JP6574081B1 - Plastic purity measurement method - Google Patents

Plastic purity measurement method Download PDF

Info

Publication number
JP6574081B1
JP6574081B1 JP2019506206A JP2019506206A JP6574081B1 JP 6574081 B1 JP6574081 B1 JP 6574081B1 JP 2019506206 A JP2019506206 A JP 2019506206A JP 2019506206 A JP2019506206 A JP 2019506206A JP 6574081 B1 JP6574081 B1 JP 6574081B1
Authority
JP
Japan
Prior art keywords
plastic
internal standard
polyethylene
polypropylene
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019506206A
Other languages
Japanese (ja)
Other versions
JPWO2019167535A1 (en
Inventor
孝光 石坂
孝光 石坂
和敏 池永
和敏 池永
一樹 小杉
一樹 小杉
充 玉城
充 玉城
正敬 小栗
正敬 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO-PORT KYUSHU CO., LTD.
Original Assignee
ECO-PORT KYUSHU CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO-PORT KYUSHU CO., LTD. filed Critical ECO-PORT KYUSHU CO., LTD.
Application granted granted Critical
Publication of JP6574081B1 publication Critical patent/JP6574081B1/en
Publication of JPWO2019167535A1 publication Critical patent/JPWO2019167535A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、プラスチック中に含まれる、PE、PPの量を簡便に求めることが可能な、プラスチックの純度測定方法を提供することを目的とする。本発明のプラスチックの純度測定方法は、ポリエチレンおよびポリプロピレンの少なくとも一方を含むプラスチックの純度測定方法であり、秤量した前記プラスチックに、秤量した内部標準物質を加える工程(A)、内部標準物質が加えられたプラスチックを、赤外分光法で分析する工程(B)、前記工程(B)で得られたIRスペクトルから、プラスチックに含まれるポリエチレン量およびポリプロピレン量を求める工程(C)を有する。An object of this invention is to provide the purity measuring method of the plastics which can obtain | require the quantity of PE and PP contained in a plastic simply. The method for measuring the purity of a plastic according to the present invention is a method for measuring the purity of a plastic containing at least one of polyethylene and polypropylene. Step (A) of adding a weighed internal standard substance to the weighed plastic, and adding the internal standard substance. The step (B) of analyzing the plastic by infrared spectroscopy, and the step (C) for determining the amount of polyethylene and polypropylene contained in the plastic from the IR spectrum obtained in the step (B).

Description

本発明は、プラスチックの純度測定方法に関する。   The present invention relates to a method for measuring the purity of a plastic.

プラスチックは、主に炭素と水素とから成る高分子化合物であり、一般的に絶縁性に優れる、耐腐食性に優れる、金属や陶磁器と比べて軽量である、大量生産が可能、成形が容易等の様々な特徴を有しており、現代社会で幅広く用いられる材料である。   Plastic is a polymer compound mainly composed of carbon and hydrogen. Generally, it has excellent insulating properties, excellent corrosion resistance, is lighter than metals and ceramics, can be mass-produced, and can be easily molded. It is a material widely used in modern society.

プラスチックとしては、様々なものが実用化されているが、代表的なものとしてはポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレン、ポリエチレンテレフタレート(PET)樹脂、ABS樹脂等が挙げられる。中でも、ポリエチレンおよびポリプロピレンは、それぞれプラスチック生産量の凡そ20%を占めており、最も一般的なプラスチックである。   Various plastics have been put into practical use, but typical examples include polyethylene, polypropylene, vinyl chloride resin, polystyrene, polyethylene terephthalate (PET) resin, ABS resin, and the like. Among them, polyethylene and polypropylene each occupy about 20% of the plastic production, and are the most common plastics.

プラスチックは、大量に使用される材料であるため、廃棄されるプラスチック(廃プラスチック)の量もまた膨大である。廃棄されるプラスチックをリサイクルするための方法としては、大きく分けて、マテリアルリサイクル(材料リサイクル)、ケミカルリサイクル、サーマルリサイクル(エネルギー回収)の三つの方法がある。   Since plastic is a material used in large quantities, the amount of discarded plastic (waste plastic) is also enormous. There are three main methods for recycling discarded plastics: material recycling (material recycling), chemical recycling, and thermal recycling (energy recovery).

マテリアルリサイクルは、廃プラスチックを、他の製品か別のプラスチック材料として活用する方法である。ケミカルリサイクルは廃プラスチックを、化学的に処理し、化学原料として再生する方法である。サーマルリサイクルとは、廃プラスチックを熱源として利用する方法である。   Material recycling is a method of using waste plastic as another product or another plastic material. Chemical recycling is a method in which waste plastics are chemically treated and recycled as chemical raw materials. Thermal recycling is a method of using waste plastic as a heat source.

これらの方法で、廃プラスチックをリサイクルする際には、廃プラスチックの純度が問題となることがあるが、廃プラスチックの組成を簡便な方法で調べることは、一般に困難であった。   When recycling waste plastic by these methods, the purity of the waste plastic may be a problem, but it is generally difficult to examine the composition of the waste plastic by a simple method.

ところで、特許文献1には、ポリオレフィン樹脂組成物のプロピレン成分とエチレン成分との割合を定量する分析方法が開示されている。特許文献1に開示された方法は1H−NMR法により行われる方法である。By the way, Patent Document 1 discloses an analysis method for quantifying a ratio of a propylene component and an ethylene component of a polyolefin resin composition. The method disclosed in Patent Document 1 is a method performed by 1 H-NMR method.

特開2006−194798号公報JP 2006-194798 A

一般的な廃プラスチックとしては、ポリエチレンおよびポリプロピレンを主成分とする廃プラスチックがある。このようなポリエチレンおよびポリプロピレンを主成分とする廃プラスチックであっても、ポリエチレン、ポリプロピレン以外の成分(例えば、他の重合体、添加剤、汚れ(ゴミ)、水等)が含まれているのが通常であった。   As a general waste plastic, there is a waste plastic mainly composed of polyethylene and polypropylene. Even such waste plastics mainly composed of polyethylene and polypropylene contain components other than polyethylene and polypropylene (for example, other polymers, additives, dirt (dust), water, etc.). It was normal.

仮に廃プラスチック中の成分がポリエチレンおよびポリプロピレンのみであれば、赤外分光法で得られたIRスペクトルから、ポリエチレンおよびポリプロピレンそれぞれに特徴的なピークの、ピーク面積あるいはピーク高さから、その組成を知ることが可能である。しかしながら、ポリエチレン、ポリプロピレン以外の成分が含まれている場合には、このような方法では、その組成を知ることができなかった。   If the component in the waste plastic is only polyethylene and polypropylene, the composition is known from the peak area or peak height of each characteristic peak of polyethylene and polypropylene from the IR spectrum obtained by infrared spectroscopy. It is possible. However, in the case where components other than polyethylene and polypropylene are contained, the composition cannot be known by such a method.

また、特許文献1に開示されたポリオレフィン樹脂組成物の分析方法では1H−NMR法が採用されているが、NMR測定を行うために用いられる核磁気共鳴装置は、一般に高価であり、その測定結果は、核磁気共鳴装置が置かれる環境の影響、例えば、温度変化、騒音、ノイズ、振動、磁場等の影響を受けるため、清潔な室内であることが求められる。また、樹脂をNMRで測定する際には、数〜十数時間かかることが一般的であり、大量のサンプル(ポリオレフィン樹脂組成物)を分析することが難しかった。Moreover, although the 1 H-NMR method is adopted in the method for analyzing a polyolefin resin composition disclosed in Patent Document 1, a nuclear magnetic resonance apparatus used for performing NMR measurement is generally expensive, and the measurement The result is influenced by the environment in which the nuclear magnetic resonance apparatus is placed, for example, the influence of temperature change, noise, noise, vibration, magnetic field, etc., so that the room is required to be clean. Further, when the resin is measured by NMR, it usually takes several to tens of hours, and it is difficult to analyze a large amount of sample (polyolefin resin composition).

