JP6520914B2 - 固体型光電変換素子及び太陽電池 - Google Patents
固体型光電変換素子及び太陽電池 Download PDFInfo
- Publication number
- JP6520914B2 JP6520914B2 JP2016504016A JP2016504016A JP6520914B2 JP 6520914 B2 JP6520914 B2 JP 6520914B2 JP 2016504016 A JP2016504016 A JP 2016504016A JP 2016504016 A JP2016504016 A JP 2016504016A JP 6520914 B2 JP6520914 B2 JP 6520914B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- hole transport
- compounds
- solid
- transport layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
- H01G9/2018—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/209—Light trapping arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/152—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
前記特許文献1及び前記非特許文献1及び2の前記色素増感型太陽電池は、酸化チタン等の金属酸化物半導体電極を多孔質化して表面積を大きくしたこと、並びに色素としてルテニウム錯体を単分子吸着させたことにより光電変換効率が著しく向上している。
1)無機半導体を用いたもの(例えば、非特許文献3、4参照)
2)低分子有機ホール輸送材料を用いたもの(例えば、特許文献2、非特許文献5、6参照)
3)導電性高分子を用いたもの(例えば、特許文献3、非特許文献7参照)
そこで、前記非特許文献4に記載の太陽電池においては、イミダゾリニウムチオシアナートを加えることによってヨウ化銅の結晶化を抑制しているが、十分ではない。
そのため、多孔質半導体の内部空孔へ前記トリフェニルアミン化合物が到達できず、低い変換効率しか得られていない。
しかしながら、この太陽電池におけるナノチタニア粒子膜厚の最適値は2μm程度とされており、ヨウ素電解液を使用する場合の10μm〜20μmと比較して非常に薄い。そのため、酸化チタンに吸着した色素量も少なく、十分な光吸収やキャリア発生を行うことが困難であり、電解液を用いた場合の特性は及ばない。
また、従来のヨウ素等を用いた電解液型色素増感太陽電池は、アモルファスシリコン太陽電池以上に微弱な室内光における光電変換特性を有することが報告されている(非特許文献8参照)。
しかしながら、前記電解液型色素増感太陽電池は、上述したヨウ素と揮発性溶剤を含んでおり、ヨウ素レドックス系の劣化による発電効率の低下、電解液の揮発や漏れといった問題がある。
前記内部抵抗を高くすると短絡電流密度が悪くなり、光電変換特性悪化する。また、前記内部抵抗を低くすると開放電圧が悪くなり、光電変換特性が悪化する。すなわち、前記内部抵抗を高くすることと、良好な前記光電変換特性の両立は、非常に困難である。
すなわち、前記課題は、第一の電極と、ホールブロッキング層と、電子輸送層と、第一のホール輸送層と、第二の電極と、を有する光電変換素子であって、
前記第一のホール輸送層は、下記一般式(1a)及び一般式(1b)で表される塩基性化合物のうち少なくとも1つを含む光電変換素子により解決される。
なお、図1は光電変換素子及び太陽電池の積層方向に直交する断面を表す概略図の一例である。
図1に示す態様においては、基板1上に第一の電極2が設けられ、酸化チタンからなるホールブロッキング層3、電子輸送層4、電子輸送層上に光増感材料5が吸着し、第二の電極7との間にホール輸送層6を挟み込んだ構成をとっている。
第一の電極2としては、可視光に対して透明な導電性物質であれば特に限定されるものではなく、通常の光電変換素子、あるいは液晶パネル等に用いられる公知のものを使用できる。
第一の電極2は一定の硬性を維持するため、可視光に透明な材質からなる基板1上に設けることが好ましい。基板1としては、例えば、ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが用いられる。
これらは1種単独あるいは2種以上の混合、または積層したものでも構わない。また抵抗を下げる目的で、金属リード線等を併用してもよい。
ホールブロッキング層3としては、可視光に対して透明であり、かつ電子輸送性材料であれば特に限定されるものではないが、特に酸化チタンが好ましい。室内光等の弱い光でも使用可能にするために損失電流を抑制するには、高い内部抵抗を有することが必要であり、ホールブロッキング層3を形成する酸化チタンの製膜方法も重要である。
前記酸化チタンの製膜は一般的には、湿式製膜となるゾルゲル法や四塩化チタンからの加水分解法が挙げられるが、抵抗が低めである。乾式製膜となるスパッタリング法がより好ましい。
本発明の光電変換素子及び太陽電池は、ホールブロッキング層3上に多孔質状の電子輸送層4を形成するものであり、単層であっても多層であってもよい。
前記多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布することも、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。
一度の塗布で厚みが不足する場合には、前記多層塗布は有効な手段である。
したがって、電子輸送層4の厚みは100nm〜100μmが好ましい。
具体的には、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を挙げることができる。
前記金属の前記カルコゲニドとしては、例えば、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。
他の化合物半導体としては、例えば、亜鉛、ガリウム、インジウム、カドミウム、等のリン化物、ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が挙げられる。
前記ペロブスカイト構造を有する化合物としては、例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が挙げられる。これらは、1種単独、あるいは2種以上の混合で使用しても構わない。
これらの中でも、酸化物半導体が好ましく、酸化チタン、酸化亜鉛、酸化スズ、酸化ニオブが特に好ましい。これらの半導体の結晶型は特に限定されるものではなく、単結晶でも多結晶でも、あるいは非晶質でも構わない。
また、より大きい平均粒径の半導体粒子を混合あるいは積層して入射光を散乱させる効果により、効率を向上させることも可能である。この場合の前記半導体粒子の平均粒径は50nm〜500nmが好ましい。
