキノン等のアントラキノン類、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、メチルベンゾイルホルメート、1−ヒドロキシシクロヘキシルフェニルケトン等の光重合開始剤、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の熱重合開始剤が挙げられる。これらの重合開始剤は、単独で用いても良いし、混合物として用いても構わない。これらの重合開始剤は、生産性や保存安定性などの製造加工面、着色などの品質面を考慮して選択され、特に生産性に優れることから光重合開始剤が好ましく用いられる。
イオン重合で硬化する際には、重合開始剤を用いることが好ましく、該重合開始剤としては、例えば芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等が挙げられる。これらは、単独で用いてもよいし、混合物として用いても構わない。
ハードコート層の柔軟性や表面硬度等の物性を調整するため、エネルギー線照射では硬化しない樹脂を添加することもできる。具体的には、ポリウレタン樹脂、セルロール樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル等の熱可塑性樹脂が挙げられる。中でも、ポリウレタン樹脂、セルロール樹脂、ポリビニルブチラール樹脂等の添加が柔軟性の向上の点で好ましい。
活性エネルギー線の種類としては、例えば電子線、紫外線、赤外線、可視光線等の公知の活性エネルギー線が挙げられる。それらの中でも、汎用性が高く、装置のコストや生産性に優れることから、紫外線を利用することが好ましい。その紫外線を発生させる光源としては、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、高周波誘導水銀ランプ、UV−LED等が適している。
活性エネルギー線の照射による硬化時の雰囲気は、窒素、アルゴン等の不活性ガスの雰囲気下であっても、空気雰囲気下であってもよい。それらの中でも、簡便で低コストであることから、空気雰囲気下であることが望ましい。
硬化条件についても特に限定されるものではなく、例えば活性エネルギー線を用いた場合、照射量を0.01〜10J/cm2の範囲内とするのが好ましく、0.05〜5J/cm2の範囲内とするのがより好ましく、0.1〜3J/cm2の範囲内の値とするのが特に好ましい。また、加熱して硬化させる場合には、30〜200℃の範囲内の温度で1〜180分間加熱するのが好ましく、50〜180℃の範囲内の温度で2〜120分間加熱するのがより好ましく、80〜150℃の範囲内の温度で5〜60分間加熱するのがさらに好ましい。
本実施形態におけるハードコート層として、市販のハードコート剤を用いることもできる。無機粒子を含有する市販のハードコート剤としては、例えばJSR製ハードコート剤デソライト(登録商標)、三菱レイヨン製ハードコート剤レイクイーン(登録商標)、荒川化学工業製ハードコート剤ビームセット(登録商標)、株式会社アデカ製ハードコート剤アデカナノハイブリッドシリコーンFX−Vなどが挙げられる。
本実施形態においては、これらのハードコート剤を有機溶剤等に溶解し、粘度を調整した塗工液を本実施形態のポリエステル樹脂からなる基材フィルムに塗工し、乾燥させた後、活性エネルギー線の照射および/または加熱により硬化させてハードコート層を形成する。
ハードコート層用塗工液に用いることのできる有機溶剤としては、ヘキサン、オクタンなどの脂肪族炭化水素、エタノール、1−プロパノール、イソプロパノール、1−ブタノールなどのアルコール類、酢酸エチル、メチルエチルケトンなどから適宜選択して用いることができる。これらの有機溶剤は、必要に応じて数種類を混合して用いてもよい。塗工後に、これらの有機溶剤を蒸発させる必要があるため、沸点は70〜200℃の範囲であることが望ましい。
また、前記ハードコート層用塗工液の塗工適性を得るために、塗工後の塗膜表面に作用し、その表面張力を低下させるレベリング性添加剤を加えてもよい。前記添加剤としては、フッ素系添加剤、シロキサン系添加剤、アクリル系添加剤、アセチレングリコール系添加剤などが挙げられる。
上記のレベリングとして、市販の添加剤を用いることもできる。フッ素系の市販の添加剤としては、例えば住友スリーエム社製フロラードFC−430、FC−170(登録商標)やDIC社製メガファックF177、F471(登録商標)が挙げられ、シロキサン系添加剤としては、ビックケミー社製BYK−300、BYK−077(登録商標)が挙げられ、アクリル系添加剤としてはビックケミー社製BYK−380(登録商標)や楠本化成社製ディスパロンL−1984−50、L−1970(登録商標)が挙げられ、アセチレングリコール系添加剤としては信越化学工業社製サーフィノール61、サーフィノール485(登録商標)が挙げられる。これらの添加剤は、単独で使用しても構わないし、混合して使用しても構わない。
