JP6862729B2 - Fluidized bed dryer and fluidized bed drying system using it - Google Patents

Fluidized bed dryer and fluidized bed drying system using it Download PDF

Info

Publication number
JP6862729B2
JP6862729B2 JP2016180729A JP2016180729A JP6862729B2 JP 6862729 B2 JP6862729 B2 JP 6862729B2 JP 2016180729 A JP2016180729 A JP 2016180729A JP 2016180729 A JP2016180729 A JP 2016180729A JP 6862729 B2 JP6862729 B2 JP 6862729B2
Authority
JP
Japan
Prior art keywords
drying chamber
fluidized bed
dried
drying
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180729A
Other languages
Japanese (ja)
Other versions
JP2018044732A (en
Inventor
俊之 内藤
俊之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016180729A priority Critical patent/JP6862729B2/en
Publication of JP2018044732A publication Critical patent/JP2018044732A/en
Application granted granted Critical
Publication of JP6862729B2 publication Critical patent/JP6862729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は、褐炭等の含水物に流動化ガスを送給して流動層を形成し、流動させながら水分を除去する流動層乾燥機、及びこれを用いた流動層乾燥システムに関する。 The present invention relates to a fluidized bed dryer that feeds a fluidized gas to a water-containing material such as lignite to form a fluidized bed and removes water while flowing the fluidized bed, and a fluidized bed drying system using the same.

近年、無煙炭や瀝青炭といった高品位炭のほかに、安価な褐炭等の低品位炭を燃料として用いる試みが進められているが、こうした低品位炭は、含水量が多いため、燃焼に先立って乾燥させる必要がある。 In recent years, in addition to high-grade coal such as anthracite and bituminous coal, attempts have been made to use low-grade coal such as inexpensive lignite as fuel. However, since such low-grade coal has a high water content, it is dried prior to combustion. I need to let you.

褐炭等の乾燥には、流動層式の乾燥機が用いられることが一般的であり、この種の流動層乾燥機に関連する先行技術文献として、例えば、下記の特許文献1等がある。特許文献1に記載された流動層乾燥機(流動層乾燥装置)では、乾燥炉内に画成した乾燥室に褐炭を供給する一方、前記乾燥室の下部のチャンバ室からガス分散板を介して水蒸気や窒素等の流動化ガスを導入して流動層を形成し、該流動層を加熱しつつ流動させるようになっている。流動層は、上流側の第1乾燥室から下流側の第2乾燥室へ流動する過程で徐々に水分を除去される。 A fluidized bed dryer is generally used for drying lignite and the like, and prior art documents related to this type of fluidized bed dryer include, for example, the following Patent Document 1. In the fluidized bed dryer (fluidized bed dryer) described in Patent Document 1, brown coal is supplied to the drying chamber defined in the drying furnace, while brown coal is supplied from the chamber chamber below the drying chamber via the gas dispersion plate. A fluidized gas such as water vapor or nitrogen is introduced to form a fluidized bed, and the fluidized bed is heated and fluidized. Moisture is gradually removed from the fluidized bed in the process of flowing from the first drying chamber on the upstream side to the second drying chamber on the downstream side.

特開2012−225518号公報Japanese Unexamined Patent Publication No. 2012-225518

上記特許文献1に記載の如き乾燥機では、乾燥炉は例えば上流から下流にかけて直線的な形状の流路を有する縦長の直方体状に形成されている。そして、こうした直線状の流路を有する乾燥炉では、容積に対して表面積が大きいため、表面からの放熱により多量の熱エネルギーが散逸し、乾燥の効率が低下してしまうという問題があった。また、通路の長さがそのまま乾燥炉全体の長さに反映されるため、乾燥炉自体の寸法が大きくなってしまうほか、放熱を抑える目的で乾燥炉の周囲に大量の断熱材を設置する必要もあり、装置全体が大型になってしまうという問題も抱えていた。 In the dryer as described in Patent Document 1, the drying furnace is formed in a vertically long rectangular parallelepiped shape having a linear flow path from upstream to downstream, for example. Further, in a drying furnace having such a linear flow path, since the surface area is large with respect to the volume, there is a problem that a large amount of heat energy is dissipated by heat dissipation from the surface and the drying efficiency is lowered. In addition, since the length of the passage is directly reflected in the length of the entire drying furnace, the dimensions of the drying furnace itself become large, and it is necessary to install a large amount of heat insulating material around the drying furnace for the purpose of suppressing heat dissipation. There was also the problem that the entire device would become large.

本発明は、斯かる実情に鑑み、乾燥炉表面からの放熱を抑えて乾燥に係る熱効率を向上し得る流動層乾燥機及びこれを用いた流動層乾燥システムを提供しようとするものである。 In view of such circumstances, the present invention aims to provide a fluidized bed dryer capable of suppressing heat dissipation from the surface of a drying furnace and improving thermal efficiency related to drying, and a fluidized bed drying system using the same.

本発明は、平面視で渦巻状の通路をなすよう区画された乾燥室と、該乾燥室に流動化ガスを送給する送風箱と、前記乾燥室に被乾燥物を投入するための投入口と、前記乾燥室から被乾燥物を排出するための排出口を備えた乾燥炉を備え、前記乾燥室に投入された被乾燥物と、前記乾燥室に送給される流動化ガスにより流動層を形成し、該流動層を前記乾燥室により構成される渦巻状の通路に沿って移動させながら被乾燥物の水分を除去するよう構成され、前記投入口は、前記渦巻状の通路をなす乾燥室の中央部に備えられ、前記排出口は、前記渦巻状の通路をなす乾燥室の周縁部に備えられ、前記乾燥室内の温度は中央部ほど高く、周縁部へ向かうほど低くなるよう構成された流動層乾燥機にかかるものである。 In the present invention, a drying chamber partitioned so as to form a spiral passage in a plan view, a blower box for supplying fluidized gas to the drying chamber, and an inlet for charging an object to be dried into the drying chamber. A drying furnace provided with a discharge port for discharging the object to be dried from the drying chamber is provided, and a fluidized layer is provided by the object to be dried charged into the drying chamber and the fluidized gas supplied to the drying chamber. Is configured to remove moisture of the object to be dried while moving the fluidized layer along the spiral passage formed by the drying chamber , and the inlet is the drying forming the spiral passage. It is provided in the central part of the chamber, and the outlet is provided in the peripheral portion of the drying chamber forming the spiral passage, and the temperature of the drying chamber is configured to be higher toward the central portion and lower toward the peripheral portion. It is applied to the fluidized layer dryer.

本発明の流動層乾燥機において、前記乾燥室の床面は、前記乾燥室の上流から下流へ向かって下り勾配をなすことが好ましい。 In the fluidized bed dryer of the present invention, it is preferable that the floor surface of the drying chamber has a downward slope from the upstream to the downstream of the drying chamber.

本発明の流動層乾燥機においては、前記乾燥室に、内部に熱媒体を流通させて流動層を加熱する伝熱管を備えることが好ましい。 In the fluidized bed dryer of the present invention, it is preferable that the drying chamber is provided with a heat transfer tube for heating the fluidized bed by circulating a heat medium inside.

また、本発明は、前記排出口における被乾燥物の含水量を監視する含水量センサと、前記含水量に応じて、前記投入口に投入される被乾燥物の量又は前記乾燥室に送給される流動化ガスの量の少なくとも一方を制御する制御装置を備えた、上述の流動層乾燥機を用いた流動層乾燥システムにかかるものである。 Further, the present invention has a water content sensor for monitoring the water content of the object to be dried at the discharge port, and the amount of the object to be dried to be charged into the inlet or the drying chamber according to the water content. The present invention relates to a fluidized bed drying system using the above-mentioned fluidized bed dryer, which is provided with a control device for controlling at least one of the amount of fluidized gas to be produced.

