JP6817631B2 - Curved connection structure and three-dimensional connection structure - Google Patents

Curved connection structure and three-dimensional connection structure Download PDF

Info

Publication number
JP6817631B2
JP6817631B2 JP2017142663A JP2017142663A JP6817631B2 JP 6817631 B2 JP6817631 B2 JP 6817631B2 JP 2017142663 A JP2017142663 A JP 2017142663A JP 2017142663 A JP2017142663 A JP 2017142663A JP 6817631 B2 JP6817631 B2 JP 6817631B2
Authority
JP
Japan
Prior art keywords
unit
curved surface
shape
connection structure
main axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017142663A
Other languages
Japanese (ja)
Other versions
JP2019023489A (en
Inventor
泰 山口
泰 山口
知宏 舘
知宏 舘
泰介 大嶋
泰介 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2017142663A priority Critical patent/JP6817631B2/en
Publication of JP2019023489A publication Critical patent/JP2019023489A/en
Application granted granted Critical
Publication of JP6817631B2 publication Critical patent/JP6817631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)

Description

本発明は、曲面連結構造および立体連結構造に関し、詳しくは、単位ユニットが複数連結された曲面連結構造およびこの曲面連結構造に所定力を作用させて変形させて得られる立体連結構造に関する。 The present invention relates to a curved surface connection structure and a three-dimensional connection structure, and more particularly to a curved surface connection structure in which a plurality of unit units are connected and a three-dimensional connection structure obtained by applying a predetermined force to the curved surface connection structure to deform it.

従来、この種の技術としては、メッシュ状の柔軟材料を用いて、変形させたい曲面形状と変形における境界条件を入力として、その変形に最も近い変形を実現する構造を求める手法が提案されている(例えば、非特許文献1参照)。ここで最適化するパラメータはメッシュ形状や構成する梁の断面形状である。また、狙った三次元のボリュームの変形を実現する構造を求める手法も提案されている(例えば、非特許文献2参照)。前者の手法は、狙った変形を実現するための構造を求める手法ではあるが、構造全体に柔軟性を持つため、実現したい変形形状によって境界条件が大きく左右される。そのため、最適化問題への入力にはターゲット形状と境界条件の2つが求められる。また、後者の手法は、同様に変形応じて境界条件を考慮する必要があり、最適化問題の入力としてターゲット形状と境界条件が必要とされる。 Conventionally, as this kind of technology, a method has been proposed in which a mesh-like flexible material is used and a curved surface shape to be deformed and a boundary condition in the deformation are input to obtain a structure that realizes the deformation closest to the deformation. (See, for example, Non-Patent Document 1). The parameters optimized here are the mesh shape and the cross-sectional shape of the constituent beams. In addition, a method for obtaining a structure that realizes a targeted three-dimensional volume deformation has also been proposed (see, for example, Non-Patent Document 2). The former method is a method for obtaining a structure for realizing the desired deformation, but since the entire structure has flexibility, the boundary conditions are greatly influenced by the deformation shape to be realized. Therefore, the target shape and the boundary condition are required for the input to the optimization problem. Further, in the latter method, it is necessary to consider the boundary condition according to the deformation as well, and the target shape and the boundary condition are required as the input of the optimization problem.

“Design and Fabrication of Flexible Rod Meshes”,Jesus Perez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, , Robert Sumner, ,ACM Trans. on Graphics (Proc. of ACM SIGGRAPH), Volume 34, Number 4 - 2015“Design and Fabrication of Flexible Rod Meshes”, Jesus Perez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel ,, Robert Sumner ,, ACM Trans. On Graphics (Proc. Of ACM SIGGRAPH), Volume 34, Number 4 --2015 Elastic Textures for Additive Fabrication,Julian Panetta.et.al,ACM Trans. on Graphics - Siggraph 2015, Volume 34, Number 4, page 12 - aug 2015Elastic Textures for Additive Fabrication, Julian Panetta.et.al, ACM Trans. On Graphics --Siggraph 2015, Volume 34, Number 4, page 12 --aug 2015

意図した形状に変形が誘導される特殊な材料特性を実現する構造として、図17に示すような3区分に区分けされた6角形の単位ユニットによるRH構造(Re-entrant honeycomb構造)が知られている。この単位ユニットは、図中上下方向の主軸S1に垂直な副軸S2と主軸S1に平行な対角線の頂点からの斜辺とのなす角として定義する形状パラメータαが負の第1形状ユニット930(図17の左)と、形状パラメータαが正の第2形状ユニット940(図17の右)と、形状パラメータαが値0の第3形状ユニット950(図17の中央)の3区分に区分けされており、いずれの区分の形状も、主軸S1方向の梁状部材932,942,952によって隣接する単位ユニットと連結され、曲面連結構造(平面連結構造)を構成する。単位ユニットは、主軸S1方向の引っ張り変形に対して副軸方向への変形の仕方により、第1形状ユニット930ではポアソン比νが正となり、第2形状ユニット940ではポアソン比νが負となり、第3形状ユニット950ではポアソン比νが値0となる。各ユニット930,940,950による平面連結構造(図18,図19,図20)に対して主軸S1周りに回転する曲げ力または副軸S2周りに回転する曲げ力を作用すると、図21に示すように、第1形状ユニット930による平面連結構造は双曲的曲面(鞍状曲面:ガウス曲率K<0)による立体連結構造(図21の左)に変形し、第2形状ユニット940による平面連結構造は楕円的曲面(ドーム状曲面:ガウス曲率K>0)による立体連結構造(図21の右)に変形し、第3形状ユニット950による平面連結構造は放物面的曲面(樋状曲面:ガウス曲率K=0)による立体連結構造(図21の中央)に変形する。したがって、目的の立体構造の各部の曲面に応じて形状パラメータαを定めて3区分のユニット930,940,950を組み合わせて平面連結構造や曲面連結構造を形成し、境界条件としての力を作用させることにより、目的の立体構造と同形状の立体連結構造を構成することができる。 As a structure that realizes special material properties in which deformation is induced to the intended shape, an RH structure (Re-entrant honeycomb structure) consisting of hexagonal unit units divided into three categories as shown in FIG. 17 is known. There is. This unit unit is the first shape unit 930 in which the shape parameter α defined as the angle formed by the sub-axis S2 perpendicular to the main axis S1 in the vertical direction and the oblique side from the apex of the diagonal line parallel to the main axis S1 is negative (FIG. It is divided into three categories: a second shape unit 940 (right in FIG. 17) having a positive shape parameter α, and a third shape unit 950 (center in FIG. 17) having a shape parameter α having a value of 0. Each of the shapes of each section is connected to an adjacent unit unit by a beam-shaped member 923,942,952 in the direction of the spindle S1 to form a curved surface connecting structure (planar connecting structure). The unit unit has a positive Poisson's ratio ν in the first shape unit 930 and a negative Poisson's ratio ν in the second shape unit 940, depending on how it is deformed in the sub-axis direction with respect to the tensile deformation in the main shaft S1 direction. In the three-shape unit 950, the Poisson's ratio ν is a value of 0. FIG. 21 shows that a bending force rotating around the main axis S1 or a bending force rotating around the sub-axis S2 is applied to the planar connection structure (FIGS. 18, 19, and 20) of the units 930, 940, and 950. As described above, the plane connection structure by the first shape unit 930 is transformed into a three-dimensional connection structure (left in FIG. 21) by a parabolic curved surface (saddle-like curved surface: Gaussian curvature K <0), and the plane connection by the second shape unit 940. The structure is transformed into a three-dimensional connection structure (right in FIG. 21) with an elliptical curved surface (dome-shaped curved surface: Gaussian curvature K> 0), and the planar connecting structure with the third shape unit 950 is a parabolic curved surface (girdle-shaped curved surface: It is transformed into a three-dimensional connection structure (center of FIG. 21) with a Gaussian curvature K = 0). Therefore, the shape parameter α is determined according to the curved surface of each part of the target three-dimensional structure, and the units 930, 940, and 950 of the three divisions are combined to form a plane connecting structure or a curved surface connecting structure, and a force as a boundary condition is applied. Thereby, a three-dimensional connection structure having the same shape as the target three-dimensional structure can be constructed.