前記湿式製膜法を用いた場合、塗布方法については、特に制限はなく、公知の方法にしたがって行うことができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法などが挙げられる。また、湿式印刷方法としては、例えば、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等の様々な方法を用いることができる。
前記増粘剤としては、例えば、ポリエチレングリコール、ポリビニルアルコール等の高分子、エチルセルロース等の増粘剤等が挙げられる。
照射時間には特に制限がないが、1時間以内で行うことが好ましい。
本発明では変換効率のさらなる向上のため、光増感材料を電子輸送層4である電子輸送性半導体の表面に吸着させる。前記光増感材料としては一般式(2)に示すものが好ましい。
Dye1 R3=CH2CH3(日本科学物質辞書番号:J2.477.478C、J3.081.465G)
Dye2 R3=(CH2)3CH3
Dye3 R3=C(CH3)3
Dye4 R3=(CH2)9CH3
Dye5 R3=(CH2)2COOH
Dye6 R3=(CH2)4COOH
Dye7 R3=(CH2)7COOH
Dye8 R3=(CH2)10COOH(日本科学物質辞書番号:J3.113.583D)
特表平7−500630号公報、特開平10−233238号公報、特開2000−26487号公報、特開2000−323191号公報、特開2001−59062号公報等に記載の金属錯体化合物、特開平10−93118号公報、特開2002−164089号公報、特開2004−95450号公報、J.Phys.Chem.C,7224,Vol.111(2007)等に記載のクマリン化合物、特開2004−95450号公報、Chem.Commun.,4887(2007)等に記載のポリエン化合物、特開2003−264010号公報、特開2004−63274号公報、特開2004−115636号公報、特開2004−200068号公報、特開2004−235052号公報、J.Am.Chem.Soc.,12218,Vol.126(2004)、Chem.Commun.,3036(2003)、Angew.Chem.Int.Ed.,1923,Vol.47(2008)等に記載のインドリン化合物、J.Am.Chem.Soc.,16701,Vol.128(2006)、J.Am.Chem.Soc.,14256,Vol.128(2006)等に記載のチオフェン化合物、特開平11−86916号公報、特開平11−214730号公報、特開2000−106224号公報、特開2001−76773号公報、特開2003−7359号公報等に記載のシアニン色素、特開平11−214731号公報、特開平11−238905号公報、特開2001−52766号公報、特開2001−76775号公報、特開2003−7360号公報等に記載のメロシアニン色素、特開平10−92477号公報、特開平11−273754号公報、特開平11−273755号公報、特開2003−31273号公報等に記載の9−アリールキサンテン化合物、特開平10−93118号公報、特開2003−31273号公報等に記載のトリアリールメタン化合物、特開平9−199744号公報、特開平10−233238号公報、特開平11−204821号公報、特開平11−265738号公報、J.Phys.Chem.,2342,Vol.91(1987)、J.Phys.Chem.B,6272,Vol.97(1993)、Electroanal.Chem.,31,Vol.537(2002)、特開2006−032260号公報、J.Porphyrins Phthalocyanines,230,Vol.3(1999)、Angew.Chem.Int.Ed.,373,Vol.46(2007)、Langmuir,5436,Vol.24(2008)等に記載のフタロシアニン化合物、ポルフィリン化合物等を挙げることができる。
これらの中でも、前記金属錯体化合物、前記クマリン化合物、前記ポリエン化合物、前記インドリン化合物、前記チオフェン化合物が好ましい。
前記溶液あるいは分散液を電子輸送層に塗布して吸着させる方法としては、例えば、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等を用いることができる。
また、二酸化炭素などを用いた超臨界流体中で吸着させても構わない。
前記縮合剤としては、無機物表面に物理的あるいは化学的に光増感材料と電子輸送化合物を結合すると思われる触媒的作用をするもの、または化学量論的に作用し、化学平衡を有利に移動させるものの何れであってもよい。
さらに、前記縮合助剤としてチオールやヒドロキシ化合物を添加してもよい。
前記凝集解離剤の添加量は、色素1質量部に対して0.01質量部〜500質量部が好ましく、0.1質量部〜100質量部がより好ましい。
また、この吸着は静置しても攪拌しながら行なっても構わない。
また、前記吸着は暗所で行なうことが好ましい。
ホール輸送材料6としては、有機ホール輸送材料、及び一般式(1a)又は一般式(1b)で表される塩基性化合物のうち少なくとも1つを含有していれば、特に制限はなく、目的に応じて適宜選択することができる。
なお、一般的なホール輸送層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、無機ホール輸送材料、有機ホール輸送材料等が用いられる。
前記有機ホール輸送材料としては、単一材料からなる単層構造のホール輸送層6、又は複数の化合物からなる積層構造のホール輸送層6のいずれにも用いることができる。
その具体例としては特公昭34−5466号公報等に示されているオキサジアゾール化合物、特公昭45−555号公報等に示されているトリフェニルメタン化合物、特公昭52−4188号公報等に示されているピラゾリン化合物、特公昭55−42380号公報等に示されているヒドラゾン化合物、特開昭56−123544号公報等に示されているオキサジアゾール化合物、特開昭54−58445号公報に示されているテトラアリールベンジジン化合物、特開昭58−65440号公報あるいは特開昭60−98437号公報に示されているスチルベン化合物、Adv.Mater.,813,vol.17,(2005)記載のspiro−OMeTADなどのスピロビフルオレン系化合物等を挙げることができる。
これらの中でも、前記spiro−OMeTADと称されるホール輸送材料が優れた光電変換特性を示す点で好ましい。
その具体例としては、ポリ(3−n−ヘキシルチオフェン)、ポリ(3−n−オクチルオキシチオフェン)、ポリ(9,9’−ジオクチル−フルオレン−コ−ビチオフェン)、ポリ(3,3’’’−ジドデシル−クォーターチオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン)、ポリ(2,5−ビス(3−デシルチオフェン−2−イル)チエノ[3,2−b]チオフェン)、ポリ(3,4−ジデシルチオフェン−コ−チエノ[3,2−b]チオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン−コ−チエノ[3,2−b]チオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン−コ−チオフェン)、ポリ(3.6−ジオクチルチエノ[3,2−b]チオフェン−コ−ビチオフェン)等のポリチオフェン化合物、