本発明は、従来の技術では難しかったプラスチック中に含まれる、ポリエチレン(PE)、ポリプロピレン(PP)の量を簡便に求めることが可能な、プラスチックの純度測定方法を提供することを目的とする。   An object of the present invention is to provide a method for measuring the purity of a plastic that can easily determine the amount of polyethylene (PE) or polypropylene (PP) contained in the plastic, which has been difficult with the prior art.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、プラスチックに内部標準物質を加えることにより、プラスチックの純度を効率的に測定することができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the purity of the plastic can be efficiently measured by adding an internal standard substance to the plastic, and the present invention has been completed. It was.

すなわち、本発明のプラスチックの純度測定方法は、例えば以下の[1]〜[5]に関する。   That is, the plastic purity measuring method of the present invention relates to the following [1] to [5], for example.

[1] ポリエチレンおよびポリプロピレンの少なくとも一方を含むプラスチックの純度測定方法であり、秤量した前記プラスチックに、秤量した内部標準物質を加える工程(A)、内部標準物質が加えられたプラスチックを、赤外分光法で分析する工程(B)、前記工程(B)で得られたIRスペクトルから、プラスチックに含まれるポリエチレン量およびポリプロピレン量を求める工程(C)を有する、プラスチックの純度測定方法。   [1] A method for measuring the purity of a plastic containing at least one of polyethylene and polypropylene, the step (A) of adding a weighed internal standard substance to the weighed plastic, and infrared spectroscopy of the plastic to which the internal standard substance has been added. A method for measuring the purity of a plastic, comprising a step (B) of analyzing by a method, and a step (C) for determining the amount of polyethylene and polypropylene contained in the plastic from the IR spectrum obtained in the step (B).

[2] 前記内部標準物質が、ポリ酢酸ビニル、ポリアクリロニトリル、ポリピバリン酸ビニル、またはポリモノクロロ酢酸ビニルである、[1]に記載のプラスチックの純度測定方法。   [2] The plastic purity measuring method according to [1], wherein the internal standard substance is polyvinyl acetate, polyacrylonitrile, vinyl polypivalate, or polymonochlorovinyl acetate.

[3] 秤量したポリエチレン、ポリプロピレンおよび内部標準物質を用い、内部標準物質に対するポリエチレンの量を定量する際に用いる検量線および、内部標準物質に対するポリプロピレンの量を定量する際に用いる検量線を作成する工程(α)を有する[1]または[2]に記載のプラスチックの純度測定方法。   [3] Using a weighed polyethylene, polypropylene, and internal standard, create a calibration curve used to quantify the amount of polyethylene relative to the internal standard and a calibration curve used to quantify the amount of polypropylene relative to the internal standard. The method for measuring the purity of a plastic according to [1] or [2], which comprises the step (α).

[4] 前記工程(A)中に、前記秤量したプラスチックと、前記秤量した内部標準物質とを、溶媒を用いて溶解する工程を有する、[1]〜[3]のいずれかに記載のプラスチックの純度測定方法。   [4] The plastic according to any one of [1] to [3], which includes a step of dissolving the weighed plastic and the weighed internal standard substance using a solvent in the step (A). Purity measurement method.

[5] 前記プラスチックが廃プラスチックである、[1]〜[4]のいずれかに記載のプラスチックの純度測定方法。   [5] The plastic purity measuring method according to any one of [1] to [4], wherein the plastic is waste plastic.

本発明のプラスチックの純度測定方法は、プラスチック中のPE量およびPP量を簡便に求めることが可能である。   The method for measuring the purity of the plastic of the present invention can easily determine the amount of PE and PP in the plastic.

ポリエチレンのIRスペクトルを示す。The IR spectrum of polyethylene is shown. ポリプロピレンのIRスペクトルを示す。The IR spectrum of polypropylene is shown. ポリ酢酸ビニルのIRスペクトルを示す。The IR spectrum of polyvinyl acetate is shown. 実験例1におけるポリエチレンとポリ酢酸ビニルとの、重量比(実測値)と、面積比との関係を示す。The relationship between the weight ratio (measured value) of polyethylene and polyvinyl acetate in Experimental Example 1 and the area ratio is shown. 実験例1におけるポリプロピレンとポリ酢酸ビニルとの、重量比(実測値)と、面積比との関係を示す。The relationship between the weight ratio (actual value) of polypropylene and polyvinyl acetate in Experimental Example 1 and the area ratio is shown. 実験例3におけるポリエチレンとポリ酢酸ビニルとの、重量比(実測値)と、面積比との関係を示す。The relationship between the weight ratio (actual value) of polyethylene and polyvinyl acetate in Experimental Example 3 and the area ratio is shown. 実験例3におけるポリプロピレンとポリ酢酸ビニルとの、重量比(実測値)と、面積比との関係を示す。The relationship between the weight ratio (actual value) of polypropylene and polyvinyl acetate in Experimental Example 3 and the area ratio is shown.

次に本発明について具体的に説明する。   Next, the present invention will be specifically described.

本発明の純度測定方法は、ポリエチレンおよびポリプロピレンの少なくとも一方を含むプラスチックの純度測定方法であり、秤量した前記プラスチックに、秤量した内部標準物質を加える工程(A)、内部標準物質が加えられたプラスチックを、赤外分光法で分析する工程(B)、前記工程(B)で得られたIRスペクトルから、プラスチックに含まれるポリエチレン量およびポリプロピレン量を求める工程(C)を有する、プラスチックの純度測定方法である。   The purity measuring method of the present invention is a method for measuring the purity of a plastic containing at least one of polyethylene and polypropylene, the step (A) of adding a weighed internal standard substance to the weighed plastic, and the plastic in which the internal standard substance is added (B), and the step (C) for determining the amount of polyethylene and the amount of polypropylene contained in the plastic from the IR spectrum obtained in the step (B). It is.

本発明のプラスチックの純度測定方法(単に、純度測定方法とも記す)は、ポリエチレンおよびポリプロピレンの少なくとも一方を含むプラスチックに含まれる、ポリエチレン量およびポリプロピレン量を求めることが可能であり、前記プラスチックとしてはポリエチレンおよびポリプロピレンを含むプラスチックであることが好ましい。   The plastic purity measurement method of the present invention (also simply referred to as purity measurement method) can determine the amount of polyethylene and the amount of polypropylene contained in a plastic containing at least one of polyethylene and polypropylene. And plastics including polypropylene.

本発明の純度測定方法は、組成が不明なプラスチックにおいて、ポリエチレンやポリプロピレンの量を容易に求めることが可能であり、プラスチックとしては廃プラスチックが好ましい。廃プラスチックとしては、本発明の純度測定方法を行う前に、ポリスチレンを除去した廃プラスチックを用いてもよい。ポリスチレンを除去した廃プラスチックは、例えば、廃プラスチックを、ポリスチレンを溶解可能な溶媒(例えば、テトラヒドロフランとアセトンとの混合溶媒)を用いて加熱還流することにより、得ることができる。   According to the purity measuring method of the present invention, the amount of polyethylene or polypropylene can be easily determined in a plastic whose composition is unknown, and waste plastic is preferred as the plastic. As the waste plastic, waste plastic from which polystyrene has been removed may be used before performing the purity measuring method of the present invention. The waste plastic from which polystyrene is removed can be obtained, for example, by heating and refluxing the waste plastic using a solvent capable of dissolving polystyrene (for example, a mixed solvent of tetrahydrofuran and acetone).

本発明の純度測定方法は工程(A)〜(C)を有しており、さらに工程(α)を有することが好ましい。以下工程(A)〜(C)および(α)について説明する。   The purity measuring method of the present invention includes steps (A) to (C), and preferably further includes a step (α). Hereinafter, steps (A) to (C) and (α) will be described.