ハードコート層の表面硬度は、特に限定されないが、JIS K 5400に準拠した鉛筆硬度試験で「H」以上を示すことが好ましい。
ハードコート層の厚さは、特に限定されないが、硬度、柔軟性及び生産効率の観点から、好ましくは0.5〜30μm、より好ましくは3〜15μmである。
ハードコートをする表面の表面粗さは0.5μm以下であることが好ましい。表面粗さが0.5μm以下であることにより、ハードコート層の上に積層される他の層が平滑に積層されやすくなり、それによって積層した層の強度を向上させ、長期間使用における層の剥離を防ぐことができる。表面粗さは、市販の形状測定顕微鏡を用いて測定できる。
(透明導電層)
本実施形態における透明導電層は、透明性を有すると共に導電性を有する材料から構成される層である。透明導電層の透明性としては、全光線透過率で評価することができ、全光線透過率で80%以上であることが好ましく、さらに好ましくは82%以上である。比抵抗値は通常1〜8×10-4Ω・cm程度である。積層する導電膜の膜厚を変えることにより、用途に応じた表面抵抗値(Ω/□)となるよう調節することができるが、ITOなどの導電膜は可視光短波長域に吸収を持つため、極端に厚みを厚くすると色目が変化し、光線透過率が低くなる傾向にある。このバランスを考慮しながら透明導電層の厚みを調整することが好ましい。透明導電層の膜厚は、例えば、50〜4,000Åの範囲内で適宜選択することができる。
なお、本実施形態における機能性層が透明導電層を含む場合の光学用ポリエステルフィルムを、特に「透明導電性フィルム」と称する。すなわち、本実施形態の透明導電性フィルムは、本実施形態の光学用ポリエステルフィルムを有し、機能性層が透明導電層を含むものである。
本実施形態における透明導電層を構成する成分の具体例としては、以下に限定されないが、無機酸化物、無機窒化物又は無機硫化物等の無機物(例えば、酸化インジウム・スズ(ITO)、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化亜鉛、酸化タングステン、窒化アルミニウム、窒化ケイ素、窒化チタン、硫化カドミウム、硫化亜鉛、セレン化亜鉛等)、銅、金、銀、白金等、及びそれらを含む合金からなる金属ナノワイヤー、金属メッシュ、及び金属粒子、グラフェン、カーボンナノチューブが挙げられる。また、ポリチオフェン系やポリアニリン系、ポリアセチレン系の導電性ポリマーを用いてもよい。
本実施形態における透明導電層は、例えば、蒸着、スパッタ、PECVD、CatCVD、コーティングやラミネーティングなど公知の製膜法によりベースフィルム上に形成し、製造することができる。
(ガスバリア層)
本実施形態におけるガスバリア層としては、以下に限定されないが、例えば、無機膜、有機膜が挙げられる。該無機膜としては、例えば酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化インジウム等の金属酸化物;窒化ケイ素、窒化アルミニウム、窒化タンタル等の金属窒化物;窒化酸化ケイ素、窒化酸化アルミニウム、窒化酸化タンタル等の金属酸化窒化物からなる膜、アルミニウム膜等が挙げられ、該有機膜としては、例えばポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリアミド等を挙げることができる。
ガスバリア層の膜厚は、無機材料の場合、100〜2,000Å、有機材料の場合は500〜10,000Åにすることが好ましい。
これらの無機材料は、スパッタリング法、イオンプレーティング法、抵抗加熱法、CVD法等の公知の手段により製膜することができる。また、有機材料の場合は、これを溶剤に溶解し、前記のようなコーティング法によって塗布して乾燥することにより製膜することができる。
また、基材とガスバリア層との間に接着層やプライマー層を設けてもよい。
更に、ガスバリア層上に、これを保護するための保護コート層を積層してもよい。保護コート層は、前記接着層やプライマー層と同様の方法によって製膜することが好ましい。ガスバリア性を向上させる目的で、保護コート層上にさらに無機層を積層してもよい。なお、保護コート層は、ガスバリア性に優れた材質からなることがより好ましく、23℃にて測定した酸素透過係数が0.1cc・mm/m2・day・atm以下、もしくは40℃90%RHにて測定した水蒸気透過係数が1g・mm/m2・day以下であることがさらに好ましい。
(反射防止層)
本実施形態における反射防止層は、基材上に形成されてもよいし、各層の間に形成されてもよく、最表面でもよい。また、反射防止層は基材のいずれの面に積層しても構わないし、両側に積層しても構わない。また、本実施形態において、低屈折率層を設ける、または高屈折率層と低屈折率層とを交互に積層することができる。
高屈折率層とは屈折率が1.80以上の層をいい、低屈折率層とは屈折率が1.70以下の層をいう。