ポリ[2−メトキシー5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ[2−メトキシー5−(3,7−ジメチルオクチルオキシ)−1,4−フェニレンビニレン]、ポリ[(2−メトキシ−5−(2−エチルフェキシルオキシ)−1,4−フェニレンビニレン)−コ−(4,4’−ビフェニレンービニレン)]等のポリフェニレンビニレン化合物、
ポリ(9,9’−ジドデシルフルオレニル−2,7−ジイル)、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(9,10−アントラセン)]、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(4,4’−ビフェニレン)]、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレン)]、ポリ[(9,9−ジオクチル−2,7−ジイル)−コ−(1,4−(2,5−ジヘキシルオキシ)ベンゼン)]等のポリフルオレン化合物、
ポリ[2,5−ジオクチルオキシ−1,4−フェニレン]、ポリ[2,5−ジ(2−エチルヘキシルオキシー1,4−フェニレン]等のポリフェニレン化合物、
ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(N,N’−ジフェニル)−N,N’−ジ(p−ヘキシルフェニル)−1,4−ジアミノベンゼン]、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(N,N’−ビス(4−オクチルオキシフェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[(N,N’−ビス(4−オクチルオキシフェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[(N,N’−ビス(4−(2−エチルヘキシルオキシ)フェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[フェニルイミノ−1,4−フェニレンビニレン−2,5−ジオクチルオキシ−1,4−フェニレンビニレン−1,4−フェニレン]、ポリ[p−トリルイミノ−1,4−フェニレンビニレン−2,5−ジ(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン−1,4−フェニレン]、ポリ[4−(2−エチルヘキシルオキシ)フェニルイミノ−1,4−ビフェニレン]等のポリアリールアミン化合物、
ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(1,4−ベンゾ(2,1’,3)チアジアゾール]、ポリ(3,4−ジデシルチオフェン−コ−(1,4−ベンゾ(2,1’,3)チアジアゾール)等のポリチアジアゾール化合物を挙げることができる。
これらの中でも、キャリア移動度やイオン化ポテンシャルを考慮すると前記ポリチオフェン化合物と前記ポリアリールアミン化合物が特に好ましい。
前記添加剤としては、例えば、ヨウ素、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム、ヨウ化銅、ヨウ化鉄、ヨウ化銀等の金属ヨウ化物、
ヨウ化テトラアルキルアンモニウム、ヨウ化ピリジニウム等の4級アンモニウム塩、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物、
臭化テトラアルキルアンモニウム、臭化ピリジニウム等の4級アンモニウム化合物の臭素塩、
塩化銅、塩化銀等の金属塩化物、酢酸銅、酢酸銀、酢酸パラジウム等の酢酸金属塩、
硫酸銅、硫酸亜鉛等の金属硫酸塩、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、
ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、
ビオロゲン色素、ヒドロキノン等、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾイニウム塩、ヨウ化1−メチル−3−n−ヘキシルイミダゾリニウム塩、1,2−ジメチル−3−エチルイミダゾリウムトリフロオロメタンスルホン酸塩、1−メチル−3−ブチルイミダゾリウムノナフルオロブチルスルホン酸塩、1−メチル−3−エチルイミダゾリウムビス(トリフルオロメチル)スルホニルイミド等のInorg.Chem.35(1996)1168に記載のイオン液体、ピリジン、4−t−ブチルピリジン、ベンズイミダゾール等の塩基性化合物、
リチウムトリフルオロメタンスルホニルイミド、リチウムジイソプロピルイミド等のリチウム化合物などが挙げられる。
本発明においては、前記有機ホール輸送材料に下記一般式(1a)又は一般式(1b)で表される塩基性化合物を添加することで、特に高い開放電圧を得ることができる。
また、光電変換素子における内部抵抗が高まり、室内光等の微弱光における損失電流を低減することができる。よって、従来の塩基性化合物より高い開放電圧を得られる。
したがって、短絡電流密度の低下量が少なく、高い開放電圧が得られることで、優れた光電変換特性を得ることができる。さらに、報告例が少ない室内光等の微弱光における光電変換する際に、特に際立って優位性が現れることを検証することができた。
報告例(J.Org.Chem., 67 (2002) 3029)同様に下記ルートから容易に合成することができる。
前記酸化剤としては、例えば、ヘキサクロロアンチモン酸トリス(4−ブロモフェニル)アミニウム、ヘキサフルオロアンチモネート銀、ニトロソニウムテトラフルオボラート、硝酸銀、コバルト錯体系化合物等が挙げられる。
前記超臨界流体は、気体と液体が共存できる限界(臨界点)を超えた温度・圧力領域において非凝集性高密度流体として存在し、圧縮しても凝集せず、臨界温度以上、かつ臨界圧力以上の状態にある流体である限り特に制限はなく、目的に応じて適宜選択することができるが、臨界温度が低いものが好ましい。
また、これらの流体は、1種単独であっても二種以上の混合であっても構わない。
前記超臨界流体として挙げられる化合物は、前記亜臨界流体としても好適に使用することができる。
前記有機溶媒及び前記エントレーナーの添加により、前記超臨界流体中での溶解度の調整をより容易に行うことができる。
前記プレス処理方法としては、特に制限はないが、例えば、IR錠剤整形器に代表されるような平板を用いたプレス成型法、ローラなどを用いたロールプレス法などが挙げられる。
また、前記プレス処理時に熱を加えても構わない。
前記離型材としては、例えば、ポリ四フッ化エチレン、ポリクロロ三フッ化エチレン、四フッ化エチレン六フッ化プロピレン共重合体、ペルフルオロアルコキシフッ化樹脂、ポリフッ化ビニリデン、エチレン四フッ化エチレン共重合体、エチレンクロロ三フッ化エチレン共重合体、ポリフッ化ビニルなどのフッ素樹脂などが挙げられる。
