JP6616474B1 - Method for melting inorganic industrial waste - Google Patents

Method for melting inorganic industrial waste Download PDF

Info

Publication number
JP6616474B1
JP6616474B1 JP2018193303A JP2018193303A JP6616474B1 JP 6616474 B1 JP6616474 B1 JP 6616474B1 JP 2018193303 A JP2018193303 A JP 2018193303A JP 2018193303 A JP2018193303 A JP 2018193303A JP 6616474 B1 JP6616474 B1 JP 6616474B1
Authority
JP
Japan
Prior art keywords
melting
furnace body
furnace
heating element
melting chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193303A
Other languages
Japanese (ja)
Other versions
JP2020059007A (en
Inventor
山田 勝彦
勝彦 山田
Original Assignee
山田 榮子
山田 榮子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山田 榮子, 山田 榮子 filed Critical 山田 榮子
Priority to JP2018193303A priority Critical patent/JP6616474B1/en
Application granted granted Critical
Publication of JP6616474B1 publication Critical patent/JP6616474B1/en
Publication of JP2020059007A publication Critical patent/JP2020059007A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

【課題】 無機質産業廃棄物の混合物の小規模高能率の溶融処理炉を提供する。【解決手段】 円筒密閉状の炉体と炉体中央の円筒状溶融室と溶融室内上部空間に配置された黒鉛製抵抗発熱体と溶融室上方に設けられた被処理材の出入孔と溶融室を非酸化性雰囲気とするガス導入孔と炉体を中心軸水平に上置して炉体を転動させる手段とから構成され、炉体を中心軸回りに揺動させつつ約2000℃の放射加熱により被処理材を高能率で溶融処理する。常時溶融相を残存させるので能率だけでなく塊状難溶物も遅滞するが確実に処理される。【選択図】 図1PROBLEM TO BE SOLVED: To provide a small-scale high-efficiency melting furnace for a mixture of inorganic industrial waste. SOLUTION: A closed cylindrical furnace body, a cylindrical melting chamber in the center of the furnace body, a graphite resistance heating element disposed in an upper space of the melting chamber, an access hole and a melting chamber of a processing material provided above the melting chamber And a means for rolling the furnace body by placing the furnace body horizontally on the central axis and radiating about 2000 ° C. while swinging the furnace body about the central axis A material to be treated is melted with high efficiency by heating. Since the molten phase is always left, not only the efficiency but also the lumpy hardly soluble matter is delayed but processed reliably. [Selection] Figure 1

Description

本発明は、無機質の産業廃棄物を溶融処理して無害化する装置に関している。   The present invention relates to an apparatus for melting and detoxifying inorganic industrial waste.

廃棄石綿・スラグ・金属ドロス・スラッジ・焼却灰・溶接廃材・耐火物屑・金属屑・乾燥汚泥・廃棄断熱材等々の粉状・粒状・塊状等の無機質産業廃棄物は各所で発生する。投棄埋め立て処理は問題であり、F,Cr等の地下水への溶出が規制強化されつつある。
廃棄石綿やスラグのように廃棄物が単一種で量がまとまる場合には専用設備により処理は比較的容易だが、中小工場のように種々の廃棄物が混在する場合や量が半端の場合には対処困難である。
Inorganic industrial waste such as waste asbestos, slag, metal dross, sludge, incineration ash, welding waste, refractory waste, metal waste, dried sludge, waste heat insulation, etc. is generated in various places. Dumping landfill treatment is a problem, and the elution of F, Cr, etc. into groundwater is being tightened.
When the amount of waste is a single species such as waste asbestos or slag, the processing is relatively easy with dedicated equipment, but when various types of waste are mixed, such as small and medium-sized plants, It is difficult to deal with.

溶融処理は無害化と場合により資材化への手堅い策である。溶融処理においても金属イオンの溶出が問題となることがあるとの指摘もあるが溶融組成を調整してガラス化(非晶質)まで持ち込めば解決される。問題は設備費や処理費に難点があることである。
本発明は混在する各種廃棄物を比較的小規模且つ無難な費用で処理可能な経済的な装置の提供を目的とする。
Melt processing is a solid measure for detoxification and, in some cases, materialization. Although it is pointed out that elution of metal ions may be a problem in the melting treatment, it can be solved by adjusting the melting composition and bringing it into vitrification (amorphous). The problem is that there are difficulties in equipment and processing costs.
An object of the present invention is to provide an economical apparatus capable of processing various kinds of wastes at a relatively small scale and at a low cost.

溶融処理に関する事例を検討する。
先行例1; 特許文献1には、大量の廃棄石綿を溶融処理するに際して熱回収に工夫を凝らした方法が開示されている。専用的であり経済的であるが熱源としてバーナーを使用しているので融点の高い難溶性廃棄物には温度不足であり、また大量の排ガス処理も不可欠であることから小規模処理には向かない。
Consider cases related to melt processing.
Prior Example 1; Patent Document 1 discloses a method in which heat recovery is devised when a large amount of waste asbestos is melted. Although it is dedicated and economical, it uses a burner as a heat source, so it is not suitable for small-scale treatment because it has insufficient temperature for insoluble waste with a high melting point and a large amount of exhaust gas treatment is indispensable. .