また、本発明は、前記排出口における被乾燥物の含水量を監視する含水量センサと、前記含水量に応じて、前記投入口に投入される被乾燥物の量又は前記乾燥室に送給される流動化ガスの量若しくは前記伝熱管に送給される熱媒体の量の少なくとも一つを制御する制御装置を備えた、上述の流動層乾燥機を用いた流動層乾燥システムにかかるものである。 Further, the present invention has a water content sensor for monitoring the water content of the object to be dried at the discharge port, and the amount of the object to be dried to be charged into the inlet or the drying chamber according to the water content. The present invention relates to a fluidized bed drying system using the above-mentioned fluidized bed dryer, which is provided with a control device for controlling at least one of the amount of fluidized gas to be produced or the amount of heat medium supplied to the heat transfer tube. is there.

本発明の流動層乾燥機及びこれを用いた流動層乾燥システムによれば、乾燥炉表面からの放熱を抑えて乾燥に係る熱効率を向上し得るという優れた効果を奏し得る。 According to the fluidized bed dryer of the present invention and the fluidized bed drying system using the same, it is possible to obtain an excellent effect that heat dissipation from the surface of the drying furnace can be suppressed and the thermal efficiency related to drying can be improved.

本発明を適用した流動層乾燥機及び流動層乾燥システムの全体構成の一例を示す概要図である。It is a schematic diagram which shows an example of the whole structure of the fluidized bed dryer and the fluidized bed drying system to which this invention is applied. 本発明を適用した流動層乾燥機の乾燥炉の形態の一例を示す斜視図である。It is a perspective view which shows an example of the form of the drying furnace of the fluidized bed dryer to which this invention is applied. 本発明を適用した流動層乾燥機の乾燥炉の形態の一例を示す平断面図であり、図2のIII−III矢視相当図である。It is a plan sectional view which shows an example of the form of the drying furnace of the fluidized bed dryer to which this invention is applied, and is the figure corresponding to the arrow III-III of FIG. 本発明を適用した流動層乾燥機の乾燥炉の形態の一例を示す底面図であり、図2のIV−IV矢視相当図である。It is a bottom view which shows an example of the form of the drying furnace of the fluidized bed dryer to which this invention is applied, and is the figure corresponding to the arrow IV-IV of FIG. 本発明を適用した流動層乾燥機の乾燥炉の形態の一例を示す正断面図である。It is a front sectional view which shows an example of the form of the drying furnace of the fluidized bed dryer to which this invention is applied.

以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図5は本発明の実施による流動層乾燥機及びこれを用いた流動層乾燥システムの形態の一例を示している。図1は本実施例の流動層乾燥システムの全体構成を示しており、流動層乾燥機1は、乾燥炉2内に画成した乾燥室3に、コンベヤの終端にホッパを備えた投入装置4から投入口5を介して褐炭等の被乾燥物Cを投入し、該被乾燥物Cを流動させつつ乾燥室3内を移動させる過程で水分を除去し、排出口6から取り出した被乾燥物Cをバーナ7へ供給するようになっている。 1 to 5 show an example of a mode of a fluidized bed dryer according to the implementation of the present invention and a fluidized bed drying system using the same. FIG. 1 shows the overall configuration of the fluidized bed drying system of this embodiment. The fluidized bed dryer 1 is a charging device 4 provided with a hopper at the end of a conveyor in a drying chamber 3 defined in a drying furnace 2. The object to be dried such as brown charcoal is charged through the inlet 5 and the moisture is removed in the process of moving the object to be dried C in the drying chamber 3 while flowing the object to be dried, and the object to be dried taken out from the discharge port 6 is removed. C is supplied to the burner 7.

乾燥炉2は、図2に示す如き略円筒形状に形成されており、その内部には平面視で渦巻状に区画された通路が形成され、この通路が乾燥室3を構成している。渦巻状の乾燥室3は、中央側を上流、周縁側を下流とし、乾燥炉2中央部の上面に開口された投入口5から投入された被乾燥物Cを、平面視で時計回りに渦巻状に移動させ、周縁部(図2では右側)に備えた排出口6から排出するようになっている。乾燥室3の床面8は、上流から下流に向かって下り勾配をなしており、投入口5の直下において最も高く、排出口6の位置で最も低く設定されている。床面8は、乾燥室3のなす渦巻状の通路に沿って、例えば3°以上30°以下の滑らかな勾配をなしている。 The drying furnace 2 is formed in a substantially cylindrical shape as shown in FIG. 2, and a passage is formed inside the drying furnace 2 in a spiral shape in a plan view, and this passage constitutes the drying chamber 3. In the spiral drying chamber 3, the central side is upstream and the peripheral side is downstream, and the object to be dried C charged from the charging port 5 opened on the upper surface of the central portion of the drying furnace 2 is swirled clockwise in a plan view. It is moved in a shape and discharged from the discharge port 6 provided on the peripheral portion (right side in FIG. 2). The floor surface 8 of the drying chamber 3 has a downward slope from the upstream to the downstream, and is set to be the highest immediately below the inlet 5 and the lowest at the position of the discharge port 6. The floor surface 8 has a smooth slope of, for example, 3 ° or more and 30 ° or less along the spiral passage formed by the drying chamber 3.

床面8はまた、多数の穴を備えたガス分散板として構成されており、この床面8により乾燥室3の下に画成された乾燥炉2内の空間は、乾燥室3に流動化ガスを送給するための送風箱9として構成されている。そして、この送風箱9から乾燥室3へ床面8を介して流動化ガスを送り込み、乾燥室3内で被乾燥物Cと共に流動層Fを形成するようになっている。 The floor surface 8 is also configured as a gas dispersion plate having a large number of holes, and the space in the drying furnace 2 defined under the drying chamber 3 by the floor surface 8 is fluidized into the drying chamber 3. It is configured as a blower box 9 for supplying gas. Then, the fluidized gas is sent from the blower box 9 to the drying chamber 3 through the floor surface 8 to form a fluidized bed F together with the object to be dried C in the drying chamber 3.

本実施例では、流動化ガスとして、乾燥室3の形成する通路の上流側に送給される第一の流動化ガスと、下流側に送給される第二の流動化ガスの二種類の流動化ガスを用いる。第一の流動化ガスとしては、加熱した水蒸気Wと用い、第二の流動化ガスとしては、空気Aを用いている。尚、第一及び第二の流動化ガスとしては、ここに挙げた水蒸気W及び空気Aのほか、種々の気体を用いることができ、例えば、第二の流動化ガスとしては、窒素や二酸化炭素といった不活性ガスを用いることができる。ただし、費用面からは空気を用いることが最も好適であると考えられる。また、第一の流動化ガスとしても、空気や窒素、二酸化炭素等を用いることが可能であるが、後述する排気ライン13から排出される気体から潜熱を回収して利用する場合には、効率の良い潜熱のためには水蒸気Wを用いることが好適である。 In this embodiment, there are two types of fluidized gas, a first fluidized gas supplied to the upstream side of the passage formed by the drying chamber 3 and a second fluidized gas supplied to the downstream side. Use fluidized gas. As the first fluidized gas, heated steam W is used, and as the second fluidized gas, air A is used. As the first and second fluidized gases, in addition to the water vapor W and air A listed here, various gases can be used. For example, as the second fluidized gas, nitrogen or carbon dioxide can be used. Such an inert gas can be used. However, from the viewpoint of cost, it is considered most suitable to use air. Further, air, nitrogen, carbon dioxide, etc. can be used as the first fluidized gas, but it is efficient when latent heat is recovered from the gas discharged from the exhaust line 13 described later and used. It is preferable to use steam W for good latent heat.

被乾燥物Cの通路である乾燥室3は、仕切板10によって複数に区画されている。本実施例では、図3に示す如く、平面視で乾燥炉2の半径方向に一直線に配列した計3枚の仕切板10により、渦巻状の乾燥室3は上流側から順に第一乾燥室3a、第二乾燥室3b、第三乾燥室3cの3つに区切られている。各仕切板10は、通路である乾燥室3を完全に閉塞してはおらず、上下に被乾燥物Cを通過させるための隙間が空けられている。 The drying chamber 3, which is a passage of the object to be dried C, is divided into a plurality of parts by a partition plate 10. In this embodiment, as shown in FIG. 3, the spiral drying chamber 3 is arranged in the first drying chamber 3a in order from the upstream side by a total of three partition plates 10 arranged in a straight line in the radial direction of the drying furnace 2 in a plan view. , The second drying chamber 3b and the third drying chamber 3c. Each partition plate 10 does not completely block the drying chamber 3 which is a passage, and has a gap above and below for passing the object to be dried C.