また、前記高分子材料は多孔質状の電子輸送層4内部へ浸透することが困難であるため、逆に多孔質状の電子輸送層4表面の被覆にも優れ、電極を設ける際の短絡防止にも効果を発揮するため、より高い性能を得ることが可能となる。
前記金属酸化物を前記有機ホール輸送材料上に設ける方法としては、特に制限はなく、スパッタリングや真空蒸着等の真空中で薄膜を形成する方法や湿式成膜法などが挙げられる。
前記湿式成膜法を用いた場合、塗布方法は特に制限はなく、公知の方法にしたがって行なうことができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法などが挙げられる。また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。前記第二の電極の厚みとしては、0.1nm〜50nmが好ましく、1nm〜10nmがより好ましい。
第二の電極7は、通常前述の第一の電極2と同様のものを用いることができ、強度や密封性が充分に保たれるような構成では支持体は必ずしも必要ではない。
第二の電極7の塗設については、用いられる材料の種類やホール輸送層6の種類により、適宜ホール輸送層6上に塗布、ラミネート、蒸着、CVD、貼り合わせ等の手法により形成可能である。
本発明の色素増感型太陽電池においては、第一の電極2側が透明であり、太陽光を第一の電極2側から入射させる方法が好ましい。この場合、第二の電極7側には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましい。
また、太陽光の入射側に反射防止層を設けることも有効な手段である。
本発明の色素増感型太陽電池は、太陽電池を用いた電源装置に応用できる。
応用例としては、従来から太陽電池やそれを用いた電源装置を利用している機器類であれば、いずれのものでも可能である。
(酸化チタン半導体電極の作製)
チタニウムテトラ−n−プロポキシド2ml、酢酸4ml、イオン交換水1ml、及び2−プロパノール40mlを混合し、FTOガラス基板上にスピンコートし、室温で乾燥後、空気中450℃で30分間焼成し、酸化チタン半導体電極を作製した。
再度同一溶液を用いて、得た電極上に膜厚100nmになるようにスピンコートで塗布し、空気中450℃で30分間焼成してホールブロッキング層を形成した。
得られた分散液にポリエチレングリコール(#20,000)1.2gを加えてペーストを作製した。
このペーストを、上記ホールブロッキング層上に厚み1.5μmになるように塗布し、室温で乾燥後、空気中500℃で30分間焼成し、多孔質状の電子輸送層を形成した。
上記酸化チタン半導体電極を、増感色素として前記Dye8(0.5mM、アセトニトリル/t−ブタノール(体積比1:1)溶液)に浸漬し、1時間暗所にて静置し光増感材料を吸着させた。
光増感剤を担持した半導体電極上に、有機ホール輸送材料(メルク株式会社製、銘柄:2,2’,7,7’−tetrakis(N,N−di−p−methoxyphenylamino)−9,9’−spirobifluorene、品番:SHT−263)を溶解したクロロベンゼン(固形分14質量%)溶液に、関東化学社製リチウムビス(トリフルオロメタンスルホニル)イミド(固形分1質量%)、及び例示塩基性化合物No.1(固形分1.4質量%)を加えて得た溶液を、光増感剤を担持した半導体電極上にスピンコートにてホール輸送層を成膜した。この上に銀を厚み100nmに真空蒸着して色素増感型太陽電池を作製した。
得られた色素増感型太陽電池の白色LED照射下(0.05mW/cm2)における光電変換効率を測定した。白色LEDはコスモテクノ社製デスクランプCDS−90α(スタディーモード)、評価機器はNF回路設計ブロック社製太陽電池評価システムAs−510−PV03にて測定した。その結果、開放電圧=0.82V、短絡電流密度8.20μA/cm2、形状因子=0.78、変換効率=10.48%という優れた特性を示した。
実施例1における塩基性化合物を例示化合物No.3の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.5の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.8の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.10の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.12の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.13の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.15の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.16の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.18の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.20の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.13の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye8の色素に、塩基性化合物を例示化合物No.13の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における、リチウムビス(トリフルオロメタンスルホニル)イミドを1−n−ヘキシル−3−メチルイミダゾリニウムビス(トリフルオロメチルスルホニル)イミドに変更した以外は、実施例1と同様にして、色素増感型太陽電池を作製し、評価した。結果を表2及び表3に示した。
実施例1における、ホール輸送層と銀電極の間に、下記ホール輸送層を挿入した以外は、実施例1と同様にして、色素増感型太陽電池を作製し、評価した。結果を表2及び表3に示した。
アルドリッチ社製ポリ(3−n−ヘキシルチオフェン)を溶解したクロロベンゼン(固形分2質量%)に、1−n−ヘキシル−3−メチルイミダゾリニウムトリフルオロスルホニルジイミド(27mM)を加えて得た溶液をホール輸送層上にスプレー塗布して約100nm製膜した。