先行例2; 特許文献2には、同様に廃棄石綿の溶融処理に対してアーク炉状のプラズマ溶融炉が開示されている。それによるとプラズマトーチを備えた溶融室に連通管を介して出湯室を附設し、オーバーフローにより出湯する。難溶材の溶融も可能となる。
無機質産業廃棄物の溶融処理の基本的問題は、多くの場合高温を要すること、溶融の進行が遅いことである。当低能率には低伝熱性と低混合性が関わる。混合性は伝熱だけでなく被処理材間の化学反応の促進にも関わる。
低伝熱性は本来の低熱伝導率と形状がバラバラで嵩密度が小さいことに起因する。低混合性は溶融物の粘性が大きいこと、製鋼反応のように攪乱を伴う反応が全く随伴しないことに起因する。
当該文献で奇妙なことは図面にはプラズマトーチの対極の描写が無い。火点がトーチ尖端だけになって溶融が進行しにくい。他方出湯室には固着を防止する誘導加熱又は発熱体を附設すると記述され現場的問題に対処しているが溶融能率の低さは避けられない。
Prior Example 2; Patent Document 2 similarly discloses an arc furnace-shaped plasma melting furnace for melting treatment of waste asbestos. According to this, a hot water discharge chamber is attached to a melting chamber equipped with a plasma torch via a communication pipe, and hot water is discharged by overflow. It is possible to melt hardly soluble materials.
The basic problem of the melting treatment of inorganic industrial waste is that a high temperature is often required and the progress of melting is slow. This low efficiency involves low heat transfer and low mixing. Mixability is involved not only in heat transfer but also in promoting chemical reactions between materials to be treated.
The low heat conductivity is due to the inherent low thermal conductivity and shape being different and the bulk density being small. The low mixing property is due to the high viscosity of the melt and the absence of any reaction involving disturbance such as the steelmaking reaction.
What is strange about this document is that there is no depiction of the opposite electrode of the plasma torch in the drawing. The hot spot is only the tip of the torch and melting does not proceed easily. On the other hand, it is described that an induction heating or heating element for preventing sticking is provided in the hot water discharge chamber, and it addresses the on-site problem, but low melting efficiency is inevitable.

先行例3; 特許文献3には、同様に直流アーク炉によって溶融処理する方法が開示されている。それによると鉄くずを補助材にしてまず炉底電極周辺に溶鋼プールを形成し、被処理材と広い面積で接触させ溶融を促進する。溶鋼の沸騰攪拌が随伴するとさらに促進される。被処理材の溶融相が形成されると後続の被処理材の溶融は一層促進される。本方法により能率問題は解決される。
直流でなくても既存の交流アーク炉においても残湯方式(常時溶鋼の一部を残存させておく操業方法)を採用すれば被処理材を能率良く溶融することができる。集塵も含めて設備の新設は不要となる。大量処理に有利である。現に医療廃棄物は当方法で経済的に処理されている。
Prior Example 3; Patent Document 3 discloses a method of melting in a DC arc furnace in the same manner. According to this, a molten steel pool is first formed around the furnace bottom electrode using iron scrap as an auxiliary material and brought into contact with the material to be treated over a wide area to promote melting. It is further promoted when accompanied by boiling stirring of the molten steel. When the molten phase of the material to be processed is formed, melting of the subsequent material to be processed is further promoted. This method solves the efficiency problem.
Even if it is not direct current, even in an existing alternating current arc furnace, if the remaining hot water method (operation method in which a part of molten steel is always left) is employed, the material to be treated can be efficiently melted. It is not necessary to install new facilities including dust collection. It is advantageous for mass processing. In fact, medical waste is treated economically in this way.

先行例4; 特許文献4には、小規模の溶融処理装置が開示されている。それによると高周波加熱コイルの内側に導電性炉壁(黒鉛質)を構成し、高温壁内で廃棄物を溶融する。これはCuの高周波るつぼ溶解とほぼ同等である。溶融処理の低能率に対処するため誘導炉を直列2段に構成している。能率の倍増は期待できるが、攪拌が無いので本来の低能率性が改善されるわけではない。コスト面で電力源単位、黒鉛製耐火物の他、設備費用上の問題が残る。また廃棄物によっては黒鉛質の炉壁と化学反応する場合がある。その場合、炉壁の耐久に問題が生ずる。 Prior Example 4; Patent Document 4 discloses a small-scale melting apparatus. According to this, a conductive furnace wall (graphite) is formed inside the high-frequency heating coil, and the waste is melted in the hot wall. This is almost equivalent to the melting of Cu with a high frequency crucible. In order to cope with the low efficiency of the melting process, the induction furnace is configured in two stages in series. Although the efficiency can be expected to double, the original low efficiency is not improved because there is no stirring. In terms of cost, there are problems in terms of equipment cost as well as power source units and graphite refractories. Some wastes may chemically react with the graphite furnace wall. In that case, a problem arises in durability of the furnace wall.

参考例1; 特許文献5には産業廃棄物の溶融処理ではないが鋼の連続鋳造においてタンディシュ内の溶鋼を加熱する方法が開示されている。それによるとタンディシュを気密性に構成して非酸化性雰囲気とし、溶鋼上方に約2000℃の黒鉛製抵抗発熱体を配置し、スラグを介して溶鋼を加熱する。ガスバブリングを適用してスラグを攪拌し、伝熱を促進していて参考にしたい事例である。 Reference Example 1 Patent Document 5 discloses a method of heating molten steel in a tundish in continuous casting of steel, although it is not a melting treatment of industrial waste. According to this, the tundish is configured to be airtight to form a non-oxidizing atmosphere, a graphite resistance heating element of about 2000 ° C. is disposed above the molten steel, and the molten steel is heated through the slag. This is an example to be referred to by applying gas bubbling to agitate slag to promote heat transfer.

公開特許公報2008−275180Published Patent Publication 2008-275180 公開特許公報2008−249220Published Patent Publication 2008-249220 公開特許公報2006−112667Published Patent Publication 2006-112667 公開特許公報2006−112667Published Patent Publication 2006-112667 特許第5690015Patent No. 5690015

本願発明は雑多な無機質産業廃棄物を溶融処理して無害化を図ることを目的とする。
廃棄石綿の大量処理に熱源をバーナーとする例では高融点の廃棄物に対処しにくい。
プラズマを熱源とする例では温度は確保できても溶融物の低伝熱性と低流動性が溶融能率を阻害するうえ設備費の問題がある。
アーク炉を使用し溶鋼上で溶融する場合には温度だけでなく能率も解決されるが新設は設備費に、既存工場で処理するには費用や協力工場の確保に問題がある。
本願発明は種々の無機質廃棄物が混合していても、また量的にはまとまらなく比較的小規模であっても経済的に処理することが可能な装置、具体的には、1)1600℃を超える難溶材であっても、2)能率良く溶融し、3)設備費・操業費に受容できそうな装置を提供することを解決すべき課題とする。
An object of the present invention is to detoxify various inorganic industrial wastes by melting them.
In an example where a heat source is used as a heat source for mass processing of waste asbestos, it is difficult to deal with high melting point waste.
In an example using plasma as a heat source, even if the temperature can be secured, the low heat conductivity and low fluidity of the melt hinder the melting efficiency and there is a problem of equipment cost.
When melting on molten steel using an arc furnace, not only the temperature but also the efficiency can be solved.
The present invention is an apparatus that can be economically treated even if various inorganic wastes are mixed, or even if they are relatively small in quantity, and specifically 1) 1600 ° C. It is an issue to be solved to provide a device that can be easily melted even if it is less than 2), 2) efficiently melts, and 3) can be accepted for equipment and operating costs.