送風箱9は、図2及び図4、図5に示す如く、隔壁18により第一の送風箱9aと第二の送風箱9bとに分割されている。この隔壁18は、周方向に延びる隔壁18aと径方向に延びる隔壁18bとにより平面視で閉断面をなしており、周方向の隔壁18a、及び径方向の隔壁18bは、床面8を介して送風箱9の直上に位置する第二乾燥室3bと第三乾燥室3cとの境界に対応した位置に配置されている。すなわち、周方向の隔壁18aは第二乾燥室3bと第三乾燥室3cの間を径方向に隔てる渦巻状の壁の直下に位置し、径方向の隔壁18bは、第二乾燥室3bと第三乾燥室3cの間を周方向に隔てる仕切板10の直下に位置している。こうして、送風箱9は、平面視で中心側に位置して第一乾燥室3a及び第二乾燥室3bに第一の流動化ガスを送給する第一の送風箱9aと、周縁側に位置して第三乾燥室3c(下流側の乾燥室3)へ第二の流動化ガスを送給する第二の送風箱9bとに分割される。第一の送風箱9aには、ボイラのタービン等である加熱装置11(図1参照)にて加熱された水蒸気Wが供給され、該水蒸気Wは第一の流動化ガスとして第一の送風箱9aから床面8を介して第一乾燥室3aと第二乾燥室3bへ送り込まれ、被乾燥物Cと共に流動層Fを形成する。一方、第二の送風箱9bには第二の流動化ガスとして空気Aが供給され、ここから床面8を介して第三乾燥室3cへ送り込まれ、被乾燥物Cと共に流動層Fを形成するようになっている。 As shown in FIGS. 2, 4 and 5, the blower box 9 is divided into a first blower box 9a and a second blower box 9b by a partition wall 18. The partition wall 18 has a closed cross section in a plan view due to the partition wall 18a extending in the circumferential direction and the partition wall 18b extending in the radial direction, and the partition wall 18a in the circumferential direction and the partition wall 18b in the radial direction pass through the floor surface 8. It is arranged at a position corresponding to the boundary between the second drying chamber 3b and the third drying chamber 3c located directly above the blower box 9. That is, the circumferential partition 18a is located directly under the spiral wall that radially separates the second drying chamber 3b and the third drying chamber 3c, and the radial partition 18b is the second drying chamber 3b and the third drying chamber 3b. (3) It is located directly below the partition plate 10 that separates the drying chambers 3c in the circumferential direction. In this way, the blower box 9 is located on the central side in a plan view and is located on the peripheral side of the first blower box 9a that supplies the first fluidized gas to the first drying chamber 3a and the second drying chamber 3b. Then, it is divided into a second blower box 9b for supplying the second fluidized gas to the third drying chamber 3c (drying chamber 3 on the downstream side). Steam W heated by a heating device 11 (see FIG. 1), which is a turbine of a boiler or the like, is supplied to the first blower box 9a, and the steam W is used as the first fluidized gas in the first blower box. It is sent from 9a to the first drying chamber 3a and the second drying chamber 3b via the floor surface 8 to form a fluidized bed F together with the object to be dried C. On the other hand, air A is supplied to the second blower box 9b as the second fluidized gas, and is sent from here to the third drying chamber 3c via the floor surface 8 to form a fluidized bed F together with the object to be dried C. It is designed to do.

また、図2〜図5に示す如く、上流側の乾燥室3(第一乾燥室3a、第二乾燥室3b、)には、加熱装置11(図1参照)から送られる水蒸気Wを内部に流通させる伝熱管12が備えられており、乾燥室3内を加熱するようになっている。すなわち、加熱装置11で加熱される水蒸気Wは、乾燥室3内で被乾燥物Cと共に流動層Fを形成する役割のほか、熱媒体として流動層Fを加熱する役割をも担っている。伝熱管12は、第一乾燥室3a内に床面8を貫通して下方から入り込み、上下に蛇行しながら通路に沿って下流へ向かって延びた後、仕切板10を迂回して第二乾燥室3bに入り込み、さらに蛇行しながら下流へ向かって延びた後、再び床面8を貫通して下方へ抜けるように配されている。このように、伝熱管12は乾燥室3内の空間を蛇行することで、流動層Fとの接触面積を大きく取って熱媒体の熱を流動層Fに効率良く伝達するようになっている。伝熱管12を通過した熱媒体としての水蒸気Wは加熱装置11に戻され(図1参照)、再度加熱されて伝熱管12ないし第一の送風箱9aに送られる。尚、本実施例では第一乾燥室3aから第二乾燥室3bにわたって伝熱管12を備えているが、図2中では説明の都合上、第一乾燥室3a内の伝熱管12のみを図示している。また、図1中に示す伝熱管12は、実際の形状を正確に反映したものではなく、伝熱管12の大まかな配置を概略的に示すものである。 Further, as shown in FIGS. 2 to 5, steam W sent from the heating device 11 (see FIG. 1) is inside the drying chamber 3 (first drying chamber 3a, second drying chamber 3b) on the upstream side. A heat transfer tube 12 for distribution is provided, and the inside of the drying chamber 3 is heated. That is, the water vapor W heated by the heating device 11 has a role of forming the fluidized bed F together with the object to be dried C in the drying chamber 3, and also has a role of heating the fluidized bed F as a heat medium. The heat transfer tube 12 penetrates the floor surface 8 into the first drying chamber 3a from below, meanders up and down, extends downstream along the passage, and then bypasses the partition plate 10 to perform the second drying. It is arranged so as to enter the chamber 3b, meander and extend downstream, and then penetrate the floor surface 8 again and exit downward. In this way, the heat transfer tube 12 meanders in the space inside the drying chamber 3, so that the contact area with the fluidized bed F is large and the heat of the heat medium is efficiently transferred to the fluidized bed F. The steam W as a heat medium that has passed through the heat transfer tube 12 is returned to the heating device 11 (see FIG. 1), is heated again, and is sent to the heat transfer tube 12 or the first blower box 9a. In this embodiment, the heat transfer tube 12 is provided from the first drying chamber 3a to the second drying chamber 3b, but for convenience of explanation, only the heat transfer tube 12 in the first drying chamber 3a is shown in FIG. ing. Further, the heat transfer tube 12 shown in FIG. 1 does not accurately reflect the actual shape, but roughly shows the rough arrangement of the heat transfer tube 12.

乾燥炉2上部の適宜位置には排気ライン13が備えられており、乾燥室3内に流動化ガスとして送り込まれた水蒸気Wや空気Aを含む気体は、この排気ライン13から適宜排出されるようになっている。 An exhaust line 13 is provided at an appropriate position on the upper part of the drying furnace 2, so that the gas containing water vapor W and air A sent as fluidized gas into the drying chamber 3 is appropriately discharged from the exhaust line 13. It has become.

図1に示す如く、排出口6からバーナ7へ被乾燥物Cを供給するラインには含水量センサ14が備えられており、排出口6から排出される被乾燥物C中の含水量を監視するようになっている。含水量センサ14で検出された被乾燥物Cの含水量は、含水量信号14aとして制御装置15に入力される。 As shown in FIG. 1, the line for supplying the object to be dried C from the discharge port 6 to the burner 7 is provided with a water content sensor 14, and monitors the water content in the object to be dried C discharged from the discharge port 6. It is designed to do. The water content of the object to be dried C detected by the water content sensor 14 is input to the control device 15 as a water content signal 14a.