実施例1における色素をDye8の色素に、塩基性化合物を例示化合物No.21の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.23の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.24の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.26の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.28の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における塩基性化合物を例示化合物No.29の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.26の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.30の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye1の色素に、塩基性化合物を例示化合物No.31の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.21の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.26の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における色素をDye4の色素に、塩基性化合物を例示化合物No.28の塩基性化合物に変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
実施例1における、リチウムビス(トリフルオロメタンスルホニル)イミドを1−n−ヘキシル−3−メチルイミダゾリニウムビス(トリフルオロメチルスルホニル)イミドに変更した以外は、実施例1と同様にして、色素増感型太陽電池を作製し、評価した。結果を表2及び表3に示した。
実施例16における、ホール輸送層と銀電極の間に、下記ホール輸送層を挿入した以外は、実施例16と同様にして、色素増感型太陽電池を作製し、評価した。結果を表2及び表3に示した。
アルドリッチ社製ポリ(3−n−ヘキシルチオフェン)を溶解したクロロベンゼン(固形分2質量%)に、1−n−ヘキシル−3−メチルイミダゾリニウムトリフルオロスルホニルジイミド(27mM)を加えて得た溶液をホール輸送層上にスプレー塗布して約100nm製膜した。
実施例1における塩基性化合物を、アルドリッチ社製ターシャルブチルピリジンに変更した以外は、実施例1と同様にして、光電変換素子を作製し、評価した。結果を表2及び表3に示した。
<1> 第一の電極と、ホールブロッキング層と、電子輸送層と、第一のホール輸送層と、第二の電極と、を有する光電変換素子であって、
前記第一のホール輸送層は、下記一般式(1a)及び一般式(1b)で表される塩基性化合物のうち少なくとも1つを含むことを特徴とする光電変換素子である。
<2> 前記電子輸送層は、下記一般式(2)で表される光増感材料で光増感された電子輸送性材料を含む前記<1>に記載の光電変換素子である。
<3> 前記電子輸送性材料が、酸化チタン、酸化亜鉛、酸化スズ、及び酸化ニオブから選択される少なくとも1種である前記<2>に記載の光電変換素子である。
<4> 前記ホールブロッキング層は、酸化チタンを含むことを特徴とする前記<1>乃至<3>のいずれか一項に記載の光電変換素子である。
<5> 前記第一のホール輸送層は、イオン液体を含む前記<1>乃至<4>のいずれか一項に記載の光電変換素子である。
<6> 前記イオン液体は、イミダゾリウム化合物を含む前記<5>に記載の光電変換素子である。
<7> 前記第一のホール輸送層と前記第二の電極との間に、ホール輸送性の高分子材料を含む第二のホール輸送層を有する前記<1>乃至<6>のいずれか一項に記載の光電変換素子である。
<8> 前記<1>乃至<7>のいずれか一項に記載の光電変換素子を具備することを特徴とする太陽電池である。
前記<8>記載の「太陽電池」によれば、第一の電極と、ホールブロッキング層と、電子輸送層と、第一のホール輸送層と、第二の電極と、を有し、前記第一のホール輸送層は、前記一般式(1a)又は一般式(1b)で表される塩基性材料のうち少なくとも1を用いたものであることにより、内部抵抗及び開放電圧が高くなることで、室内光における良好な特性の太陽電池を得ることが可能である。
2 第一の電極定着装置
3 ホールブロッキング層
4 電子輸送層
5 光増感化合物
6 ホール輸送層
7 第二の電極
8 リードライン
9 リードライン
Claims (8)
- 第一の電極と、ホールブロッキング層と、電子輸送層と、第一のホール輸送層と、第二の電極と、を有する固体型光電変換素子であって、
前記第一のホール輸送層は、有機ホール輸送材料に塩基性化合物が添加されてなり、
前記塩基性化合物が、下記構造式(5)、(9)、(15)、及び(16)で表される化合物から選択される少なくとも1種であることを特徴とする固体型光電変換素子。
- 前記電子輸送層は、下記一般式(2)で表される光増感材料で光増感された電子輸送性材料を含む請求項1に記載の固体型光電変換素子。
- 前記電子輸送性材料が、酸化チタン、酸化亜鉛、酸化スズ、及び酸化ニオブから選択される少なくとも1種である請求項2に記載の固体型光電変換素子。
- 前記ホールブロッキング層は、酸化チタンを含む請求項1乃至3のいずれか一項に記載の固体型光電変換素子。
- 前記有機ホール輸送材料が、オキサジアゾール化合物、トリフェニルメタン化合物、ピラゾリン化合物、ヒドラゾン化合物、テトラアリールベンジジン化合物、スチルベン化合物、及びスピロビフルオレン系化合物の中から選ばれた化合物である請求項1乃至4のいずれか一項に記載の固体型光電変換素子。
- 前記有機ホール輸送材料が、spiro−OMeTADである請求項5に記載の固体型光電変換素子。
- 前記第一のホール輸送層と前記第二の電極との間に、ホール輸送性の高分子材料を含む第二のホール輸送層を有する請求項1乃至6のいずれか一項に記載の固体型光電変換素子。
- 請求項1乃至7のいずれか一項に記載の固体型光電変換素子を具備することを特徴とする太陽電池。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014032566 | 2014-02-24 | ||
JP2014032566 | 2014-02-24 | ||
JP2014084832 | 2014-04-16 | ||
JP2014084832 | 2014-04-16 | ||
PCT/JP2015/052684 WO2015125587A1 (ja) | 2014-02-24 | 2015-01-30 | 光電変換素子及び太陽電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018246911A Division JP2019083324A (ja) | 2014-02-24 | 2018-12-28 | 固体型光電変換素子及び太陽電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015125587A1 JPWO2015125587A1 (ja) | 2017-03-30 |
JP6520914B2 true JP6520914B2 (ja) | 2019-05-29 |
Family
ID=53878099
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016504016A Active JP6520914B2 (ja) | 2014-02-24 | 2015-01-30 | 固体型光電変換素子及び太陽電池 |