課題解決のため、1)熱源として高温の抵抗発熱体を採用し、2)加熱効率向上のため密閉性の炉体とし、3)低伝熱性の克服のため炉体転動の3手段を組み合わせた。
第1の発明は、無機質産業廃棄物の溶融処理炉であって、中心軸を水平にした円筒密閉状の炉体と、該炉体の中央部に耐火物壁によって形成された円筒状の溶融室と、該溶融室内の上部空間を水平貫通する黒鉛製抵抗発熱体と、該溶融室の中央上方に設けられ摺動弁を持つ被処理材の出入孔と、該溶融室を非酸化性雰囲気に制御する不活性ガスの導入孔と、該出入孔に適宜接続可能な被処理材ホッパーと、該炉体を上置して中心軸の回りに正転・反転して揺動させる揺動手段とから成ることを特徴とする産業廃棄物の溶融処理炉である。
To solve the problem, 1) a high-temperature resistance heating element is used as a heat source, 2) a sealed furnace body is used to improve heating efficiency, and 3) three means of furnace body rolling are combined to overcome low heat transfer. It was.
1st invention is a melting processing furnace of inorganic industrial waste, Comprising: Cylindrical sealed furnace body with a central axis horizontal, and cylindrical melting formed by a refractory wall at the center of the furnace body Chamber, a graphite resistance heating element horizontally penetrating the upper space in the melting chamber, an inlet / outlet hole of a material to be processed having a sliding valve provided at the upper center of the melting chamber, and a non-oxidizing atmosphere in the melting chamber An inert gas inlet hole to be controlled, a material hopper that can be appropriately connected to the inlet / outlet hole, and a swinging means for swinging the furnace body forward and reverse around the central axis An industrial waste melting furnace characterized by comprising:

第2の発明は、下記6条件、
1)処理能率P(t/h)に対応して電源出力が800PkW以上、1200PkW以下、
2)電源出力に対応してそれぞれ、溶融室の表面積が0.004 2 /kW以上、0.014 2 /kW以下であり、抵抗発熱体の表面積が0.001 2 /kW以上、0.002
2 /kW以下、
3)溶融室のアスペクト比(=円筒高さ/直径)が0.5以上、2.0以下、
4)実効炉容(m3)が溶融室容積の1/2、
5)揺動範囲が出入孔を頂点として前後80゜以内、
6)炉壁作業面の耐火物の材質がアルミナ又は黒鉛、
のどれか一つ以上を採用したことを特徴とする第1発明に記載した産業廃棄物の溶融処理炉である。
The second invention includes the following six conditions:
1) The power output corresponding to the processing efficiency P (t / h) is 800 PkW or more and 1200 PkW or less,
2) The surface area of the melting chamber is 0.004 m 2 / kW or more and 0.014 m 2 / kW or less, and the surface area of the resistance heating element is 0.001 m 2 / kW or more, corresponding to the power output. 0.002
m 2 / kW or less,
3) The aspect ratio of the melting chamber (= cylinder height / diameter) is 0.5 or more and 2.0 or less,
4) Effective furnace capacity (m 3 ) is 1/2 of melting chamber volume,
5) The swing range is within 80 ° front and back with the entrance / exit hole as the apex,
6) The material of the refractory on the furnace wall work surface is alumina or graphite,
The industrial waste melting furnace described in the first invention, characterized in that any one or more of the above are employed.

ここで述語の定義として、
『適宜接続可能な』とは、通常ホッパーは炉体と分離して固定され、被処理材装入時には出入孔を頂部にした位置で炉体を固定し、摺動弁を開いた時点でホッパーの出口が該出入孔に接続することができると言う意味である。
『密閉状炉体』とは、溶融室が耐火物により閉じられ、且つ雰囲気制御に必要な機密性を持つことを意味する。
『実効炉容』とは、溶融相の安定収容容積である。
Here, as a predicate definition,
“Appropriately connectable” means that the hopper is usually fixed separately from the furnace body, and when loading the material to be processed, the furnace body is fixed at the position where the entrance / exit hole is at the top and the sliding valve is opened. Means that the outlet can be connected to the access hole.
The “sealed furnace body” means that the melting chamber is closed with a refractory and has confidentiality necessary for controlling the atmosphere.
“Effective furnace capacity” is the stable capacity of the molten phase.

本発明の産業廃棄物の溶湯処理炉は熱源を高温(1800〜2000℃)の抵抗発熱体としており、且つ溶融室を密閉状・気密性としているので熱損が少なく、融点の高い難溶物をも溶融処理することができる。   The industrial waste melt treatment furnace of the present invention uses a high-temperature (1800 to 2000 ° C.) resistance heating element as the heat source, and the melting chamber is hermetically sealed and hermetic, so that there is little heat loss and a high melting point hardly soluble material Can also be melt processed.

被処理材は溶融室に充填されると発熱体を取り囲み、通電発熱により効率的に溶融が始まる。一部が溶融すると揺動に伴う流動により周辺の未溶融部の溶融を促進し、処理能率が強化される。   When the material to be treated is filled in the melting chamber, it surrounds the heating element, and melting starts efficiently by energization heat generation. When a part is melted, the flow accompanying the oscillation promotes the melting of the surrounding unmelted part, and the processing efficiency is enhanced.