しかしながら、上述の単位ユニットによる平面連結構造や曲面連結構造では、曲面全体が主軸に沿った曲げや副軸に沿った曲げによる変形でなく、主軸に対して斜めの方向の曲げによる変形などの意図しない変形も生じるため、目的の立体構造と同形状の立体連結構造を構成することが困難な場合が生じる。なお、この主軸に沿わない曲げが生じるのは、局所的には主軸方向に連結されたユニットどうしが主軸周りに互いに回転し、ねじりを起こすからである。 However, in the above-mentioned plane connection structure or curved surface connection structure by the unit unit, the intention is that the entire curved surface is not deformed by bending along the main axis or bending along the sub-axis, but by bending in a direction oblique to the main axis. Since deformation that does not occur occurs, it may be difficult to construct a three-dimensional connection structure having the same shape as the target three-dimensional structure. It should be noted that the bending that does not follow the spindle occurs because the units that are locally connected in the spindle direction rotate with each other around the spindle and cause twisting.

本発明の曲面連結構造は、意図しない変形を抑制する単位ユニットによる曲面連結構造を提供することを主目的とする。また、本発明の立体連結構造は、意図しない変形を抑制する単位ユニットによる立体連結構造を提供することを主目的とする。 A main object of the curved surface connecting structure of the present invention is to provide a curved surface connecting structure by a unit unit that suppresses unintended deformation. Another object of the three-dimensional connection structure of the present invention is to provide a three-dimensional connection structure by a unit unit that suppresses unintended deformation.

本発明の曲面連結構造および立体連結構造は、上述の主目的を達成するために以下の手段を採った。 The curved surface connection structure and the three-dimensional connection structure of the present invention have adopted the following means in order to achieve the above-mentioned main object.

本発明の曲面連結構造は、
偶数nのn角形の単位ユニットが複数連結されて平面を含む曲面に沿って配置され、所定力を作用させたときに変形により異なる曲面による立体連結構造となる曲面連結構造であって、
前記単位ユニットは、
(1)正n角形としたときの対向する対角線の1つを主軸としたときに主軸方向に梁で隣接する単位ユニットと連結されており、
(2)前記主軸の方向に引っ張り変形させたときのポアソン比が正の第1形状ユニットとポアソン比が負の第2形状ユニットとポアソン比が値0の第3形状ユニットの3区分のユニットであり、
(3)前記主軸に平行な対向する対角線の両端の両頂点に連結され、前記主軸方向に連結するユニットどうしが前記主軸周りに互いに回転するねじりに対する剛性が、前記主軸に垂直な副軸周りに回転する曲げに対する剛性より高い、耐ねじり部材が形成されており、
前記曲面連結構造は、前記3区分のユニットのうち少なくとも1区分のユニットを用いて構成されている、
ことを特徴とする。
The curved surface connection structure of the present invention
It is a curved surface connection structure in which a plurality of n-sided polygonal unit units of even n are connected and arranged along a curved surface including a plane, and when a predetermined force is applied, a three-dimensional connection structure is formed by different curved surfaces due to deformation.
The unit unit is
(1) When one of the diagonal lines facing each other in a regular n-sided polygon is used as the main axis, it is connected to the unit units adjacent to each other by a beam in the main axis direction.
(2) A unit of three categories, a first shape unit having a positive Poisson's ratio when pulled and deformed in the direction of the spindle, a second shape unit having a negative Poisson's ratio, and a third shape unit having a Poisson's ratio of 0. Yes,
(3) Units connected to both apexes at both ends of opposite diagonal lines parallel to the main axis, and the units connected in the main axis direction rotate with each other around the main axis, have rigidity against a torsion around the sub-axis perpendicular to the main axis. A torsion-resistant member that is higher in rigidity against rotational bending is formed.
The curved surface connection structure is configured by using at least one of the three compartmentalized units.
It is characterized by that.

この本発明の曲面連結構造では、偶数nのn角形(例えば、4角形や6角形、8角形など)の単位ユニットが平面を含む曲面に沿って複数連結されて曲面連結構造を構成し、この曲面連結構造に境界条件としての所定力(引っ張り力或いは圧縮力)を作用することにより、目的の立体構造と同形状の立体連結構造(曲面連結構造における曲面とは異なる曲面による連結構造)とする。ここで、曲面連結構造としては、全体が曲面の連結構造だけでなく、その一部が平面の連結構造や全体が平面の連結構造も含まれる。単位ユニットは、正n角形としたときの対向する対角線の1つを主軸としたときに主軸方向に梁で隣接する単位ユニットと連結されている。また、単位ユニットは、主軸の方向に引っ張り変形させたときのポアソン比が正の第1形状ユニットとポアソン比が負の第2形状ユニットとポアソン比が値0の第3形状ユニットの3区分に区分され、曲面連結構造は、3区分のユニットのうちの少なくとも1区分のユニットを用いて構成される。即ち、3区分のユニットの全てを用いて構成したり、3区分のユニットのうちのいずれか2つの区分のユニットを用いて構成したり、3区分のユニットのうちのいずれか1つの区分のユニットだけを用いて構成したりすることができる。また、単位ユニットは、耐ねじり部材が主軸方向に並べられたユニットを連結している。耐ねじり部材は、耐ねじり部材によって連結されるユニットどうしが主軸周りに互いに回転するねじりに対する剛性が、主軸に垂直な副軸周りに回転する曲げに対する剛性より高い部材である。単位ユニットが耐ねじり部材を有することにより、曲面全体が主軸に沿わない方向の曲げによる変形をすることを抑制することができる。これらの結果、意図しない変形を抑制する単位ユニットによる曲面連結構造とすることができる。 In the curved surface connection structure of the present invention, a plurality of unit units of an even n-sided polygon (for example, a tetragon, a hexagon, an octagon, etc.) are connected along a curved surface including a plane to form a curved surface connection structure. By applying a predetermined force (tensile force or compressive force) as a boundary condition to the curved surface connecting structure, a three-dimensional connecting structure having the same shape as the target three-dimensional structure (a connecting structure with a curved surface different from the curved surface in the curved surface connecting structure) is obtained. .. Here, the curved surface connecting structure includes not only a connecting structure having a curved surface as a whole, but also a connecting structure having a partially flat surface and a connecting structure having a flat surface as a whole. The unit unit is connected to the unit unit adjacent to the unit unit by a beam in the main axis direction when one of the diagonal lines facing each other in the regular n-sided shape is used as the main axis. In addition, the unit unit is divided into three categories: the first shape unit with a positive Poisson's ratio when pulled and deformed in the direction of the spindle, the second shape unit with a negative Poisson's ratio, and the third shape unit with a Poisson's ratio of 0. The curved surface connection structure is divided and is configured by using at least one of the three division units. That is, it may be configured by using all of the units of the three divisions, it may be configured by using the units of any two divisions of the three division units, or the unit of any one division of the three division units. Can be configured using only. Further, the unit unit connects units in which torsion-resistant members are arranged in the spindle direction. The torsion-resistant member is a member whose rigidity against twisting in which units connected by the torsion-resistant member rotate with respect to each other around a spindle is higher than the rigidity against bending rotating around a sub-axis perpendicular to the spindle. Since the unit unit has a torsion-resistant member, it is possible to prevent the entire curved surface from being deformed due to bending in a direction not along the main axis. As a result, it is possible to form a curved surface connection structure by a unit unit that suppresses unintended deformation.