JP2018246911A Pending JP2019083324A (ja) | 2014-02-24 | 2018-12-28 | 固体型光電変換素子及び太陽電池 |
JP2020155165A Pending JP2021005723A (ja) | 2014-02-24 | 2020-09-16 | 光電変換素子及び太陽電池 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018246911A Pending JP2019083324A (ja) | 2014-02-24 | 2018-12-28 | 固体型光電変換素子及び太陽電池 |
JP2020155165A Pending JP2021005723A (ja) | 2014-02-24 | 2020-09-16 | 光電変換素子及び太陽電池 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10636579B2 (ja) |
EP (1) | EP3113240B1 (ja) |
JP (3) | JP6520914B2 (ja) |
KR (3) | KR102330122B1 (ja) |
CN (2) | CN110690350A (ja) |
WO (1) | WO2015125587A1 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463624A (zh) | 2014-04-16 | 2017-02-22 | 株式会社理光 | 光电转换元件 |
WO2016181911A1 (ja) | 2015-05-08 | 2016-11-17 | 株式会社リコー | 光電変換素子 |
JP6657841B2 (ja) * | 2015-11-20 | 2020-03-04 | 株式会社リコー | 光電変換素子及び太陽電池 |
EP3410506B1 (en) * | 2016-01-25 | 2022-03-30 | Ricoh Company, Ltd. | Photoelectric conversion element |
JP6740621B2 (ja) * | 2016-02-04 | 2020-08-19 | 株式会社リコー | 光電変換素子 |
JP6677078B2 (ja) * | 2016-05-26 | 2020-04-08 | 株式会社リコー | ホール輸送材料及び、光電変換素子並びに太陽電池 |
JP6641599B2 (ja) * | 2016-05-26 | 2020-02-05 | 株式会社リコー | ホール輸送材料及び、光電変換素子並びに太陽電池 |
JP6850435B2 (ja) * | 2016-06-08 | 2021-03-31 | 株式会社リコー | 3級アミン化合物、光電変換素子、及び太陽電池 |
JP6776665B2 (ja) * | 2016-07-05 | 2020-10-28 | 株式会社リコー | 光電変換素子及び太陽電池 |
CN110073508B (zh) | 2016-12-07 | 2023-12-26 | 株式会社理光 | 光电转换元件 |
JP6880748B2 (ja) | 2017-01-10 | 2021-06-02 | 株式会社リコー | 光電変換素子及び太陽電池 |
US10319533B2 (en) | 2017-01-12 | 2019-06-11 | Ricoh Company, Ltd. | Photoelectric conversion element and solar cell |
JP2019176136A (ja) * | 2018-03-29 | 2019-10-10 | 株式会社リコー | 光電変換素子、及び光電変換素子モジュール |
JP2020102602A (ja) * | 2018-03-19 | 2020-07-02 | 株式会社リコー | 光電変換素子、及び光電変換素子モジュール |
WO2019181176A1 (en) | 2018-03-19 | 2019-09-26 | Ricoh Company, Ltd. | Photoelectric conversion device, process cartridge, and image forming apparatus |
JP2019165073A (ja) * | 2018-03-19 | 2019-09-26 | 株式会社リコー | 太陽電池モジュール |
EP3769352A4 (en) * | 2018-03-19 | 2021-05-19 | Ricoh Company, Ltd. | Photoelectric conversion element and photoelectric conversion element module |
EP3547339A1 (en) * | 2018-03-30 | 2019-10-02 | Ricoh Company, Ltd. | Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module |
KR102093431B1 (ko) * | 2018-09-13 | 2020-03-25 | 경북대학교 산학협력단 | 페로브스카이트 태양전지 및 이의 제조방법 |
WO2020107978A1 (zh) * | 2018-11-29 | 2020-06-04 | Tcl科技集团股份有限公司 | 量子点发光二极管及其制备方法 |
JP2020127007A (ja) * | 2019-02-01 | 2020-08-20 | 株式会社リコー | 光電変換素子、太陽電池モジュール、電源モジュール、及び電子機器 |
WO2021010425A1 (en) | 2019-07-16 | 2021-01-21 | Ricoh Company, Ltd. | Solar cell module, electronic device, and power supply module |
JP2021027078A (ja) * | 2019-07-31 | 2021-02-22 | 株式会社リコー | 光電変換素子、電子機器、及び電源モジュール |
WO2021107158A1 (en) | 2019-11-28 | 2021-06-03 | Ricoh Company, Ltd. | Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module |
US20210167287A1 (en) * | 2019-11-28 | 2021-06-03 | Tamotsu Horiuchi | Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module |
JP7003387B2 (ja) * | 2019-12-26 | 2022-01-20 | 株式会社リコー | 光電変換素子、太陽電池及び合成方法 |