制御装置15は、流動層乾燥機1の運転を監視し制御する装置であり、本実施例の場合、さらに第一の送風箱9a及び伝熱管12に供給される水蒸気Wの量や、投入口5から投入される被乾燥物Cの量をも制御するようになっている。 The control device 15 is a device that monitors and controls the operation of the fluidized bed dryer 1, and in the case of this embodiment, the amount of water vapor W supplied to the first air blower box 9a and the heat transfer tube 12 and the input port. The amount of the object to be dried C charged from No. 5 is also controlled.

すなわち、加熱装置11からは水蒸気Wが加熱されて第一の送風箱9aないし伝熱管12にそれぞれ供給されるようになっているが、第一の送風箱9a及び伝熱管12に水蒸気Wを供給するラインには、それぞれ流動化ガス供給バルブ16及び熱媒体供給バルブ17が備えられている。そして、制御装置15は、この流動化ガス供給バルブ16及び熱媒体供給バルブ17の開度をそれぞれ流動化ガス制御信号16a又は熱媒体制御信号17aの入力により操作し、第一の送風箱9aや伝熱管12に流動化ガスないし熱媒体として供給される水蒸気Wの量を制御するようになっている。 That is, the steam W is heated from the heating device 11 and supplied to the first blower box 9a to the heat transfer tube 12, respectively, but the steam W is supplied to the first blower box 9a and the heat transfer tube 12. Each of the lines is provided with a fluidized gas supply valve 16 and a heat medium supply valve 17. Then, the control device 15 operates the opening degrees of the fluidized gas supply valve 16 and the heat medium supply valve 17 by inputting the fluidized gas control signal 16a or the heat medium control signal 17a, respectively, and the first blower box 9a and the like. The amount of water vapor W supplied to the heat transfer tube 12 as a fluidized gas or a heat medium is controlled.

また、投入口5にはコンベヤやホッパを備えた投入装置4から被乾燥物Cが投入されるが、制御装置15は、投入量信号4aの入力により、例えば投入装置4を構成するコンベヤの運搬速度を制御し、乾燥室3へ投入される被乾燥物Cの量を制御するようになっている。 Further, the object to be dried C is charged into the charging port 5 from the charging device 4 provided with a conveyor or a hopper, and the control device 15 transports the conveyor constituting the charging device 4, for example, by inputting the charging amount signal 4a. The speed is controlled to control the amount of the object to be dried C charged into the drying chamber 3.

尚、流動層乾燥機1を含む流動層乾燥システムの全体構成は、ここに示した例に限定されない。例えば、排気ライン13から回収した気体は、集塵機にて煤等の固体分を除いた後、加圧して熱媒体又は流動化ガスとして伝熱管12や送風箱9に送り込み、回収した水蒸気Wに含まれる潜熱を流動層Fの加熱に再利用するよう構成することもできる。また例えば、伝熱管12内を流通する水蒸気W中に発生した凝縮水を回収し、残った気体分を流動化ガスとして送風箱9に送り込むよう構成することもできる。その他、流動化ガスや熱媒体の流路構成は適宜変更し得る。 The overall configuration of the fluidized bed drying system including the fluidized bed dryer 1 is not limited to the examples shown here. For example, the gas recovered from the exhaust line 13 is contained in the recovered steam W after removing solids such as soot with a dust collector and then pressurizing and sending it as a heat medium or fluidized gas to a heat transfer tube 12 or a blower box 9. It can also be configured to reuse the latent heat generated for heating the fluidized bed F. Further, for example, the condensed water generated in the water vapor W flowing in the heat transfer tube 12 can be recovered, and the remaining gas component can be sent to the blower box 9 as a fluidized gas. In addition, the flow path configuration of the fluidized gas and the heat medium can be changed as appropriate.

次に、上記した本実施例の作動を説明する。 Next, the operation of the above-described embodiment will be described.

褐炭等である被乾燥物Cは、図示しないミル等により適当な大きさの粒状に粉砕された後、投入装置4を介して投入口5から第一乾燥室3aへ投入される(図1及び図2、図5参照)。第一乾燥室3aへ投入された被乾燥物Cは、第一の送風箱9aからガス分散板である床面8を介して送給される流動化ガスとしての水蒸気Wと共に流動層Fを形成し、渦巻状の通路の一部として形成された第一乾燥室3a内を下流へ向かう。床面8は、上述の如く下流へ向かって下り勾配をなしているため、流動層Fは重力に従って自動的に床面8上を下流へ移動する。 The object to be dried C, which is lignite or the like, is pulverized into particles of an appropriate size by a mill or the like (not shown), and then charged into the first drying chamber 3a from the charging port 5 via the charging device 4 (FIGS. 1 and 1 and (See FIGS. 2 and 5). The object to be dried C charged into the first drying chamber 3a forms a fluidized bed F together with water vapor W as a fluidized gas supplied from the first air box 9a through the floor surface 8 which is a gas dispersion plate. Then, it goes downstream in the first drying chamber 3a formed as a part of the spiral passage. Since the floor surface 8 has a downward slope toward the downstream as described above, the fluidized bed F automatically moves downstream on the floor surface 8 according to gravity.

ここで、床面8の勾配は、被乾燥物Cの粒径や密度、粘性といった物性や、これによる乾燥室3内での流動のしやすさ、さらに乾燥炉2の性能や乾燥室3の寸法その他の条件に合わせ、被乾燥物Cが乾燥室3内をスムーズに移動し、且つ投入口5から排出口6までの移動の過程で十分に水分を除去されるよう、適宜設定すれば良い。 Here, the gradient of the floor surface 8 is the physical properties such as the particle size, density, and viscosity of the object to be dried C, the ease of flow in the drying chamber 3 due to this, the performance of the drying furnace 2, and the drying chamber 3. Appropriate settings may be made so that the object to be dried C moves smoothly in the drying chamber 3 and sufficiently removes water in the process of moving from the inlet 5 to the outlet 6 according to the dimensions and other conditions. ..

流動層Fは、第一乾燥室3a内を移動する間、第一の流動化ガスとして送り込まれる水蒸気Wの熱により、被乾燥物Cに含まれる水分を水蒸気として放出していく。これに加え、流動層Fは伝熱管12内を流通する熱媒体としての水蒸気Wとも熱交換を行い、この熱によっても水分が放出される。放出された水蒸気は、乾燥室3上方の排気ライン13から適宜排出される。 While moving in the first drying chamber 3a, the fluidized bed F releases the water contained in the object to be dried C as water vapor by the heat of the water vapor W sent as the first fluidized gas. In addition to this, the fluidized bed F also exchanges heat with water vapor W as a heat medium circulating in the heat transfer tube 12, and moisture is also released by this heat. The released water vapor is appropriately discharged from the exhaust line 13 above the drying chamber 3.

第一乾燥室3aとその下流側の第二乾燥室3bとの間は仕切板10によって隔てられているが、仕切板10の上下には隙間が空けられているので、被乾燥物Cを含む流動層Fは仕切板10の下側を潜るか、仕切板10の上側を乗り越えて第二乾燥室3bに流入する。こうすることで、第一乾燥室3a内に形成された流動層Fは大部分が第一乾燥室3a内に留まりつつ、一部ずつ第二乾燥室3bへ移動するようになっており、被乾燥物Cが十分に水分を除去されないまま速やかに下流へ流されていくことを防止するようになっている。すなわち、仕切板10は第一乾燥室3aから第二乾燥室3bへの流動層Fの移動を遮りつつ部分的に許容し、流動層Fの移動の速さを制御する邪魔板として働く。 The first drying chamber 3a and the second drying chamber 3b on the downstream side thereof are separated by a partition plate 10, but since there is a gap above and below the partition plate 10, the object to be dried C is included. The fluidized bed F either goes under the partition plate 10 or gets over the upper side of the partition plate 10 and flows into the second drying chamber 3b. By doing so, most of the fluidized bed F formed in the first drying chamber 3a stays in the first drying chamber 3a, and partly moves to the second drying chamber 3b. It is designed to prevent the dried product C from being swiftly flowed downstream without sufficiently removing water. That is, the partition plate 10 partially allows the movement of the fluidized bed F from the first drying chamber 3a to the second drying chamber 3b while blocking the movement, and acts as an obstacle plate for controlling the speed of movement of the fluidized bed F.