ここで、耐ねじり部材は、単位ユニットの両頂点を対角とする菱形の箱部材としてもよく、副軸の方向を長手方向とする矩形の箱部材としてもよい。 Here, the torsion-resistant member may be a diamond-shaped box member having both vertices of the unit unit diagonal to each other, or a rectangular box member having the direction of the sub-axis as the longitudinal direction.

また、本発明の曲面連結構造において、前記単位ユニットは6角形であり、前記第1形状ユニットは前記両頂点が外側に凸の形状であり、前記第2形状ユニットは前記両頂点が内側に凸の形状であり、前記第3形状ユニットは前記両頂点が外側にも内側にも凸にならない形状であるものとしてもよい。こうすれば、3区分のユニットにより平面をタイリングすることができ、滑らかな曲面の立体構造と同形状の立体連結構造を構成することができる。 Further, in the curved surface connection structure of the present invention, the unit unit is hexagonal, the first shape unit has both vertices convex outward, and the second shape unit has both vertices convex inward. The third shape unit may have a shape in which both vertices are not convex to the outside or the inside. In this way, the plane can be tiling by the three-division unit, and a three-dimensional connection structure having the same shape as the three-dimensional structure of a smooth curved surface can be constructed.

本発明の立体連結構造は、上述のいずれかの態様の本発明の曲面連結構造、即ち、基本的には、偶数nのn角形の単位ユニットが複数連結されて平面を含む曲面に沿って配置され、所定力を作用させたときに変形により異なる曲面による立体連結構造となる曲面連結構造であって、前記単位ユニットは、(1)正n角形としたときの対向する対角線の1つを主軸としたときに主軸方向に梁で隣接する単位ユニットと連結されており、(2)前記主軸の方向に引っ張り変形させたときのポアソン比が正の第1形状ユニットとポアソン比が負の第2形状ユニットとポアソン比が値0の第3形状ユニットの3区分のユニットであり、(3)前記主軸に平行な対向する対角線の両端の両頂点に連結され、前記主軸方向に連結するユニットどうしが前記主軸周りに互いに回転するねじりに対する剛性が、前記主軸に垂直な副軸周りに回転する曲げに対する剛性より高い、耐ねじり部材が形成されており、前記曲面連結構造は、前記3区分のユニットのうち少なくとも1区分のユニットを用いて構成されている曲面連結構造に、前記所定力を作用させた状態としたことを要旨とする。このように、本発明の立体連結構造は、本発明の曲面連結構造に所定力を作用させた状態としたものであるから、本発明の曲面連結構造と同様の効果、即ち、単位ユニットが耐ねじり部材を有することにより、曲面全体が主軸に沿わない方向の曲げによる変形をすることを抑制することができる効果を奏することができる。この結果、意図しない変形を抑制する単位ユニットによる立体連結構造とすることができる。 The three-dimensional connection structure of the present invention is the curved surface connection structure of the present invention of any of the above-described aspects, that is, basically, a plurality of n-sided unit units of even n are connected and arranged along a curved surface including a plane. It is a curved surface connection structure that becomes a three-dimensional connection structure with different curved surfaces due to deformation when a predetermined force is applied, and the unit unit has (1) one of the opposing diagonal lines when it is a regular n-sided main axis. (2) The first shape unit with a positive Poisson's ratio and the second with a negative Poisson's ratio when deformed by pulling in the direction of the main axis are connected by a beam in the direction of the main axis. It is a unit of three divisions of a shape unit and a third shape unit having a Poisson's ratio of 0. (3) Units that are connected to both apical ends of opposite diagonal lines parallel to the main axis and are connected to each other in the main axis direction. A twist-resistant member is formed in which the rigidity against twisting that rotates around the main axis is higher than the rigidity against bending that rotates around the auxiliary axis perpendicular to the main axis, and the curved surface connecting structure is the unit of the above three categories. The gist is that the predetermined force is applied to the curved surface connecting structure configured by using at least one of the units. As described above, since the three-dimensional connection structure of the present invention is in a state in which a predetermined force is applied to the curved surface connection structure of the present invention, the same effect as the curved surface connection structure of the present invention, that is, the unit unit is resistant. By having the twisting member, it is possible to obtain the effect of suppressing the deformation of the entire curved surface due to bending in a direction not along the main axis. As a result, a three-dimensional connection structure can be obtained by a unit unit that suppresses unintended deformation.

本発明の一実施例としての曲面連結構造20の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the curved surface connection structure 20 as one Example of this invention. 実施例の曲面連結構造20を構成する単位ユニットとしての第1ないし第3形状ユニット30,40,50の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the 1st to 3rd shape units 30, 40, 50 as the unit unit which constitutes the curved surface connection structure 20 of an Example. 第1形状ユニット30による曲面連結構造(平面連結構造)である。It is a curved surface connection structure (planar connection structure) by the first shape unit 30. 第2形状ユニット40による曲面連結構造(平面連結構造)である。It is a curved surface connection structure (planar connection structure) by the second shape unit 40. 第3形状ユニット50による曲面連結構造(平面連結構造)である。It is a curved surface connection structure (planar connection structure) by the third shape unit 50. 第2形状ユニット40の構成の概略の一例を立体的に示す立体図である。It is a three-dimensional figure which shows a schematic example of the structure of the 2nd shape unit 40 three-dimensionally. 実施例の曲面連結構造20の設計工程の一例を示す説明図である。It is explanatory drawing which shows an example of the design process of the curved surface connection structure 20 of an Example. 形状パラメータαとポアソン比νとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a shape parameter α and Poisson's ratio ν. 第2形状ユニット40における厚みbと第2形状ユニット40による曲面連結構造(平面連結構造)の変形における固有周波数との関係を示すグラフである。It is a graph which shows the relationship between the thickness b in the 2nd shape unit 40, and the natural frequency in the deformation of the curved surface connection structure (plane connection structure) by the 2nd shape unit 40. 既知の第2形状ユニット940と実施例の第2形状ユニット40における変形モードの解析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the analysis result of the deformation mode in the known 2nd shape unit 940 and the 2nd shape unit 40 of an Example. 既知の第2形状ユニット940と実施例の第2形状ユニット40の解析結果におけるガウス曲率K>0に対するガウス曲率K<0の固有周波数の比を示すグラフである。It is a graph which shows the ratio of the natural frequency of Gaussian curvature K <0 to Gaussian curvature K> 0 in the analysis result of the known 2nd shape unit 940 and the 2nd shape unit 40 of an Example. 実施例のRHB構造と既知のRH構造を用いた曲面連結構造(平面連結構造)に対して境界条件としての力を作用したときの立体連結構造を示す写真である。It is a photograph which shows the three-dimensional connection structure when the force as a boundary condition is applied to the curved surface connection structure (plane connection structure) using the RHB structure of an Example and a known RH structure. 実施例のRHB構造と既知のRH構造による曲面連結構造(平面連結構造)に対して主軸S1方向と主軸S1に対して45度の方向に圧縮力を作用させたときの立体連結構造の一例を示す説明図である。An example of a three-dimensional connection structure when a compressive force is applied in the direction of the spindle S1 and the direction of 45 degrees with respect to the spindle S1 with respect to the curved surface connection structure (planar connection structure) based on the RHB structure of the embodiment and the known RH structure. It is explanatory drawing which shows. 変形例の第2形状ユニット40Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the 2nd shape unit 40B of a modification. 変形例の単位ユニットとしての第1ないし第3形状ユニット130,140,150の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the 1st to 3rd shape units 130, 140, 150 as the unit unit of the modification. 変形例の単位ユニットとしての第1ないし第3形状ユニット230,240,250の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the 1st to 3rd shape unit 230, 240, 250 as the unit unit of the modification. 従来例の単位ユニットの構成の一例を示す構成図である。It is a block diagram which shows an example of the structure of the unit unit of the conventional example. 第1形状ユニット930による曲面連結構造(平面連結構造)の一部を示す構成図である。It is a block diagram which shows a part of the curved surface connection structure (plane connection structure) by the 1st shape unit 930. 第2形状ユニット940による曲面連結構造(平面連結構造)の一部を示す構成図である。It is a block diagram which shows a part of the curved surface connection structure (plane connection structure) by the 2nd shape unit 940. 第3形状ユニット950による曲面連結構造(平面連結構造)の一部を示す構成図である。It is a block diagram which shows a part of the curved surface connection structure (plane connection structure) by the 3rd shape unit 950. 各ユニット930,940,950による曲面連結構造(平面連結構造)に対して副軸S2周りに回転する曲げ力を作用させることにより変形により得られる立体連結構造を示す構成図である。It is a block diagram which shows the three-dimensional connection structure obtained by deformation by applying the bending force rotating around the auxiliary axis S2 to the curved surface connection structure (plane connection structure) by each unit 930, 940, 950.