[工程(A)]
本発明の工程(A)は、秤量したプラスチックに、秤量した内部標準物質を加える工程である。
[Step (A)]
Step (A) of the present invention is a step of adding a weighed internal standard substance to a weighed plastic.

工程(A)では、分析対象であるプラスチックに、内部標準物質を加える。工程(A)では、プラスチックおよび内部標準物質については、秤量を行うことが必要である。秤量の際には、電子天秤等を用いることができる。   In step (A), an internal standard substance is added to the plastic to be analyzed. In the step (A), it is necessary to weigh the plastic and the internal standard substance. An electronic balance or the like can be used for weighing.

なお、ポリエチレンおよびポリプロピレンの純度を正確に求めるためには、工程(A)では、プラスチックと内部標準物質とを均一に混合することが好ましい。プラスチックと内部標準物質とを均一に混合するための方法としては、プラスチックと内部標準物質とを溶媒を用いて溶解することが好ましい。すなわち、工程(A)中に、秤量したプラスチックと、秤量した内部標準物質とを、溶媒を用いて溶解する工程を有することが好ましい。   In addition, in order to obtain | require the purity of polyethylene and polypropylene correctly, it is preferable to mix a plastic and an internal standard substance uniformly at a process (A). As a method for uniformly mixing the plastic and the internal standard substance, it is preferable to dissolve the plastic and the internal standard substance using a solvent. In other words, the step (A) preferably includes a step of dissolving the weighed plastic and the weighed internal standard substance using a solvent.

工程(A)の例としては、秤量したプラスチックおよび内部標準物質を、溶媒を用いて、適宜加熱を行うことにより溶解し、その後溶解後の試料を乾燥させる工程が挙げられる。このようにして、プラスチックと内部標準物質が均一に混合された試料(内部標準物質が加えられたプラスチック)を得ることができる。   An example of the step (A) includes a step of dissolving a weighed plastic and an internal standard substance by appropriately heating using a solvent, and then drying the sample after dissolution. In this way, a sample (plastic added with an internal standard) in which the plastic and the internal standard are uniformly mixed can be obtained.

内部標準物質としては、IRスペクトルを測定した際に、ポリエチレンおよびポリプロピレンとピークが重ならない波長にピークが観察される物質であり、且つ、プラスチックと均一に混合可能なものであればよく、特に限定はされない。内部標準物質としては均一に混合するために、高沸点であり、試料を調製する際に分解せず、かつ溶媒に溶けるものが好ましい。また、内部標準物質は安価であることが好ましい。内部標準物質の具体例としては、ポリ酢酸ビニル、ポリアクリロニトリル、ポリピバリン酸ビニル、またはポリモノクロロ酢酸ビニル等が挙げられる。   The internal standard substance is not particularly limited as long as it is a substance in which a peak is observed at a wavelength at which the peak does not overlap with polyethylene and polypropylene when an IR spectrum is measured and can be uniformly mixed with plastic. Not done. As the internal standard substance, a substance having a high boiling point, which does not decompose when preparing a sample, and is soluble in a solvent is preferable for uniform mixing. The internal standard substance is preferably inexpensive. Specific examples of the internal standard substance include polyvinyl acetate, polyacrylonitrile, vinyl polypivalate, and polymonochlorovinyl acetate.

また、前記溶媒としては、プラスチックおよび内部標準物質を溶解することができればよく、特に限定はされない。溶媒としては例えば、1,1,2,2−テトラクロロエタン、1,1,1,2−テトラクロロエタン、ジクロロベンゼン等を用いることができる。また、溶媒としては、トルエン、シクロヘキサン等を用いることもできる。溶媒としては、1,1,2,2−テトラクロロエタン、トルエンが好ましい。溶媒は一種単独でも二種以上を用いてもよい。   The solvent is not particularly limited as long as it can dissolve the plastic and the internal standard substance. As the solvent, for example, 1,1,2,2-tetrachloroethane, 1,1,1,2-tetrachloroethane, dichlorobenzene and the like can be used. Moreover, toluene, cyclohexane, etc. can also be used as a solvent. As the solvent, 1,1,2,2-tetrachloroethane and toluene are preferable. The solvent may be used alone or in combination of two or more.

[工程(B)]
本発明の工程(B)は、内部標準物質が加えられたプラスチックを、赤外分光法で分析する工程である。該工程により、分析対象であるプラスチックのIRスペクトルが得られる。
[Step (B)]
The step (B) of the present invention is a step of analyzing the plastic added with the internal standard substance by infrared spectroscopy. By this step, an IR spectrum of the plastic to be analyzed is obtained.

赤外分光法は、通常はフーリエ変換赤外分光分析装置が用いられる。赤外分光法で分析する際の方法としては、プラスチックを分析できる方法であればよく、特に限定は無いが、減衰全反射法(ATR法)で行うことが好ましい。   For infrared spectroscopy, a Fourier transform infrared spectrometer is usually used. The method for analysis by infrared spectroscopy is not particularly limited as long as it is a method capable of analyzing plastics, but is preferably performed by the attenuated total reflection method (ATR method).

[工程(C)]
本発明の工程(C)は、前記工程(B)で得られたIRスペクトルから、プラスチックに含まれるポリエチレン量およびポリプロピレン量を求める工程である。
[Step (C)]
The step (C) of the present invention is a step for obtaining the amount of polyethylene and the amount of polypropylene contained in the plastic from the IR spectrum obtained in the step (B).

工程(B)で得られるIRスペクトルは、内部標準物質のスペクトル、プラスチック中のポリエチレン、ポリプロピレン、その他の物質のスペクトルが、その含有量に応じて重ね合わされたスペクトルである。得られたIRスペクトルからプラスチックに含まれるポリエチレン量およびポリプロピレン量を求める方法としては、特に限定は無いが、通常はポリエチレン、ポリプロピレン、および内部標準物質の特性吸収帯の面積比を利用して求めることが好ましい。   The IR spectrum obtained in the step (B) is a spectrum in which the spectrum of the internal standard substance and the spectra of polyethylene, polypropylene and other substances in the plastic are superimposed according to the content. The method for obtaining the amount of polyethylene and polypropylene contained in the plastic from the obtained IR spectrum is not particularly limited, but it is usually obtained using the area ratio of the characteristic absorption band of polyethylene, polypropylene, and internal standard substance. Is preferred.

なお、ポリエチレン、ポリプロピレン、および内部標準物質の特性吸収帯としては、各成分の吸収が重ならない範囲であればよく、内部標準物質の種類によってもことなる。例えば、内部標準物質として、ポリ酢酸ビニルを使用する場合には、ポリエチレンの特性吸収帯として717cm-1、ポリプロピレンの特性吸収帯として841cm-1、ポリ酢酸ビニルの特性吸収帯として1730cm-1を使用することができる。The characteristic absorption band of polyethylene, polypropylene, and the internal standard substance may be in a range where the absorption of each component does not overlap, and may vary depending on the type of the internal standard substance. For example, as an internal standard, when using polyvinyl acetate, using the 1730 cm -1 as 841cm -1, characteristic absorption band of polyvinyl acetate as 717cm -1, characteristic absorption band of polypropylene as a characteristic absorption band of polyethylene can do.

具体的には、工程(α)を工程(A)〜(C)の前あるいは途中に行い、工程(α)によって作成した検量線を利用して、工程(C)においてプラスチックに含まれるポリエチレン量、ポリプロピレン量を求めることが好ましい。   Specifically, the step (α) is performed before or during the steps (A) to (C), and the amount of polyethylene contained in the plastic in the step (C) is obtained using the calibration curve created in the step (α). It is preferable to determine the amount of polypropylene.