高屈折率層を構成する材料としては、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化亜鉛、酸化ニオブ、酸化ハフニウム、酸化セリウム、酸化インジウム、酸化錫および酸化インジウム錫から選ばれる少なくとも1種、若しくは2種以上の混合物が挙げられる。
低屈折率層を構成する材料としては、酸化珪素、フッ化マグネシウム又はフッ化カルシウムなどが挙げられる。
反射防止層は、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法など、任意の方法で形成することができる。
反射防止層の厚さは、好ましくは10〜500nm、より好ましくは50〜500nmである。
高屈折率層および低屈折率層の層数は、それぞれ2層以上有することが好ましい。高屈折率層および低屈折率層の層数を、それぞれ2層以上とすることにより、可視光線領域の波長範囲における反射率を広範囲で低くすることができる。高屈折率層および低屈折率層の厚さは、反射防止層の厚さが上記範囲になるようにかつ、所望の反射率になるように適宜調整すればよい。
本実施形態において、反射率は波長550nmの光に対する反射率で、通常1%以下、好ましくは0.5%以下、さらに好ましくは0.3%以下である。反射率は一般的な分光光度計で測定することができる。
(粘着層)
本実施形態における粘着層は、基材と他の層との接着性を向上させるものである。粘着層は、粘着剤を溶剤に溶解し、コーティング法によって塗布して乾燥することにより製膜することができる。
粘着剤としては、透明性に優れ、複屈折などが小さく、薄い層として用いても十分に粘着力を発揮できるものが好ましい。そのような粘着剤としては、例えば、天然ゴム、合成ゴム・エラストマー、塩化ビニル/酢酸ビニル共重合体、ポリビニルアルキルエーテル、ポリアクリレート、変性ポリオレフィン系樹脂系粘着剤等や、これらにイソシアネート等の硬化剤を添加した硬化型粘着剤が挙げられ、特に、ポリオレフィンフォームやポリエステルフィルムの接着剤等に用いられる粘着剤の内で硬化型粘着剤が好ましい。また、ポリウレタン系樹脂溶液とポリイソシアネート樹脂溶液を混合するドライラミネート用接着剤、スチレンブタジエンゴム系接着剤、エポキシ系二液硬化型接着剤、例えば、エポキシ樹脂とポリチオールの二液からなるもの、エポキシ樹脂とポリアミドの二液からなるものなどを用いることができ、特に溶液型接着剤、エポキシ系二液硬化型接着剤が好ましく、透明のものが好ましい。接着剤によっては、適当な接着用プライマーを用いることで接着力を向上させることができるものがあり、そのような接着剤を用いる場合は接着プライマーを用いることが好ましい。
本実施形態の光学用ポリエステルフィルムは、上述した機能性層の他にも、自己修復性、防眩性、及び帯電防止性からなる群より選択される1種以上の機能を示す層(以下、「他の層」ともいう。)が積層されていてもよい。これらは基材に直接積層されていてもよいし、機能性層の基材とは反対側の表面に積層されていてもよい。上記の他にも各種の層を形成することができ、以下に限定されないが、例えば、光拡散層、プリズムレンズ層、赤外線吸収層、電磁波吸収層等が挙げられる。
自己修復性とは、弾性回復により傷を修復することで、傷がつきにくくする機能である。該機能としては、500gの荷重をかけた真鍮ブラシで表面を擦過した際、好ましくは3分以内で、より好ましくは1分以内で傷が回復するものである。
防眩性とは、表面での光散乱により外光の映り込みを抑制することで、視認性を向上させる機能である。該機能としては、JIS K7136(2000)に記載の評価にて、ヘーズが2〜50%であることが好ましく、より好ましくは2〜40%、特に好ましくは2〜30%である。
帯電防止性とは、表面からの剥離や表面への擦過により発生した摩擦電気を、漏洩させることにより除去する機能である。該機能の目安としては、JIS K6911(2006)に記載の表面抵抗率が、好ましくは1011Ω/□以下であり、より好ましくは109Ω/□以下である。帯電防止性の付与は、公知の帯電防止剤を含有した層である他、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子を含有した層からなるものであってもよい。
他の層の厚みは、その機能により異なるが、好ましくは10nm〜30μmの範囲であり、50nm〜20μmがより好ましい。上記範囲内であると、十分な光学性能を確保しつつ機能性層により付与される機能が十分に得られる傾向にある。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。
(1)樹脂組成
ポリエステル樹脂中のジオール構成単位及びジカルボン酸構成単位の割合は、1H−NMR測定にて算出した。測定装置は、核磁気共鳴装置(日本電子(株)製、商品名:JNM−AL400)を用い、400MHzで測定した。溶媒には重クロロホルムを用いた。
(2)ガラス転移温度(Tg)