次に、本発明を実施するための形態を実施例を用いて説明する。図1は本発明の一実施例としての曲面連結構造20の構成の概略を示す構成図であり、図2は実施例の曲面連結構造20を構成する単位ユニットとしての第1形状ユニット30と第2形状ユニット40と第3形状ユニット50の構成の概略を示す構成図である。図3は第1形状ユニット30による曲面連結構造(平面連結構造)であり、図4は第2形状ユニット40による曲面連結構造(平面連結構造)であり、図5は第3形状ユニット50による曲面連結構造(平面連結構造)である。図6は、第2形状ユニット40の構成の概略の一例を立体的に示す立体図である。図7は、実施例の曲面連結構造20の設計工程の一例を示す説明図である。 Next, a mode for carrying out the present invention will be described with reference to examples. FIG. 1 is a configuration diagram showing an outline of the configuration of a curved surface connecting structure 20 as an embodiment of the present invention, and FIG. 2 shows a first shape unit 30 and a first shape unit 30 as a unit unit constituting the curved surface connecting structure 20 of the embodiment. It is a block diagram which shows the outline of the structure of the 2 shape unit 40 and the 3rd shape unit 50. FIG. 3 is a curved surface connection structure (planar connection structure) by the first shape unit 30, FIG. 4 is a curved surface connection structure (plane connection structure) by the second shape unit 40, and FIG. 5 is a curved surface by the third shape unit 50. It is a connected structure (planar connected structure). FIG. 6 is a three-dimensional diagram showing a three-dimensional example of a schematic configuration of the second shape unit 40. FIG. 7 is an explanatory diagram showing an example of a design process of the curved surface connecting structure 20 of the embodiment.

実施例の曲面連結構造20は、図7に示すように、目的形状としての右曲したドーム形状を単位ユニット(第1ないし第3形状ユニット30,40,50)により立体連結構造とし、立体連結構造を平面を含む曲面に展開したものであり、図1,図2に示すように、6角形の3区分に区分けされる単位ユニットとしての第1形状ユニット30(図2の左)と第2形状ユニット40(図2の右)と第3形状ユニット50(図2の中央)とにより構成される。ここで、「曲面連結構造」としては、全体が曲面の連結構造だけでなく、その一部が平面の連結構造や全体が平面の連結構造も含まれる。 In the curved surface connection structure 20 of the embodiment, as shown in FIG. 7, a right-curved dome shape as a target shape is formed into a three-dimensional connection structure by unit units (first to third shape units 30, 40, 50), and is three-dimensionally connected. The structure is developed on a curved surface including a plane, and as shown in FIGS. 1 and 2, the first shape unit 30 (left in FIG. 2) and the second shape unit 30 as unit units divided into three hexagonal sections. It is composed of a shape unit 40 (right in FIG. 2) and a third shape unit 50 (center in FIG. 2). Here, the "curved surface connecting structure" includes not only a connecting structure having a curved surface as a whole, but also a connecting structure having a partially flat surface and a connecting structure having a flat surface as a whole.

第1形状ユニット30(図2の左)は、全体としては頂点が外側に凸の6角形形状をしている。第1形状ユニット30は、その対角線の1つ(図2では上下方向の対角線)を主軸S1とし、この主軸S1に平行な辺が梁状部材32として形成されている。第1形状ユニット30は、この梁状部材32により隣接する第1形状ユニット30と連結されて曲面連結構造(平面連結構造)を形成する(図3参照)。第1形状ユニット30は、主軸S1に垂直な副軸S2と主軸S1に平行な斜辺とのなす角としての形状パラメータαが負の値であり、主軸S1方向の引っ張り変形に対して副軸S2方向に縮みが生じるポアソン比νが正の値の形状となる。したがって、第1形状ユニット30による曲面連結構造(平面連結構造、図3)に対して主軸S1周りに回転する曲げ力または副軸S2周りに回転する曲げ力を作用すると、第1形状ユニット30による曲面連結構造(平面連結構造)は双曲的曲面(鞍状曲面:ガウス曲率K<0)による立体連結構造(図21の左)に変形する。なお、ガウス曲率Kは、法曲率の最大値κ1と最小値κ2との積(K=κ1・κ2)として計算することができる。第1形状ユニット30の内部には、主軸S1方向に向かい合う両頂点に連結された菱形形状の箱部材としての耐ねじり部材34が形成されている。この耐ねじり部材34は、第1形状ユニット30の主軸S周りに互いに回転するねじりに対する剛性が、副軸S2周りに回転する曲げに対する剛性より高い部材であり、第1形状ユニット30の主軸S1周りのねじりに対する剛性を高める。 The first shape unit 30 (left in FIG. 2) has a hexagonal shape whose apex is convex outward as a whole. One of the diagonal lines of the first shape unit 30 (diagonal line in the vertical direction in FIG. 2) is the main axis S1, and the side parallel to the main axis S1 is formed as the beam-shaped member 32. The first shape unit 30 is connected to the adjacent first shape unit 30 by the beam-shaped member 32 to form a curved surface connecting structure (planar connecting structure) (see FIG. 3). In the first shape unit 30, the shape parameter α as the angle formed by the sub-axis S2 perpendicular to the main axis S1 and the oblique side parallel to the main axis S1 is a negative value, and the sub-axis S2 is subjected to tensile deformation in the main axis S1 direction. The Poisson's ratio ν, which shrinks in the direction, has a positive value. Therefore, when a bending force rotating around the main axis S1 or a bending force rotating around the sub-axis S2 is applied to the curved surface connecting structure (planar connecting structure, FIG. 3) by the first shape unit 30, the first shape unit 30 causes the bending force to rotate. The curved surface connecting structure (planar connecting structure) is transformed into a three-dimensional connecting structure (left in FIG. 21) by a biconducting curved surface (saddle-shaped curved surface: Gaussian curvature K <0). The Gaussian curvature K can be calculated as the product (K = κ1 · κ2) of the maximum value κ1 and the minimum value κ2 of the law curvature. Inside the first shape unit 30, a torsion-resistant member 34 as a diamond-shaped box member connected to both vertices facing the spindle S1 direction is formed. The torsion-resistant member 34 is a member whose rigidity against twisting rotating around the spindle S of the first shape unit 30 is higher than the rigidity against bending rotating around the auxiliary shaft S2, and around the spindle S1 of the first shape unit 30. Increases rigidity against twisting.