[工程(α)]
本発明の工程(α)は、秤量したポリエチレン、ポリプロピレンおよび内部標準物質を用い、内部標準物質に対するポリエチレンの量を定量する際に用いる検量線および、内部標準物質に対するポリプロピレンの量を定量する際に用いる検量線を作成する工程である。
[Step (α)]
The step (α) of the present invention uses a weighed polyethylene, polypropylene, and internal standard substance, a calibration curve used for quantifying the amount of polyethylene relative to the internal standard substance, and a quantity of polypropylene relative to the internal standard substance This is a step of creating a calibration curve to be used.

検量線の作成は、例えば、秤量したポリエチレン、ポリプロピレンおよび内部標準物質を均一に混合し、赤外分光法で分析し、得られたIRスペクトルにおける、ポリエチレン、ポリプロピレンおよび内部標準物質の特性吸収帯のピーク面積を求め、該ピーク面積と、各成分の重量との関係を求めることにより行われる。   The calibration curve is prepared by, for example, uniformly mixing a weighed polyethylene, polypropylene, and internal standard substance, and analyzing them by infrared spectroscopy. In the obtained IR spectrum, the characteristic absorption bands of polyethylene, polypropylene, and internal standard substance are measured. This is done by determining the peak area and determining the relationship between the peak area and the weight of each component.

具体例としては、秤量したポリエチレン、ポリプロピレンおよび内部標準物質を均一に混合した試料を、ポリエチレンとポリプロピレンとの割合を変えて複数用意する。この際、ポリエチレンおよびポリプロピレンの合計量に対する内部標準物質の量をできるだけ一定にすることが好ましい。また、試料としては、ポリエチレンを含まない物、ポリプロピレンを含まない物も用意することが好ましい。次いで、各試料についてIRスペクトルを得る。次に各IRスペクトルにおけるポリエチレンの特性吸収帯と、内部標準試料の特性吸収帯とのピーク面積比および、各試料におけるポリエチレンと、内部標準試料との重量比をプロットし、内部標準物質に対するポリエチレンの量を定量する際に用いる検量線を作成し、同様に、各IRスペクトルにおけるポリプロピレンの特性吸収帯と、内部標準試料の特性吸収帯とのピーク面積比および、各試料におけるポリプロピレンと、内部標準試料との重量比をプロットし、内部標準物質に対するポリプロピレンの量を定量する際に用いる検量線を作成する方法が挙げられる。なお、前記具体例においては、検量線を作成する際の試料としては、ポリエチレン、ポリプロピレンおよび内部標準物質を含有する試料を用いる場合を挙げたが、試料としては、ポリエチレンおよび内部標準物質を含有する試料と、ポリプロピレンおよび内部標準物質を含有する試料を用いて、各試料において、ポリエチレンと内部標準物質との重量比、またはポリプロピレンと内部標準物質との重量比を変えた試料を複数用意して、検量線を作成してもよい。   As a specific example, a plurality of samples in which weighed polyethylene, polypropylene, and an internal standard substance are uniformly mixed are prepared by changing the ratio of polyethylene and polypropylene. At this time, it is preferable to make the amount of the internal standard substance as constant as possible with respect to the total amount of polyethylene and polypropylene. Moreover, it is preferable to prepare the sample which does not contain polyethylene and the thing which does not contain polypropylene as a sample. An IR spectrum is then obtained for each sample. Next, the peak area ratio between the characteristic absorption band of polyethylene and the characteristic absorption band of the internal standard sample in each IR spectrum and the weight ratio of polyethylene and internal standard sample in each sample are plotted. A calibration curve used for quantifying the amount is prepared. Similarly, the peak area ratio between the characteristic absorption band of polypropylene and the characteristic absorption band of the internal standard sample in each IR spectrum, and the polypropylene in each sample and the internal standard sample And plotting a weight ratio with the internal standard substance to prepare a calibration curve for use in quantifying the amount of polypropylene relative to the internal standard. In the above specific example, the case of using a sample containing polyethylene, polypropylene, and an internal standard as the sample for preparing the calibration curve was mentioned, but the sample contains polyethylene and the internal standard. Using a sample and a sample containing polypropylene and an internal standard substance, in each sample, prepare a plurality of samples in which the weight ratio between polyethylene and the internal standard substance or the weight ratio between polypropylene and the internal standard substance is changed, A calibration curve may be created.

工程(α)で作成した検量線を、工程(C)で利用することにより、プラスチックに含まれるポリエチレン量およびポリプロピレン量を容易に求めることができる。   By using the calibration curve created in the step (α) in the step (C), the amount of polyethylene and the amount of polypropylene contained in the plastic can be easily obtained.

本発明の純度測定方法は、前述の工程(A)〜(C)を有し、工程(α)を有することが好ましい。また、本発明の目的の範囲内で別途任意の工程を設けてもよい。   The purity measuring method of the present invention includes the steps (A) to (C) described above, and preferably includes the step (α). Moreover, you may provide an arbitrary process separately within the scope of the object of the present invention.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.

〔実験例1〕
〔1〕検量線の作成
検量線作成に用いたポリエチレン(PE)、ポリプロピレン(PP)、内部標準物質であるポリ酢酸ビニル(PVAc)を表1にまとめる。
[Experimental Example 1]
[1] Preparation of calibration curve Table 1 summarizes polyethylene (PE), polypropylene (PP), and polyvinyl acetate (PVAc), which is an internal standard substance, used for the calibration curve.

PE、PP、PVAcの特性吸収帯は、各重合体のみで測定したIRスペクトルに基づき、表2に記載の通り決定した。なお、表1に記載のPE、PP、PVAcのIRスペクトルを図1〜3に示す。   The characteristic absorption bands of PE, PP, and PVAc were determined as described in Table 2 based on the IR spectrum measured only for each polymer. In addition, the IR spectrum of PE, PP, and PVAc described in Table 1 is shown in FIGS.

〔1−1〕試料の秤量
フード付き電子天秤を用い、50mlのサンプル管瓶に、前記PEおよびPPを、後述の表3に記載の割合かつ合計約30mgとなるように秤量した。また、PVAcを約15mg秤量した。
[1-1] Weighing Sample Using a hooded electronic balance, the PE and PP were weighed in a 50-ml sample tube bottle so as to have a ratio shown in Table 3 described later and a total of about 30 mg. Moreover, about 15 mg of PVAc was weighed.

前記秤量に当たっては、秤量後60秒間静置し、値が一定になったのを確認した。   In weighing, it was allowed to stand for 60 seconds after weighing and it was confirmed that the value became constant.

各サンプルに、PE、PPおよびPVAcの秤量したmg数を、小数点以下第1位まで測定し、記録し、表3に記載のPE:PP重量比率、PE/PVAc重量比、およびPP/PVAc重量比の算出に使用した。   For each sample, the weighed mg of PE, PP and PVAc was measured to the first decimal place and recorded, and the PE: PP weight ratio, PE / PVAc weight ratio, and PP / PVAc weight listed in Table 3 Used to calculate the ratio.

〔1−2〕溶媒の添加
前記1−1において、PE、PPおよびPVAcが秤量された50mlサンプル管瓶に、1,1,2,2−テトラクロロエタン約4.5gを加えた。なお、溶液濃度が1%になるように、PE、PPおよびPVAcの合計重量の100倍量の1,1,2,2−テトラクロロエタンを使用した。
[1-2] Addition of solvent In the above 1-1, about 4.5 g of 1,1,2,2-tetrachloroethane was added to a 50 ml sample tube bottle in which PE, PP and PVAc were weighed. In addition, 1,1,2,2-tetrachloroethane, which is 100 times the total weight of PE, PP, and PVAc, was used so that the solution concentration was 1%.

〔1−3〕試料の溶解
前記1−2で溶媒が加えられたサンプル管瓶を、200〜220℃の範囲に保ちながら30分間加熱を行い、均一溶液を調製した。
[1-3] Dissolution of sample The sample tube bottle to which the solvent was added in 1-2 was heated for 30 minutes while maintaining the temperature in the range of 200 to 220 ° C. to prepare a uniform solution.