仕切板10は、ここで説明した以外にも種々の構成を取り得る。例えば、本実施例では仕切板10の枚数を3枚としているが、乾燥炉2の大きさや性能を考慮してこれより多くしても良いし、少なくすることもできる。また、本実施例では渦巻状の通路をなす乾燥室3に対し、3枚の仕切板10を平面視で半径方向に一直線に配置しており、通路の長さは下流側に位置する乾燥室3ほど長くなっているが、この配置を変更し、例えば各乾燥室3の長さが等しくなるように仕切板10を配しても良い。また、本実施例では仕切板10の上下に開口を備えているが、この上下の開口の大きさないし高さは適宜変更でき、例えば、被乾燥物Cとして粒径の大きな物体を扱う場合には、詰まり防止のために仕切板10の下側の開口を大きくする等の調整を加えることができる。あるいは、例えば最も上流に位置する仕切板10は下側にのみ開口を備え、その下流に位置する仕切板10は上側にのみ開口を備え、さらにその下流に位置する仕切板10は下側にのみ開口を備えるようにして、流動層Fが乾燥室3内を互い違いに上下に蛇行しながら移動するよう、仕切板10により流路を構成することもできる。その他、被乾燥物Cの性質や、乾燥室3の寸法等に応じ、仕切板10の枚数や配置は床面8の勾配と共に適宜設定すべきである。 The partition plate 10 may have various configurations other than those described here. For example, in this embodiment, the number of partition plates 10 is set to 3, but it may be larger or smaller in consideration of the size and performance of the drying furnace 2. Further, in this embodiment, three partition plates 10 are arranged in a straight line in the radial direction with respect to the drying chamber 3 forming a spiral passage, and the length of the passage is the drying chamber located on the downstream side. Although it is about 3 long, this arrangement may be changed, for example, the partition plates 10 may be arranged so that the lengths of the drying chambers 3 are equal. Further, in this embodiment, openings are provided above and below the partition plate 10, but the size and height of the upper and lower openings can be changed as appropriate. For example, when an object having a large particle size is handled as the object to be dried C. Can make adjustments such as increasing the opening on the lower side of the partition plate 10 to prevent clogging. Alternatively, for example, the most upstream partition plate 10 has an opening only on the lower side, the downstream partition plate 10 has an opening only on the upper side, and the further downstream partition plate 10 has an opening only on the lower side. A flow path may be formed by the partition plate 10 so that the fluidized bed F moves in the drying chamber 3 while meandering up and down alternately so as to have an opening. In addition, the number and arrangement of the partition plates 10 should be appropriately set together with the gradient of the floor surface 8 according to the properties of the object to be dried C, the dimensions of the drying chamber 3, and the like.

第二乾燥室3bへ移動した流動層Fは、さらに第一の流動化ガスとしての水蒸気Wを供給され、また伝熱管12を介して加熱されつつ、渦巻状の通路に沿って下流へ向かい、その過程で水分を除去されていく。そして、仕切板10を越えて下流側の乾燥室3にあたる第三乾燥室3cに到達すると、供給される流動化ガスがここで第一の流動化ガスである水蒸気Wから第二の流動化ガスである空気Aに切り替わる。また、この第三乾燥室3cには伝熱管12が備えられておらず、熱媒体としての水蒸気Wによる加熱が行われない。被乾燥物Cと水蒸気Wに加えて空気Aを含む流動層Fは、第三乾燥室3c内を排出口6に向かって移動する間、水分を放出しながら温度を低下させていく。この間、流動層Fを構成する流動化ガスを徐々に空気Aに置き換えつつ、ゆっくりと温度を低下させていくことで、飽和水蒸気圧を下げながら流動層F中の水分を除去していくことができる。 The fluidized bed F that has moved to the second drying chamber 3b is further supplied with water vapor W as the first fluidized gas, and while being heated via the heat transfer tube 12, heads downstream along the spiral passage. Moisture is removed in the process. Then, when the third drying chamber 3c, which corresponds to the drying chamber 3 on the downstream side, is reached beyond the partition plate 10, the supplied fluidized gas changes from the water vapor W, which is the first fluidized gas, to the second fluidized gas. It switches to air A. Further, the third drying chamber 3c is not provided with the heat transfer tube 12, and is not heated by steam W as a heat medium. The fluidized bed F containing the air A in addition to the object to be dried C and the water vapor W lowers the temperature while releasing water while moving in the third drying chamber 3c toward the discharge port 6. During this period, the fluidized gas constituting the fluidized bed F is gradually replaced with air A, and the temperature is slowly lowered to remove the water content in the fluidized bed F while lowering the saturated water vapor pressure. it can.

ここで、本実施例では上流側の乾燥室3a、3bにのみ伝熱管12を備えた構成としているが、乾燥室3内における熱効率その他の条件に鑑みて、下流側の乾燥室3cにも加熱が必要である場合には、適宜伝熱管12を配置するようにしても良い。逆に、第二乾燥室3bにおいては伝熱管12を省略し、第一乾燥室3aにのみ伝熱管を配することもできる。また、伝熱管12は一本ではなく複数備えても良い。あるいは、例えば第一乾燥室3a、第二乾燥室3b、第三乾燥室3cの各乾燥室3毎に伝熱管12を別々に備えることもできる。その他、伝熱管12は加熱の効率や熱媒体の流通性、流動層Fとの接触性等を考慮して種々の構成を取り得る。 Here, in this embodiment, the heat transfer tubes 12 are provided only in the drying chambers 3a and 3b on the upstream side, but in consideration of the thermal efficiency and other conditions in the drying chamber 3, the drying chamber 3c on the downstream side is also heated. If necessary, the heat transfer tube 12 may be arranged as appropriate. On the contrary, the heat transfer tube 12 may be omitted in the second drying chamber 3b, and the heat transfer tube may be arranged only in the first drying chamber 3a. Further, the heat transfer tubes 12 may be provided in a plurality of heat transfer tubes 12 instead of one. Alternatively, for example, a heat transfer tube 12 may be separately provided for each drying chamber 3 of the first drying chamber 3a, the second drying chamber 3b, and the third drying chamber 3c. In addition, the heat transfer tube 12 may have various configurations in consideration of heating efficiency, flowability of the heat medium, contact with the fluidized bed F, and the like.

制御装置15では、排出口6から排出される被乾燥物C中の含水量を含水量センサ14からの含水量信号14aにて監視し、検出される含水量に応じて流動化ガス供給バルブ16や熱媒体供給バルブ17に流動化ガス制御信号16a又は熱媒体制御信号17aを入力し、開度を制御している。また、制御装置15は、前記含水量に応じて投入装置4に供給量信号4aを入力し、被乾燥物Cの投入量を制御している。こうすることで、上流側の乾燥室3(第一乾燥室3a、第二乾燥室3b)内における流動化や加熱の状況を最適化するようになっている(図1参照)。 In the control device 15, the water content in the object to be dried C discharged from the discharge port 6 is monitored by the water content signal 14a from the water content sensor 14, and the fluidized gas supply valve 16 is monitored according to the detected water content. The fluidized gas control signal 16a or the heat medium control signal 17a is input to the heat medium supply valve 17 to control the opening degree. Further, the control device 15 inputs a supply amount signal 4a to the charging device 4 according to the water content to control the charging amount of the object to be dried C. By doing so, the conditions of fluidization and heating in the drying chamber 3 (first drying chamber 3a, second drying chamber 3b) on the upstream side are optimized (see FIG. 1).