第2形状ユニット40(図2の右)は、主軸S1方向の両頂点(図2中上下方向の両頂点)が内側に凸の6角形形状をしており、第1形状ユニット30と同様に、主軸S1に平行な辺が梁状部材42として形成されており、この梁状部材42により隣接する第2形状ユニット40と連結されて曲面連結構造(平面連結構造)を形成する(図4参照)。第2形状ユニット40は、形状パラメータαが正の値であり、主軸S1方向の引っ張り変形に対して副軸S2方向にも伸びるポアソン比νが負の値の形状となる。したがって、第2形状ユニット40による曲面連結構造(平面連結構造、図4)に対して主軸S1周りに回転する曲げ力または副軸S2周りに回転する曲げ力を作用すると、第2形状ユニット40による曲面連結構造(平面連結構造)は楕円的曲面(ドーム状曲面:ガウス曲率K>0)による立体連結構造(図21の右)に変形する。第2形状ユニット40の内部には、第1形状ユニット30と同様に、第2形状ユニット40の主軸周りのねじりに対する剛性を高める主軸S1方向に向かい合う両頂点に連結された菱形形状の耐ねじり部材44が形成されている。 The second shape unit 40 (right in FIG. 2) has a hexagonal shape in which both vertices in the main axis S1 direction (both vertices in the vertical direction in FIG. 2) are convex inward, and is similar to the first shape unit 30. A side parallel to the main shaft S1 is formed as a beam-shaped member 42, and the beam-shaped member 42 is connected to an adjacent second shape unit 40 to form a curved surface connecting structure (planar connecting structure) (see FIG. 4). ). The shape parameter α of the second shape unit 40 has a positive value, and the Poisson's ratio ν extending in the sub-axis S2 direction with respect to the tensile deformation in the main axis S1 direction has a negative value. Therefore, when a bending force rotating around the main axis S1 or a bending force rotating around the sub-axis S2 is applied to the curved surface connecting structure (planar connecting structure, FIG. 4) by the second shape unit 40, the second shape unit 40 causes the bending force to rotate. The curved surface connection structure (planar connection structure) is transformed into a three-dimensional connection structure (right in FIG. 21) by an elliptical curved surface (dome-shaped curved surface: Gaussian curvature K> 0). Inside the second shape unit 40, similarly to the first shape unit 30, a diamond-shaped torsion-resistant member connected to both vertices facing the main shaft S1 direction to increase the rigidity of the second shape unit 40 against twisting around the main shaft. 44 is formed.

第3形状ユニット50(図2の中央)は、主軸S1方向の両頂点(図2中上下方向の両頂点)が外側にも内側に凸にならない180度の状態をしており、この両頂点を頂点とみなせば6角形形状(両頂点を頂点とみなさなければ4角形形状)をしている。第3形状ユニット50も主軸S1に平行な辺が梁状部材52として形成されており、この梁状部材52により隣接する第3形状ユニット50と連結されて曲面連結構造(平面連結構造)を形成する(図5参照)。第3形状ユニット50は、形状パラメータαが値0であり、主軸S1方向の引っ張り変形に対して副軸S2方向に伸びも縮みも生じないポアソン比νが値0の形状となる。したがって、第3形状ユニット50による曲面連結構造(平面連結構造、図5)に対して主軸S1周りに回転する曲げ力または副軸S2周りに回転する曲げ力を作用すると、第3形状ユニット50による曲面連結構造(平面連結構造)は放物面的曲面(樋状曲面:ガウス曲率K=0)による立体連結構造(図21の中央)に変形する。第3形状ユニット50の内部にも、第3形状ユニット50の主軸周りのねじりに対する剛性を高める主軸S1方向に向かい合う両頂点に連結された菱形形状の耐ねじり部材54が形成されている。 The third shape unit 50 (center of FIG. 2) is in a state of 180 degrees in which both vertices in the main axis S1 direction (both vertices in the vertical direction in FIG. 2) do not protrude outward or inward. If is regarded as a vertex, it has a hexagonal shape (if both vertices are not regarded as vertices, it has a quadrangular shape). The third shape unit 50 also has a side parallel to the spindle S1 formed as a beam-shaped member 52, and is connected to the adjacent third shape unit 50 by the beam-shaped member 52 to form a curved surface connecting structure (planar connecting structure). (See FIG. 5). The third shape unit 50 has a shape parameter α having a value of 0, and has a Poisson's ratio ν of a value of 0, which does not expand or contract in the sub-axis S2 direction with respect to tensile deformation in the main axis S1 direction. Therefore, when a bending force rotating around the main axis S1 or a bending force rotating around the sub-axis S2 is applied to the curved surface connecting structure (planar connecting structure, FIG. 5) by the third shape unit 50, the third shape unit 50 causes the bending force to rotate. The curved surface connection structure (planar connection structure) is transformed into a three-dimensional connection structure (center of FIG. 21) by a parabolic curved surface (gutter-shaped curved surface: Gaussian curvature K = 0). Inside the third shape unit 50, rhombic-shaped torsion-resistant members 54 connected to both vertices facing the main shaft S1 direction for increasing the rigidity of the third shape unit 50 against twisting around the main shaft are formed.

したがって、第1形状ユニット30,第2形状ユニット40,第3形状ユニット50は、形状パラメータαを変化させたときの3つの領域(区分)における単位ユニットとなる。図8は、形状パラメータαとポアソン比νとの関係の一例を示すグラフである。図示するように、形状パラメータαが値0のときにポアソン比νは値0となり、形状パラメータαが負の値のときにポアソン比νが正の値となり、形状パラメータαが正の値のときにポアソン比νが負の値となる。 Therefore, the first shape unit 30, the second shape unit 40, and the third shape unit 50 are unit units in three regions (divisions) when the shape parameter α is changed. FIG. 8 is a graph showing an example of the relationship between the shape parameter α and the Poisson's ratio ν. As shown in the figure, when the shape parameter α is a value 0, the Poisson's ratio ν is a value 0, when the shape parameter α is a negative value, the Poisson's ratio ν is a positive value, and when the shape parameter α is a positive value. Poisson's ratio ν becomes a negative value.