〔1−4〕試料の乾燥
前記1−3で溶解させた試料を、乾燥、固形化させるために、ドラフト内で溶媒を均一に蒸発させた。乾燥の仕上げとしてロータリーポンプを用いて真空乾燥を行い、溶媒を蒸発、除去した。
[1-4] Drying of sample In order to dry and solidify the sample dissolved in 1-3, the solvent was uniformly evaporated in a fume hood. As a drying finish, vacuum drying was performed using a rotary pump to evaporate and remove the solvent.

〔1−5〕試料の採取
前記1−4で得られたサンプル管瓶中の乾燥された試料を、スパーテルで採取し、メノウ乳鉢で混合し、FT−IR測定試料とした。
[1-5] Collection of sample The dried sample in the sample tube bottle obtained in the above 1-4 was collected with a spatula and mixed with an agate mortar to obtain an FT-IR measurement sample.

〔1−6〕FT−IR測定
前記1−5で調製したFT−IR測定試料のIRスペクトルを、それぞれフーリエ変換赤外分光分析装置 Spectrum100(株式会社パーキンエルマージャパン製)を用いて測定した。
[1-6] FT-IR Measurement The IR spectrum of the FT-IR measurement sample prepared in 1-5 above was measured using a Fourier transform infrared spectrometer Spectrum 100 (manufactured by PerkinElmer Japan Co., Ltd.).

得られたIRスペクトルの前記特性吸収帯の面積に基づき、PEとPVAcとの面積比およびPPとPVAcとの面積比を算出した。   Based on the area of the characteristic absorption band of the obtained IR spectrum, the area ratio of PE and PVAc and the area ratio of PP and PVAc were calculated.

なお、IRスペクトルの測定は、各試料について20点測定を行い、20点について各特性吸収帯のピーク面積を求め、上下5点を除外した10点に基づき、平均を算出し、各特性吸収帯の面積とした。   The IR spectrum is measured at 20 points for each sample, the peak area of each characteristic absorption band is obtained for 20 points, the average is calculated based on 10 points excluding the upper and lower 5 points, and each characteristic absorption band is calculated. Area.

各試料のPE:PP重量比率、PEとPVAcとの面積比、PEとPVAcとの重量比、PPとPVAcとの面積比、PPとPVAcとの重量比を表3に示す。   Table 3 shows the PE: PP weight ratio, the area ratio of PE and PVAc, the weight ratio of PE and PVAc, the area ratio of PP and PVAc, and the weight ratio of PP and PVAc of each sample.

なお、PE:PP重量比率としては、秤量予定の重量比率および実際に秤量した重量に基づき計算した重量比(実測値)の両方を示す。   In addition, as PE: PP weight ratio, both the weight ratio planned to be weighed and the weight ratio (actually measured value) calculated based on the actually weighed weight are shown.

表3の結果を基に作成した、PEとPVAcとの、重量比(実測値)と、面積比との関係を図4に示し、PPとPVAcとの、重量比(実測値)と、面積比との関係を図5に示す。   The relationship between the weight ratio (measured value) and area ratio of PE and PVAc, created based on the results of Table 3, is shown in FIG. 4. The weight ratio (measured value) and area of PP and PVAc The relationship with the ratio is shown in FIG.

表3および図4に示した結果から、プラスチック中のPEの重量は、以下のように求めることができる。   From the results shown in Table 3 and FIG. 4, the weight of PE in the plastic can be determined as follows.

PE重量(mg)/PVAc重量(mg)=18.24PE面積/PVAc面積
ここで、上記式の相関係数は、0.8657であった。
PE weight (mg) / PVAc weight (mg) = 18.24 PE area / PVAc area Here, the correlation coefficient of the above formula was 0.8657.

PE重量(mg)=18.24PE面積/PVAc面積×PVAc重量(mg)
また、プラスチック中のPE純度(%)は試料全体の重量をSW(mg)とすると、以下のように求めることができる。
PE weight (mg) = 18.24 PE area / PVAc area × PVAc weight (mg)
The PE purity (%) in the plastic can be determined as follows, assuming that the weight of the entire sample is SW (mg).

PE純度(%)=PE重量(mg)/SW(mg)×100
表3および図5に示した結果から、プラスチック中のPPの重量は、以下のように求めることができる。
PE purity (%) = PE weight (mg) / SW (mg) × 100
From the results shown in Table 3 and FIG. 5, the weight of PP in the plastic can be determined as follows.

PP重量(mg)/PVAc重量(mg)=71.11PP面積/PVAc面積
ここで、上記式の相関係数は、0.9714であった。
PP weight (mg) / PVAc weight (mg) = 71.11 PP area / PVAc area Here, the correlation coefficient of the above formula was 0.9714.

PP重量(mg)=71.11PP面積/PVAc面積×PVAc重量(mg)
また、プラスチック中のPP純度(%)は試料全体の重量をSW(mg)とすると、以下のように求めることができる。
PP weight (mg) = 71.11PP area / PVAc area × PVAc weight (mg)
The PP purity (%) in the plastic can be determined as follows, assuming that the weight of the entire sample is SW (mg).

PP純度(%)=PP重量(mg)/SW(mg)×100
〔実験例2〕
実験例1で得た検量線の妥当性を検討するために、以下の実験を行った。
PP purity (%) = PP weight (mg) / SW (mg) × 100
[Experimental example 2]
In order to examine the validity of the calibration curve obtained in Experimental Example 1, the following experiment was performed.

減容再生されたポリエチレンを主成分とするPEとPPとの混合リサイクル材および、減容再生されたポリプロピレンを主成分とするPEとPPとの混合リサイクル材について、以下の方法でIRスペクトルおよび1H−NMRスペクトルを得て、各スペクトルから導かれる結果を対比した。Regarding the mixed recycled material of PE and PP mainly composed of reduced volume recycled polyethylene and the mixed recycled material of PE and PP mainly composed of volume reduced recycled polypropylene, the IR spectrum and 1 H-NMR spectra were obtained and the results derived from each spectrum were compared.

なお、減容再生されたポリエチレンを主成分とするPEとPPとの混合リサイクル材をPE混合リサイクル材とも記し、減容再生されたポリプロピレンを主成分とするPEとPPとの混合リサイクル材をPP混合リサイクル材とも記す。   Note that PE / PP mixed recycled material mainly composed of polyethylene whose volume has been reduced and recycled is also referred to as PE mixed recycled material, and PE / PP mixed recycled material whose main component is volume reduced and recycled is PP. Also referred to as mixed recycled material.

〔2−1〕試料の前処理
各混合リサイクル材を、冷凍粉砕機(型式:JFC−300、吉田製作所製)を用いて細かく粉砕した。
[2-1] Sample Pretreatment Each mixed recycled material was finely pulverized using a freeze pulverizer (model: JFC-300, manufactured by Yoshida Seisakusho).

フード付き電子天秤を用い、50mlのサンプル管瓶に、粉砕された混合リサイクル材を約30mg、PVAcを約15mgとなるように精秤量した。   Using a hooded electronic balance, weighed accurately in a 50 ml sample tube bottle so that the pulverized mixed recycled material was about 30 mg and PVAc was about 15 mg.

前記秤量に当たっては、秤量後60秒間静置し、値が一定になったのを確認した。   In weighing, it was allowed to stand for 60 seconds after weighing and it was confirmed that the value became constant.

各サンプルに、混合リサイクル材およびPVAcの秤量したmg数を、小数点以下第1位まで測定し、記録し、検量線に基づき、PE重量を算出する際、PP重量を算出する際の試料全体の重量、PVAcの重量として使用した。   For each sample, the number of mg of the mixed recycled material and PVAc weighed is measured and recorded to the first decimal place, and when calculating the PE weight based on the calibration curve, the entire sample when calculating the PP weight Weight, PVAc weight.