炉体及び電気設備も簡素低廉であり、消耗品の黒鉛製発熱体は必要最小の寸法であり、且つ雰囲気制御によって消耗が抑制され、発煙が生ずる被処理材に対しても排気部が1点に集中して処理が容易であり、消費エネルギーも気密性故に損失が少なく設備費・処理費とも大きな負担が無い。   The furnace body and electrical equipment are simple and inexpensive, and the consumable graphite heating element has the minimum required dimensions, and the exhaust control is suppressed by the atmosphere control, and one exhaust part is provided for the material to be processed that generates smoke. It is easy to process by concentrating on energy, and the energy consumption is also airtight, so there is little loss and there is no great burden on equipment and processing costs.

本発明の溶融処理炉の中央垂直縦断面を示す。1 shows a central vertical longitudinal section of a melt processing furnace of the present invention. 本発明の溶融処理炉の中央垂直横断面を示す。1 shows a central vertical cross section of a melt processing furnace of the present invention. 本発明の溶融処理炉の炉内状況と炉体の揺動を示す。The inside situation of the melting treatment furnace of the present invention and the swing of the furnace body are shown. 発熱体の放射による炉壁の昇温の状態を示す。The temperature rise of the furnace wall due to the radiation of the heating element is shown. 発熱体の表面温度と放射エネルギー密度の関係を示す。The relationship between the surface temperature of a heating element and radiant energy density is shown.

図1、図2に従って本発明の溶融処理炉の構造を説明する。
炉体1は中心軸cc’を水平にした円筒密閉状の形状であって、全面同一厚さの耐火物壁2により内側中央部に円筒状溶融室3が形成される。該溶融室3の上部空間には板状の黒鉛製抵抗発熱体4が水平貫通して炉壁に固定される。該発熱体4は片端に設けられた正負の電極5を介して電源6から通電され、ジュール熱加熱の熱源となる。
炉体1の中央頂部には被処理材である無機質の産業廃棄物を装入し、且つ溶融後排出にも共用される出入孔7が設けらる。該出入孔7の外端には摺動弁8があり出入時以外は閉鎖されている。
該炉体1には溶融室3内を非酸化性雰囲気とするための不活性ガス導入孔9、対面にはガス排出孔10がそれぞれ設けられる。非酸化性雰囲気は黒鉛製発熱体の酸化消耗を防止する。ガス排出孔10は、場合により不都合なガスが発生する場合に備えて分散して漏出するのを防ぎ1カ所から確実に吸引処理する。
The structure of the melting furnace of the present invention will be described with reference to FIGS.
The furnace body 1 has a cylindrical sealed shape with the central axis cc ′ being horizontal, and a cylindrical melting chamber 3 is formed at the center of the inside by a refractory wall 2 having the same thickness on the entire surface. In the upper space of the melting chamber 3, a plate-like graphite resistance heating element 4 penetrates horizontally and is fixed to the furnace wall. The heating element 4 is energized from a power source 6 through positive and negative electrodes 5 provided at one end, and becomes a heat source for Joule heating.
Was charged with the central top portion of the furnace body 1 industrial waste inorganic to be processed material, inflow and outflow hole 7 is provided, et al is Ru to and shared even after melting discharge. A slide valve 8 is provided at the outer end of the entrance / exit hole 7 and is closed except during entry / exit.
The furnace body 1 is provided with an inert gas introduction hole 9 for making the inside of the melting chamber 3 into a non-oxidizing atmosphere, and a gas discharge hole 10 is provided on the opposite side. The non-oxidizing atmosphere prevents the oxidation heating of the graphite heating element. The gas discharge hole 10 prevents the gas from being dispersed and leaked in case an inconvenient gas is generated in some cases, and reliably performs suction processing from one place.

炉体1は同軸の2個のローラーを平行2本に配置した転動ローラー11から成る揺動機構に上置される。該ローラー11が同一方向に回転すると炉体1が中心軸の回りに転動するが所定角度内で正転・逆転することにより炉体1を揺動することができる。
出入孔7の上部には炉体1と分離して被処理材を貯蔵するホッパー12が設けられる。被処理材を装入する場合には出入孔7を頂点(0時の位置)に固定し、摺動弁8を開き、ホッパー12の下端のフード部(図示せず)を摺動弁7に密接させて気密性を維持しつつ該ホッパーの排出弁(図示せず)を開として落下装入する。
The furnace body 1 is placed on a rocking mechanism composed of rolling rollers 11 in which two coaxial rollers are arranged in parallel. When the roller 11 rotates in the same direction, the furnace body 1 rolls around the central axis, but the furnace body 1 can be swung by rotating forward and reverse within a predetermined angle.
A hopper 12 that separates from the furnace body 1 and stores a material to be processed is provided above the access hole 7. When the material to be treated is charged, the inlet / outlet hole 7 is fixed at the apex (0 o'clock position), the sliding valve 8 is opened, and the hood portion (not shown) at the lower end of the hopper 12 is attached to the sliding valve 7. The hopper discharge valve (not shown) is opened while dropping and charging is performed while maintaining tightness and tightness.

図3は処理中の揺動と炉内状況を示す。作業はまず炉壁を約1時間かけて約1500℃近辺まで予熱した後被処理材を初回装入する。被処理材は粉状、砂状、土状、塊状、金属屑等の混入物であり、被処理材31(図3中の粗点面)は落下して出入孔下方に充填され、発熱体30は埋没状態になる。通電と併行して炉体を左右に揺動させる。発熱体30に接触している部位では急速に溶融し流下する。溶融が進み底部に溶融相32(図中円弧型の細点面)が形成され、揺動により溶融相が流動し溶融を促進させる。揺動範囲は頂点Oを基準にして、左L点右R点まで80゜以内(時計で9:30〜2:30)である。該制限は溶融相32が出入孔に流入・固着するのを防止するためである。
発熱体を炉壁に固定する理由は、未溶融の被処理材と発熱体とが一体となって揺動し、発熱体に曲げモーメントが作用しない、折損させないためである。
FIG. 3 shows the oscillation during processing and the situation inside the furnace. First, the furnace wall is preheated to about 1500 ° C. over about 1 hour, and then the material to be treated is initially charged. The material to be treated is a contaminant such as powder, sand, earth, lump, metal scrap, etc., and the material to be treated 31 (rough spot surface in FIG. 3) falls and is filled below the entrance / exit hole, 30 becomes buried. Along with energization, the furnace body is swung left and right. The portion that is in contact with the heating element 30 melts rapidly and flows down. As the melting proceeds, a melt phase 32 (arc-shaped fine dot surface in the figure) is formed at the bottom, and the melt phase flows by the rocking and promotes melting. The swing range is within 80 ° from the left L point to the right R point with respect to the vertex O (9:30 to 2:30 in the clock). This restriction is for preventing the molten phase 32 from flowing into and adhering to the access hole.
The reason for fixing the heating element to the furnace wall is that the unmelted material to be treated and the heating element swing together, and the bending moment does not act on the heating element, so that it does not break.