US11502264B2 (en) | 2020-02-27 | 2022-11-15 | Ricoh Company, Ltd. | Photoelectric conversion element and photoelectric conversion module |
JP7413833B2 (ja) | 2020-02-27 | 2024-01-16 | 株式会社リコー | 光電変換素子及び光電変換モジュール |
JP7651842B2 (ja) | 2020-11-13 | 2025-03-27 | 株式会社リコー | 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール |
JP2022078536A (ja) * | 2020-11-13 | 2022-05-25 | 株式会社リコー | 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール |
EP4092704B1 (en) * | 2021-05-20 | 2025-07-09 | Ricoh Company, Ltd. | Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device |
CN115915793A (zh) * | 2021-09-30 | 2023-04-04 | 株式会社理光 | 光电转换元件、光电转换模块及电子设备 |
WO2023107547A2 (en) * | 2021-12-08 | 2023-06-15 | Kineta, Inc. | Azetidine and spiroazetidine compounds and uses thereof |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH674596A5 (ja) | 1988-02-12 | 1990-06-15 | Sulzer Ag | |
JPH1144773A (ja) | 1997-07-25 | 1999-02-16 | Citizen Watch Co Ltd | 外部操作切り換え構造 |
JPH11144773A (ja) | 1997-09-05 | 1999-05-28 | Fuji Photo Film Co Ltd | 光電変換素子および光再生型光電気化学電池 |
JP2000106223A (ja) | 1998-09-29 | 2000-04-11 | Fuji Photo Film Co Ltd | 光電変換素子 |
WO2003054894A1 (en) * | 2001-12-21 | 2003-07-03 | Sony International (Europe) Gmbh | A polymer gel hybrid solar cell |
JP4019140B2 (ja) * | 2002-07-10 | 2007-12-12 | 独立行政法人産業技術総合研究所 | アミノピリジン系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池 |
JP4446011B2 (ja) | 2006-03-02 | 2010-04-07 | 学校法人東京理科大学 | 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池 |
US8158880B1 (en) * | 2007-01-17 | 2012-04-17 | Aqt Solar, Inc. | Thin-film photovoltaic structures including semiconductor grain and oxide layers |
KR20110129959A (ko) * | 2009-03-17 | 2011-12-02 | 코나르카 테크놀로지, 인코포레이티드 | 염료 감응형 전지용 금속 기판 |
US8664518B2 (en) * | 2009-12-11 | 2014-03-04 | Konica Minolta Holdngs, Inc. | Organic photoelectric conversion element and producing method of the same |
JP5700937B2 (ja) * | 2010-02-09 | 2015-04-15 | 保土谷化学工業株式会社 | 光電変換用増感色素及びそれを用いた光電変換素子及び色素増感太陽電池 |
JP5606754B2 (ja) * | 2010-02-26 | 2014-10-15 | 株式会社Adeka | 色素増感型太陽電池 |
GB201004106D0 (en) * | 2010-03-11 | 2010-04-28 | Isis Innovation | Device |
EP2562839A4 (en) | 2010-04-22 | 2015-07-22 | Hitachi Chemical Co Ltd | ORGANIC ELECTRONIC MATERIAL, POLYMERIZATION INITIATOR AND THERMAL POLYMERIZATION INITIATOR, INK COMPOSITION, ORGANIC THIN FILM AND METHOD FOR PRODUCING THE SAME, ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, ILLUMINATION DEVICE, DISPLAY ELEMENT, AND DISPLAY DEVICE |
WO2012051337A2 (en) * | 2010-10-12 | 2012-04-19 | The Regents Of The University Of Michigan | Photoactive devices including porphyrinoids coordinating additives |
US20120177813A1 (en) * | 2010-10-17 | 2012-07-12 | Thompson Mark E | Chemical annealing method for fabrication of organic thin films for optoelectronic devices |
JP2012113942A (ja) * | 2010-11-24 | 2012-06-14 | Ricoh Co Ltd | 多層型光電変換素子およびその製造方法 |
JP2012199023A (ja) * | 2011-03-18 | 2012-10-18 | Ricoh Co Ltd | 光電変換素子及びその製造方法 |
JP5629625B2 (ja) | 2011-03-28 | 2014-11-26 | 株式会社豊田中央研究所 | 色素増感型太陽電池の製造方法、色素増感型太陽電池及び色素増感型太陽電池モジュール |