〔2−2〕溶媒の添加
前記2−1において、混合リサイクル材およびPVAcが秤量された50mlサンプル管瓶に、1,1,2,2−テトラクロロエタン約4.5gを加えた。なお、溶液の濃度が1%になるように1,1,2,2−テトラクロロエタンを加えた。
[2-2] Addition of solvent In the above 2-1, about 4.5 g of 1,1,2,2-tetrachloroethane was added to a 50 ml sample tube bottle in which the mixed recycle material and PVAc were weighed. In addition, 1,1,2,2-tetrachloroethane was added so that the concentration of the solution was 1%.

〔2−3〕試料の溶解
前記2−2で溶媒が加えられたサンプル管瓶を、200〜220℃の範囲に保ちながら30分間加熱を行い、均一溶液を調製した。
[2-3] Dissolution of sample The sample tube bottle to which the solvent was added in 2-2 was heated for 30 minutes while maintaining the temperature in the range of 200 to 220 ° C to prepare a uniform solution.

〔2−4〕試料の乾燥
前記2−3で溶解させた試料を、乾燥、固形化させるために、ドラフト内で溶媒を蒸発させた。乾燥の仕上げとしてロータリーポンプを用いて真空乾燥を行い、溶媒を蒸発、除去した。
[2-4] Drying of sample In order to dry and solidify the sample dissolved in 2-3, the solvent was evaporated in a fume hood. As a drying finish, vacuum drying was performed using a rotary pump to evaporate and remove the solvent.

〔2−5〕試料の採取
前記2−4で得られたサンプル管瓶中の乾燥された試料を、スパーテルで採取し、メノウ乳鉢で混合し、FT−IR測定試料とした。
[2-5] Collection of sample The dried sample in the sample tube bottle obtained in 2-4 was collected with a spatula and mixed with an agate mortar to obtain a sample for FT-IR measurement.

〔2−6〕FT−IR測定
前記2−5で調製したFT−IR測定試料のIRスペクトルを、それぞれフーリエ変換赤外分光分析装置 Spectrum100(株式会社パーキンエルマージャパン製)を用いて測定した。
[2-6] FT-IR Measurement The IR spectrum of the FT-IR measurement sample prepared in 2-5 above was measured using a Fourier transform infrared spectroscopic apparatus Spectrum 100 (manufactured by Perkin Elmer Japan Co., Ltd.).

得られたIRスペクトルの前記特性吸収帯の面積に基づき、PEとPVAcとの面積比およびPPとPVAcとの面積比を算出した。   Based on the area of the characteristic absorption band of the obtained IR spectrum, the area ratio of PE and PVAc and the area ratio of PP and PVAc were calculated.

該面積比およびPVAcの重量、並びに実験例1で得た検量線から、以下のように、PE混合リサイクル材についてはPE純度を算出し、PP混合リサイクル材についてはPP純度を算出した。   From the area ratio, the weight of PVAc, and the calibration curve obtained in Experimental Example 1, the PE purity was calculated for the PE mixed recycled material and the PP purity was calculated for the PP mixed recycled material as follows.

(PE混合リサイクル材のPE純度)
PE重量(mg)=18.24PE面積/PVAc面積×PVAc重量(mg)
=18.24×0.6261/7.381×14.9
=23.05
PE純度(%)=PE重量(mg)/SW(mg)×100
=23.05/30.3×100
=76.1%
(PP混合リサイクル材のPP純度)
PP重量(mg)=71.11PP面積/PVAc面積×PVAc重量(mg)
=71.11×0.1471/5.981×15.1
=26.41
PP純度(%)=PP重量(mg)/SW(mg)×100
=26.41/30.6×100
=86.3%
〔2−7〕1H−NMR測定
PE混合リサイクル材および、PP混合リサイクル材について、1H−NMR測定および1H−NMR測定に基づく成分組成の評価を実施した。結果を表4に示す。
1H−NMR測定は、以下の条件で行った。
・装置:日本電子株式会社製核磁気共鳴装置「ECA500」(500MHz)
・溶媒:重水素化1,1,2,2−テトラクロロエタン
・試料:不溶解分を除去した試料(PE混合リサイクル材、PP混合リサイクル材)を使用
・試料量:約20mg
・測定核種:1
・測定温度:120℃
(PE purity of PE mixed recycling material)
PE weight (mg) = 18.24 PE area / PVAc area × PVAc weight (mg)
= 18.24 × 0.6261 / 7.381 × 14.9
= 23.05
PE purity (%) = PE weight (mg) / SW (mg) × 100
= 23.05 / 30.3 × 100
= 76.1%
(PP purity of PP mixed recycled material)
PP weight (mg) = 71.11PP area / PVAc area × PVAc weight (mg)
= 71.11 × 0.1471 / 5.981 × 15.1
= 26.41
PP purity (%) = PP weight (mg) / SW (mg) × 100
= 26.41 / 30.6 × 100
= 86.3%
[2-7] 1 H-NMR Measurement With respect to the PE mixed recycled material and the PP mixed recycled material, the component composition was evaluated based on the 1 H-NMR measurement and the 1 H-NMR measurement. The results are shown in Table 4.
1 H-NMR measurement was performed under the following conditions.
・ Device: Nuclear magnetic resonance apparatus “ECA500” (500 MHz) manufactured by JEOL Ltd.
・ Solvent: Deuterated 1,1,2,2-tetrachloroethane ・ Sample: Samples from which insolubles have been removed (PE mixed recycled material, PP mixed recycled material) are used. ・ Sample amount: about 20 mg
・ Measurement nuclide: 1 H
・ Measurement temperature: 120 ℃

〔2−8〕FT−IR測定結果と、1H−NMR測定結果との対比
前記2−6で求めたPE純度およびPP純度、並びに2−7で求めたPE純度およびPP純度を対比した結果を表5に示す。
[2-8] Comparison between FT-IR measurement results and 1 H-NMR measurement results Results of comparing PE purity and PP purity determined in 2-6 above, and PE purity and PP purity determined in 2-7 Is shown in Table 5.

表5の結果より、本発明の内部標準物質を用いて、赤外分光法によってIRスペクトルを得ることにより、プラスチックの純度を測定する方法と、1H−NMRによって、プラスチックの純度を測定する方法とでは、その結果の差が小さく、産業上有用であることが分かった。NMR測定と比べてIR測定は簡便な装置で測定を実施することが可能であるため、本発明の方法は簡便であり、有用であることが確認できた。From the results of Table 5, using the internal standard substance of the present invention, a method of measuring the purity of the plastic by obtaining an IR spectrum by infrared spectroscopy, and a method of measuring the purity of the plastic by 1 H-NMR And the difference of the result was small, and it turned out that it is industrially useful. Compared with NMR measurement, IR measurement can be carried out with a simple apparatus, so that it was confirmed that the method of the present invention is simple and useful.

〔実験例3〕
〔3〕検量線の作成
実験例1と同様のポリエチレン(PE)、ポリプロピレン(PP)、内部標準物質であるポリ酢酸ビニル(PVAc)を検量線作成に用いた。
[Experimental Example 3]
[3] Preparation of calibration curve The same polyethylene (PE), polypropylene (PP) and polyvinyl acetate (PVAc) as an internal standard substance were used for the preparation of the calibration curve as in Experimental Example 1.

PE、PP、PVAcの特性吸収帯についても実験例1と同様にした。   The characteristic absorption bands of PE, PP, and PVAc were the same as in Experimental Example 1.

〔3−1〕試料の秤量
フード付き電子天秤を用い、50mlのサンプル管瓶に、前記PEおよびPPを、後述の表6に記載の割合かつ合計約30mgとなるように秤量した。また、PVAcを約15mg秤量した。
[3-1] Weighing Sample Using a hooded electronic balance, the PE and PP were weighed in a 50 ml sample tube bottle so that the ratio was as described in Table 6 below and the total was about 30 mg. Moreover, about 15 mg of PVAc was weighed.