ポリエステル樹脂のガラス転移温度は、次のように測定した。示差走査熱量計((株)島津製作所製、商品名:DSC/TA−60WS)を使用し、ポリエステル樹脂約10mgをアルミニウム製非密封容器に入れ、窒素ガス(50mL/分)気流中、昇温速度20℃/分で280℃まで加熱、溶融したものを急冷して測定用試料とした。該試料を同条件で測定し、DSC曲線の転移前後における基線の差の1/2だけ変化した温度をガラス転移温度とした。
(3)降温時結晶化発熱量(ΔHc)
ポリエステル樹脂の降温時結晶化発熱量は、上記Tgを測定後280℃で1分間保持した後、5℃/分の降温速度で降温した際に現れる発熱ピークの面積から算出した。
(4)鉛筆硬度
JIS K 5600−5−4に準拠し、ハードコートを施した表面に対して角度45度、荷重750gで当該表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
(5)全光線透過率
ポリエステル樹脂(基材)の透明性は、プレス成形した円板(厚み3mm)をサンプルとし、全光線透過率を測定した。測定には、色差/濁度測定機(日本電色工業(株)製、商品名:COH−400)を用いた。
(6)光弾性係数(Pa-1
後述する厚さ100μmの光学フィルムから1cm×5cmの試験片を切出し、測定用試料とした。エリプソメーター(日本分光(株)製、商品名:M220)を使用し、波長633nmにおける荷重変化に対する複屈折測定から算出した。
(7)密着性
JIS K5400に準拠し、サンプル(光学用ポリエステルフィルム)をカミソリの刃で2mm間隔に6本ずつ切れ目をいれて25個の碁盤目をつくり、市販のセロテープ(登録商標)をよく密着させた後、90°手前方向に急激に剥がした時、塗膜が剥離したマス目数を数えた。この試験をハードコート層側とITO層側の双方について行った。ゼロ個の場合を「A」、1〜5個の場合を「B」、6個以上の場合を「C」と、それぞれ評価した。
(8)複屈折
試験片(光学用ポリエステルフィルム)をクロスニコルに配置し、色温度5000Kのライトボックスに入れ、目視により光漏れの有無を観察した。光漏れが観察されなかったものを「○」、光漏れが観測されたものを「×」と、それぞれ評価した。
<モノマー合成例>
500mLステンレス製反応器にアクリル酸メチル173g(2.01mol)、ジシクロペンタジエン167g(1.26mol)を仕込み195℃で2時間反応を行った。上記反応により、下記式(4a)で表されるモノオレフィン96gを含有する反応液を取得し、これを蒸留精製した後、一部を以下の反応に供した。
300mLステンレス製反応器を使用し、蒸留精製した式(4a)で表されるモノオレフィンのヒドロホルミル化反応をCO/H2混合ガス(CO/H2モル比=1)を用いて行った。反応器に式(4a)で表されるモノオレフィン70g、トルエン140g、亜リン酸トリフェニル0.50g、別途調製したRh(acac)(CO)2のトルエン溶液550μL(濃度0.003mol/L)を加えた。窒素およびCO/H2混合ガスによる置換を各々3回行った後、CO/H2混合ガスで系内を加圧し、100℃、2MPaにて5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(3a)で表される化合物76g、式(4a)で表されるモノオレフィン1.4gを含む反応液(転化率98%、選択率97%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
300mLステンレス製反応器に蒸留精製した式(3a)で表される化合物54g、スポンジコバルト触媒(日興リカ株式会社製:R−400)7mL、トルエン109gを添加し、水素ガスで系内を加圧し、3MPa、100℃で9時間反応を行った。反応後、得られたスラリーから、孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、ガスクロマトグラフィー及びGC−MSで分析し、分子量250の式(2a)で表される主生成物51gを含有することが確認された(主生成物収率93%)。これをさらに蒸留精製し、主生成物を取得した。
Figure 0006955705
<生成物の同定>
モノマー合成例で取得した成分のNMR分析を行った。NMRスペクトルを図1〜3に示す。以下に示すGC−MS分析、及び図1〜3のNMR分析の結果から、モノマー合成例で得られた主生成物は、前記式(2a)で表される化合物であることが確認された。
<分析方法>
1)ガスクロマトグラフィー測定条件
・分析装置 :株式会社島津製作所製 キャピラリガスクロマトグラフGC−2010 Plus
・分析カラム :ジーエルサイエンス株式会社製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm・オーブン温度:60℃(0.5分間)−15℃/分−280℃(4分間)
・検出器 :FID、温度280℃2)GC−MS測定条件
・分析装置 :株式会社島津製作所製、GCMS−QP2010 Plus