充填された非処理材は空隙が多いので溶融しても溶融室下半分には満たない。適宜追加装入する。溶融相が中心軸近辺まで成長すると、これが実効炉容であるが、炉体を8時の位置T点に傾動して溶融相を出湯する。その際全量出湯せず約1/3量を残す。当残湯は以後装入される被処理材の溶融を促進させる機能を持つ。塊状難溶物は容易には溶融しない。先行する低融点の被処理材と化学反応しつつ融点低下する。出湯時に未溶融であってもかまわない。遅れて溶融する。操業の終了時には炉体1を6時の位置(B点)に傾動し、全量排出する。   Since the filled non-treated material has many voids, it does not reach the lower half of the melting chamber even if it is melted. Add additional charge as appropriate. When the molten phase grows to the vicinity of the central axis, this is the effective furnace capacity, but the furnace body is tilted to the point T at 8 o'clock to discharge the molten phase. At that time, the whole amount is not discharged and about 1/3 is left. The remaining hot water has a function of accelerating the melting of the material to be treated. Lumped insoluble materials do not melt easily. The melting point decreases while chemically reacting with the preceding low melting point material to be treated. It may be unmelted at the time of hot water. Melt late. At the end of the operation, the furnace body 1 is tilted to the 6 o'clock position (point B) and discharged in its entirety.

揺動の意義について説明する。種々の回転攪拌方法において垂直軸回転では渦が形成され混合性が大きいように見えるが水模型でインクを滴下すると供回りのため意外に混合しないことが解る。本発明の水平軸回転では溶融相はまず壁面に沿ってかき上げられ表面を流れ落ちる。その際粘性が効果的に作用し表面では落下、内部ではせん断ずれが生じる。反転は別の混合を誘発する。炉底には溶融金属が堆積してくるがスラグとの密度差に起因して炉底部の攪拌を補助する。周速と停止時間の適正化により混合性を大きくすることができる。   The significance of rocking will be described. It can be seen that in various rotating stirring methods, vortexes are formed by vertical axis rotation and mixing is large, but when ink is dropped with a water model, it does not mix unexpectedly due to the rotation. In the horizontal axis rotation of the present invention, the molten phase is first scooped up along the wall surface and flows down the surface. At that time, the viscosity acts effectively, dropping on the surface and shearing deviation inside. Inversion induces another mix. Molten metal accumulates on the bottom of the furnace, but assists stirring of the bottom of the furnace due to the difference in density from the slag. Mixability can be increased by optimizing the peripheral speed and stop time.

電源出力について説明する。想定した処理総量(t/月)や処理能率(t/h)に従って必要出力が概算される。金属溶解炉ではどの機種についても完成度が高く、処理能率(t/h)・出力(kW)・炉容(m3)・処理時間(h/回)等間の関係が定量化されている。雑多な産業廃棄物相手では知見が不十分で計算ずく設計は困難であり、新たな解析と組立方法が必要となる。
熱源をジュール熱とし、気密性・断熱性の良い炉体ではエネルギー効率e(=理論必要電力量/消費電力量)は65〜85%が得られる。間欠操業を想定すると当該効率eに効率約80%を乗じなければならない。50〜70%と見なすのが妥当であろう。
被処理材の溶融処理温度は確定できないが1550℃と想定して、該温度のスラグ状溶融物の含熱量は約450(kcal/kg)である。効率60%として必要熱量は750,000(kcal/t)、必要電力は1(t/h)当たり870(kW/(t/h))と概算される。当値を基に800から1200kWが実用範囲と想定される。
The power output will be described. The required output is estimated according to the assumed total processing amount (t / month) and processing efficiency (t / h). In all types of metal melting furnaces, the completeness is high, and the relationship among the processing efficiency (t / h), output (kW), furnace capacity (m3), processing time (h / time), etc. is quantified. The miscellaneous industrial waste partners have insufficient knowledge and are difficult to calculate and require new analysis and assembly methods.
In a furnace body with Joule heat as the heat source and good airtightness and heat insulation, an energy efficiency e (= theoretical power consumption / power consumption) is 65 to 85%. Assuming intermittent operation, the efficiency e must be multiplied by about 80%. It would be reasonable to consider 50-70%.
Although the melting temperature of the material to be treated cannot be determined, assuming that it is 1550 ° C., the heat content of the slag-like melt at that temperature is about 450 (kcal / kg). Assuming an efficiency of 60%, the required heat amount is estimated to be 750,000 (kcal / t), and the required power is estimated to be 870 (kW / (t / h)) per 1 (t / h). Based on this value, 800 to 1200 kW is assumed to be a practical range.

既述のように無機質産業廃棄物は伝熱性が小さく、抵抗発熱体の放射加熱では電源出力をむやみに上げても溶融能率が追随するわけではない。炉壁や被処理材の表面のみが過剰加熱されるだけである。律速過程は攪拌、実際には揺動による流動にある。従って流動があると言う前提に立てば前記必要電力は妥当な値とされる。   As described above, inorganic industrial waste has low heat conductivity, and the radiation efficiency of the resistance heating element does not follow the melting efficiency even if the power output is increased unnecessarily. Only the furnace wall and the surface of the material to be treated are overheated. The rate-controlling process is a flow by stirring, actually rocking. Therefore, if the assumption is that there is a flow, the required power is an appropriate value.