第1ないし第3形状ユニット30,40,50の梁状部材32,42,52は、図6に示すように、長さl、幅a、厚みbとなるように形成されている。長さlは面内の伸びに対して短いほど剛性が高くなるパラメータとして機能し、幅aはユニットの面内の曲げに対して大きいほど剛性が高くなるパラメータとして機能し、厚みbはユニットのねじりに対して大きいほど剛性が高くなるパラメータとして機能する。ユニットにおけるねじりに対する剛性が低い場合、曲面連結構造(平面連結構造)は目的形状に変形しない場合が生じる。例えば、第2形状ユニット40による曲面連結構造(平面連結構造)の場合、ユニットのねじりに対する剛性が十分な場合には、楕円的曲面(ドーム状曲面:ガウス曲率K>0)に変形するが、ユニットねじりに対する剛性が不十分な場合には、双曲的曲面(鞍状曲面:ガウス曲率K<0)に変形する場合も生じる。図9は、第2形状ユニット40における厚みbと第2形状ユニット40による曲面連結構造(平面連結構造)の変形における固有周波数との関係を示すグラフである。固有周波数は、低いほどその変形になり易いことを表わしている。図から、第2形状ユニット40による曲面連結構造(平面連結構造)では、第2形状ユニット40の梁状部材42の厚みbが薄いときには非目的変形(鞍形A,B)にも目的変形(ドーム形状)にも変形しやすいものとなるが、厚みbが厚くなると、非目的変形(鞍形A,B)に比して、目的変形(ドーム形状)の方が変形しやすいものとなることが解る。したがって、実施例の曲面連結構造20の目的形状の寸法、材質、必要強度などに応じて梁状部材32,42,52の長さl、幅a、厚みbを適宜定めればよい。実施例では、材料として樹脂を用いて3Dプリンタにより曲面連結構造20を構成した。 As shown in FIG. 6, the beam-shaped members 32, 42, 52 of the first to third shape units 30, 40, 50 are formed so as to have a length l, a width a, and a thickness b. The length l functions as a parameter that increases the rigidity as it is shorter with respect to the in-plane elongation, the width a functions as a parameter that increases the rigidity with respect to the in-plane bending of the unit, and the thickness b functions as a parameter that increases the rigidity with respect to the in-plane bending of the unit. It functions as a parameter that increases the rigidity as it is larger than the twist. If the rigidity of the unit against torsion is low, the curved surface connection structure (plane connection structure) may not be deformed to the target shape. For example, in the case of a curved surface connection structure (planar connection structure) by the second shape unit 40, if the unit has sufficient rigidity against torsion, it is deformed into an elliptical curved surface (dome-shaped curved surface: Gaussian curvature K> 0). If the rigidity against the unit torsion is insufficient, it may be deformed into a double curved surface (saddle-shaped curved surface: Gaussian curvature K <0). FIG. 9 is a graph showing the relationship between the thickness b of the second shape unit 40 and the natural frequency in the deformation of the curved surface connection structure (plane connection structure) by the second shape unit 40. The lower the natural frequency, the more likely it is to be deformed. From the figure, in the curved surface connection structure (planar connection structure) by the second shape unit 40, when the thickness b of the beam-shaped member 42 of the second shape unit 40 is thin, the purpose deformation (saddle shape A, B) is also the purpose deformation (saddle shape A, B). The dome shape) is also easily deformed, but when the thickness b is thickened, the target deformation (dome shape) is more easily deformed than the non-purpose deformation (saddle shapes A and B). I understand. Therefore, the length l, width a, and thickness b of the beam-shaped members 32, 42, and 52 may be appropriately determined according to the dimensions, material, required strength, and the like of the target shape of the curved surface connecting structure 20 of the embodiment. In the embodiment, the curved surface connecting structure 20 was constructed by a 3D printer using resin as a material.

実施例の曲面連結構造20は、扇形の内周側から外周側に向かって形状パラメータαを負側の値から正側の値に徐々に変化させた単位ユニットを連結させて構成されており、曲面連結構造20に予め定めた方向の力を作用させることにより、右曲したドーム形状の立体連結構造となる(図7左下参照)。したがって、曲面による種々の形状を目的形状とした場合、その曲面のガウス曲率Kに応じて形状パラメータαを設計して曲面連結構造(平面連結構造)を作成することにより、目的形状の立体連結構造を構成することができる。 The curved surface connecting structure 20 of the embodiment is configured by connecting unit units in which the shape parameter α is gradually changed from the negative side value to the positive side value from the inner peripheral side to the outer peripheral side of the sector. By applying a force in a predetermined direction to the curved surface connecting structure 20, a right-curved dome-shaped three-dimensional connecting structure is formed (see the lower left of FIG. 7). Therefore, when various shapes due to curved surfaces are set as the target shape, the three-dimensional connection structure of the target shape is created by designing the shape parameter α according to the Gaussian curvature K of the curved surface and creating the curved surface connection structure (plane connection structure). Can be configured.

次に、耐ねじり部材34,44,54を用いる理由について説明する。実施例の第1ないし第3形状ユニット30,40,50は、図17に示した既知の第1ないし第3形状ユニット930,940,950と同様に、目的形状を構成するために、主軸S1周りのねじりや副軸S2周りのねじりは許容するが、主軸S1に対して斜めの斜軸周りのねじりを許容しないユニットとして設計されるべきである。しかし、既知の第1ないし第3形状ユニット930,940,950では、斜軸周りのねじりにより、目的形状に安定しない場合が生じる。特に、第2形状ユニット940における斜軸周りのねじりによる影響が大きい。図10は、既知の第2形状ユニット940(RH構造:Re-entrant honeycomb構造)と実施例の第2形状ユニット40(RHB構造:Re-entrant honeycomb with box spring構造)における変形モードの解析結果の一例を示す説明図であり、図11は既知の第2形状ユニット940(RH構造)と実施例の第2形状ユニット40(RHB構造)の解析結果におけるガウス曲率K>0に対するガウス曲率K<0の固有周波数の比を示すグラフである。解析は、変形モードとしてガウス曲率K<0(双曲的曲面(鞍状曲面)、図21参照)となる変形に対する固有周波数と、変形モードとしてガウス曲率K>0(楕円的曲面(ドーム状曲面)、図21参照)となる変形に対する固有周波数を求めることにより、いずれの変形モードになり易いかを求めるものとした。上述したように、固有周波数は低いほどその変形モードになり易いことを表わしている。図示するように、既知の第2形状ユニット940(RH構造)では、ガウス曲率K>0(楕円的曲面(ドーム状曲面))の変形モードよりガウス曲率K<0(双曲的曲面(鞍状曲面))の変形モードの方が若干変形し易いものとなるが、実施例の第2形状ユニット40(RHB構造)では、ガウス曲率K<0(双曲的曲面(鞍状曲面))の変形モードに比してガウス曲率K>0(楕円的曲面(ドーム状曲面))の変形モードの方に変形しやすいものとなる。第2形状ユニット40,940は、その曲面連結構造(平面連結構造)に対する主軸S1の方向の曲げに対してガウス曲率K>0(楕円的曲面(ドーム状曲面))の変形モードとなるよう設計されるべきであるから、実施例の第2形状ユニット40(RHB構造)の方が既知の第2形状ユニット940(RH構造)に比して、高性能であることが解る。 Next, the reasons for using the torsion resistant members 34, 44, 54 will be described. The first to third shape units 30, 40, 50 of the embodiment are similar to the known first to third shape units 930, 940, 950 shown in FIG. 17, in order to form the target shape, the spindle S1 It should be designed as a unit that allows twisting around and twisting around the auxiliary shaft S2, but does not allow twisting around the oblique shaft that is diagonal to the spindle S1. However, in the known first to third shape units 930, 940, and 950, the target shape may not be stable due to the twist around the oblique axis. In particular, the influence of twisting around the oblique axis in the second shape unit 940 is large. FIG. 10 shows the analysis results of the deformation modes of the known second shape unit 940 (RH structure: Re-entrant honeycomb structure) and the second shape unit 40 (RHB structure: Re-entrant honeycomb with box spring structure) of the example. It is explanatory drawing which shows an example, and FIG. 11 is a Gaussian curvature K <0 with respect to the Gaussian curvature K> 0 in the analysis result of the known second shape unit 940 (RH structure) and the second shape unit 40 (RHB structure) of the embodiment. It is a graph which shows the ratio of the natural frequency of. The analysis shows the natural frequency for deformation with Gaussian curvature K <0 (hyperbolic curved surface (saddle-shaped curved surface), see FIG. 21) as the deformation mode, and Gaussian curvature K> 0 (elliptical curved surface (dome-shaped curved surface)) as the deformation mode. ), By finding the natural frequency for the deformation that becomes (see FIG. 21), it is determined which deformation mode is likely to occur. As described above, the lower the natural frequency, the easier it is to enter the deformation mode. As shown in the figure, in the known second shape unit 940 (RH structure), Gaussian curvature K <0 (duplex curved surface (saddle-shaped)) is selected from the deformation mode of Gaussian curvature K> 0 (elliptical curved surface (dome-shaped curved surface)). The deformation mode of (curved surface)) is slightly more easily deformed, but in the second shape unit 40 (RHB structure) of the embodiment, the Gaussian curvature K <0 (duplex curved surface (saddle-shaped curved surface)) is deformed. Compared to the mode, the Gaussian curvature K> 0 (elliptical curved surface (dome-shaped curved surface)) is more easily deformed in the deformation mode. The second shape units 40 and 940 are designed to have a deformation mode of Gaussian curvature K> 0 (elliptical curved surface (dome-shaped curved surface)) with respect to bending in the direction of the spindle S1 with respect to the curved surface connecting structure (planar connecting structure). It can be seen that the second shape unit 40 (RHB structure) of the embodiment has higher performance than the known second shape unit 940 (RH structure).