前記秤量に当たっては、秤量後60秒間静置し、値が一定になったのを確認した。   In weighing, it was allowed to stand for 60 seconds after weighing and it was confirmed that the value became constant.

各サンプルに、PE、PPおよびPVAcの秤量したmg数を、小数点以下第1位まで測定し、記録し、表6に記載のPE:PP重量比率、PE/PVAc重量比、およびPP/PVAc重量比の算出に使用した。   For each sample, the weighed mg of PE, PP and PVAc was measured and recorded to the first decimal place, and the PE: PP weight ratio, PE / PVAc weight ratio, and PP / PVAc weight listed in Table 6 were recorded. Used to calculate the ratio.

〔3−2〕溶媒の添加
前記3−1において、PE、PPおよびPVAcが秤量された50mlサンプル管瓶に、トルエン約4.5gを加えた。なお、溶液濃度が1%になるように、PE、PPおよびPVAcの合計重量の100倍量のトルエンを使用した。
[3-2] Addition of solvent In the above 3-1, about 4.5 g of toluene was added to a 50 ml sample tube bottle in which PE, PP and PVAc were weighed. In addition, 100 times the amount of toluene as the total weight of PE, PP, and PVAc was used so that the solution concentration might be 1%.

〔3−3〕試料の溶解
前記3−2で溶媒が加えられたサンプル管瓶を、150〜170℃の範囲に保ちながら20分間加熱を行い、均一溶液を調製した。
[3-3] Dissolution of sample The sample tube bottle to which the solvent was added in 3-2 was heated for 20 minutes while maintaining the temperature in the range of 150 to 170 ° C to prepare a uniform solution.

〔3−4〕試料の乾燥
前記3−3で溶解させた試料を、乾燥、固形化させるために、ドラフト内で溶媒を均一に蒸発させた。乾燥の仕上げとしてロータリーポンプを用いて真空乾燥を行い、溶媒を蒸発、除去した。
[3-4] Drying of sample In order to dry and solidify the sample dissolved in 3-3, the solvent was uniformly evaporated in a fume hood. As a drying finish, vacuum drying was performed using a rotary pump to evaporate and remove the solvent.

〔3−5〕試料の採取
前記3−4で得られたサンプル管瓶中の乾燥された試料を、スパーテルで採取し、メノウ乳鉢で混合し、FT−IR測定試料とした。
[3-5] Collection of sample The dried sample in the sample tube bottle obtained in 3-4 was collected with a spatula and mixed in an agate mortar to obtain a sample for FT-IR measurement.

〔3−6〕FT−IR測定
前記3−5で調製したFT−IR測定試料のIRスペクトルを、それぞれフーリエ変換赤外分光分析装置Frontier FT IR(株式会社パーキンエルマージャパン製)を用いて測定した。
[3-6] FT-IR Measurement The IR spectrum of the FT-IR measurement sample prepared in 3-5 above was measured using a Fourier transform infrared spectroscopic apparatus Frontier FT IR (manufactured by PerkinElmer Japan Co., Ltd.). .

得られたIRスペクトルの前記特性吸収帯の面積に基づき、PEとPVAcとの面積比およびPPとPVAcとの面積比を算出した。   Based on the area of the characteristic absorption band of the obtained IR spectrum, the area ratio of PE and PVAc and the area ratio of PP and PVAc were calculated.

なお、IRスペクトルの測定は、各試料について20点測定を行い、20点について各特性吸収帯のピーク面積を求め、全平均を算出し、各特性吸収帯の面積とした。   In addition, the measurement of IR spectrum performed 20 points | pieces about each sample, calculated | required the peak area of each characteristic absorption band about 20 points, calculated the total average, and made it the area of each characteristic absorption band.

各試料のPE:PP重量比率、PEとPVAcとの面積比、PEとPVAcとの重量比、PPとPVAcとの面積比、PPとPVAcとの重量比を表6に示す。   Table 6 shows the PE: PP weight ratio, the area ratio of PE and PVAc, the weight ratio of PE and PVAc, the area ratio of PP and PVAc, and the weight ratio of PP and PVAc of each sample.

なお、PE:PP重量比率としては、秤量予定の重量比率および実際に秤量した重量に基づき計算した重量比(実測値)の両方を示す。   In addition, as PE: PP weight ratio, both the weight ratio planned to be weighed and the weight ratio (actually measured value) calculated based on the actually weighed weight are shown.

表6の結果を基に作成した、PEとPVAcとの、重量比(実測値)と、面積比との関係を図6に示し、PPとPVAcとの、重量比(実測値)と、面積比との関係を図7に示す。   The relationship between the weight ratio (measured value) and area ratio of PE and PVAc, created based on the results of Table 6, is shown in FIG. 6, and the weight ratio (measured value) and area of PP and PVAc The relationship with the ratio is shown in FIG.

表6および図6に示した結果から、プラスチック中のPEの重量は、以下のように求めることができる。   From the results shown in Table 6 and FIG. 6, the weight of PE in the plastic can be obtained as follows.

PE重量(mg)/PVAc重量(mg)=13.32PE面積/PVAc面積
ここで、上記式の相関係数は、0.8985であった。
PE weight (mg) / PVAc weight (mg) = 13.32 PE area / PVAc area Here, the correlation coefficient of the above formula was 0.8985.

PE重量(mg)=13.32PE面積/PVAc面積×PVAc重量(mg)
また、プラスチック中のPE純度(%)は試料全体の重量をSW(mg)とすると、以下のように求めることができる。
PE weight (mg) = 13.32 PE area / PVAc area × PVAc weight (mg)
The PE purity (%) in the plastic can be determined as follows, assuming that the weight of the entire sample is SW (mg).

PE純度(%)=PE重量(mg)/SW(mg)×100
表6および図7に示した結果から、プラスチック中のPPの重量は、以下のように求めることができる。
PE purity (%) = PE weight (mg) / SW (mg) × 100
From the results shown in Table 6 and FIG. 7, the weight of PP in the plastic can be determined as follows.

PP重量(mg)/PVAc重量(mg)=32.52PP面積/PVAc面積
ここで、上記式の相関係数は、0.9551であった。
PP weight (mg) / PVAc weight (mg) = 32.52 PP area / PVAc area Here, the correlation coefficient of the above formula was 0.9551.

PP重量(mg)=32.52PP面積/PVAc面積×PVAc重量(mg)
また、プラスチック中のPP純度(%)は試料全体の重量をSW(mg)とすると、以下のように求めることができる。
PP weight (mg) = 32.52PP area / PVAc area × PVAc weight (mg)
The PP purity (%) in the plastic can be determined as follows, assuming that the weight of the entire sample is SW (mg).

PP純度(%)=PP重量(mg)/SW(mg)×100   PP purity (%) = PP weight (mg) / SW (mg) × 100

Claims (4)