必要電力が判明すると炉壁と発熱体の表面温度が問題となる。炉壁が受ける表面電力密度(kW/m2、熱流束と同一)が大きいほど被処理材の溶融を促進するが他方で炉壁温度が過剰となって溶融物との化学反応も加わり耐久性が急速に低下する。炉壁温度は高耐火性耐火物でも1700℃以下に維持しなければならない。そのためには炉室表面積を適切に設定する必要が生ずる。   When the required power is known, the surface temperature of the furnace wall and the heating element becomes a problem. The higher the surface power density (kW / m 2, the same as the heat flux) received by the furnace wall, the more the melting of the material to be processed is promoted. On the other hand, the furnace wall temperature becomes excessive and the chemical reaction with the melt is added, resulting in durability. Declines rapidly. The furnace wall temperature must be maintained at 1700 ° C. or lower even for a highly refractory refractory. For this purpose, it is necessary to set the furnace chamber surface area appropriately.

図4は放射を受けた炉壁のエネルギー密度と炉壁の昇温の関係を示す。耐火物の物性値が大きく影響するがアルミナの場合、図からエネルギー密度70kW/m2において、表面温度が1500℃に達するのに80分を要する。当値では耐火物は十分耐える。他方被処理材の溶融は生ずるが能率は期待できない。従って当値を必要電力密度の下限とし、上限は当値の3倍の210kW/m2と設定するのが無難とされる。
設定された電力に対応して炉室表面積の適正範囲は逆数をとって0.005m2/kW以上、0.014m2/kW以下である。
図4の当非定常熱伝導の問題を明らかにするに当たって、炉壁を熱流方向に細分化し、差分方程式を適用して解析した。当計算方法は種々の実態と比較して十分な近似性が得られている。
FIG. 4 shows the relationship between the energy density of the furnace wall that has received radiation and the temperature rise of the furnace wall. Although the physical property value of the refractory greatly affects, in the case of alumina, it takes 80 minutes for the surface temperature to reach 1500 ° C. at an energy density of 70 kW / m 2. At this value, refractories can withstand. On the other hand, the material to be treated is melted but efficiency cannot be expected. Therefore, it is safe to set this value as the lower limit of the required power density and set the upper limit to 210 kW / m2, which is three times the value.
Corresponding to the set electric power, the appropriate range of the furnace chamber surface area is 0.005 m 2 / kW or more and 0.014 m 2 / kW or less as a reciprocal.
In clarifying the problem of the unsteady heat conduction in FIG. 4, the furnace wall was subdivided in the heat flow direction and analyzed by applying a differential equation. This calculation method is sufficiently close in comparison with various actual situations.

発熱体の温度は投入電力と放射エネルギーの均衡によって定まる。放射エネルギーは絶対温度と放射率によって定まるが炉内では対象物からの反放射があって差し引き分が実効放射エネルギーとなる。実効分が被処理材分と炉壁面に分配される。炉壁分は揺動により被処理材と耐火物への熱伝導に分配される。投入電力が一定であると炉内へ放出されるエネルギーは同一であるが発熱体の表面積が小さいと発熱体の温度が例えば2200℃以上に上昇する。この場合炉壁の発熱体に近い部分が過熱され易く耐久に不都合である。他方発熱体の表面積が過大であると過熱を防ぐことはできるが発熱体コストに不利となる。適正な面積が存在する。   The temperature of the heating element is determined by the balance between input power and radiant energy. Radiant energy is determined by absolute temperature and emissivity, but there is anti-radiation from the object in the furnace, and the difference is the effective radiant energy. The effective amount is distributed to the material to be processed and the furnace wall. The furnace wall portion is distributed to heat treatment to the workpiece and the refractory by swinging. If the input power is constant, the energy released into the furnace is the same, but if the surface area of the heating element is small, the temperature of the heating element rises to, for example, 2200 ° C. or higher. In this case, the portion of the furnace wall close to the heating element is easily overheated, which is inconvenient for durability. On the other hand, if the surface area of the heating element is excessive, overheating can be prevented, but the heating element cost is disadvantageous. There is an appropriate area.

図5はある炉温における発熱体の温度と発熱体の発する熱流束の関係を示す。図から炉温及び被処理材温度が1500℃において、発熱体温度を1800℃から2000℃の範囲に制御しようとするなら、発熱体の熱流束は500kW/m2 以上1000kW/m2 以下にしなければならないことが解る。発熱体表面積は逆数をとって、0.001
m2/kW以上、0.002m2/kW以下としなければならない。
上記関係式は伝熱理論に基づい解析した結果であり、放射率は発熱体は0.95,炉内は0.7とした。
FIG. 5 shows the relationship between the temperature of the heating element at a certain furnace temperature and the heat flux generated by the heating element. From the figure, if the furnace temperature and the temperature of the material to be treated are 1500 ° C. and the heating element temperature is to be controlled within the range of 1800 ° C. to 2000 ° C., the heat flux of the heating element must be 500 kW / m 2 or more and 1000 kW / m 2 or less. I understand that. The heating element surface area is the inverse of 0.001
It must be m2 / kW or more and 0.002 m2 / kW or less.
The above relational expression is the result of analysis based on the heat transfer theory, and the emissivity is 0.95 for the heating element and 0.7 for the furnace.

溶融室の形状について説明する。比較的小規模であること、雰囲気制御のため気密性構造であることから装入物を外部からつつき回すことができない。装入物は落下状態のまま加熱される。
被処理材は溶融室全域に充満されることが望ましい。そのためには溶融室の円筒のアスペクト比(=円筒高さ/直径)は1前後が良い。2以上では長胴になり両側部近辺には被処理材が回りにくい。最大出力で加熱を開始すると当該部の発熱体と炉壁が加熱過剰になる。0.5以下では短胴になって充満性には都合良いが、発熱体の必要表面積に対して長さが不足する。なぜなら発熱体の両端部には断面積を大きくした発熱抑制部が設けられるからである。
The shape of the melting chamber will be described. Due to the relatively small scale and the airtight structure for controlling the atmosphere, the charge cannot be squeezed from the outside. The charge is heated while falling.
It is desirable that the material to be treated is filled in the entire melting chamber. For this purpose, the aspect ratio (= cylinder height / diameter) of the cylinder of the melting chamber is preferably around 1. If it is 2 or more, it becomes a long torso and it is difficult for the material to be treated to turn around both sides. When heating is started at the maximum output, the heating element and the furnace wall in that part become overheated. If it is 0.5 or less, it becomes a short body and is convenient for fullness, but the length is insufficient with respect to the required surface area of the heating element. This is because a heat generation suppressing portion having a large cross-sectional area is provided at both ends of the heating element.