すなわち、乾燥室3内に流動化ガスないし熱媒体としての水蒸気Wを介し送り込まれる熱エネルギーは、多いほど被乾燥物Cを素早く乾燥することができるが、一方で、水蒸気Wはボイラのタービン等である加熱装置11にて加熱されることで熱エネルギーを得ており、省エネルギーの観点からは乾燥室3に加えられる熱エネルギーは被乾燥物Cに対してなるべく少ない方が良い。そこで、本実施例では、排出口6から排出される乾燥後の被乾燥物C中の含水量を常時監視し、これに応じて第一の送風箱9aや伝熱管12へ供給する水蒸気Wの量や、乾燥室3に投入する被乾燥物Cの量を調整するようにしている。つまり、含水量信号14aとして検出される含水量が所定の閾値より少なければ第一の送風箱9aや伝熱管12へ送り込む水蒸気Wの量を減少させ、あるいは乾燥室3に投入する被乾燥物Cの量を増加させる。反対に、前記含水量が別の所定の閾値より多い場合には、第一の送風箱9aや伝熱管12へ送り込む水蒸気Wの量を増加させ、あるいは乾燥室3に投入する被乾燥物Cの量を減少させる。ここで、水蒸気Wの供給量や被乾燥物Cの投入量の操作は、適宜選択し又は組み合わせて実行するよう制御装置15を構成すれば良い。すなわち、流動化ガス供給バルブ16の開度、熱媒体供給バルブ17の開度、被乾燥物Cの供給量は、前記含水量に応じていずれかのみを操作するようにしても良いし、また、状況に合わせてそれぞれを組み合わせつつ制御するようにしても良い。また、前記「所定の閾値」及び「別の所定の閾値」は、被乾燥物Cの性質や、乾燥室3の熱効率その他の条件により適宜設定される。 That is, the larger the heat energy sent into the drying chamber 3 via the fluidized gas or the steam W as a heat medium, the faster the object C to be dried can be dried. The heat energy is obtained by heating in the heating device 11, and from the viewpoint of energy saving, the heat energy applied to the drying chamber 3 should be as small as possible with respect to the object C to be dried. Therefore, in this embodiment, the water content in the dried object C after drying discharged from the discharge port 6 is constantly monitored, and the water vapor W supplied to the first blower box 9a and the heat transfer tube 12 accordingly. The amount and the amount of the object to be dried C to be put into the drying chamber 3 are adjusted. That is, if the water content detected as the water content signal 14a is less than a predetermined threshold value, the amount of water vapor W sent to the first blower box 9a and the heat transfer tube 12 is reduced, or the object to be dried C to be charged into the drying chamber 3. Increase the amount of. On the contrary, when the water content is larger than another predetermined threshold value, the amount of water vapor W sent to the first blower box 9a or the heat transfer tube 12 is increased, or the object to be dried C to be put into the drying chamber 3 is charged. Reduce the amount. Here, the control device 15 may be configured to appropriately select or combine the operations of the supply amount of water vapor W and the input amount of the object to be dried C. That is, only one of the opening degree of the fluidized gas supply valve 16, the opening degree of the heat medium supply valve 17, and the supply amount of the object to be dried C may be operated according to the water content. , You may control by combining each according to the situation. Further, the "predetermined threshold value" and "another predetermined threshold value" are appropriately set depending on the properties of the object to be dried C, the thermal efficiency of the drying chamber 3, and other conditions.

以上の工程により、例えば被乾燥物Cが褐炭である場合、投入口5への投入時には70%程度の水分を含有しているが、乾燥室3を移動する間に水分が放出される結果、排出口6からの排出時には20%程度にまで含水量が低下する。また、流動層Fの温度は、投入口5付近では100℃前後の高温であるが、第二乾燥室3bでは70℃前後に低下し、さらに第三乾燥室3cへと至る過程で冷却されて排出口6付近では20℃程度の常温にまで低下する。 By the above steps, for example, when the object to be dried C is lignite, it contains about 70% of water when it is charged into the charging port 5, but as a result of the water being released while moving through the drying chamber 3, the result is that When discharged from the discharge port 6, the water content is reduced to about 20%. The temperature of the fluidized bed F is as high as about 100 ° C. near the inlet 5, but drops to about 70 ° C. in the second drying chamber 3b, and is further cooled in the process of reaching the third drying chamber 3c. In the vicinity of the discharge port 6, the temperature drops to about 20 ° C.

ここで、本実施例の流動層乾燥機1の場合、乾燥室3は上述の如く全体として渦巻状の通路を形成しているので、乾燥室3内の温度は中央部ほど高く、周縁部へ向かうほど低くなる勾配をなしている。そして、第一乾燥室3aは径方向外側にて第二乾燥室3bと隣接し、該第二乾燥室3bは径方向外側にて第三乾燥室3cに隣接している。この構成により、乾燥炉2全体のエネルギー効率を向上している。 Here, in the case of the fluidized bed dryer 1 of the present embodiment, since the drying chamber 3 forms a spiral passage as a whole as described above, the temperature inside the drying chamber 3 is higher toward the central portion and goes to the peripheral portion. The slope becomes lower as it goes toward it. The first drying chamber 3a is adjacent to the second drying chamber 3b on the outer side in the radial direction, and the second drying chamber 3b is adjacent to the third drying chamber 3c on the outer side in the radial direction. With this configuration, the energy efficiency of the entire drying furnace 2 is improved.

すなわち、上述の如く、従来の縦長の乾燥炉では容積に対する表面積が大きいために外部空間への放熱量が多いという問題があり、特に温度の高い上流側の通路において、この問題は顕著であった。そこで、本実施例の流動層乾燥機1では、乾燥室3を渦巻状の通路として構成することで、従来の縦長の乾燥炉と比較して乾燥炉2全体の寸法を小さくすると共に容積に対して表面積を小さくし、表面からの放熱を抑えるようにしている。 That is, as described above, the conventional vertically long drying furnace has a problem that the amount of heat radiated to the external space is large because the surface area is large relative to the volume, and this problem is particularly remarkable in the passage on the upstream side where the temperature is high. .. Therefore, in the fluidized bed dryer 1 of the present embodiment, by configuring the drying chamber 3 as a spiral passage, the size of the entire drying furnace 2 is reduced as compared with the conventional vertically long drying furnace, and the volume is reduced. The surface area is reduced to suppress heat dissipation from the surface.

しかも、渦巻状に区画された乾燥室3では、互いに上流と下流の関係にある通路同士が隣接する関係にあるため、該隣接する乾燥室3同士の間で熱交換が行われる。したがって、第一乾燥室3aからの放熱は隣接する第二乾燥室3bにて部分的に回収し、さらに該第二乾燥室3bからの放熱は隣接する第三乾燥室3cにて部分的に回収し、被乾燥物Cからの水分の放出に利用することができる。こうして、通路の上流にて加えられた熱エネルギーの多くが外部空間へ放熱される代わりに下流の通路に伝達されるので、熱エネルギーの再利用が図られて乾燥炉2全体に供給すべき熱エネルギー量を低減することができるようになっている。 Moreover, in the drying chambers 3 partitioned in a spiral shape, since the passages that are upstream and downstream of each other are adjacent to each other, heat exchange is performed between the adjacent drying chambers 3. Therefore, the heat radiation from the first drying chamber 3a is partially recovered in the adjacent second drying chamber 3b, and the heat radiation from the second drying chamber 3b is partially recovered in the adjacent third drying chamber 3c. However, it can be used to release water from the object to be dried C. In this way, most of the heat energy applied upstream of the passage is transferred to the downstream passage instead of being dissipated to the external space, so that the heat energy is reused and the heat to be supplied to the entire drying furnace 2 is achieved. The amount of energy can be reduced.