図12は、実施例の第1ないし第3形状ユニット30,40,50(RHB構造)と既知の第1ないし第3形状ユニット930,940,950(RH構造)を用いて図1に示す曲面連結構造(平面連結構造)を形成し、境界条件としての力を作用したときの立体連結構造を示す写真である。図示するように、既知のRH構造では右曲のドーム形状が若干いびつなものとなっているが、実施例のRHB構造では設計どおりの右曲のドーム形状となる。 FIG. 12 shows a curved surface shown in FIG. 1 using the first to third shape units 30, 40, 50 (RHB structure) of the embodiment and the known first to third shape units 930, 940, 950 (RH structure). It is a photograph which shows the three-dimensional connection structure when the connection structure (plane connection structure) is formed and the force as a boundary condition is applied. As shown in the figure, in the known RH structure, the dome shape of the right curve is slightly distorted, but in the RHB structure of the embodiment, the dome shape of the right curve is as designed.

図13は、実施例の第2形状ユニット40(RHB構造)と既知の第2形状ユニット940(RH構造)による曲面連結構造(平面連結構造)に対して主軸S1方向と主軸S1に対して45度の方向に圧縮力を作用させたときの立体連結構造の一例を示す説明図である。図示するように、いずれの圧縮力を作用させた場合でも、実施例のRHB構造の方が既知のRH構造に比して滑らかなドーム形状を形成しているのが解る。 FIG. 13 shows the main axis S1 direction and 45 with respect to the main axis S1 with respect to the curved surface connection structure (planar connection structure) by the second shape unit 40 (RHB structure) of the embodiment and the known second shape unit 940 (RH structure). It is explanatory drawing which shows an example of the three-dimensional connection structure when a compressive force is applied in the direction of degree. As shown in the figure, it can be seen that the RHB structure of the example forms a smooth dome shape as compared with the known RH structure regardless of which compressive force is applied.

以上説明した実施例の曲面連結構造20では、ポアソン比νが正、負、値0の3つに区分され、主軸S1周りのねじりに対する剛性が、副軸S2周りの回転する曲げに対する剛性より高い、耐ねじり部材34,44,54を形成した第1ないし第3形状ユニット30,40,50を用いて曲面連結構造(平面連結構造)を構成する。これにより、耐ねじり部材を有しない既知の第1ないし第3形状ユニット930,940,950を用いる曲面連結構造(平面連結構造)に比して、より設計どおりの形状の立体連結構造とすることができる。即ち、意図しない変形を抑制する単位ユニットによる曲面連結構造(平面連結構造)とすることができる。 In the curved surface connection structure 20 of the embodiment described above, the Poisson's ratio ν is divided into three, positive, negative, and value 0, and the rigidity against torsion around the main shaft S1 is higher than the rigidity against rotating bending around the sub-axis S2. , The first to third shape units 30, 40, 50 on which the torsion resistant members 34, 44, 54 are formed are used to form a curved surface connecting structure (planar connecting structure). As a result, the three-dimensional connection structure having a shape more as designed can be obtained as compared with the curved surface connection structure (planar connection structure) using the known first to third shape units 930, 940, 950 having no torsion resistant member. Can be done. That is, it is possible to form a curved surface connection structure (plane connection structure) by a unit unit that suppresses unintended deformation.

実施例の曲面連結構造20では、単位ユニットとして菱形形状の箱部材としての耐ねじり部材34,44,54を形成した第1ないし第3形状ユニット30,40,50を用いて曲面連結構造(平面連結構造)を構成するものとした。しかし、耐ねじり部材は、主軸S1周りのねじりに対する剛性が、副軸S2周りの回転する曲げに対する剛性より高いものであればよいから、菱形形状の箱部材に限定されるものではなく、図14に例示する変形例の第2形状ユニット40Bの耐ねじり部材44Bのように、副軸S2の方向を長手方向とする矩形の箱部材としてもよいし、矩形以外の形状の箱部材としてもよい。 In the curved surface connecting structure 20 of the embodiment, the curved surface connecting structure (plane surface) is used by using the first to third shape units 30, 40, 50 in which the torsion resistant members 34, 44, 54 as the diamond-shaped box member are formed as the unit unit. (Connected structure) was constructed. However, the torsion-resistant member is not limited to the diamond-shaped box member as long as the rigidity against twisting around the main shaft S1 is higher than the rigidity against rotating bending around the auxiliary shaft S2. Like the torsion-resistant member 44B of the second shape unit 40B of the modified example illustrated in the above, the box member may be a rectangular box member having the direction of the sub-axis S2 as the longitudinal direction, or may be a box member having a shape other than the rectangular shape.

実施例の曲面連結構造20では、単位ユニットとして6角形の第1ないし第3形状ユニット30,40,50を用いて曲面連結構造(平面連結構造)を構成するものとしたが、図15に例示するように、4角形の第1ないし第3形状ユニット130,140,150を用いて曲面連結構造(平面連結構造)を構成するものとしてもよい。また、図16に例示するように、8角形の第1ないし第3形状ユニット230,240,250を用いて曲面連結構造(平面連結構造)を構成するものとしてもよい。 In the curved surface connecting structure 20 of the embodiment, the curved surface connecting structure (planar connecting structure) is configured by using the hexagonal first to third shape units 30, 40, 50 as the unit unit, which is illustrated in FIG. As described above, the curved surface connection structure (plane connection structure) may be formed by using the first to third shape units 130, 140, 150 of the quadrangle. Further, as illustrated in FIG. 16, an octagonal first to third shape units 230, 240, 250 may be used to form a curved surface connection structure (plane connection structure).

実施例の曲面連結構造20のように第1ないし第3形状ユニット30,40,50を用いた曲面連結構造(平面連結構造)は、設計時に予め定めた力を作用させて立体連結構造とすることを前提に、建築などの構造物や装置などの部品などの形成に用いられる。 The curved surface connecting structure (planar connecting structure) using the first to third shape units 30, 40, 50 as in the curved surface connecting structure 20 of the embodiment is formed into a three-dimensional connecting structure by applying a force predetermined at the time of design. On the premise of this, it is used to form structures such as buildings and parts such as equipment.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to examples, the present invention is not limited to these examples, and various embodiments are used without departing from the gist of the present invention. Of course, it can be done.

本発明は、建築物や装置の部品などの製造産業などに利用可能である。 The present invention can be used in the manufacturing industry such as parts of buildings and devices.

20 曲面連結構造、30,130,230,930 第1形状ユニット、32,42,52,932,942,952 梁状部材、34,44,44B,54 耐ねじり部材、40,40B,140,240,940 第2形状ユニット、50,150,250,950 第3形状ユニット。 20 Curved surface connection structure, 30, 130, 230, 930 1st shape unit, 32, 42, 52, 923,942,952 Beam-shaped member, 34,44,44B,54 Torsion resistant member, 40,40B, 140,240 , 940 2nd shape unit, 50, 150, 250, 950 3rd shape unit.