溶融室の実効容量は円筒の下半分とする。溶融液面が中心軸を超えると、
1)発熱体が浸漬して浸食されたりスラグに導電性がある場合回路が不安定になり、
2)揺動に際してスラグの一部が出入孔に流入し、固着して出湯を阻害する。
実効容量に達した時点で部分出湯するのが望ましい。
The effective capacity of the melting chamber is the lower half of the cylinder. When the melt surface exceeds the central axis,
1) If the heating element is immersed and eroded or the slag is conductive, the circuit will become unstable.
2) When swinging, a part of the slag flows into the entrance / exit hole and sticks to obstruct the hot water.
It is desirable that partial hot water is discharged when the effective capacity is reached.

種々の廃棄物が混入する廃棄物の溶融処理には使用する耐火物が問題となる。
フッ化物等ハロゲンが混入していると流動性と反応性が大きくなり通常(酸性・塩基性)の耐火物は溶蝕され易い。
酸化鉄の含有が多いと黒鉛質耐火物は耐熱に有利でも使用することはできない。他に溶融すると導電性が生ずるので発熱体に接すると回路の部分短絡が生ずる。
本発明では非酸化性雰囲気であるから炭化珪素質耐火物は劣化し易い。
廃棄物中にCと反応し易い物質が無いなら黒鉛質耐火物がよい。そうでない場合は純度の高いアルミナが無難である。酸性にも塩基性にも耐える。
対象の被処理材に応じて耐火物の選定だけでなく、耐久に有効な被処理材への添加物も考慮すべきである。
The refractory used is a problem in the melting treatment of the waste mixed with various wastes.
When halogen such as fluoride is mixed, fluidity and reactivity increase, and normal (acidic / basic) refractories are easily corroded.
If the content of iron oxide is large, the graphite refractory is advantageous for heat resistance and cannot be used. If it melts elsewhere, electrical conductivity is generated, so that when it contacts the heating element, a partial short circuit of the circuit occurs.
In the present invention, since it is a non-oxidizing atmosphere, the silicon carbide refractory is easily deteriorated.
Graphite refractories are good if there are no substances in the waste that are likely to react with C. Otherwise, high purity alumina is safe. Withstands acidity and basicity.
In addition to selecting a refractory according to the target material to be treated, additives to the material to be treated that are effective for durability should be considered.

溶融処理を適用しても溶出試験においてイオンの溶出があり得る。スラグの溶出試験において塩基度の影響が解明されている。問題の場合は珪砂やガラス屑を添加して塩基度を1前後以下に誘導する。溶融物はガラス質(非晶質)になって溶出が抑制される。   Even if the melt treatment is applied, there may be ion elution in the dissolution test. The effect of basicity has been elucidated in the slag dissolution test. In case of a problem, silica sand or glass waste is added to induce basicity to about 1 or less. The melt becomes glassy (amorphous) and elution is suppressed.

本発明の新規性、進歩性についてまとめる。炉体揺動はロ−タリーキルンやローリングキルンに見られるように公知公用の粒体の加熱を主とする反応促進手段であり対象は固体である。溶鋼を装入して精錬に適用された例もあるが固体の、特に金属混在の無機質産業廃棄物のような難溶融物の『溶融』に適用した事例は見あたらない。
半溶融状態や固液混合状態の揺動は従来と異なり、金属の分離だけでなく伝熱促進と化学反応促進による均質化の2機能を持つ。
黒鉛製高温抵抗発熱体も公知である。従来の諸方法では被加熱材と離反して放射過熱するが本発明では被処理材中に埋没状態から加熱し伝熱性が大きい。
従来の揺動炉体においては被処理材の出入孔は円筒両端部である。本発明では胴の臍部1点に絞り密閉性の強化を図っている。密閉式の炉(例;箱形電気加熱炉、真空溶解炉)では作業は回分式となって能率やエネルギー効率に不利となる。本発明では装入と排出は間欠回分式となるが密閉式においても溶融プロセス自体は残湯方式により半連続式になっていて上記問題が改善される。
以上新規の構造を持つ溶融処理炉に対して、伝熱の理論と実際、溶解・溶融の知見を駆使して経済的な設計指針を明らかにした。
The novelty and inventive step of the present invention will be summarized. As seen in a rotary kiln and a rolling kiln, the furnace body swing is a reaction promoting means mainly for heating a publicly known granule, and the object is a solid. Although there are cases where molten steel is charged and applied to refining, there are no examples of applying it to “melting” of solid melts such as inorganic industrial waste mixed with metals.
Unlike conventional methods, the semi-molten state and the solid-liquid mixed state have two functions: not only metal separation but also homogenization by promoting heat transfer and chemical reaction.
Graphite high temperature resistance heating elements are also known. In the conventional methods, the material is separated from the material to be heated and is radiantly heated.
In a conventional oscillating furnace body, the material entry / exit holes are at both ends of the cylinder. In the present invention, the tightness of the squeezing is enhanced at one point of the umbilical portion of the trunk. In closed type furnaces (eg, box-type electric heating furnaces, vacuum melting furnaces), work becomes batch-type, which is disadvantageous for efficiency and energy efficiency. In the present invention, charging and discharging are intermittent batch systems, but even in the closed system, the melting process itself is a semi-continuous system by the remaining hot water system, which improves the above problem.
We have clarified economic design guidelines for melting furnaces with a new structure by making full use of heat transfer theory and practice, and knowledge of melting and melting.