・イオン化電圧:70eV・分析カラム :Agilent Technologies製、DB−1(30m、0.32mmI.D.、膜厚1.00μm)
・オーブン温度:60℃(0.5分間)−15℃/分−280℃(4分間)3)NMR測定条件
・装置 :日本電子株式会社製,JNM−ECA500(500MHz)
・測定モード :1H−NMR、13C−NMR、COSY−NMR
・溶媒 :CDCl3(重クロロホルム)
・内部標準物質:テトラメチルシラン
<実施例1>
分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた200mLのポリエステル製造装置に、モノマー合成例より得られた式(2a)で表される化合物91.7gテトラブチルチタネート0.04gを仕込み、窒素雰囲気下で230℃まで昇温後、1時間保持し、所定量のメタノールを留出させた。その後、リン酸を0.003g加え、昇温と減圧を徐々に行い、最終的に270℃、0.1kPa以下で重縮合を行った。適度な溶融粘度になった時点で反応を終了し、ポリエステル樹脂を得た。
光弾性係数を測定する光学フィルムは流延法にて作製した。具体的には、得られたポリエステル樹脂をジクロロメタンに5wt%濃度になるように溶解させ、水平を確認したキャスト板に流延後、キャスト溶液からの溶媒の蒸発量を調整しながら揮発させ、厚さ100μmの透明な光学フィルムを得た。得られた光学フィルムは乾燥機を使用し、ガラス転移温度以下の温度で十分に乾燥を行った後、5cm×1cmのサンプルを切り出し、エリプソメーターを使用して光弾性係数を評価した。各種評価結果を表1に示す。
ハードコート層については、得られた厚さ100μmの光学フィルムを基材とし、UV−7600B(日本合成化学工業(株)製ウレタンアクリレート)100質量部、酢酸エチル100質量部、光重合開始剤(BASF製Irgacure2959)4質量部混合したハードコート塗布液をバーコーターNo.24を使用して基材に塗布し、90℃で3分乾燥後、540mJ/cm2の紫外線照射量となるように設定したコンベアタイプの紫外線照射装置U−0303(GSユアサ(株)製、高圧水銀ランプ使用、ランプ出力80W/cm、コンベアスピード3m/min)を用いて、硬化させた。コート層厚みは12μmであった。作製したハードコートフィルムを用い、鉛筆硬度及び密着性を評価した。結果を表1に示す。透明導電性薄膜については、ハードコートを施していない樹脂面に対し、酸化インジウム95質量%、酸化錫5質量%からなるターゲットを用いて、アルゴンガス98%と酸素ガス2%とからなる0.4Paの雰囲気下にてスパッタリングを行い、厚さ25nmのITO層(導電性薄膜)を形成し、ITO層の密着性及び複屈折を評価した。
実施例2〜3は、表1に示す原料組成比を変えた以外は実施例1と同様にして基材、ハードコート層及びITO層を有する光学用ポリエステルフィルムを作製し、評価した。結果を表1に示す。
<比較例1>
厚み100μmの延伸ポリエステルフィルム(東洋紡(株)製;E5000)を用い、実施例1と同様にして基材、ハードコート層及びITO層を有するフィルムを作製し、各種物性を評価した。結果を表1に示す。
<比較例2>
シクロオレフィンポリマー(日本ゼオン(株)製;F52R)を用い、実施例1と同様に流延法にて光学フィルムを基材として作製し、さらにハードコート層及びITO層を形成したフィルムを作製し、各種物性を評価した。結果を表1に示す。
Figure 0006955705
なお、表中の略記の意味は下記のとおりである。
D−NHEs:デカヒドロ−1、4:5、8−ジメタノナフタレン−2−メトキシカルボニル−6(7)−メタノール
DMCD:1,4−シクロヘキサンジカルボン酸ジメチル(シス/トランス=7/3)
DMT:テレフタル酸ジメチル
CHDM:1,4−シクロヘキサンジメタノール(シス/トランス=3/7)
EG:エチレングリコール
本出願は、2016年9月28日出願の日本特許出願(特願2016−190229号)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の光学用ポリエステルフィルムは、透明性、耐熱性、光学物性及び密着性に優れており、とりわけこれらの物性が要求される用途に好適に用いることができる。
本発明の光学フィルムの利用用途については、その特性を生かせる分野であれば特に制約はなく、フラットパネルディスプレイ、透明導電性フィルムのほかに、例えば、視野角拡大フィルム、液晶表示装置、有機または無機のエレクトロルミネッセンス素子、プラズマディスプレイ、CRT、液晶プロジェクター、光学フィルター、光記録再生装置における光ピックアップ光学系、タッチパネル、反射防止フィルム等の光学装置において好適に用いられる。
すなわち、本発明の工業的意義は大きい。

Claims (4)

  1. 下記一般式(1)で表される単位(A)を含むポリエステル樹脂からなる基材と、