Claims (5)

偶数nのn角形の単位ユニットが複数連結されて平面を含む曲面に沿って配置され、所定力を作用させたときに変形により異なる曲面による立体連結構造となる曲面連結構造であって、
前記単位ユニットは、
(1)正n角形としたときの対向する対角線の1つを主軸としたときに主軸方向に梁で隣接する単位ユニットと連結されており、
(2)前記主軸の方向に引っ張り変形させたときのポアソン比が正の第1形状ユニットとポアソン比が負の第2形状ユニットとポアソン比が値0の第3形状ユニットの3区分のユニットであり、
(3)前記主軸に平行な対向する対角線の両端の両頂点に連結され、前記主軸方向に連結するユニットどうしが前記主軸周りに互いに回転するねじりに対する剛性が、前記主軸に垂直な副軸周りに回転する曲げに対する剛性より高い、耐ねじり部材が形成されており、
前記曲面連結構造は、前記3区分のユニットのうち少なくとも1区分のユニットを用いて構成されている、
ことを特徴とする曲面連結構造。
It is a curved surface connection structure in which a plurality of n-sided polygonal unit units of even n are connected and arranged along a curved surface including a plane, and when a predetermined force is applied, a three-dimensional connection structure is formed by different curved surfaces due to deformation.
The unit unit is
(1) When one of the diagonal lines facing each other in a regular n-sided polygon is used as the main axis, it is connected to the unit units adjacent to each other by a beam in the main axis direction.
(2) A unit of three categories, a first shape unit having a positive Poisson's ratio when pulled and deformed in the direction of the spindle, a second shape unit having a negative Poisson's ratio, and a third shape unit having a Poisson's ratio of 0. Yes,
(3) Units connected to both apexes at both ends of opposite diagonal lines parallel to the main axis, and the units connected in the main axis direction rotate with each other around the main axis, have rigidity against a torsion around the sub-axis perpendicular to the main axis. A torsion-resistant member that is higher in rigidity against rotational bending is formed.
The curved surface connection structure is configured by using at least one of the three compartmentalized units.
A curved surface connection structure characterized by this.
請求項1記載の曲面連結構造であって、
前記耐ねじり部材は、前記両頂点を対角とする菱形の箱部材である、
曲面連結構造。
The curved surface connecting structure according to claim 1.
The torsion-resistant member is a diamond-shaped box member having both vertices diagonal to each other.
Curved surface connection structure.
請求項1記載の曲面連結構造であって、
前記耐ねじり部材は、前記副軸の方向を長手方向とする矩形の箱部材である、
曲面連結構造。
The curved surface connecting structure according to claim 1.
The torsion-resistant member is a rectangular box member whose longitudinal direction is the direction of the sub-axis.
Curved surface connection structure.
請求項1ないし3のうちのいずれか1つの請求項に記載の曲面連結構造であって、
前記単位ユニットは、6角形であり、
前記第1形状ユニットは、前記両頂点が外側に凸の形状であり、
前記第2形状ユニットは、前記両頂点が内側に凸の形状であり、
前記第3形状ユニットは、前記両頂点が外側にも内側にも凸にならない形状である、
曲面連結構造。
The curved surface connecting structure according to any one of claims 1 to 3.
The unit unit is a hexagon and
The first shape unit has a shape in which both vertices are convex outward.
The second shape unit has a shape in which both vertices are convex inward.
The third shape unit has a shape in which both vertices do not protrude outward or inward.
Curved surface connection structure.
請求項1ないし4のうちのいずれか1つの請求項に記載の曲面連結構造に前記所定力を作用させた状態とした立体連結構造。 A three-dimensional connection structure in which the predetermined force is applied to the curved surface connection structure according to any one of claims 1 to 4.
JP2017142663A 2017-07-24 2017-07-24 Curved connection structure and three-dimensional connection structure Active JP6817631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142663A JP6817631B2 (en) 2017-07-24 2017-07-24 Curved connection structure and three-dimensional connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142663A JP6817631B2 (en) 2017-07-24 2017-07-24 Curved connection structure and three-dimensional connection structure

Publications (2)

Publication Number Publication Date
JP2019023489A JP2019023489A (en) 2019-02-14
JP6817631B2 true JP6817631B2 (en) 2021-01-20

Family

ID=65368447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142663A Active JP6817631B2 (en) 2017-07-24 2017-07-24 Curved connection structure and three-dimensional connection structure

Country Status (1)

Country Link
JP (1) JP6817631B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649192B (en) * 2019-08-28 2021-11-05 南京航空航天大学 Hydrogen-oxygen fuel cell box based on zero Poisson ratio material
CN110649307B (en) * 2019-08-28 2022-08-05 南京航空航天大学 Hydrogen-oxygen fuel cell box based on mixed Poisson's ratio material
CN110645298B (en) * 2019-09-17 2020-07-03 吉林大学 Double-platform filling structure with double protection
CN110984416B (en) * 2019-12-18 2021-06-11 青岛理工大学 Negative Poisson ratio structure with three-dimensional characteristic and combination method thereof
CN113153073B (en) * 2021-04-19 2022-12-06 福建厚德节能科技发展有限公司 Evaporate and press waterproof windowsill of aerated concrete
CN113103638B (en) * 2021-04-22 2022-01-18 大连理工大学 Zero Poisson ratio honeycomb structure and interlocking assembly manufacturing method thereof
CN113332003A (en) * 2021-04-25 2021-09-03 西安交通大学 Anti-loosening bone fixation implant and design method thereof
CN113882210B (en) * 2021-08-19 2022-11-08 于洪岗 Asphalt pavement structure with three-dimensional space honeycomb structure with zero Poisson effect
CN113757290B (en) * 2021-09-07 2022-10-04 中国科学院空间应用工程与技术中心 Energy-absorbing superstructure monomer with negative Poisson's ratio and energy-absorbing superstructure
WO2023152866A1 (en) * 2022-02-10 2023-08-17 NatureArchitects株式会社 Scissor structure
CN114748214B (en) * 2022-03-14 2023-08-18 华中科技大学 Negative poisson ratio three-dimensional composite structural unit for bone implantation and bone fixation implant

Also Published As

Publication number Publication date
JP2019023489A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6817631B2 (en) Curved connection structure and three-dimensional connection structure
Morozov et al. Buckling analysis and design of anisogrid composite lattice conical shells
AU2008226028B2 (en) Mast for a wind turbine
US20130052396A1 (en) Thick curved honeycomb core with minimal forming
JP6184130B2 (en) Cylindrical structure for automobile frame structure and automobile frame structure
JP2010190373A (en) Wave gear device
JP2008242516A (en) Three-dimensional model construction method for woven fabric and three-dimensional model construction device for woven fabric
WO2021134936A1 (en) Method and apparatus for generating jacquard weave pattern of preform, electronic device, and storage medium
CN108284938A (en) The method of the method and design structure component of structure member, manufacture structure member
Kaveh et al. Charged system search and particle swarm optimization hybridized for optimal design of engineering structures
JP6736108B2 (en) Design method to optimize the shape of the space thin film structure jig that suppresses wrinkles
RU2520633C2 (en) Structured metal heatshield
JP5713423B2 (en) container
JP7000827B2 (en) Joined structure
JP2011133921A (en) Design support method for die surface shape
KR102575855B1 (en) Auxetic structure and design method thereof
WO2018216398A1 (en) Method and apparatus for analyzing fluid around tire
JP6693806B2 (en) Lattice structure and parts
JP2012529604A (en) Gear pair
JP6030847B2 (en) Manufacturing method of stainless deformed wire rod for concrete rebar
Alshabatat et al. Optimization of the natural frequencies of plates via dimpling and beading techniques
RU2422568C1 (en) Mesh shell
CN116113992A (en) Grid generation
Milton The set of forces that ideal trusses, or wire webs, under tension can support
JP5443948B2 (en) Method for calculating lithographic mask manufacturability by selecting target edge pairs

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201023

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6817631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250