処理能率Pが0.1t/hの比較的小型の処理炉を設計する場合の要点を整理する。
処理能率; 100kg/h
電源出力; 100kW
溶融室表面積; 1.0m2
溶融室寸法; 450mmΦ×500mmL
アスペクト比; 1.1
炉体寸法; 1000mmΦ×1100mmL
発熱体表面積; 0.1m2
発熱体寸法; 100mmW×500mmL
揺動角; ±75゜
The main points in designing a relatively small processing furnace having a processing efficiency P of 0.1 t / h will be summarized.
Processing efficiency: 100 kg / h
Power output: 100kW
Melting chamber surface area; 1.0m2
Melting chamber dimensions: 450mmΦ × 500mmL
Aspect ratio; 1.1
Furnace size: 1000mmΦ × 1100mmL
Heating element surface area; 0.1 m2
Heating element dimensions: 100mmW × 500mmL
Oscillation angle: ± 75 °

本発明は種々の無機質産業廃棄物の溶融処理・ガラス化による無害化に有効である。   The present invention is effective for detoxification of various inorganic industrial wastes by melting treatment and vitrification.

1;炉体 2;耐火物壁 3;溶融室 4;抵抗発熱体 5;電極 6;電源 7;出入孔 8;摺動弁 9;不活性ガス導入孔 10;ガス排出孔 11;転動ローラー 12;ホッパー 30;抵抗発熱体 31;被処理材 32;溶融相 DESCRIPTION OF SYMBOLS 1; Furnace body 2; Refractory wall 3; Melting chamber 4; Resistance heating element 5; Electrode 6; Power supply 7; Entrance / exit hole 8; Slide valve 9; Inert gas introduction hole 10; 12; Hopper 30; Resistance heating element 31; Material to be treated 32; Melt phase

Claims (1)

高融点の無機質を含み、粉状・砂状・塊状の無機質産業廃棄物の溶融処理方法であって、中心軸を水平にした円筒密閉状の炉体と、該炉体の中央部に耐火物壁によって形成された円筒状の溶融室と、該溶融室内の上部空間を水平貫通する黒鉛製抵抗発熱体と、該溶融室の中央上方に設けられ摺動弁を持つ被処理材の出入孔と、該溶融室を非酸化性雰囲気に制御する不活性ガスの導入孔と、該炉体を上置して中心軸の回りに揺動させる手段とから成る溶融炉において、被処理材を前記溶融室に装入し、前記黒鉛製発熱体を埋没させ、通電発熱と前記出入孔が左右80°を超えない正転・停止・反転から成る揺動を併行させて、溶融落下と流動により溶融相の形成を促進し、装入と溶融を反復して溶融相が中心軸まで成長すると炉体を傾動して部分排出することを特徴とする無機質産業廃棄物の溶融処理方法。   A melting method for inorganic industrial waste in the form of powder, sand or lump containing high melting point inorganic material, a cylindrical sealed furnace body with a horizontal central axis, and a refractory in the center of the furnace body A cylindrical melting chamber formed by a wall; a graphite resistance heating element horizontally penetrating through the upper space of the melting chamber; and an inlet / outlet hole of a material to be processed having a sliding valve provided above the center of the melting chamber; In a melting furnace comprising an inert gas introduction hole for controlling the melting chamber to a non-oxidizing atmosphere and means for placing the furnace body and swinging around a central axis, the material to be treated is melted. The graphite heating element is buried, the energized heat generation and the swing of the normal rotation, stop, and reversal in which the inlet / outlet holes do not exceed 80 ° on the left and right are performed in parallel, and the molten phase is melted and dropped by flow. When the molten phase grows to the central axis by repeating charging and melting, the furnace body is tilted to Melt processing method for the inorganic industrial waste, characterized in that the discharge.
JP2018193303A 2018-10-12 2018-10-12 Method for melting inorganic industrial waste Active JP6616474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193303A JP6616474B1 (en) 2018-10-12 2018-10-12 Method for melting inorganic industrial waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193303A JP6616474B1 (en) 2018-10-12 2018-10-12 Method for melting inorganic industrial waste

Publications (2)

Publication Number Publication Date
JP6616474B1 true JP6616474B1 (en) 2019-12-04
JP2020059007A JP2020059007A (en) 2020-04-16

Family

ID=68763523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193303A Active JP6616474B1 (en) 2018-10-12 2018-10-12 Method for melting inorganic industrial waste

Country Status (1)

Country Link
JP (1) JP6616474B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678814A (en) * 2021-02-03 2021-04-20 宝丰县一通新材料有限公司 Continuous production device for high-purity graphite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678814A (en) * 2021-02-03 2021-04-20 宝丰县一通新材料有限公司 Continuous production device for high-purity graphite

Also Published As

Publication number Publication date
JP2020059007A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
AU2005263122B2 (en) Process and equipment for the treatment of loads or residues of non-ferrous metals and their alloys
Ünlü et al. Comparison of salt-free aluminum dross treatment processes
EP0745144A1 (en) Method and apparatus for recovery of non-ferrous metals from scrap and dross
JP6616474B1 (en) Method for melting inorganic industrial waste
JP2005527456A (en) Melt-solidifying furnace and melt-solidifying method using two heating means
US6915750B2 (en) Plasma reactor-separator
US20200332392A1 (en) Energy efficient salt-free recovery of metal from dross
CN218296709U (en) Waste copper smelting furnace with uniform heating
AU719916B2 (en) Recovery of metal from dross
Drouet et al. Drosrite salt-free processing of hot aluminum dross
CN109701998A (en) A kind of method of disposal of flying ash
CN107660264B (en) For melting and handling the furnace and method of metal and scrap metal
CN106011496A (en) Double-area molten pool smelting furnace and lead and tin co-smelting smelting method thereof
RU2775593C1 (en) Method for melting ash and slag from waste incineration plants
JP2004069219A (en) Waste melting treatment furnace
CN105403035B (en) A kind of noble metal reclaims electric arc furnaces
Gel et al. Development of aluminium scrap melting technology
JPS5820874Y2 (en) Rotary furnace for melting
CN108866342A (en) A kind of device and method handling spent noble metals bearing catalysts
RU2190034C2 (en) Method of smelting alloys from oxide-containing materials
CN113248114A (en) Crucible, cover body for cavity of crucible and material processing equipment
CN115823587A (en) Rotary electric arc furnace melting device and method for burning fly ash
JPH11207288A (en) Melting treatment of waste
CN108149026A (en) The processing method of silver preparation concentrate
JPS6127095B2 (en)

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

R150 Certificate of patent or registration of utility model

Ref document number: 6616474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250