ここで、本実施例では、渦巻状の通路をなす乾燥室3の中央部に投入口5を、周縁部に排出口6を備え、乾燥室3の中央側を上流、周縁側を下流としているが、反対に、乾燥室3の周縁部に投入口5を、中央部に排出口6を備え、乾燥室3の周縁側を上流、中央側を下流として構成することも可能である。ただし、熱効率の面からは中央側を上流とすることが好ましい。流動層乾燥機では、乾燥室の上流側は下流側と比較して高温であるため、上流側の通路を外界との接触面積の多い周縁側に配置すると、ここから外界への熱エネルギーの散逸量が大きくなってしまうからである。本実施例では、高温となる上流側の通路を中央部に、上流側より低温となる下流側の通路を周縁部に配置することで、より多くの熱エネルギーを回収し、熱効率を一層向上するようにしている。 Here, in this embodiment, an inlet 5 is provided in the central portion of the drying chamber 3 forming a spiral passage, a discharge port 6 is provided in the peripheral portion, and the central side of the drying chamber 3 is upstream and the peripheral side is downstream. However, on the contrary, it is also possible to provide an inlet 5 at the peripheral edge of the drying chamber 3 and a discharge port 6 at the central portion, and configure the peripheral side of the drying chamber 3 as the upstream side and the central side as the downstream side. However, from the viewpoint of thermal efficiency, it is preferable that the central side is upstream. In a fluidized bed dryer, the upstream side of the drying chamber is hotter than the downstream side, so if the upstream passage is placed on the peripheral side where there is a lot of contact area with the outside world, heat energy is dissipated from here to the outside world. This is because the amount becomes large. In this embodiment, by arranging the high temperature upstream passage in the central portion and the low temperature downstream passage in the peripheral portion, more thermal energy can be recovered and the thermal efficiency can be further improved. I am trying to do it.

また、従来の流動層乾燥機では、熱の漏洩を抑えるため、乾燥室の周囲に大量の断熱材の設置をも必要としていたが、本実施例の流動層乾燥機1では、隣接する乾燥室3間では上述の如く熱エネルギーを回収することができ、ここには断熱材を設置する必要がない。したがって、断熱材の設置にかかるコストを抑えると共に乾燥炉2のさらなる小型化を図ることができる。 Further, in the conventional fluidized bed dryer, it is necessary to install a large amount of heat insulating material around the drying chamber in order to suppress heat leakage, but in the fluidized bed dryer 1 of the present embodiment, the adjacent drying chamber is used. As described above, the heat energy can be recovered between the three, and it is not necessary to install a heat insulating material here. Therefore, it is possible to reduce the cost of installing the heat insulating material and further reduce the size of the drying furnace 2.

尚、本実施例の流動層乾燥機1ないしこれを用いた流動層乾燥システムでは、被乾燥物Cとして褐炭に限らず、泥炭や亜瀝青炭等、他の種類の石炭を利用することもでき、また、石炭以外にバイオマス等の乾燥にも適用し得る。さらに、燃料に限らず、乾燥を必要とする種々の含水物に適用でき、その際には、被乾燥物の性質に応じて仕切板10の配置や床面8の勾配、乾燥炉2の大きさ、その他の仕様を適宜調整すべきである。 In the fluidized bed dryer 1 of this embodiment or the fluidized bed drying system using the fluidized bed dryer 1, not only brown coal but also other types of coal such as peat and subbituminous coal can be used as the object to be dried C. In addition to coal, it can also be applied to drying biomass and the like. Further, it can be applied not only to fuel but also to various water-containing substances that require drying. In that case, the arrangement of the partition plate 10, the gradient of the floor surface 8, and the size of the drying furnace 2 are determined according to the properties of the object to be dried. Now, other specifications should be adjusted accordingly.

以上のように、上記本実施例においては、平面視で渦巻状の通路をなすよう区画された乾燥室3内で被乾燥物Cと流動化ガスにより流動層Fを形成し、該流動層Fを前記乾燥室3により構成される渦巻状の通路に沿って移動させながら被乾燥物Cの水分を除去するよう構成しているので、乾燥炉2全体の寸法を小さくすると共に容積に対して表面積を小さくし、表面からの放熱を抑えることができる。また、互いに上流と下流の関係にあり且つ互いに隣接する乾燥室3同士で熱交換が行われることで、熱エネルギーの再利用が図られる。さらに、断熱材の設置にかかるコストをも抑えることができる。 As described above, in the present embodiment, the fluidized bed F is formed by the object to be dried C and the fluidized gas in the drying chamber 3 partitioned so as to form a spiral passage in a plan view, and the fluidized bed F is formed. Is configured to remove the moisture of the object to be dried C while moving along the spiral passage formed by the drying chamber 3, so that the size of the entire drying furnace 2 can be reduced and the surface area with respect to the volume can be reduced. Can be reduced and heat dissipation from the surface can be suppressed. Further, heat energy can be reused by exchanging heat between the drying chambers 3 which are upstream and downstream of each other and adjacent to each other. Further, the cost for installing the heat insulating material can be suppressed.

また、本実施例の流動層乾燥機1において、前記乾燥室3の床面8は、前記乾燥室3の上流から下流へ向かって下り勾配をなしているので、流動層Fを重力に従って自動的に下流へ移動させることができる。 Further, in the fluidized bed dryer 1 of the present embodiment, since the floor surface 8 of the drying chamber 3 has a downward gradient from the upstream to the downstream of the drying chamber 3, the fluidized bed F is automatically moved according to gravity. Can be moved downstream.

また、本実施例の流動層乾燥機1において、前記投入口5は、前記渦巻状の通路をなす乾燥室3の中央部に備えられ、前記排出口6は、前記渦巻状の通路をなす乾燥室3の周縁部に備えられているので、高温となる上流側の通路を中央部に、上流側より低温となる下流側の通路を周縁部に配置することで、より多くの熱エネルギーを回収し、熱効率を一層向上することができる。 Further, in the fluidized bed dryer 1 of the present embodiment, the input port 5 is provided in the central portion of the drying chamber 3 forming the spiral passage, and the discharge port 6 is the drying forming the spiral passage. Since it is provided in the peripheral portion of the chamber 3, more heat energy can be recovered by arranging the passage on the upstream side where the temperature becomes high in the central portion and the passage on the downstream side where the temperature becomes lower than the upstream side in the peripheral portion. However, the thermal efficiency can be further improved.

また、本実施例の流動層乾燥機1においては、前記乾燥室3に、内部に熱媒体としての水蒸気Wを流通させて流動層Fを加熱する伝熱管12を備えているので、乾燥室3内の流動層Fを加熱して被乾燥物Cを一層効率良く乾燥させることができる。 Further, in the fluidized bed dryer 1 of the present embodiment, since the drying chamber 3 is provided with a heat transfer tube 12 for heating the fluidized bed F by circulating water vapor W as a heat medium inside, the drying chamber 3 is provided. The fluidized bed F inside can be heated to dry the object to be dried C more efficiently.

また、本実施例の流動層乾燥機1を用いた流動層乾燥システムは、前記排出口6における被乾燥物Cの含水量を監視する含水量センサ14と、前記含水量に応じて、前記投入口5に投入される被乾燥物Cの量又は前記乾燥室3に送給される流動化ガスとしての水蒸気Wの量の少なくとも一方を制御する制御装置15を備えて構成することができ、このようにすれば、乾燥室3内における流動化や加熱の状況を最適化することができる。 Further, in the fluidized bed drying system using the fluidized bed dryer 1 of the present embodiment, the water content sensor 14 for monitoring the water content of the object to be dried C at the discharge port 6 and the charging according to the water content. A control device 15 for controlling at least one of the amount of the object to be dried C charged into the mouth 5 and the amount of water vapor W as the fluidized gas supplied to the drying chamber 3 can be provided. By doing so, it is possible to optimize the fluidization and heating conditions in the drying chamber 3.

また、本実施例の流動層乾燥機1を用いた流動層乾燥システムは、前記含水量に応じて、前記伝熱管12に送給される熱媒体としての水蒸気Wの量を制御するようにも構成することができ、このようにすれば、乾燥室3内における流動化や加熱の状況を一層最適化することができる。 Further, the fluidized bed drying system using the fluidized bed dryer 1 of the present embodiment also controls the amount of water vapor W as a heat medium supplied to the heat transfer tube 12 according to the water content. It can be configured, and in this way, the fluidization and heating conditions in the drying chamber 3 can be further optimized.

したがって、上記本実施例によれば、乾燥炉表面からの放熱を抑えて乾燥に係る熱効率を向上し得る。 Therefore, according to the present embodiment, heat dissipation from the surface of the drying furnace can be suppressed and the thermal efficiency related to drying can be improved.