ポリエチレンおよびポリプロピレンの少なくとも一方を含むプラスチックの純度測定方法であり、
秤量した前記プラスチックに、秤量した内部標準物質を加える工程(A)、
内部標準物質が加えられたプラスチックを、赤外分光法で分析する工程(B)、
前記工程(B)で得られたIRスペクトルから、プラスチックに含まれるポリエチレン量およびポリプロピレン量を求める工程(C)を有し、
前記内部標準物質が、ポリ酢酸ビニル、ポリアクリロニトリル、ポリピバリン酸ビニル、またはポリモノクロロ酢酸ビニルである、プラスチックの純度測定方法。
A method for measuring the purity of a plastic containing at least one of polyethylene and polypropylene,
Adding a weighed internal standard substance to the weighed plastic (A),
Analyzing the plastic to which the internal standard substance is added by infrared spectroscopy (B),
From the IR spectrum obtained in the step (B), it has a step (C) to obtain the polyethylene amounts and polypropylene content in the plastic,
A method for measuring the purity of a plastic, wherein the internal standard substance is polyvinyl acetate, polyacrylonitrile, vinyl polypivalate, or polymonochlorovinyl acetate .
秤量したポリエチレン、ポリプロピレンおよび内部標準物質を用い、
内部標準物質に対するポリエチレンの量を定量する際に用いる検量線および、
内部標準物質に対するポリプロピレンの量を定量する際に用いる検量線を作成する工程(α)を有する請求項1に記載のプラスチックの純度測定方法。
Using weighed polyethylene, polypropylene and internal standard,
A calibration curve used to quantify the amount of polyethylene relative to the internal standard, and
The method for measuring the purity of a plastic according to claim 1, further comprising a step (α) of preparing a calibration curve used for quantifying the amount of polypropylene with respect to the internal standard substance.
前記工程(A)中に、前記秤量したプラスチックと、前記秤量した内部標準物質とを、溶媒を用いて溶解する工程を有する、請求項1または2に記載のプラスチックの純度測定方法。 The method for measuring the purity of plastic according to claim 1 or 2 , wherein the step (A) includes a step of dissolving the weighed plastic and the weighed internal standard substance using a solvent. 前記プラスチックが廃プラスチックである、請求項1〜のいずれか一項に記載のプラスチックの純度測定方法。
The method for measuring the purity of a plastic according to any one of claims 1 to 3 , wherein the plastic is waste plastic.
JP2019506206A 2018-03-01 2019-01-31 Plastic purity measurement method Active JP6574081B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018036560 2018-03-01
JP2018036560 2018-03-01
PCT/JP2019/003348 WO2019167535A1 (en) 2018-03-01 2019-01-31 Method for measuring purity of plastic

Publications (2)

Publication Number Publication Date
JP6574081B1 true JP6574081B1 (en) 2019-09-11
JPWO2019167535A1 JPWO2019167535A1 (en) 2020-04-16

Family

ID=67805965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506206A Active JP6574081B1 (en) 2018-03-01 2019-01-31 Plastic purity measurement method

Country Status (2)

Country Link
JP (1) JP6574081B1 (en)
WO (1) WO2019167535A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110765B2 (en) * 2018-06-29 2022-08-02 株式会社島津製作所 Measurement method, measurement processing program and measurement device for measuring content of four substances
CN113075155A (en) * 2021-02-22 2021-07-06 青岛中化新材料实验室检测技术有限公司 Infrared spectrum method for measuring content of polyvinyl chloride in polyvinyl chloride pipe

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206510A (en) * 1990-11-14 1993-04-27 Bayer Aktiengesellschaft Spectroscopic analysis process for plastic mixtures
US5510619A (en) * 1993-11-27 1996-04-23 Brunker Analytische Messtechnik Gmbh Method for the routine identification of plastics
JPH0924293A (en) * 1995-07-07 1997-01-28 Nippon Steel Corp Classifying method for plastic waste
JPH09138194A (en) * 1995-11-13 1997-05-27 Toyota Central Res & Dev Lab Inc High speed identification method of resin by infrared spectroscopic analysis method and its system
JP2001074729A (en) * 1999-09-08 2001-03-23 Kawasaki Steel Corp Method for analyzing plastic and dechlorination method
JP2003227793A (en) * 2001-11-28 2003-08-15 Matsushita Ecotechnology Center:Kk Method for identifying plastic
JP2004074151A (en) * 2003-07-29 2004-03-11 Mitsubishi Heavy Ind Ltd Plastic material identification apparatus
JP2005249624A (en) * 2004-03-05 2005-09-15 Japan Science & Technology Agency Polymer group discriminating method by optical spectrum
JP2013064726A (en) * 2011-08-26 2013-04-11 Mitsubishi Electric Corp Resin identification device and method
JP2013166921A (en) * 2012-01-20 2013-08-29 Toray Ind Inc Fiber-reinforced polypropylene-based resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206510A (en) * 1990-11-14 1993-04-27 Bayer Aktiengesellschaft Spectroscopic analysis process for plastic mixtures
US5510619A (en) * 1993-11-27 1996-04-23 Brunker Analytische Messtechnik Gmbh Method for the routine identification of plastics
JPH0924293A (en) * 1995-07-07 1997-01-28 Nippon Steel Corp Classifying method for plastic waste
JPH09138194A (en) * 1995-11-13 1997-05-27 Toyota Central Res & Dev Lab Inc High speed identification method of resin by infrared spectroscopic analysis method and its system
JP2001074729A (en) * 1999-09-08 2001-03-23 Kawasaki Steel Corp Method for analyzing plastic and dechlorination method
JP2003227793A (en) * 2001-11-28 2003-08-15 Matsushita Ecotechnology Center:Kk Method for identifying plastic
JP2004074151A (en) * 2003-07-29 2004-03-11 Mitsubishi Heavy Ind Ltd Plastic material identification apparatus
JP2005249624A (en) * 2004-03-05 2005-09-15 Japan Science & Technology Agency Polymer group discriminating method by optical spectrum
JP2013064726A (en) * 2011-08-26 2013-04-11 Mitsubishi Electric Corp Resin identification device and method
JP2013166921A (en) * 2012-01-20 2013-08-29 Toray Ind Inc Fiber-reinforced polypropylene-based resin composition

Also Published As

Publication number Publication date
WO2019167535A1 (en) 2019-09-06
JPWO2019167535A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
Rabinovitz et al. Hindered internal rotation and dimerization of N, N-dimethylformamide in carbon tetrachloride
JP6574081B1 (en) Plastic purity measurement method
Alonso et al. Thermal degradation of lignin–phenol–formaldehyde and phenol–formaldehyde resol resins: structural changes, thermal stability, and kinetics
CN109187823A (en) The method of plastics is received based on cloud point extraction-thermal cracking gas chromatography mass spectrometric determination
Hernández-Fernández et al. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale
Duaij et al. Solubility and surface thermodynamics of conducting polymers by inverse gas chromatography. III: Polypyrrole chloride
Alshehri et al. Thermal degradation and evolved gas analysis of N, N′-bis (2 hydroxyethyl) linseed amide (BHLA) during pyrolysis and combustion
Varfolomeev et al. Calorimetric investigation of hydrogen bonding of formamide and its methyl derivatives in organic solvents and water
CN109870559A (en) A kind of discrimination method of ABS plastic reworked material
CN104280483A (en) Pretreatment method for detecting chloromycetin in animal product
CN109883975A (en) A kind of discrimination method of Hips Plastics reworked material
CN102445431B (en) Detection method of content of stearic acid in rubber
Li et al. Rapid and nondestructive analysis of quality of prepreg cloth by near-infrared spectroscopy
CN105582691A (en) Extraction agent, application thereof, and method of measuring crosslinking degree of polymer
CN107356697A (en) A kind of volatile matter prepares collection device
Cegłowski et al. Poly (methyl vinyl ether‐alt‐maleic anhydride) functionalized with 3‐aminophenylboronic acid: A new boronic acid polymer for sensing diols in neutral water
Lewicki et al. NMR investigations of network formation and motional dynamics in well-defined model poly (dimethylsiloxane) elastomers
CN207081656U (en) A kind of volatile matter prepares collection device
Jacobs et al. Synthesis, microwave spectrum, and ab initio calculations for difluorocyclopropenone
CN105588901B (en) For extracting the extract of glucitols clarifier and application in pp material
Shimada et al. Molecular motion of the PMMA chain in poly (methylmethacrylate)/poly (vinylidene fluoride) blends by spin trapping labeling
Shaw et al. Infrared studies of some N-methylacetamide complexes
CN112858365A (en) Method for detecting composition content of each monomer unit in regenerated ABS (acrylonitrile butadiene styrene) plastic
Zhang et al. Investigation on the inclusion interaction of 4-sulfonatocalix [n] arenes with 1-(4-nitrophenyl) piperazine
CN109470649B (en) Near-infrared detection method for content of procyanidine in grape seeds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190204

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190814

R150 Certificate of patent or registration of utility model

Ref document number: 6574081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250