    前記基材の少なくとも一方の面に配される、ハードコート層、透明導電層、反射防止層、ガスバリア層及び粘着層からなる群より選択される少なくとも1つの機能性層と、
    を有する、光学用ポリエステルフィルム。
    Figure 0006955705
    (前記一般式(1)において、R1は水素原子、CH3又はC25であり、R2及びR3は、それぞれ独立に水素原子又はCH3であり、nは1である。)
  2. 前記一般式(1)におけるR1、R2、及びR3が水素原子である、請求項1に記載の光学用ポリエステルフィルム。
  3. 前記ポリエステル樹脂が下記(1)〜(3)を満たす、請求項1又は2に記載の光学用ポリエステルフィルム。
    (1)前記ポリエステル樹脂のガラス転移温度が100℃以上である。
    (2)前記ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。
    (3)前記ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。
  4. 請求項1〜のいずれか一項に記載の光学用ポリエステルフィルムを有し、前記機能性層が透明導電層を含む、透明導電性フィルム。
JP2018542813A 2016-09-28 2017-09-27 光学用ポリエステルフィルム及び透明導電性フィルム Active JP6955705B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016190229 2016-09-28
JP2016190229 2016-09-28
PCT/JP2017/035075 WO2018062328A1 (ja) 2016-09-28 2017-09-27 光学用ポリエステルフィルム及び透明導電性フィルム

Publications (2)

Publication Number Publication Date
JPWO2018062328A1 JPWO2018062328A1 (ja) 2019-08-29
JP6955705B2 true JP6955705B2 (ja) 2021-10-27

Family

ID=61759622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542813A Active JP6955705B2 (ja) 2016-09-28 2017-09-27 光学用ポリエステルフィルム及び透明導電性フィルム

Country Status (7)

Country Link
US (1) US10981366B2 (ja)
EP (1) EP3521869B1 (ja)
JP (1) JP6955705B2 (ja)
KR (1) KR102439384B1 (ja)
CN (1) CN109791224B (ja)
TW (1) TWI725237B (ja)
WO (1) WO2018062328A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630107B (zh) * 2018-01-23 2022-11-15 三菱瓦斯化学株式会社 成型体
JP7307405B2 (ja) * 2018-04-04 2023-07-12 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
TWI819114B (zh) * 2018-10-16 2023-10-21 日商三菱瓦斯化學股份有限公司 熱可塑性樹脂組成物及使用其之光學透鏡或薄膜
CN111318172B (zh) * 2018-12-17 2022-01-25 中国石油化工股份有限公司 一种高分子修饰的石墨烯过滤膜的制备方法
KR102166387B1 (ko) * 2019-05-08 2020-10-15 국방과학연구소 미사일 제어 장치, 미사일 제어 시스템 및 미사일 제어 방법
KR102614726B1 (ko) * 2020-12-23 2023-12-14 코오롱플라스틱 주식회사 폴리에스테르계 수지 조성물
JP7208435B1 (ja) * 2021-08-06 2023-01-18 日東電工株式会社 光半導体素子封止用シート
CN116063666B (zh) * 2021-11-02 2024-04-19 四川大学 一种多功能聚酯材料及其制备方法和应用
CN114334273A (zh) * 2021-12-17 2022-04-12 深圳市善柔科技有限公司 金属纳米线复合薄膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649214A (en) 1984-11-30 1987-03-10 Henkel Corporation 5(6)-hydroxymethyl-norbornane-2-carboxylic acid esters and polyurethanes prepared therefrom
JPH0292936A (ja) 1988-09-30 1990-04-03 Kuraray Co Ltd 透明樹脂または透明成形品の製造方法
JPH02253201A (ja) 1989-03-27 1990-10-12 Kuraray Co Ltd 光学用成形品
JPH0643301A (ja) 1992-07-23 1994-02-18 Kuraray Co Ltd 光学部品
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP5286644B2 (ja) 2005-12-27 2013-09-11 東レ株式会社 ポリエステル樹脂およびこれを含むポリエステルフィルム
JP4797997B2 (ja) 2006-01-16 2011-10-19 三菱化学株式会社 位相差フィルム、液晶パネル及び画像表示機器
JP2007224281A (ja) 2006-01-24 2007-09-06 Toray Ind Inc 光学用ポリエステルフィルム
JP2011052190A (ja) 2009-09-04 2011-03-17 Toray Ind Inc ポリエステルの製造方法およびそれを用いたフィルム
CN102782527B (zh) * 2010-03-05 2015-02-18 株式会社大赛璐 光学膜及其制造方法
JPWO2012035874A1 (ja) 2010-09-14 2014-02-03 日立化成株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
JP6023402B2 (ja) * 2010-12-27 2016-11-09 日東電工株式会社 透明導電性フィルムおよびその製造方法
JP2015193099A (ja) 2014-03-31 2015-11-05 リンテック株式会社 保護フィルム、保護フィルムの使用方法および保護フィルム付透明導電性基板

Also Published As

Publication number Publication date
EP3521869A4 (en) 2019-10-23
TW201821282A (zh) 2018-06-16
US20200031108A1 (en) 2020-01-30
WO2018062328A1 (ja) 2018-04-05
EP3521869B1 (en) 2021-01-20
KR102439384B1 (ko) 2022-09-01
JPWO2018062328A1 (ja) 2019-08-29
CN109791224A (zh) 2019-05-21
CN109791224B (zh) 2021-03-30
US10981366B2 (en) 2021-04-20
KR20190053847A (ko) 2019-05-20
TWI725237B (zh) 2021-04-21
EP3521869A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6955705B2 (ja) 光学用ポリエステルフィルム及び透明導電性フィルム
JP6378667B2 (ja) 硬化性組成物及び透明耐熱材料の製造方法
WO2014030848A1 (ko) 하드코팅 필름
KR20140016919A (ko) 투명 도전성 적층체 및 투명 터치 패널
EP3521867B1 (en) Optical lens
JP6961174B2 (ja) 光学フィルム、位相差フィルム、偏光板
JP2018078090A (ja) 透明導電性フィルム及びそれを用いたタッチパネル
KR101968497B1 (ko) 광 제어 패널 및 광 결상 장치
JP2010162746A (ja) 透明導電性積層フィルム及びそれを用いたタッチパネル
JP6689174B2 (ja) 透明導電性フィルム及びそれを用いたタッチパネル
JP3799990B2 (ja) 破損しにくいプラスチックシート及びそれを用いた積層体
WO2008010588A1 (en) Transparent antireflection plate
JPH10309770A (ja) 透明導電性シート
JP5186144B2 (ja) 透明反射防止板
JPH04214340A (ja) 液晶表示パネル用フィルム
JP2016128231A (ja) 金属膜を有する樹脂シートの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R151 Written notification of patent or utility model registration

Ref document number: 6955705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151