尚、本発明の流動層乾燥機及びこれを用いた流動層乾燥システムは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The fluidized bed dryer of the present invention and the fluidized bed drying system using the same are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. Of course.

1 流動層乾燥機
2 乾燥炉
3 乾燥室
3a 乾燥室(第一乾燥室)
3b 乾燥室(第二乾燥室)
3c 乾燥室(第三乾燥室)
5 投入口
6 排出口
8 床面
9 送風箱
9a 送風箱(第一の送風箱)
9b 送風箱(第二の送風箱)
12 伝熱管
14 含水量センサ
15 制御装置
A 空気(第二の流動化ガス)
C 被乾燥物
F 流動層
W 水蒸気(第一の流動化ガス、熱媒体)
1 Fluidized bed dryer 2 Drying furnace 3 Drying room 3a Drying room (first drying room)
3b Drying room (second drying room)
3c drying room (third drying room)
5 Input port 6 Discharge port 8 Floor surface 9 Blower box 9a Blower box (first blower box)
9b Blower box (second blower box)
12 Heat transfer tube 14 Moisture content sensor 15 Control device A Air (second fluidized gas)
C Material to be dried F Fluidized bed W Water vapor (first fluidized gas, heat medium)

Claims (5)

平面視で渦巻状の通路をなすよう区画された乾燥室と、
該乾燥室に流動化ガスを送給する送風箱と、
前記乾燥室に被乾燥物を投入するための投入口と、
前記乾燥室から被乾燥物を排出するための排出口を備えた乾燥炉を備え、
前記乾燥室に投入された被乾燥物と、前記乾燥室に送給される流動化ガスにより流動層を形成し、該流動層を前記乾燥室により構成される渦巻状の通路に沿って移動させながら被乾燥物の水分を除去するよう構成され、
前記投入口は、前記渦巻状の通路をなす乾燥室の中央部に備えられ、前記排出口は、前記渦巻状の通路をなす乾燥室の周縁部に備えられ、
前記乾燥室内の温度は中央部ほど高く、周縁部へ向かうほど低くなるよう構成された流動層乾燥機。
A drying chamber partitioned to form a spiral passage in a plan view,
A blower box that supplies fluidized gas to the drying chamber,
An inlet for charging the object to be dried into the drying chamber,
A drying furnace provided with a discharge port for discharging the object to be dried from the drying chamber is provided.
A fluidized bed is formed by the object to be dried charged into the drying chamber and the fluidized gas supplied to the drying chamber, and the fluidized bed is moved along a spiral passage formed by the drying chamber. It is configured to remove moisture from the object to be dried while
The inlet is provided in the central portion of the drying chamber forming the spiral passage, and the discharge port is provided in the peripheral portion of the drying chamber forming the spiral passage.
A fluidized bed dryer configured so that the temperature in the drying chamber is higher toward the center and lower toward the periphery.
前記乾燥室の床面は、前記乾燥室の上流から下流へ向かって下り勾配をなす、請求項1に記載の流動層乾燥機。 The fluidized bed dryer according to claim 1, wherein the floor surface of the drying chamber has a downward slope from the upstream to the downstream of the drying chamber. 前記乾燥室に、内部に熱媒体を流通させて流動層を加熱する伝熱管を備えた、請求項1又は2に記載の流動層乾燥機。 The fluidized bed dryer according to claim 1 or 2 , wherein the drying chamber is provided with a heat transfer tube for heating the fluidized bed by circulating a heat medium inside. 前記排出口における被乾燥物の含水量を監視する含水量センサと、前記含水量に応じて、前記投入口に投入される被乾燥物の量又は前記乾燥室に送給される流動化ガスの量の少なくとも一方を制御する制御装置を備えた、請求項1又は2に記載の流動層乾燥機を用いた流動層乾燥システム。 A water content sensor that monitors the water content of the object to be dried at the discharge port, and the amount of the material to be dried that is charged into the inlet or the fluidized gas that is sent to the drying chamber, depending on the water content. The fluidized bed drying system using the fluidized bed dryer according to claim 1 or 2 , further comprising a control device for controlling at least one of the amounts. 前記排出口における被乾燥物の含水量を監視する含水量センサと、前記含水量に応じて、前記投入口に投入される被乾燥物の量又は前記乾燥室に送給される流動化ガスの量若しくは前記伝熱管に送給される熱媒体の量の少なくとも一つを制御する制御装置を備えた、請求項に記載の流動層乾燥機を用いた流動層乾燥システム。 A water content sensor that monitors the water content of the object to be dried at the discharge port, and the amount of the material to be dried that is charged into the inlet or the fluidized gas that is sent to the drying chamber, depending on the water content. The fluidized bed drying system using the fluidized bed dryer according to claim 3 , further comprising a control device for controlling at least one of the amount or the amount of the heat medium supplied to the heat transfer tube.
JP2016180729A 2016-09-15 2016-09-15 Fluidized bed dryer and fluidized bed drying system using it Active JP6862729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180729A JP6862729B2 (en) 2016-09-15 2016-09-15 Fluidized bed dryer and fluidized bed drying system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180729A JP6862729B2 (en) 2016-09-15 2016-09-15 Fluidized bed dryer and fluidized bed drying system using it

Publications (2)

Publication Number Publication Date
JP2018044732A JP2018044732A (en) 2018-03-22
JP6862729B2 true JP6862729B2 (en) 2021-04-21

Family

ID=61693548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180729A Active JP6862729B2 (en) 2016-09-15 2016-09-15 Fluidized bed dryer and fluidized bed drying system using it

Country Status (1)

Country Link
JP (1) JP6862729B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848252A (en) * 1971-10-16 1973-07-09
JPS52136083U (en) * 1976-11-10 1977-10-15
JPH02143080A (en) * 1988-11-24 1990-06-01 Mitsubishi Kasei Vinyl Co Drying and fluidized drying device for granular body
JP6304482B2 (en) * 2014-01-22 2018-04-04 株式会社Ihi Fluidized bed drying apparatus and method for drying low-grade coal

Also Published As

Publication number Publication date
JP2018044732A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
RU2459659C1 (en) Boiler with circulating fluid bed
KR101344860B1 (en) Torrefaction device for biomass
FI125977B (en) Method and apparatus for incinerating sludge
CN111492176B (en) Circulating fluidized bed boiler with material returning heat exchanger
JP6862729B2 (en) Fluidized bed dryer and fluidized bed drying system using it
JP5490248B2 (en) Supply method and supply device for supplying fuel into a circulating fluidized bed boiler
KR101466671B1 (en) Fluidized bed drying device with dehumidifying fluidizing-gas
JP5539598B2 (en) System and method for cooling and extracting heavy ash while increasing total boiler efficiency
JP2016080217A (en) Woody fuel dryer and woody fuel drying method using the same
KR101786304B1 (en) Furnance of solid fuel
JP7191642B2 (en) Boiler, ash processing equipment, method of operating boiler and method of operating ash processing equipment
JP6357969B2 (en) Drying apparatus and method for drying water-containing material
JP6459297B2 (en) Drying equipment
RU2632637C1 (en) Furnace unit with augmented fluidized bed reactor
US20120251959A1 (en) Method of and Arrangement for Feeding Fuel Into a Circulating Fluidized Bed Boiler
CN105466008B (en) Multi fuel heat pipe indirect-heating hot air stove
JP6800251B2 (en) Fluidized bed incinerator
KR101397617B1 (en) Fluidized bed drying device being capable of removing foreign materials
KR101428359B1 (en) Circulating Fluidized Bed Boiler
JP6394209B2 (en) Drying equipment
CN212584974U (en) Dry-type deslagging system
JP7006114B2 (en) Drying equipment
KR101273311B1 (en) A Fluidized Bed Combustion Apparatus for Advanced Air distribution and Sloid Remove
JP5406562B2 (en) Fluidized bed furnace and fluidized bed boiler provided with the same
JP3218482U (en) Multistage boiler heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151