CN102290257B (zh) * | 2011-05-19 | 2012-10-03 | 内蒙古大学 | 一种可选择性透光的染料敏化太阳能电池的制备方法 |
KR101354638B1 (ko) * | 2011-06-20 | 2014-01-22 | 제일모직주식회사 | 유기광전자소자용 재료, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 |
KR20130005918A (ko) * | 2011-07-08 | 2013-01-16 | 주식회사 세원 | 염료감응 태양전지용 겔형 전해질 |
JP5626185B2 (ja) * | 2011-11-21 | 2014-11-19 | コニカミノルタ株式会社 | 光電変換素子およびこれを含む太陽電池 |
EP2850627B1 (en) * | 2012-05-18 | 2016-04-06 | Isis Innovation Limited | Optoelectronic device comprising porous scaffold material and perovskites |
JP6194614B2 (ja) | 2012-12-18 | 2017-09-13 | 株式会社リコー | 光電変換素子 |
-
2015
- 2015-01-30 CN CN201911069220.9A patent/CN110690350A/zh active Pending
- 2015-01-30 KR KR1020217017859A patent/KR102330122B1/ko active Active
- 2015-01-30 KR KR1020167025653A patent/KR102112330B1/ko active Active
- 2015-01-30 JP JP2016504016A patent/JP6520914B2/ja active Active
- 2015-01-30 CN CN201580010108.1A patent/CN106062985A/zh active Pending
- 2015-01-30 WO PCT/JP2015/052684 patent/WO2015125587A1/ja active Application Filing
- 2015-01-30 EP EP15752787.0A patent/EP3113240B1/en active Active
- 2015-01-30 US US15/120,464 patent/US10636579B2/en active Active
- 2015-01-30 KR KR1020207013591A patent/KR20200056470A/ko not_active Ceased
-
2018
- 2018-12-28 JP JP2018246911A patent/JP2019083324A/ja active Pending
-
2020
- 2020-03-25 US US16/829,356 patent/US11101080B2/en active Active
- 2020-09-16 JP JP2020155165A patent/JP2021005723A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3113240B1 (en) | 2024-04-03 |
CN110690350A (zh) | 2020-01-14 |
CN106062985A (zh) | 2016-10-26 |
WO2015125587A1 (ja) | 2015-08-27 |
JP2019083324A (ja) | 2019-05-30 |
KR20210073610A (ko) | 2021-06-18 |
JP2021005723A (ja) | 2021-01-14 |
KR102112330B1 (ko) | 2020-05-19 |
US11101080B2 (en) | 2021-08-24 |
EP3113240A1 (en) | 2017-01-04 |
US10636579B2 (en) | 2020-04-28 |
KR102330122B1 (ko) | 2021-11-24 |
US20170069431A1 (en) | 2017-03-09 |
KR20200056470A (ko) | 2020-05-22 |
US20200273630A1 (en) | 2020-08-27 |
KR20160124186A (ko) | 2016-10-26 |
JPWO2015125587A1 (ja) | 2017-03-30 |
EP3113240A4 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6520914B2 (ja) | 固体型光電変換素子及び太陽電池 | |
JP6874790B2 (ja) | 光電変換素子及び光電変換素子の製造方法 | |
JP6249093B2 (ja) | 光電変換素子 | |
JP6447754B2 (ja) | 光電変換素子 | |
JP6520020B2 (ja) | 色素増感太陽電池 | |
JP2014143333A (ja) | 固体色素増感型太陽電池、固体色素増感型太陽電池モジュール | |
JP2011065751A (ja) | 光電変換素子 | |
JP6340758B2 (ja) | 光電変換素子の製造方法 | |
JP6579480B2 (ja) | 光電変換素子及び二次電池 | |
JP2013211149A (ja) | 光電変換素子およびその製造方法 | |
JP6111552B2 (ja) | 光電変換素子、及び光電変換素子の製造方法 | |
JP6641599B2 (ja) | ホール輸送材料及び、光電変換素子並びに太陽電池 | |
JP6740621B2 (ja) | 光電変換素子 | |
JP6657841B2 (ja) | 光電変換素子及び太陽電池 | |
JP2017011066A (ja) | 光電変換素子 | |
JP2020074416A (ja) | 光電変換素子、太陽電池及び合成方法 | |
JP6899083B2 (ja) | 光電変換素子及び二次電池 | |
JP6677078B2 (ja) | ホール輸送材料及び、光電変換素子並びに太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161102 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180822 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181228 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190415 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6520914 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |