JP6384263B2 - Echo characteristic correction method - Google Patents

Echo characteristic correction method Download PDF

Info

Publication number
JP6384263B2
JP6384263B2 JP2014213519A JP2014213519A JP6384263B2 JP 6384263 B2 JP6384263 B2 JP 6384263B2 JP 2014213519 A JP2014213519 A JP 2014213519A JP 2014213519 A JP2014213519 A JP 2014213519A JP 6384263 B2 JP6384263 B2 JP 6384263B2
Authority
JP
Japan
Prior art keywords
echo
distance
contact
ratio
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014213519A
Other languages
Japanese (ja)
Other versions
JP2016080568A (en
Inventor
安彦 臂
安彦 臂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2014213519A priority Critical patent/JP6384263B2/en
Publication of JP2016080568A publication Critical patent/JP2016080568A/en
Application granted granted Critical
Publication of JP6384263B2 publication Critical patent/JP6384263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

本発明は、互いに異なる材質で形成された第1部材と第2部材との接触面の周囲に形成された空間の一部に充填された液体の膜厚を、超音波を用いて計測する際に用いるエコー特性を補正する、エコー特性補正方法に関する。   In the present invention, when the thickness of a liquid filled in a part of a space formed around the contact surface between the first member and the second member formed of different materials is measured using ultrasonic waves. The present invention relates to an echo characteristic correction method for correcting an echo characteristic used in the above.

例えば、ガラスの略平板の第1部材に、ガラスの略球体の第2部材を接触させて、第1部材と第2部材の接点を含む接触面の周囲に形成された空間の少なくとも一部に潤滑油を充填した場合、その油膜の膜厚は、光干渉縞を利用した光干渉計測方法にて計測することができる。しかし、この光干渉計測方法では、第1部材と第2部材の少なくとも一方が透明でなければならないので、例えば非透明な金属の軌道輪(第1部材に相当)と、非透明な鋼球(第2部材に相当)と、にて構成された転がり軸受装置等には適用できない。   For example, the first member of the substantially flat glass plate is brought into contact with the second member of the substantially spherical glass member, and at least part of the space formed around the contact surface including the contact points of the first member and the second member. When lubricating oil is filled, the film thickness of the oil film can be measured by an optical interference measurement method using optical interference fringes. However, in this optical interference measurement method, since at least one of the first member and the second member must be transparent, for example, a non-transparent metal race (corresponding to the first member) and a non-transparent steel ball ( It corresponds to the second member) and cannot be applied to a rolling bearing device or the like constituted by

非透明な第1部材に、非透明な第2部材の曲面を接触させて、その接触面の周囲に形成された空間の少なくとも一部に充填した液体の膜厚を計測する方法としては、超音波を利用した超音波計測方法を利用することができる。超音波計測方法は、発信した超音波の反射波の強度(エコー強度)を検出することで、エコー強度に応じた膜厚を計測することができる。   As a method of measuring the film thickness of the liquid filled in at least a part of the space formed around the contact surface by bringing the curved surface of the non-transparent second member into contact with the non-transparent first member, An ultrasonic measurement method using sound waves can be used. The ultrasonic measurement method can measure the film thickness according to the echo intensity by detecting the intensity (echo intensity) of the reflected wave of the transmitted ultrasonic wave.

例えば特許文献1には、非透明なシリンダ(第1部材に相当)と、非透明なピストンリング(第2部材に相当)と、の間に形成された油膜の膜厚を、超音波探触子を用いて計測する際に使用される較正曲線データを精度よく簡単に得ることができる、膜厚測定のための膜厚較正曲線の取得方法が開示されている。特許文献1では、異なる膜厚についてそれぞれ、膜形成部からの反射波であるエコー高さ信号を超音波探触子により受信し、エコー高さ信号を標準化したエコー高さ比を演算し、予め設定された第1膜厚値と第2膜厚値の間におけるエコー高さ比の変化割合を演算し、この変化割合と膜厚値の関係を較正曲線として取得している。   For example, Patent Document 1 discloses an ultrasonic probe for the film thickness of an oil film formed between a non-transparent cylinder (corresponding to a first member) and a non-transparent piston ring (corresponding to a second member). A method of obtaining a film thickness calibration curve for film thickness measurement, which can easily and accurately obtain calibration curve data used when measuring using a child, is disclosed. In Patent Document 1, an echo height signal that is a reflected wave from a film forming unit is received by an ultrasonic probe for each of different film thicknesses, an echo height ratio obtained by standardizing the echo height signal is calculated, A change ratio of the echo height ratio between the set first film thickness value and the second film thickness value is calculated, and the relationship between the change ratio and the film thickness value is acquired as a calibration curve.

特開2007−212410号公報JP 2007-212410 A

特許文献1に記載の発明では、シリンダ(第1部材)とピストンリング(第2部材)を想定しているので、シリンダとピストンリングとが接触している場合を想定していない。つまり、特許文献1には、シリンダとピストンリングが非接触であって、シリンダとピストンリングとの間の膜厚と、標準化したエコー高さ(エコー高さ比)と、の関係を示している。このため、膜厚がゼロから大きくなるに従って、標準化したエコー高さも徐々に増加している。従って、標準化したエコー高さ(エコー高さ比)を計測すれば、膜厚を1つに特定することができる。   In invention of patent document 1, since the cylinder (1st member) and the piston ring (2nd member) are assumed, the case where the cylinder and the piston ring are contacting is not assumed. In other words, Patent Document 1 shows a relationship between a cylinder and a piston ring that are not in contact with each other, and a film thickness between the cylinder and the piston ring and a standardized echo height (echo height ratio). . For this reason, as the film thickness increases from zero, the standardized echo height gradually increases. Therefore, if the standardized echo height (echo height ratio) is measured, the film thickness can be specified as one.

しかし、互いに異なる材質の第1部材と第2部材が接している場合では、特許文献1に記載されているような、膜厚が増加するに従ってエコー高さ比も増加するような、膜厚とエコー高さ比との関係が得られない場合がある。互いに異なる材質の第1部材と第2部材が接している場合、図5の例に示すように、第1部材21と第2部材22との接触面の中心である接触中心Sからの距離とエコー比との関係を示す距離・エコー比特性(図5中における『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)は、接触中心Sからの距離をゼロから徐々に大きくしていった場合、エコー比は、接触面の境界近傍までは徐々に減少し、接触面の境界近傍を越えた場合は徐々に増加する、という特性を有する。膜厚を求めるためには、この『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)と、第1部材21と第2部材22の形状等から理論的に求めた、接触中心Sからの距離と間隔(第1部材と第2部材との隙間)との関係を示す『距離・間隔特性』(図5参照)と、を予め作成しておく。なお、エコー比(H)とは、予め、第2部材と液体を取り除いた第1部材のみで測定したエコー強度に基づいたエコー強度を基準エコー強度(ho)として取得しておき、計測対象物で計測したエコー強度(h)を、基準エコー強度(ho)で除算した値である(H=h/ho)。そして、実際の計測対象物で計測したエコー強度からエコー比を求め、求めたエコー比と『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)から、計測したエコー比に対応する距離を求め、求めた距離と『距離・間隔特性』から、間隔(すなわち膜厚)を求める。しかし、図5の例に示す『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)では、例えば計測したエコー強度から求めたエコー比がH1ABであった場合、当該エコー比H1ABと『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)から求められる距離は1つに特定されず、距離D1Aと距離D1Bの2つが特定されてしまう。そしてこの距離D1Aと距離D1Bと、『距離・間隔特性』からは、間隔(膜厚)L1Aと間隔(膜厚)L1Bの2つが特定されてしまい、膜厚を1つに特定することができない。そして、この問題は、特許文献1に記載された発明を用いて較正しても解決することができない。   However, when the first member and the second member made of different materials are in contact with each other, as described in Patent Document 1, the film thickness is such that the echo height ratio increases as the film thickness increases. In some cases, the relationship with the echo height ratio cannot be obtained. When the first member and the second member made of different materials are in contact with each other, as shown in the example of FIG. 5, the distance from the contact center S that is the center of the contact surface between the first member 21 and the second member 22 The distance / echo ratio characteristic (“distance / echo ratio characteristic” in FIG. 5 (when the first member and the second member are made of different materials) indicating the relationship with the echo ratio gradually increases the distance from the contact center S from zero. The echo ratio has a characteristic that the echo ratio gradually decreases to near the boundary of the contact surface, and gradually increases when the contact surface boundary is exceeded. Is the distance from the contact center S theoretically determined from this “distance / echo ratio characteristic” (when the first member and the second member are made of different materials) and the shapes of the first member 21 and the second member 22. Shows the relationship between distance and distance (gap between the first member and the second member) Characteristics ”(see FIG. 5) are prepared in advance, and the echo ratio (H) is the echo intensity based on the echo intensity measured in advance only with the second member and the first member from which the liquid is removed. Is the value obtained by dividing the echo intensity (h) measured by the measurement object by the reference echo intensity (ho) (H = h / ho). The echo ratio is obtained from the echo intensity measured at the measurement object, and the distance corresponding to the measured echo ratio is calculated from the obtained echo ratio and the “distance / echo ratio characteristics” (when the first member and the second member are made of different materials). The distance (that is, the film thickness) is obtained from the obtained distance and the “distance / spacing characteristics.” However, the “distance / echo ratio characteristics” shown in the example of FIG. In the case of), for example, from the measured echo intensity When the calculated echo ratio is H1AB, the distance obtained from the echo ratio H1AB and “distance / echo ratio characteristics” (when the first member and the second member are made of different materials) is not specified as one. The distance D1A and the distance D1B are specified, and the distance D1A, the distance D1B, and the “distance / interval characteristics” specify the distance (film thickness) L1A and the distance (film thickness) L1B. The film thickness cannot be specified as one, and this problem cannot be solved even by calibrating using the invention described in Patent Document 1.

本発明は、このような点に鑑みて創案されたものであり、互いに異なる材質で形成された第1部材と第2部材とを接触させた接触面の周囲に形成された空間の少なくとも一部に充填された液体の膜厚を計測する際に利用する、第1部材と第2部材の接触面の中心である接触中心からの距離とエコー比との関係を示す距離・エコー比特性を、接触中心からの距離がゼロから大きくなるに従って、エコー比も徐々に大きくなるような特性へと補正する、エコー特性補正方法を提供することを課題とする。   The present invention was devised in view of such points, and at least a part of a space formed around the contact surface where the first member and the second member formed of different materials are brought into contact with each other. The distance / echo ratio characteristic indicating the relationship between the distance from the contact center, which is the center of the contact surface of the first member and the second member, and the echo ratio is used when measuring the film thickness of the liquid filled in It is an object of the present invention to provide an echo characteristic correction method in which the echo ratio is gradually increased as the distance from the contact center increases from zero.

上記課題を解決するため、本発明に係るエコー特性補正方法は次の手段をとる。まず、本発明の第1の発明は、互いに異なる材質で形成された第1部材と第2部材とを接触させた接触面の周囲に形成された空間の少なくとも一部に充填された液体の膜厚を超音波を用いて計測する際のエコー特性を補正するエコー特性補正方法である。そして、前記第1部材は、表面と裏面を有しており、前記第2部材の形状は、前記第1部材の裏面と対向する面が、前記第1部材に向かって少なくとも1つの曲率を有する凸形状を有しており、前記第1部材と前記第2部材は、前記第1部材を上側として前記第1部材の裏面に前記第2部材の表面が接触するように上下に配置され、前記第1部材と前記第2部材との接触面の周囲に形成された空間の少なくとも一部には液体が充填されており、超音波伝導媒体を介して前記第1部材の表面の側に配置されて前記第1部材の表面から裏面に向かう超音波を発信するとともに発信した超音波の反射波を検出する超音波プローブと、前記超音波プローブを制御する制御手段と、を用いる。そして、前記超音波プローブから超音波を発信し、発信された前記超音波が前記第1部材の裏面にて反射した第1部材裏面反射波と、発信された前記超音波が前記第2部材の表面にて反射した第2部材表面反射波と、が合成された合成反射波のエコー強度を、少なくとも前記接触面の中心である接触中心から所定距離までの間で検出する、合成反射波検出ステップと、予め求めた基準エコー強度であって前記第2部材と前記液体を排除して前記第1部材のみの状態にて前記第1部材の表面から裏面に向かう超音波を発信して前記第1部材の裏面にて反射した前記第1部材裏面反射波のエコー強度に基づいた前記基準エコー強度にて、前記合成反射波検出ステップにて検出したエコー強度を除算したエコー比を求める、エコー比算出ステップと、前記接触中心からの距離と、前記エコー比算出ステップにて求めた前記接触中心からの各距離のエコー比と、の関係を示す距離・エコー比特性であって前記接触中心からの距離が前記接触面の境界近傍までの間では徐々にエコー比が減少する傾向を有し、かつ前記接触中心からの距離が前記境界近傍を越えた場合は徐々にエコー比が増加する傾向を有する前記距離・エコー比特性を、前記接触面の大きさと、前記超音波プローブから発信される超音波の音圧強度分布特性と、に基づいて、前記接触中心から前記境界近傍までの前記エコー比を補正し、前記接触中心から離れるに従って徐々にエコー比が増加する傾向を有する距離・補正エコー比特性を作成する、距離・補正エコー比特性作成ステップと、を有する、エコー特性補正方法である。   In order to solve the above problems, the echo characteristic correction method according to the present invention takes the following means. A first aspect of the present invention is a liquid film filled in at least a part of a space formed around a contact surface where a first member and a second member made of different materials are brought into contact with each other. This is an echo characteristic correction method for correcting an echo characteristic when measuring thickness using ultrasonic waves. The first member has a front surface and a back surface, and the shape of the second member is such that the surface facing the back surface of the first member has at least one curvature toward the first member. The first member and the second member are arranged up and down so that the surface of the second member contacts the back surface of the first member with the first member as the upper side, At least a part of the space formed around the contact surface between the first member and the second member is filled with liquid, and is disposed on the surface side of the first member via an ultrasonic conduction medium. And an ultrasonic probe for transmitting an ultrasonic wave from the front surface to the back surface of the first member and detecting a reflected wave of the transmitted ultrasonic wave, and a control means for controlling the ultrasonic probe. Then, an ultrasonic wave is transmitted from the ultrasonic probe, and the transmitted ultrasonic wave is reflected on the back surface of the first member, and the transmitted ultrasonic wave is reflected on the second member. A combined reflected wave detection step for detecting an echo intensity of a combined reflected wave obtained by combining the second member surface reflected wave reflected by the surface at least from a contact center that is the center of the contact surface to a predetermined distance. The first echo by transmitting ultrasonic waves from the front surface to the back surface of the first member in a state where the second member and the liquid are excluded and only the first member is present, with the reference echo intensity determined in advance. Echo ratio calculation for obtaining an echo ratio obtained by dividing the echo intensity detected in the combined reflected wave detection step with the reference echo intensity based on the echo intensity of the first member back surface reflected wave reflected on the back surface of the member Step and A distance / echo ratio characteristic indicating a relationship between a distance from the contact center and an echo ratio of each distance from the contact center obtained in the echo ratio calculating step, wherein the distance from the contact center is the contact ratio. The distance / echo has a tendency that the echo ratio gradually decreases until near the boundary of the surface, and the echo ratio tends to increase gradually when the distance from the contact center exceeds the vicinity of the boundary. The ratio characteristic is corrected based on the size of the contact surface and the sound pressure intensity distribution characteristic of the ultrasonic wave transmitted from the ultrasonic probe, the echo ratio from the contact center to the vicinity of the boundary, A distance / corrected echo ratio characteristic creating step for creating a distance / corrected echo ratio characteristic having a tendency that the echo ratio gradually increases as the distance from the contact center increases. .

次に、本発明の第2の発明は、上記第1の発明に係るエコー特性補正方法であって、前記超音波プローブから発信される超音波は、焦点位置を調整可能であって、前記第1部材の裏面に焦点が調整されており、前記距離・補正エコー比特性作成ステップにおいて、前記接触中心から前記境界近傍までの前記エコー比を、前記第1部材と前記第2部材との前記接触面である略円を上面として前記第2部材の下面までに位置する仮想的な略円柱である仮想接触円柱と、予め求めた、前記超音波の前記焦点から下方に広がる音圧強度分布に基づいた仮想的な立体であって前記超音波の発信方向に沿って切断した断面の輪郭の形状が正規分布曲線状となる仮想音圧強度分布立体と、に基づいた補正量にて補正する、エコー特性補正方法である。   Next, a second invention of the present invention is the echo characteristic correcting method according to the first invention, wherein the ultrasonic wave transmitted from the ultrasonic probe is capable of adjusting a focal position, The focal point is adjusted to the back surface of one member, and the echo ratio from the contact center to the vicinity of the boundary is determined as the contact between the first member and the second member in the distance / corrected echo ratio characteristic creating step. Based on a virtual contact cylinder that is a virtual substantially circular cylinder located up to the lower surface of the second member with a substantially circular surface as the upper surface, and a sound pressure intensity distribution that is obtained in advance downward from the focal point of the ultrasonic wave. An echo that is corrected with a correction amount based on a virtual sound pressure intensity distribution solid that is a virtual solid that has a cross-sectional contour shape cut along the transmission direction of the ultrasonic waves and has a normal distribution curve shape. This is a characteristic correction method.

次に、本発明の第3の発明は、上記第2の発明に係るエコー特性補正方法であって、前記距離・補正エコー比特性作成ステップにおいて、前記接触中心から前記境界近傍までの前記接触中心から各距離の前記エコー比を、「前記各距離におけるエコー比」−「前記接触面における前記超音波の反射率」*「前記各距離における前記仮想接触円柱と前記仮想音圧強度分布立体とが重なる部分の体積/前記仮想音圧強度分布立体の体積」にて求める、エコー特性補正方法である。   Next, a third invention of the present invention is the echo characteristic correction method according to the second invention, wherein, in the distance / corrected echo ratio characteristic creation step, the contact center from the contact center to the vicinity of the boundary. The echo ratio at each distance is expressed as “echo ratio at each distance” − “reflectance of the ultrasonic wave at the contact surface” * “the virtual contact cylinder and the virtual sound pressure intensity distribution solid at each distance”. This is an echo characteristic correction method obtained by “volume of overlapping portion / volume of virtual sound pressure intensity distribution solid”.

第1の発明によれば、接触中心からの距離がゼロから大きくなるに従って、接触面の境界近傍まではエコー比が徐々に減少し、接触面の境界近傍を越えた場合は徐々に増加する距離・エコー比特性を、接触中心からの距離がゼロから大きくなるに従って徐々にエコー比が増加する傾向を有する距離・補正エコー比特性へと補正するために、第1部材と第2部材とが接触している接触面の大きさと、超音波プローブから発信される超音波の音圧強度分布特性と、に基づいて適切に補正することができる。   According to the first invention, as the distance from the contact center increases from zero, the echo ratio gradually decreases to the vicinity of the boundary of the contact surface, and gradually increases when the vicinity of the boundary of the contact surface is exceeded. In order to correct the echo ratio characteristic to a distance / corrected echo ratio characteristic in which the echo ratio tends to gradually increase as the distance from the contact center increases from zero, the first member and the second member contact each other. It is possible to appropriately correct based on the size of the contact surface and the sound pressure intensity distribution characteristic of the ultrasonic wave transmitted from the ultrasonic probe.

第2の発明によれば、接触面の大きさに基づいた仮想接触円柱と、超音波の音圧強度分布に基づいた仮想音圧強度分布立体と、に基づいて補正することで、接触中心からの距離がゼロから大きくなるに従って、接触面の境界近傍まではエコー比が徐々に減少し、接触面の境界近傍を越えた場合は徐々に増加する距離・エコー比特性を、接触中心からの距離がゼロから大きくなるに従って徐々にエコー比が増加する傾向を有する距離・補正エコー比特性へと、適切に補正することができる。   According to the second invention, by correcting based on the virtual contact cylinder based on the size of the contact surface and the virtual sound pressure intensity distribution solid based on the ultrasonic sound pressure intensity distribution, As the distance increases from zero, the echo ratio gradually decreases to the vicinity of the boundary of the contact surface, and gradually increases when it exceeds the boundary of the contact surface. Thus, it is possible to appropriately correct the distance / corrected echo ratio characteristic in which the echo ratio tends to gradually increase as the value increases from zero.

第3の発明によれば、上記の距離・エコー比特性を、上記の距離・補正エコー比特性へと、より具体的に、より適切に補正することができる。   According to the third aspect of the invention, the distance / echo ratio characteristic can be more specifically and appropriately corrected to the distance / correction echo ratio characteristic.

外輪と、内輪と、複数の転動体と、を有する転がり軸受装置の外観の例を説明する図である。It is a figure explaining the example of the external appearance of the rolling bearing apparatus which has an outer ring | wheel, an inner ring | wheel, and a some rolling element. 図1におけるII−II断面図である。It is II-II sectional drawing in FIG. 図2における外輪と転動体をモデル化した例を説明する図である。It is a figure explaining the example which modeled the outer ring | wheel and rolling element in FIG. 超音波計測装置の全体構成の例を説明する図である。It is a figure explaining the example of the whole structure of an ultrasonic measuring device. 接触中心からの距離とエコー比との関係を示す距離・エコー比特性(第1部材と第2部材が異なる材質の場合)の例と、接触中心からの距離と、第1部材と第2部材との間隔との関係を示す距離・間隔特性の例と、接触中心からの距離とエコー比との関係を示す距離・エコー比特性(第1部材と第2部材が同一の材質の場合)の例とを説明する図である。Example of distance / echo ratio characteristics (in the case where the first member and the second member are made of different materials) indicating the relationship between the distance from the contact center and the echo ratio, the distance from the contact center, the first member and the second member Examples of distance / echo characteristics indicating the relationship between the distance to the center and distance / echo ratio characteristics indicating the relationship between the distance from the contact center and the echo ratio (when the first member and the second member are made of the same material) It is a figure explaining an example. 発信された超音波の焦点の下方に広がる音圧強度分布と、当該音圧強度分布の計測方法を説明する図である。It is a figure explaining the sound pressure intensity distribution which spreads below the focus of the transmitted ultrasonic wave, and the measuring method of the said sound pressure intensity distribution. 計測された音圧強度分布の概略形状を説明する図である。It is a figure explaining the schematic shape of the measured sound pressure intensity distribution. 仮想接触円柱と仮想音圧強度分布立体との重畳状態を説明する平面図と側面図である。It is the top view and side view explaining the superposition state of a virtual contact cylinder and a virtual sound pressure intensity distribution solid. 接触中心からの距離とエコー比との関係を示す距離・エコー比特性の例(第1部材と第2部材が異なる材質の場合)と、接触中心からの距離と、仮想音圧強度分布立体の体積に対する仮想接触円柱と仮想音圧強度分布立体との重畳体積の体積比との関係を示す距離・重畳体積比特性の例と、距離・エコー比特性と距離・重畳体積比特性とに基づいて補正した距離・補正エコー比特性の例とを説明する図である。Examples of distance / echo ratio characteristics (in the case where the first member and the second member are made of different materials) showing the relationship between the distance from the contact center and the echo ratio, the distance from the contact center, and the virtual sound pressure intensity distribution solid Based on distance / superimposed volume ratio characteristics example showing the relationship between the volume ratio of superimposed volume of virtual contact cylinder and virtual sound pressure intensity distribution solid to volume, distance / echo ratio characteristics and distance / superimposed volume ratio characteristics It is a figure explaining the example of the correct | amended distance and correction | amendment echo ratio characteristic.

以下に本発明を実施するための形態を図面を用いて説明する。なお、X軸、Y軸、Z軸が記載されている図において、X軸とY軸とZ軸は互いに直交しており、Z軸は鉛直上方に向かう方向を示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. In the drawings in which the X axis, the Y axis, and the Z axis are described, the X axis, the Y axis, and the Z axis are orthogonal to each other, and the Z axis indicates a direction that extends vertically upward.

●[液体の膜厚の計測対象物の例(図1、図2)と計測対象物のモデル(図3)]
図1は、液体の膜厚の計測対象物の例である転がり軸受装置100の外観を示しており、図2は、図1の転がり軸受装置100のII−II断面図を示している。転がり軸受装置100は、外輪121と、内輪123と、複数の転動体122等にて構成されている。なお、図1及び図2の例では、隣り合う転動体122の間隔を保持する保持器の記載を省略している。
● [Example of measurement target of liquid film thickness (Fig. 1, Fig. 2) and model of measurement target (Fig. 3)]
FIG. 1 shows an appearance of a rolling bearing device 100 as an example of a liquid film thickness measurement object, and FIG. 2 shows a II-II cross-sectional view of the rolling bearing device 100 of FIG. The rolling bearing device 100 includes an outer ring 121, an inner ring 123, a plurality of rolling elements 122, and the like. In addition, in the example of FIG.1 and FIG.2, description of the holder | retainer holding the space | interval of the adjacent rolling element 122 is abbreviate | omitted.

図1及び図2に示すように、外輪121は、内周面に凹状の外輪側軌道面121Kを有する円環状である。また内輪123は、外周面に凹状の内輪側軌道面123Kを有する円環状である。そして図2に示すように、外輪側軌道面121Kと転動体122との接触面の周囲に形成された空間の少なくとも一部には、潤滑油が充填された液体膜M(油膜)が形成されている。また、内輪側軌道面123Kと転動体122との接触面の周囲に形成された空間の少なくとも一部にも、潤滑油が充填された液体膜M(油膜)が形成されている。本実施の形態では、図2において、外輪121の表面121Aの側から、外輪121の裏面121Bの側に向かって超音波を発信して、外輪121の裏面121Bと、転動体122の表面122A(外輪に対向する面)との接点を含む接触面の周囲に形成された空間の少なくとも一部に充填された液体膜Mの膜厚を計測する際のエコー特性の補正方法について説明する。   As shown in FIGS. 1 and 2, the outer ring 121 has an annular shape having a concave outer ring side raceway surface 121K on the inner peripheral surface. The inner ring 123 has an annular shape having a concave inner ring side raceway surface 123K on the outer peripheral surface. As shown in FIG. 2, a liquid film M (oil film) filled with lubricating oil is formed in at least a part of the space formed around the contact surface between the outer ring raceway surface 121K and the rolling element 122. ing. A liquid film M (oil film) filled with lubricating oil is also formed in at least a part of the space formed around the contact surface between the inner ring raceway surface 123K and the rolling element 122. In the present embodiment, in FIG. 2, ultrasonic waves are transmitted from the surface 121A side of the outer ring 121 toward the back surface 121B side of the outer ring 121, and the back surface 121B of the outer ring 121 and the surface 122A ( A method of correcting the echo characteristics when measuring the film thickness of the liquid film M filled in at least a part of the space formed around the contact surface including the contact point with the surface facing the outer ring) will be described.

なお、転がり軸受装置100における外輪の形状や転動体の形状に対して、計測に都合の良い形状としたモデルを図3に示し、以降、この図3のモデルの形状を用いて説明する。図3のモデルでは、外輪の代わりに、Z軸方向の厚さ21Tが一定の略平板の第1部材21を用い、転動体の代わりに、第1部材21に向かって少なくとも1つの曲率を有する凸形状を有する第2部材22を用いている。図3に示す第2部材22は、接触面の中心である接触中心Sを含む曲率であって外周部SLと外周部SRとの間の曲率と、外周部SLよりも左側及び外周部SRよりも右側の曲率と、の異なる曲率を有する部材である。そして第1部材21と第2部材22とが接触中心Sを含む接触面にて接触しており、接触中心Sを含む接触面の周囲に形成された空間の少なくとも一部に、液体膜Mが形成されている。また、符号21Aは第1部材21の上面(表面)を示し、符号21Bは第1部材21の下面(裏面)を示し、符号22Aは第2部材22の上面(表面であって第1部材に対向する面)を示し、符号22Bは第2部材22の下面(裏面)を示している。また接触中心Sは、第1部材21と第2部材22が面で接触している接触面の中心位置となる点を示している。   FIG. 3 shows a model that is convenient for measurement with respect to the shape of the outer ring and the shape of the rolling element in the rolling bearing device 100, and the following description will be made using the model shape of FIG. In the model of FIG. 3, a substantially flat first member 21 having a constant thickness 21T in the Z-axis direction is used instead of the outer ring, and at least one curvature is provided toward the first member 21 instead of the rolling element. A second member 22 having a convex shape is used. The second member 22 shown in FIG. 3 has a curvature including the contact center S that is the center of the contact surface, the curvature between the outer peripheral portion SL and the outer peripheral portion SR, the left side of the outer peripheral portion SL, and the outer peripheral portion SR. Is a member having a curvature different from the curvature on the right side. The first member 21 and the second member 22 are in contact with each other at the contact surface including the contact center S, and the liquid film M is formed in at least a part of the space formed around the contact surface including the contact center S. Is formed. Reference numeral 21A indicates the upper surface (front surface) of the first member 21, reference numeral 21B indicates the lower surface (back surface) of the first member 21, and reference numeral 22A indicates the upper surface (front surface of the first member 21). 22B indicates the lower surface (back surface) of the second member 22. The contact center S indicates a point that is the center position of the contact surface where the first member 21 and the second member 22 are in contact with each other.

●[超音波計測装置1の全体構成(図4)]
次に図4を用いて、超音波計測装置1の全体構成の例について説明する。超音波計測装置1は、超音波プローブ40と、制御手段60及び記憶手段と、支持部材83、基台81、82、プローブホルダ72、プローブアーム71、媒体保持部材51、シール部材52、等を有している。なお、上下に重ねられた第1部材21と第2部材22の状態については、図3に示すとおりであるので説明を省略する。
● [Overall configuration of ultrasonic measuring device 1 (FIG. 4)]
Next, an example of the overall configuration of the ultrasonic measurement apparatus 1 will be described with reference to FIG. The ultrasonic measurement apparatus 1 includes an ultrasonic probe 40, a control unit 60, a storage unit, a support member 83, bases 81 and 82, a probe holder 72, a probe arm 71, a medium holding member 51, a seal member 52, and the like. Have. In addition, about the state of the 1st member 21 and the 2nd member 22 which were piled up and down, since it is as showing in FIG. 3, description is abbreviate | omitted.

超音波プローブ40は、プローブホルダ72を介してプローブアーム71にて支持されている。そして超音波プローブ40は、制御手段60からの制御信号に基づいて第1部材21の上面(表面)から下面(裏面)に向かう超音波を発信する。そして超音波プローブ40は、発信した超音波に対する反射波を検出し、検出信号を制御手段に出力する。なお、超音波の発信と反射波の受信を行う超音波プローブ40の先端部は、超音波伝導媒体Bに浸かるように配置されている。なお、超音波プローブ40は複数の超音波探触子を有しており、当該複数の超音波探触子がそれぞれのタイミングで発信した超音波は、ビーム状となって焦点Pを形成する。そして制御手段60は、複数の超音波探触子のそれぞれから発信する超音波のタイミングを適切に調整することで、焦点Pの位置を調整可能である。そして焦点Pの位置は、第1部材21の下面となるように調整されている。   The ultrasonic probe 40 is supported by a probe arm 71 via a probe holder 72. The ultrasonic probe 40 transmits ultrasonic waves from the upper surface (front surface) to the lower surface (back surface) of the first member 21 based on a control signal from the control means 60. And the ultrasonic probe 40 detects the reflected wave with respect to the transmitted ultrasonic wave, and outputs a detection signal to a control means. Note that the tip of the ultrasonic probe 40 that transmits ultrasonic waves and receives reflected waves is disposed so as to be immersed in the ultrasonic conductive medium B. Note that the ultrasonic probe 40 has a plurality of ultrasonic probes, and the ultrasonic waves transmitted by the plurality of ultrasonic probes at respective timings form a beam to form a focal point P. The control means 60 can adjust the position of the focal point P by appropriately adjusting the timing of the ultrasonic waves transmitted from each of the plurality of ultrasonic probes. The position of the focal point P is adjusted to be the lower surface of the first member 21.

制御手段60は、例えばパーソナルコンピュータであって記憶手段を収容しており、超音波プローブ40に制御信号を出力し、超音波プローブ40から検出信号を取り込む。また制御手段60は、プローブアーム71に制御信号を出力して超音波プローブ40の位置をX軸方向及びY軸方向に移動させることができる。そして記憶手段には、後述するように、基準エコー強度、距離・エコー比特性、距離・間隔特性、距離・重畳体積比特性、距離・補正エコー比特性、等が記憶されている。   The control means 60 is, for example, a personal computer and contains a storage means. The control means 60 outputs a control signal to the ultrasonic probe 40 and takes in a detection signal from the ultrasonic probe 40. The control unit 60 can output a control signal to the probe arm 71 to move the position of the ultrasonic probe 40 in the X-axis direction and the Y-axis direction. As will be described later, the storage means stores reference echo intensity, distance / echo ratio characteristics, distance / interval characteristics, distance / superimposed volume ratio characteristics, distance / corrected echo ratio characteristics, and the like.

支持部材83は、上下に重ねられた第1部材21と第2部材22を把持し、所定の荷重で第1部材21を第2部材22に押し付けている。また、基台81、82は、支持部材83を固定する台である。   The support member 83 holds the first member 21 and the second member 22 stacked one above the other and presses the first member 21 against the second member 22 with a predetermined load. The bases 81 and 82 are tables for fixing the support member 83.

プローブホルダ72は、プローブアーム71に取り付けられており、超音波プローブ40を保持している。またプローブアーム71は、制御手段60からの制御信号に基づいて、プローブホルダ72に保持された超音波プローブ40をXY平面内で移動させる。   The probe holder 72 is attached to the probe arm 71 and holds the ultrasonic probe 40. The probe arm 71 moves the ultrasonic probe 40 held by the probe holder 72 within the XY plane based on a control signal from the control means 60.

媒体保持部材51は、媒体保持部材51の内面と第1部材21の上面(及び支持部材83の上面)とで形成された凹状の空間内に、超音波を伝達することが可能な媒体である超音波伝導媒体B(例えば水)を保持する。またシール部材52は、媒体保持部材51と支持部材83との間を密封する。   The medium holding member 51 is a medium capable of transmitting ultrasonic waves into a concave space formed by the inner surface of the medium holding member 51 and the upper surface of the first member 21 (and the upper surface of the support member 83). An ultrasonic conducting medium B (for example, water) is held. The seal member 52 seals between the medium holding member 51 and the support member 83.

●[超音波計測装置1を用いて、距離・エコー比特性を取得する手順(図5)]
次に、上記の超音波計測装置1を用いて、超音波プローブ40を、第1部材21と第2部材22との接触面の接触中心Sの真上となる位置からX軸方向(図5中において右方向)に走査しながら超音波の発信し、発信した超音波に対する反射波のエコー強度を検出し、そのエコー強度に基づいた距離・エコー比特性の取得方法について説明する。なお、図5中において符号SSは、第1部材21と第2部材22との接触面の境界となる位置を示す接触境界を示している。
● [Procedure for obtaining distance / echo ratio characteristics using the ultrasonic measurement apparatus 1 (FIG. 5)]
Next, using the ultrasonic measurement apparatus 1 described above, the ultrasonic probe 40 is moved in the X-axis direction (FIG. 5) from the position directly above the contact center S of the contact surface between the first member 21 and the second member 22. A method of acquiring distance / echo ratio characteristics based on the transmission of ultrasonic waves while scanning in the right direction), detecting the echo intensity of reflected waves with respect to the transmitted ultrasonic waves, and the echo intensity will be described. In FIG. 5, reference sign SS indicates a contact boundary indicating a position that is a boundary of the contact surface between the first member 21 and the second member 22.

制御手段60は、超音波プローブ40から超音波を発信し、発信された超音波が第1部材21の裏面(下面)にて反射した第1部材裏面反射波と、発信された超音波が第2部材22の表面(上面)にて反射した第2部材表面反射波と、が合成された合成反射波のエコー強度(反射波の最大振幅)を、少なくとも接触中心SからX軸方向に所定距離となる位置までの間で検出する。このステップは、合成反射波検出ステップに相当する。   The control means 60 transmits an ultrasonic wave from the ultrasonic probe 40, and the transmitted ultrasonic wave is reflected on the back surface (lower surface) of the first member 21, and the transmitted ultrasonic wave is first. The echo intensity (maximum amplitude of the reflected wave) of the combined reflected wave obtained by combining the second member surface reflected wave reflected by the surface (upper surface) of the two members 22 is at least a predetermined distance from the contact center S in the X-axis direction. Detect until the position. This step corresponds to a composite reflected wave detection step.

次に制御手段60は、予め求めた基準エコー強度であって(図5に示す第1部材21と第2部材22と液体膜Mを有する状態から)第2部材22と液体(液体膜M)を排除して第1部材21のみの状態にて第1部材21の上面から下面に向かう超音波を発信して第1部材21の下面にて反射した第1部材裏面反射波のエコー強度に基づいた基準エコー強度にて、合成反射波検出ステップにて検出した各距離に対応する各エコー強度を除算して、各距離に対応した各エコー比を求める。なお、基準エコー強度は、第1部材21のみの場合において、例えば接触中心Sから前記所定距離となる位置までのエコー強度の平均値である。ここで、各距離に対応した各エコー比=H、各距離にて計測した各エコー強度=h、基準エコー強度=hoとすると、以下の(式1)にて、各距離におけるエコー比Hを求める。このステップは、エコー比算出ステップに相当する。
H=h/ho (式1)
Next, the control means 60 is the reference echo intensity obtained in advance (from the state having the first member 21, the second member 22, and the liquid film M shown in FIG. 5) and the second member 22 and the liquid (liquid film M). Based on the echo intensity of the first member back surface reflected wave transmitted from the upper surface of the first member 21 to the lower surface and reflected by the lower surface of the first member 21 with only the first member 21 removed Each echo intensity corresponding to each distance is obtained by dividing each echo intensity corresponding to each distance detected in the combined reflected wave detection step by the reference echo intensity. Note that the reference echo intensity is an average value of echo intensity from the contact center S to the position at the predetermined distance, for example, when only the first member 21 is used. Here, assuming that each echo ratio corresponding to each distance = H, each echo intensity measured at each distance = h, and reference echo intensity = ho, the echo ratio H at each distance is expressed by the following (Equation 1). Ask. This step corresponds to an echo ratio calculation step.
H = h / ho (Formula 1)

●[第1部材21と第2部材22とが同一の材質の場合]
第1部材21と第2部材22とが同一の材質の場合は、接触中心Sからの距離と、上記の手順にて求めたエコー比Hと、の関係を示す距離・エコー比特性は、図5中の『距離・エコー比特性』(第1部材と第2部材が同一の材質の場合)に示すとおりである。この特性では、接触中心Sからの距離がゼロから大きくなるに従って、エコー比が徐々に増加する傾向を有しているので、エコー比Hが特定されると、距離(接触中心Sからの距離)を1つに特定することができる。また、記憶手段には、予め、基準エコー強度と、第1部材21と第2部材22の形状(特に第2部材22の各位置の曲率半径)とヘルツ接触理論と接触荷重等から理論的に求めた、接触中心Sからの距離と間隔(第1部材と第2部材との隙間)との関係を示す(図5に示す)『距離・間隔特性』が記憶されている。第1部材21と第2部材22とが同一の材質の場合、例えば求めたエコー比がH1Aであった際は、制御手段60は、エコー比H1Aと、図5中の『距離・エコー比特性』(第1部材と第2部材が同一の材質の場合)とに基づいて距離D1Aを特定する。そして特定した距離D1Aと、図5中の『距離・間隔特性』とに基づいて間隔L1Aを特定する。この特定した間隔L1Aが、エコー比H1Aを検出した位置(接触中心Sからの距離)における液体膜Mの膜厚である。
[When the first member 21 and the second member 22 are made of the same material]
When the first member 21 and the second member 22 are made of the same material, the distance / echo ratio characteristic indicating the relationship between the distance from the contact center S and the echo ratio H obtained by the above procedure is shown in FIG. 5, “Distance / Echo Ratio Characteristics” (when the first member and the second member are made of the same material). In this characteristic, since the echo ratio has a tendency to gradually increase as the distance from the contact center S increases from zero, when the echo ratio H is specified, the distance (distance from the contact center S) is determined. Can be specified as one. In addition, the storage means theoretically in advance from the reference echo intensity, the shape of the first member 21 and the second member 22 (particularly, the radius of curvature of each position of the second member 22), Hertz contact theory, contact load and the like. The obtained “distance / interval characteristics” indicating the relationship between the distance from the contact center S and the interval (gap between the first member and the second member) (shown in FIG. 5) is stored. When the first member 21 and the second member 22 are made of the same material, for example, when the obtained echo ratio is H1A, the control means 60 determines the echo ratio H1A and the “distance / echo ratio characteristics” in FIG. ] (When the first member and the second member are made of the same material), the distance D1A is specified. Then, the interval L1A is specified based on the specified distance D1A and the “distance / interval characteristics” in FIG. This specified interval L1A is the film thickness of the liquid film M at the position where the echo ratio H1A is detected (distance from the contact center S).

●[第1部材21と第2部材22とが異なる材質の場合]
第1部材21と第2部材22とが異なる材質の場合は、接触中心Sからの距離と、上記の手順にて求めたエコー比Hと、の関係を示す距離・エコー比特性は、図5中の『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)に示すとおりである。この特性では、接触中心Sからの距離がゼロから接触境界SSの近傍まではエコー比は徐々に減少し、接触中心Sからの距離が接触境界SSの近傍を越えた場合はエコー比は徐々に増加している。第1部材21と第2部材22とが異なる材質の場合、例えば求めたエコー比がH1ABであった際は、制御手段60は、エコー比H1ABと、図5中の『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)とに基づいて距離D1Aと距離D1Bのそれぞれを特定する。そして特定した距離D1Aと距離D1Bと、図5中の『距離・間隔特性』とに基づいて間隔L1Aと間隔L1Bのそれぞれを特定する。この特定した間隔L1A、及び間隔L1Bが、エコー比H1ABを検出した位置(接触中心Sからの距離)における液体膜Mの膜厚であるが、間隔L1Aと間隔L1Bのどちらが正しい膜厚であるかわからない。そこで、以下の手順に従って、『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)を補正する。
[When the first member 21 and the second member 22 are made of different materials]
When the first member 21 and the second member 22 are made of different materials, the distance / echo ratio characteristic indicating the relationship between the distance from the contact center S and the echo ratio H obtained by the above procedure is shown in FIG. As shown in “Distance / Echo Ratio Characteristics” (when the first member and the second member are made of different materials). In this characteristic, the echo ratio gradually decreases from the distance from the contact center S to near the contact boundary SS, and the echo ratio gradually decreases when the distance from the contact center S exceeds the vicinity of the contact boundary SS. It has increased. When the first member 21 and the second member 22 are made of different materials, for example, when the obtained echo ratio is H1AB, the control means 60 determines the echo ratio H1AB and “distance / echo ratio characteristics” in FIG. Based on (when the first member and the second member are made of different materials), the distance D1A and the distance D1B are specified. Then, the distance L1A and the distance L1B are specified based on the specified distance D1A and distance D1B and the “distance / interval characteristics” in FIG. The specified interval L1A and interval L1B are the film thicknesses of the liquid film M at the position where the echo ratio H1AB is detected (distance from the contact center S). Which of the intervals L1A and L1B is the correct film thickness? do not know. Therefore, according to the following procedure, the “distance / echo ratio characteristic” (when the first member and the second member are made of different materials) is corrected.

●[超音波の焦点Pから下方に広がる音圧強度分布(図6、図7)、及び接触面と音圧強度分布との関係(図8)]
図6は、超音波プローブ40から発信された超音波の焦点Pが第1部材21の下面21Bに設定されている際の、焦点Pから下方に広がる音圧強度分布の計測方法の例を示している。第1部材21の下側は、第2部材22と同じ音響インピーダンスに調整された油等の超音波伝導媒体BAが充填されている。そして当該超音波伝導媒体BA内にはハイドロフォン等の音圧強度検出手段HPが配置されている。制御手段60は、焦点Pの位置に対する種々の位置(超音波伝導媒体BA内の種々の位置)に音圧強度検出手段HPを移動させて、各位置での音圧強度を検出し、音圧強度の分布状態を計測する。計測された音圧強度の分布状態を形状で示すと、図7の例に示す形状となる。この図7に示す音圧強度の分布状態の形状を、超音波の発信方向に沿って切断(Z軸を含む面にて切断)した場合、断面の輪郭の形状は、正規分布曲線に類似している。理想的な焦点Pは「点」であるが、実際には焦点Pは「点」ではなく、所定の径を有する「面」である。
● [Sound pressure intensity distribution spreading downward from the focal point P of the ultrasonic waves (FIGS. 6 and 7) and the relationship between the contact surface and the sound pressure intensity distribution (FIG. 8)]
FIG. 6 shows an example of a method for measuring the sound pressure intensity distribution extending downward from the focal point P when the focal point P of the ultrasonic wave transmitted from the ultrasonic probe 40 is set on the lower surface 21 </ b> B of the first member 21. ing. The lower side of the first member 21 is filled with an ultrasonic conductive medium BA such as oil adjusted to the same acoustic impedance as the second member 22. A sound pressure intensity detecting means HP such as a hydrophone is disposed in the ultrasonic conduction medium BA. The control means 60 moves the sound pressure intensity detecting means HP to various positions (various positions in the ultrasonic conduction medium BA) with respect to the position of the focal point P, detects the sound pressure intensity at each position, and detects the sound pressure. Measure the intensity distribution. When the distribution state of the measured sound pressure intensity is shown by shape, the shape shown in the example of FIG. 7 is obtained. When the shape of the sound pressure intensity distribution state shown in FIG. 7 is cut along the ultrasonic wave transmission direction (cut along the plane including the Z axis), the shape of the cross-sectional contour is similar to a normal distribution curve. ing. The ideal focal point P is a “point”, but actually the focal point P is not a “point” but a “plane” having a predetermined diameter.

図8は、第1部材21と第2部材22との接触面と、超音波の焦点Pに基づいた音圧強度分布との平面視と側面視による仮想イメージ図を示している。ここで、符号VSは、第1部材21と第2部材22との接触面である略円を上面として第2部材22の下面までに位置する仮想的な略円柱である仮想接触円柱を示している。従って、仮想接触円柱VSは、接触中心SをとおるZ軸方向の直線ZVSを軸とした略円柱状であり、上面は接触境界SSを輪郭とする略円であり、直線ZVSから側面までの距離は接触中心Sから接触境界SSまでの距離と等しい。また符合VBは、図7に示したように、超音波の焦点Pから下方に広がる音圧強度分布に基づいた仮想的な立体であって超音波の発信方向に沿って切断した場合の断面の輪郭が正規分布状となる仮想音圧強度分布立体を示している。   FIG. 8 shows a virtual image diagram in plan view and side view of the contact surface between the first member 21 and the second member 22 and the sound pressure intensity distribution based on the focal point P of the ultrasonic wave. Here, the symbol VS indicates a virtual contact cylinder that is a virtual substantially cylinder positioned up to a lower surface of the second member 22 with a substantially circle that is a contact surface between the first member 21 and the second member 22 as an upper surface. Yes. Therefore, the virtual contact cylinder VS has a substantially cylindrical shape with the Z axis direction straight line ZVS passing through the contact center S as an axis, and the upper surface is a substantially circle having the contact boundary SS as an outline, and the distance from the straight line ZVS to the side surface. Is equal to the distance from the contact center S to the contact boundary SS. In addition, as shown in FIG. 7, the symbol VB is a virtual solid based on the sound pressure intensity distribution that spreads downward from the focal point P of the ultrasonic wave, and has a cross section when cut along the ultrasonic wave transmission direction. A virtual sound pressure intensity distribution solid whose contour has a normal distribution shape is shown.

図8の例では、接触中心Sから焦点Pまでの距離である焦点位置距離DSPが、仮想接触円柱VSの半径RVSと仮想音圧強度分布立体VBの上面の略円の半径RVBとの和よりも小さい場合(焦点位置距離DSP<半径RVS+半径RVB)を示しており、仮想接触円柱VSと仮想音圧強度分布立体VBとが、ハッチングを施した位置で重畳している様子を示している。そして、当該ハッチングを施した部分の立体を重畳部VDとする。ここで、仮想音圧強度分布立体VBの体積(Vb)に対する重畳部VDの体積(Vd)を重畳体積比(Rr)とすると、以下の(式2)が成立する。そして、下記の(式2)を、横軸を接触中心Sからの距離、縦軸を重畳体積比、としたグラフに示すと、図8に示す『距離・体積比特性』となる。
重畳体積比(Rr)=重畳部VDの体積(Vd)/仮想音圧強度分布立体VBの体積(Vb) (式2)
In the example of FIG. 8, the focal position distance DSP, which is the distance from the contact center S to the focal point P, is the sum of the radius RVS of the virtual contact cylinder VS and the radius RVB of the approximate circle on the upper surface of the virtual sound pressure intensity distribution solid VB. Is also small (focal position distance DSP <radius RVS + radius RVB), and the virtual contact cylinder VS and the virtual sound pressure intensity distribution solid VB are superimposed at the hatched positions. Then, the solid portion of the hatched portion is set as the overlapping portion VD. Here, when the volume (Vd) of the overlapping portion VD with respect to the volume (Vb) of the virtual sound pressure intensity distribution solid VB is the overlapping volume ratio (Rr), the following (Expression 2) is established. Then, when the following (formula 2) is shown in a graph in which the horizontal axis is the distance from the contact center S and the vertical axis is the superimposed volume ratio, the “distance / volume ratio characteristic” shown in FIG. 8 is obtained.
Superposed volume ratio (Rr) = Volume of superposed part VD (Vd) / Volume of virtual sound pressure intensity distribution solid VB (Vb) (Formula 2)

発明者は、重畳部VDが、図5中の『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)において、接触中心Sからの距離がゼロから接触境界SSの近傍まではエコー比が徐々に減少する原因である、と考え、以下の(式3)に示す補正量(Adj)を考案した。なお、下記の補正量(Adj)において、Z1は第1部材21の音響インピーダンスであり、Z2は第2部材22の音響インピーダンスである。なお、(式3)における(Z1−Z2)/(Z1+Z2)を、接触面における超音波の反射率(Ref)とすると、(式3)は(式4)となる。
補正量(Adj)=[(Z1−Z2)/(Z1+Z2)]*重畳体積比(Rr) (式3)
補正量(Adj)=反射率(Ref)*重畳体積比(Rr) (式4)
The inventor believes that the overlapping portion VD has a distance from the contact center S from zero to the vicinity of the contact boundary SS in the “distance / echo ratio characteristics” in FIG. 5 (when the first member and the second member are different materials). Up to this point, it was considered that the echo ratio gradually decreased, and the correction amount (Adj) shown in the following (Equation 3) was devised. In the following correction amount (Adj), Z1 is the acoustic impedance of the first member 21, and Z2 is the acoustic impedance of the second member 22. If (Z1−Z2) / (Z1 + Z2) in (Expression 3) is the reflectance (Ref) of the ultrasonic wave on the contact surface, (Expression 3) becomes (Expression 4).
Correction amount (Adj) = [(Z1-Z2) / (Z1 + Z2)] * overlapping volume ratio (Rr) (Formula 3)
Correction amount (Adj) = Reflectance (Ref) * Overlapping volume ratio (Rr) (Formula 4)

●[距離・補正エコー比特性の作成(図9)]
そして、下記の(式5)に示すように、上記の(式1)のエコー比(H)から、上記の(式4)の補正量を減算することで、補正エコー比(HH)を作成し、作成した補正エコー比(HH)に基づいて、接触中心Sからの距離がゼロの位置から徐々に離れるに従って徐々に増加する傾向を有する、『距離・補正エコー比特性』(図9参照)を作成する。このステップは、距離・補正エコー比特性作成ステップに相当する。
補正エコー比(HH)
=エコー比(H)−補正量(Adj)
=エコー比(H)−反射率(Ref)*重畳体積比(Rr)
=[計測したエコー強度(h)/基準エコー強度(ho)]−[(Z1−Z2)/(Z1+Z2)]*[重畳部VDの体積(Vd)/仮想音圧強度分布立体VBの体積(Vb)] (式5)
● [Create distance / corrected echo ratio characteristics (Fig. 9)]
Then, as shown in (Equation 5) below, the corrected echo ratio (HH) is created by subtracting the correction amount in (Equation 4) from the echo ratio (H) in (Equation 1) above. Then, based on the created corrected echo ratio (HH), the “distance / corrected echo ratio characteristic” has a tendency to gradually increase as the distance from the contact center S gradually moves away from the zero position (see FIG. 9). Create This step corresponds to a distance / corrected echo ratio characteristic creation step.
Corrected echo ratio (HH)
= Echo ratio (H) -correction amount (Adj)
= Echo ratio (H) -Reflectance (Ref) * Overlapping volume ratio (Rr)
= [Measured echo intensity (h) / reference echo intensity (ho)]-[(Z1-Z2) / (Z1 + Z2)] * [volume of superimposition portion VD (Vd) / volume of virtual sound pressure intensity distribution volume VB ( Vb)] (Formula 5)

つまり、図9において、『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)のグラフから、仮想接触円柱と仮想音圧強度分布立体の『距離・重畳体積比特性』のグラフを減算すると、『距離・補正エコー比特性』(第1部材と第2部材が異なる材質の場合)のグラフを得ることができる。得られた『距離・補正エコー比特性』(第1部材と第2部材が異なる材質の場合)は、接触中心Sからの距離がゼロから大きくなるに従って、徐々に(補正)エコー比が増加する傾向を有している。従って、例えば、計測対象物の任意の位置の補正エコー比がHH1であった場合、補正エコー比HH1と、『距離・補正エコー比特性』(第1部材と第2部材が異なる材質の場合)(図9参照)に基づいて、接触中心Sからの距離は距離D1Bの1つに特定される。そして、特定された距離D1Bと、図5に示す『距離・間隔特性』に基づいて、間隔L1B(膜厚L1B)が特定される。すなわち、計測した任意の位置に対応する膜厚は、膜厚L1Bである、と1つに特定することができる。   That is, in FIG. 9, from the graph of “distance / echo ratio characteristics” (when the first member and the second member are made of different materials), “distance / superimposed volume ratio characteristics” of the virtual contact cylinder and the virtual sound pressure intensity distribution solid. By subtracting this graph, a graph of “distance / corrected echo ratio characteristics” (when the first member and the second member are made of different materials) can be obtained. In the obtained “distance / corrected echo ratio characteristics” (when the first member and the second member are made of different materials), the (corrected) echo ratio gradually increases as the distance from the contact center S increases from zero. Has a tendency. Therefore, for example, when the corrected echo ratio at an arbitrary position of the measurement object is HH1, the corrected echo ratio HH1 and the “distance / corrected echo ratio characteristic” (when the first member and the second member are made of different materials). Based on (see FIG. 9), the distance from the contact center S is specified as one of the distances D1B. Then, based on the identified distance D1B and the “distance / interval characteristics” shown in FIG. 5, the interval L1B (film thickness L1B) is identified. That is, it can be specified that the film thickness corresponding to the measured arbitrary position is the film thickness L1B.

以上に説明したように、互いに異なる材質で形成された第1部材と第2部材とを接触させた接触面の周囲に形成された空間の少なくとも一部に充填された液体の膜厚を計測する際に利用する、第1部材と第2部材の接触面の中心である接触中心からの距離とエコー比との関係を示す『距離・エコー比特性』(第1部材と第2部材が異なる材質の場合)を、接触中心からの距離がゼロから大きくなるに従って、エコー比も徐々に大きくなるような特性[『距離・補正エコー比特性』(第1部材と第2部材が異なる材質の場合)]へと補正する。これにより、補正エコー比から特定される距離を1つにすることが可能であり、特定した1つの距離から、1つの膜厚を特定することができる。   As described above, the film thickness of the liquid filled in at least a part of the space formed around the contact surface where the first member and the second member made of different materials are brought into contact with each other is measured. "Distance / Echo Ratio Characteristic" indicating the relationship between the distance from the contact center, which is the center of the contact surface between the first member and the second member, and the echo ratio (materials different between the first member and the second member) )), The echo ratio gradually increases as the distance from the center of contact increases from zero ["Distance / corrected echo ratio characteristics" (when the first and second members are of different materials) ] To correct. Thereby, the distance specified from the corrected echo ratio can be made one, and one film thickness can be specified from the specified distance.

本発明のエコー特性補正方法の処理手順は、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。   The processing procedure of the echo characteristic correction method of the present invention can be variously changed, added, and deleted without changing the gist of the present invention.

また本実施の形態の説明では、第1部材と第2部材の材質が異なる材質である場合について説明した。例えば、第1部材の材質がガラス、第2部材の材質が鋼鉄の場合を含むが、第1部材と第2部材が互いに異なる材質であればよく、第1部材の材質と第2部材の材質は、ガラスや鋼鉄に限定されるものではない。   In the description of the present embodiment, the case where the materials of the first member and the second member are different materials has been described. For example, the material of the first member includes glass and the material of the second member is steel, but the first member and the second member may be different from each other. Is not limited to glass or steel.

また、本実施の形態にて説明した液体の膜厚は、潤滑油の膜厚に限定されず、水等の種々の液体の膜厚の計測に適用することが可能である。   The film thickness of the liquid described in the present embodiment is not limited to the film thickness of the lubricating oil, and can be applied to the measurement of the film thickness of various liquids such as water.

また、本実施の形態にて説明したエコー特性補正方法は、例えば、転動体(球、ころ等)と、内輪及び外輪と、が異なる材質の軸受装置(例えば、転動体が鋼鉄で、内輪及び外輪がセラミック等)の実機の動的条件下(軸受として作動状態)における液体膜厚(油膜厚さ)の計測にも適用可能である。また、セラミック板(第1部材)と鋼球(第2部材)の油膜厚さ計測用のモデル等にも適用可能である。   In addition, the echo characteristic correction method described in the present embodiment is, for example, a bearing device (for example, the rolling element is steel, the inner ring and the outer ring are made of a material different from the rolling element (ball, roller, etc.) It can also be applied to the measurement of liquid film thickness (oil film thickness) under dynamic conditions (acting as a bearing) of an actual machine with an outer ring of ceramic or the like. Moreover, it is applicable also to the model etc. for the oil film thickness measurement of a ceramic board (1st member) and a steel ball (2nd member).

また、本実施の形態にて説明したエコー特性補正方法は、動的条件下において液体膜厚の計測が可能であるので、潤滑油の供給量や、軌道の形状の効果や、異常診断(油膜切れの判定)等にも適用可能である。   In addition, since the echo characteristic correction method described in this embodiment can measure the liquid film thickness under dynamic conditions, the supply amount of lubricating oil, the effect of the shape of the track, and abnormality diagnosis (oil film) It can also be applied to (determination of cutting).

1 超音波計測装置
21 第1部材
21A 表面(上面)
21B 裏面(下面)
22 第2部材
22A 表面(上面)
22B 裏面(下面)
40 超音波プローブ
51 媒体保持部材
52 シール部材
71 プローブアーム
72 プローブホルダ
60 制御手段
81、82 基台
83 支持部材
B、BA 超音波伝導媒体
HP 音圧強度検出手段
M 液体膜
P 焦点
S 接触中心
SS 接触境界
VB 仮想音圧強度分布立体
VD 重畳部
VS 仮想接触円柱

DESCRIPTION OF SYMBOLS 1 Ultrasonic measuring device 21 1st member 21A Surface (upper surface)
21B Back (bottom)
22 Second member 22A Surface (upper surface)
22B Back side (lower side)
40 Ultrasonic probe 51 Medium holding member 52 Seal member 71 Probe arm 72 Probe holder 60 Control means 81, 82 Base 83 Support member B, BA Ultrasonic conduction medium HP Sound pressure intensity detection means M Liquid film P Focus S Contact center SS Contact boundary VB Virtual sound pressure intensity distribution solid VD superposition part VS Virtual contact cylinder

Claims (3)

互いに異なる材質で形成された第1部材と第2部材とを接触させた接触面の周囲に形成された空間の少なくとも一部に充填された液体の膜厚を超音波を用いて計測する際のエコー特性を補正するエコー特性補正方法であって、
前記第1部材は、表面と裏面を有しており、
前記第2部材の形状は、前記第1部材の裏面と対向する面が、前記第1部材に向かって少なくとも1つの曲率を有する凸形状を有しており、
前記第1部材と前記第2部材は、前記第1部材を上側として前記第1部材の裏面に前記第2部材の表面が接触するように上下に配置され、前記第1部材と前記第2部材との接触面の周囲に形成された空間の少なくとも一部には液体が充填されており、
超音波伝導媒体を介して前記第1部材の表面の側に配置されて前記第1部材の表面から裏面に向かう超音波を発信するとともに発信した超音波の反射波を検出する超音波プローブと、前記超音波プローブを制御する制御手段と、を用いて、
前記超音波プローブから超音波を発信し、発信された前記超音波が前記第1部材の裏面にて反射した第1部材裏面反射波と、発信された前記超音波が前記第2部材の表面にて反射した第2部材表面反射波と、が合成された合成反射波のエコー強度を、少なくとも前記接触面の中心である接触中心から所定距離までの間で検出する、合成反射波検出ステップと、
予め求めた基準エコー強度であって前記第2部材と前記液体を排除して前記第1部材のみの状態にて前記第1部材の表面から裏面に向かう超音波を発信して前記第1部材の裏面にて反射した前記第1部材裏面反射波のエコー強度に基づいた前記基準エコー強度にて、前記合成反射波検出ステップにて検出したエコー強度を除算したエコー比を求める、エコー比算出ステップと、
前記接触中心からの距離と、前記エコー比算出ステップにて求めた前記接触中心からの各距離のエコー比と、の関係を示す距離・エコー比特性であって前記接触中心からの距離が前記接触面の境界近傍までの間では徐々にエコー比が減少する傾向を有し、かつ前記接触中心からの距離が前記境界近傍を越えた場合は徐々にエコー比が増加する傾向を有する前記距離・エコー比特性を、前記接触面の大きさと、前記超音波プローブから発信される超音波の音圧強度分布特性と、に基づいて、前記接触中心から前記境界近傍までの前記エコー比を補正し、前記接触中心から離れるに従って徐々にエコー比が増加する傾向を有する距離・補正エコー比特性を作成する、距離・補正エコー比特性作成ステップと、を有する、
エコー特性補正方法。
When measuring the film thickness of the liquid filled in at least a part of the space formed around the contact surface where the first member and the second member made of different materials are in contact with each other using ultrasonic waves An echo characteristic correction method for correcting an echo characteristic,
The first member has a front surface and a back surface;
The shape of the second member has a convex shape in which the surface facing the back surface of the first member has at least one curvature toward the first member,
The first member and the second member are arranged vertically so that the surface of the second member is in contact with the back surface of the first member with the first member as the upper side, and the first member and the second member At least part of the space formed around the contact surface with the liquid is filled with liquid,
An ultrasonic probe that is disposed on the surface side of the first member via an ultrasonic conduction medium and transmits an ultrasonic wave directed from the front surface to the back surface of the first member and detects a reflected wave of the transmitted ultrasonic wave; Using a control means for controlling the ultrasonic probe,
The ultrasonic wave is transmitted from the ultrasonic probe and the transmitted ultrasonic wave is reflected on the back surface of the first member, and the transmitted ultrasonic wave is transmitted to the surface of the second member. A combined reflected wave detecting step for detecting an echo intensity of the combined reflected wave synthesized with the second member surface reflected wave reflected at least from a contact center that is the center of the contact surface to a predetermined distance;
A reference echo intensity determined in advance, the second member and the liquid are excluded, and an ultrasonic wave directed from the front surface to the back surface of the first member is transmitted only in the state of the first member. An echo ratio calculating step for obtaining an echo ratio obtained by dividing the echo intensity detected in the combined reflected wave detection step with the reference echo intensity based on the echo intensity of the first member back surface reflected wave reflected on the back surface; ,
A distance / echo ratio characteristic indicating a relationship between a distance from the contact center and an echo ratio of each distance from the contact center obtained in the echo ratio calculating step, wherein the distance from the contact center is the contact ratio. The distance / echo has a tendency that the echo ratio gradually decreases until near the boundary of the surface, and the echo ratio tends to increase gradually when the distance from the contact center exceeds the vicinity of the boundary. The ratio characteristic is corrected based on the size of the contact surface and the sound pressure intensity distribution characteristic of the ultrasonic wave transmitted from the ultrasonic probe, the echo ratio from the contact center to the vicinity of the boundary, A distance / corrected echo ratio characteristic creating step for creating a distance / corrected echo ratio characteristic in which the echo ratio tends to gradually increase as the distance from the contact center increases.
Echo characteristic correction method.
請求項1に記載のエコー特性補正方法であって、
前記超音波プローブから発信される超音波は、焦点位置を調整可能であって、前記第1部材の裏面に焦点が調整されており、
前記距離・補正エコー比特性作成ステップにおいて、
前記接触中心から前記境界近傍までの前記エコー比を、
前記第1部材と前記第2部材との前記接触面である略円を上面として前記第2部材の下面までに位置する仮想的な略円柱である仮想接触円柱と、
予め求めた、前記超音波の前記焦点から下方に広がる音圧強度分布に基づいた仮想的な立体であって前記超音波の発信方向に沿って切断した断面の輪郭の形状が正規分布曲線状となる仮想音圧強度分布立体と、に基づいた補正量にて補正する、
エコー特性補正方法。
The echo characteristic correction method according to claim 1,
The ultrasonic wave transmitted from the ultrasonic probe can adjust the focal position, and the focal point is adjusted on the back surface of the first member,
In the distance / corrected echo ratio characteristic creating step,
The echo ratio from the contact center to the vicinity of the boundary,
A virtual contact cylinder that is a virtual substantially circular cylinder positioned up to the lower surface of the second member with the upper surface of the substantially circle that is the contact surface of the first member and the second member;
It is a virtual solid based on the sound pressure intensity distribution that spreads downward from the focal point of the ultrasonic wave that has been obtained in advance, and the shape of the profile of the cross section cut along the transmission direction of the ultrasonic wave is a normal distribution curve shape A correction amount based on the virtual sound pressure intensity distribution solid
Echo characteristic correction method.
請求項2に記載のエコー特性補正方法であって、
前記距離・補正エコー比特性作成ステップにおいて、
前記接触中心から前記境界近傍までの前記接触中心から各距離の前記エコー比を、
「前記各距離におけるエコー比」−「前記接触面における前記超音波の反射率」*「前記各距離における前記仮想接触円柱と前記仮想音圧強度分布立体とが重なる部分の体積/前記仮想音圧強度分布立体の体積」にて求める、
エコー特性補正方法。

The echo characteristic correction method according to claim 2,
In the distance / corrected echo ratio characteristic creating step,
The echo ratio of each distance from the contact center from the contact center to the vicinity of the boundary,
“Echo ratio at each distance” − “Reflectivity of the ultrasonic wave at the contact surface” * “Volume of the portion where the virtual contact cylinder and the virtual sound pressure intensity distribution solid at each distance overlap / the virtual sound pressure” `` Volume of intensity distribution solid ''
Echo characteristic correction method.

JP2014213519A 2014-10-20 2014-10-20 Echo characteristic correction method Expired - Fee Related JP6384263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213519A JP6384263B2 (en) 2014-10-20 2014-10-20 Echo characteristic correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213519A JP6384263B2 (en) 2014-10-20 2014-10-20 Echo characteristic correction method

Publications (2)

Publication Number Publication Date
JP2016080568A JP2016080568A (en) 2016-05-16
JP6384263B2 true JP6384263B2 (en) 2018-09-05

Family

ID=55956163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213519A Expired - Fee Related JP6384263B2 (en) 2014-10-20 2014-10-20 Echo characteristic correction method

Country Status (1)

Country Link
JP (1) JP6384263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945399B2 (en) * 2017-09-13 2021-10-06 株式会社クボタ Obstacle detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077812A (en) * 2001-09-05 2003-03-14 Nikon Corp Method of estimating resist pattern shape, and computer program for estimating the resist pattern shape
JP4642496B2 (en) * 2005-02-04 2011-03-02 公立大学法人高知工科大学 Measuring equipment for rolling bearings
JP4332531B2 (en) * 2006-02-13 2009-09-16 公立大学法人高知工科大学 Method for obtaining film thickness calibration curve
JP4547439B2 (en) * 2008-03-31 2010-09-22 株式会社日立製作所 Rotating machine

Also Published As

Publication number Publication date
JP2016080568A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
US20110125442A1 (en) Method for calibrating a thickness gauge
US8770051B2 (en) Apparatus and method for measuring bores
CN105686793A (en) Measuring method
JP5810244B1 (en) Shape measuring instruments
CN106461385B (en) Device and method for object dimensional measurement
JP6384263B2 (en) Echo characteristic correction method
JP2015225083A (en) Method for determining closed trajectory by means of laser and laser light sensor, and apparatus for determining closed trajectory
JP2019194568A (en) Method for measuring out-of-plane wrinkle of composite laminate
JP2017129464A5 (en)
JP2016530898A5 (en)
US20160018216A1 (en) Spherical shape measurement method and apparatus
EP3001140B1 (en) Shape measuring device using frequency scanning interferometer
JP5305741B2 (en) Measuring method
JP6924953B2 (en) Shape measuring device and shape measuring method
JP2012145441A (en) Workpiece dimension measuring apparatus
JP2012093236A5 (en)
JP6279935B2 (en) Displacement measuring device
JP2016065762A (en) Liquid film thickness measuring method and liquid film thickness measuring apparatus
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
JP2014145640A (en) Diameter measuring method and diameter measuring apparatus of circular workpiece
JP2009145152A (en) Measuring device
RU2510488C2 (en) Inclinometre
JP2006317199A5 (en)
KR102074701B1 (en) Device for measuring the deviation of inner diameter and outer diameter
JP2010169636A (en) Shape measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees