JP6337623B2 - 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム - Google Patents

人活動量測定装置、人活動量測定方法及び人活動量測定プログラム Download PDF

Info

Publication number
JP6337623B2
JP6337623B2 JP2014115053A JP2014115053A JP6337623B2 JP 6337623 B2 JP6337623 B2 JP 6337623B2 JP 2014115053 A JP2014115053 A JP 2014115053A JP 2014115053 A JP2014115053 A JP 2014115053A JP 6337623 B2 JP6337623 B2 JP 6337623B2
Authority
JP
Japan
Prior art keywords
exercise intensity
human activity
information
processing device
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014115053A
Other languages
English (en)
Other versions
JP2015228911A (ja
Inventor
隆行 山地
隆行 山地
裕太 増田
裕太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014115053A priority Critical patent/JP6337623B2/ja
Publication of JP2015228911A publication Critical patent/JP2015228911A/ja
Application granted granted Critical
Publication of JP6337623B2 publication Critical patent/JP6337623B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本開示は、人活動量測定装置等に関する。
検知エリアに送波信号を送波し、検知対象者からの反射波を受波するドップラー式のセンサ部を備え、センサ部の出力と検知対象者の変位とを対応付けて、検知対象者の正常又は異常状態を判断する人体異常検知器が知られている(例えば、特許文献1参照)。検知対象者の変位は、検知対象者の呼吸等に伴う変位である。
特開2002-159453号公報
特許文献1には、呼吸に伴う検知対象者の変位をドップラーセンサからの周波数値又はその類(パルス信号の周期である検知間隔)を用いて計測する点が開示されるだけであり、ドップラーセンサを用いて人の運動強度を算出する点については開示されていない。
そこで、開示の技術は、ドップラーセンサを用いて人の運動強度等を算出する人活動量測定装置等の提供を目的とする。
本開示の一局面によれば、送信機と、
受信機と、を有するドップラーセンサと、
前記ドップラーセンサの出力信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信機から送信された送信波を反射させた人の運動強度を算出する処理装置とを含む、人活動量測定装置が提供される。
本開示の技術によれば、ドップラーセンサを用いて人の運動強度等を算出する人活動量測定装置等が得られる。
一実施例による人活動量測定装置1の構成を概略的に示す図。 処理装置100のハードウェア構成の一例を示す図。 一例によるドップラセンサ20の回路ブロック図。 ドップラセンサ20の出力信号の波形の一例を示す図。 処理装置100により実行される処理の一例を示すフローチャート。 ドップラセンサ20の出力信号の振幅変化量の説明図。 伸展時波長算出処理の説明図。 伸展時波長と運動強度との相関性を示す図。 処理装置100により実行される処理の他の一例を示すフローチャート。 人活動量測定装置1の適用例を示す図。 人活動量測定装置1の他の適用例を示す図。
以下、添付図面を参照しながら各実施例について詳細に説明する。
図1は、一実施例による人活動量測定装置1の構成を概略的に示す図である。
人活動量測定装置1は、ドップラセンサ20と、処理装置100とを含む。
ドップラセンサ20は、検知対象者の生活空間(例えば検知対象者の居室)内に設けられる。検知対象者は、任意であるが、例えば、一人で暮らす年配者等であってよい。ドップラセンサ20は、典型的には、固定される。ドップラセンサ20は、検知対象者の生活空間内に複数個設けられてもよい。以下では、説明の都合上、特に言及しない限り、1つのドップラセンサ20について説明する。
ドップラセンサ20は、送信機220と、受信機240とを含む。送信機220及び受信機240は、それぞれ別に形成されてもよいし、送受信機として一体的に形成されてもよい。送信機220は、所定周波数の送信波を検知対象者の生活空間内に送信する。受信機240は、検知対象者の生活空間内の反射物(例えば、検知対象者)からの反射波を受信する。ドップラセンサ20における信号処理について後述する。
処理装置100は、ドップラセンサ20から得られる出力信号に基づいて、各種処理を行う。尚、処理装置100の機能は、1つ以上の任意の数の処理装置により実現されてもよい。また、処理装置100の機能の一部又は全部は、ドップラセンサ20内に内蔵されうる処理装置(例えば、図3のMCU24参照)により実現されてもよい。また、逆にドップラセンサ20内の処理装置により実現される機能の一部又は全部は、処理装置100により実現されてもよい。
図2は、処理装置100のハードウェア構成の一例を示す図である。
図2に示す例では、処理装置100は、制御部101、主記憶部102、補助記憶部103、ドライブ装置104、ネットワークI/F部106、入力部107を含む。
制御部101は、主記憶部102や補助記憶部103に記憶されたプログラムを実行する演算装置であり、入力部107や記憶装置からデータを受け取り、演算、加工した上で、記憶装置などに出力する。
主記憶部102は、ROM(Read Only Memory)やRAM(Random Access Memory)などである。主記憶部102は、制御部101が実行する基本ソフトウェアであるOS(Operating System)やアプリケーションソフトウェアなどのプログラムやデータを記憶又は一時保存する記憶装置である。
補助記憶部103は、HDD(Hard Disk Drive)などであり、アプリケーションソフトウェアなどに関連するデータを記憶する記憶装置である。
ドライブ装置104は、記録媒体105、例えばフレキシブルディスクからプログラムを読み出し、記憶装置にインストールする。
記録媒体105は、所定のプログラムを格納する。この記録媒体105に格納されたプログラムは、ドライブ装置104を介して処理装置100にインストールされる。インストールされた所定のプログラムは、処理装置100により実行可能となる。
ネットワークI/F部106は、有線及び/又は無線回線などのデータ伝送路により構築されたネットワークを介して接続された通信機能を有する周辺機器と処理装置100とのインターフェースである。
入力部107は、カーソルキー、数字入力及び各種機能キー等を備えたキーボード、マウスやスライスパット等を有する。
尚、図2に示す例において、以下で説明する各種処理等は、プログラムを処理装置100に実行させることで実現することができる。また、プログラムを記録媒体105に記録し、このプログラムが記録された記録媒体105を処理装置100に読み取らせて、以下で説明する各種処理等を実現させることも可能である。なお、記録媒体105は、様々なタイプの記録媒体を用いることができる。例えば、記録媒体105は、CD(Compact Disc)−ROM、フレキシブルディスク、光磁気ディスク等の様に情報を光学的,電気的或いは磁気的に記録する記録媒体、ROM、フラッシュメモリ等の様に情報を電気的に記録する半導体メモリ等であってよい。なお、記録媒体105には、搬送波は含まれない。
図3は、ドップラセンサ20における信号処理の説明図であり、一例によるドップラセンサ20の回路ブロック図を概略的に示す。図3には、検知対象者S及び各種波形が模式的に示されている。
ドップラセンサ20は、OSC(oscillator)22と、アンテナ23と、MCU(Micro Control Unit)24と、検波回路26と、バッテリ28と、OP(Operational)アンプ30とを含む。
図3に示す例では、OSC22は、MCU24による制御下で、ローカル信号を生成する。ローカル信号は、アンテナ23と検波回路26とに分波される。アンテナ23から送信される電波は、ローカル信号に基づいて生成され、送信波として検知対象者Sの生活空間内に送信される。送信波の周波数は任意である。送信波は、例えば2GHzから4GHzの電波(マイクロ波)であってよい。検知対象者Sで反射された電波(反射波)は、アンテナ23で受信され、ローカル信号でミキシングされ、ビート信号が生成される。ビート信号は、検波回路26に入力され、検波回路26にてドップラ周波数等が検知される。ビート信号は、OPアンプ30で増幅され、処理装置100へと出力される。尚、OSC22や検波回路26等はバッテリ28からの電力に基づいて動作する。尚、図3に示す例においては、送信機220は、OSC22及びアンテナ23等により形成され、受信機240は、OSC22及びアンテナ23等により形成される。尚、アンテナ23は、送信機220及び受信機240のそれぞれに対して別々に設けられてもよい。
図4は、ドップラセンサ20から処理装置100へ出力される出力信号の波形の一例を示す。
出力信号は、上述の如く、ドップラセンサ20で受信される反射波に係る受信信号(図3の例ではビート信号)に対応する。例えば、ビート信号は、以下の式で表すことができる。
Figure 0006337623
ここで、cは光速、fはドップラ周波数、fは送信波の周波数とし、vは検知対象者Sの速度、Rはドップラセンサ20から検知対象者Sまでの距離である。Aは、振幅であり、反射強度に応じて変動する。
出力信号の振幅Aの値は、反射強度を表し、一般的に、反射面積が大きいほど大きくなる。従って、出力信号の振幅値は、検知対象者Sの動く部位が大きいほど大きくなる。例えば、検知対象者Sが手だけを動かしているときよりも、体全体を動かしているときの方が、出力信号の振幅値が大きくなる。また、出力信号の周波数(ドップラ周波数)は、検知対象者Sの速度を表し、検知対象者Sの速度の大きさが大きいほど高くなる。尚、ドップラ周波数fは、f=2vf/(c−v)で表すことができる。
このように、ドップラセンサ20の出力信号の振幅値及び周波数のそれぞれには、検知対象者Sの動く部分の大きさと速さが現れる。検知対象者Sの動く部分の大きさと速さは、運動量に関連することに起因して、後述の如く運動強度を表すことができる。
図5は、処理装置100により実行される処理の一例を示すフローチャートである。図5に示す処理は、所定周期毎に繰り返し実行されてもよい。
ステップS500では、処理装置100は、所定周期に対応する期間ΔTにわたるドップラセンサ20の出力信号を取得する。
ステップS502では、処理装置100は、ドップラセンサ20の出力信号の振幅変化量を算出する。尚、振幅変化量は絶対値で算出される。振幅変化量は、ドップラセンサ20の出力信号に対してローパスフィルタやA/D(Analog-to-Digital)変換等により前処理を行ってから算出されてもよい。図6は、横軸に時間を取り、縦軸にドップラセンサ20の出力信号の振幅を表す。尚、図6では、便宜上、ドップラセンサ20の出力信号は、電圧値[V]で表されている。図6に示すように、ある時点t=N+2から次の時点t=N+1までの振幅変化量は、|(α+1)−(α+2)|となる。同様に、時点t=N+1から次の時点t=Nまでの振幅変化量は、|(α)−(α+1)|となる。尚、各時点N+2、N+1、Nの間隔は、任意であるが、出力信号の取り得る周期の1/4よりも有意に小さい値に設定される。これは、後述の如く振幅変化量の合計が出力信号の伸展時波長(後述)を精度良く表すようにするためである。例えば、各時点N+2、N+1、Nの間隔は、出力信号の取り得る周期の1/4の1/5以下の値に設定される。
ステップS504では、処理装置100は、ステップS502で算出した振幅変化量に基づいて、出力信号の波形の長さ(以下、「伸展時波長」とも称する)を算出する。伸展時波長は、出力信号の波形を真っ直ぐ伸ばしたときの長さに対応する。処理装置100は、期間ΔTにおける伸展時波長を算出する。期間ΔTは、好ましくは、出力信号の取り得る周期よりも有意に大きい値に設定される。これは、周波数の差を伸展時波長に顕著に反映させるためである。例えば、期間ΔTは、出力信号の取り得る周期の5倍以上の長さに設定される。処理装置100は、現時点を基準として直前の期間ΔTにわたって算出した各振幅変化量を合計して、伸展時波長を算出する。即ち、伸展時波長は、期間ΔTにわたる振幅変化量の積算値に対応する。例えば、図6に示す例では、|(α+1)−(α+2)|+|(α)−(α+1)|+・・・となる。尚、図6に示すように出力信号の振幅が電圧値で表される場合は、伸展時波長の単位は、例えばV/minのような「電圧/時間」となる。
図7は、伸展時波長算出処理の説明図であり、(A)は、出力信号の元波形を示し、(B)は、差分波形を示し、(C)は差分波形を所定時間(本例では1秒)で合計した値を示す。差分波形は、所定の微小時間毎の振幅変化量を表し、本例では、1kHzのサンプリング周期で算出された差分波形を表す。従って、本例では、振幅変化量は、1/1000秒毎の振幅変化量を表す。元波形から差分波形を算出する処理は、ステップS502の処理に対応する。期間ΔTが1秒の場合、差分波形は、1秒毎に合計される(本例では、振幅変化量が1000個毎に合計される)。このようにして、期間ΔTおける伸展時波長が算出される。
ステップS506では、処理装置100は、ステップS504で算出した伸展時波長に基づいて、運動強度を算出する。運動強度とは、人の活動量等を表す指標値であり、METs値(メッツ値)として知られている。METsは、「Metabolic equivalents」の略で、メッツ値は、活動・運動を行った時に安静状態の何倍の代謝(カロリー消費)をしているかを表す。即ち、メッツ値は、安静状態のときを基準値"1"として、各身体活動を行っているときを相対値で表す。どのような身体活動でどのようなメッツ値となるかは、メッツ表(国立健康・栄養研究所発行)で表されている。
ここで、伸展時波長は、上述の如く、期間ΔTにおける出力信号の波形を真っ直ぐ伸ばしたときの長さに対応する。伸展時波長は、出力信号の振幅が大きいほど長くなり、出力信号の周波数が高いほど長くなる。即ち、伸展時波長は、検知対象者の動く部位が大きいほど長くなり、検知対象者の動く速さが早いほど長くなる。検知対象者の動く部位の大きさと速さは、上述の如く検知対象者の当該動きに係る運動量に関連し、従って、伸展時波長は、運動量に関連したパラメータとなることが分かる。現に本願発明者によって、例えば図8に示すように、伸展時波長と運動強度との間には強い相関性があることが確認された。図8では、身体活動として"座位"、"睡眠"、"皿洗い"、"掃除"、"歩行"及び"ストレッチ"の6種類について、それぞれの伸展時波長と運動強度がプロットされている。伸展時波長は、期間ΔTを1分として算出されている。尚、"睡眠"は、安静状態に対応し、運動強度は基準値"1"である。図8に示すように、"座位"、"皿洗い"、"掃除"、"ストレッチ"、"歩行"という順に、動く部位が大きく且つ動く速さが早い身体活動であるほど、伸展時波長及び運動強度が増加していることが分かる。尚、"座位"では、安静状態に比べて、心拍数や呼吸数が、5〜10%程度高いため(動く回数が多くなるため)、波数が多くなり、伸展時波長が長くなる。伸展時波長と運動強度とは、ある関係式Fによって関係付けることができる。関係式Fは、図8に示すように、複数の実データを用いて、カーブフィッティング(曲線あてはめ)により予め導出することができる。関係式Fは、処理装置100内の記憶装置(例えば、補助記憶部103)に記憶されてよい。この場合、処理装置100は、ステップS504で算出した伸展時波長を関係式Fに代入して、運動強度を得ることができる。
尚、関係式Fは、平均的なユーザを想定して導出されてもよい。但し、関係式Fは、性別、体重、身長別にそれぞれ導出されてもよい。これは、性別、体重、身長によって伸展時波長と運動強度との間の相関性が変化するためである。この場合、処理装置100は、検知対象者に応じた関係式Fを用いて、運動強度を算出する。尚、この目的等のため、検知対象者の年齢、身長、体重等を表す検知対象者情報は、初期設定時等に人活動量測定装置1に入力されてもよい。同様に、伸展時波長と運動強度との関係は、他のパラメータ(環境温度、精神的な緊張度)等にも影響を受け得る。従って、関係式Fは、かかるパラメータごとに導出されてもよい。或いは、関係式Fは、検知対象者個別の実測データに基づいて、検知対象者毎に導出されてもよい。
また,ステップS506では、伸展時波長と運動強度とを関連付ける関係式Fを用いて運動強度を求める一例を示したが、伸展時波長と運動強度とを関連付けてもつデータベース、あるいは、周波数と振幅と運動強度とを関連付けてもつデータベースを参照して運動強度を求めるようにしてもよい。
ステップS508では、処理装置100は、ステップS504で算出した運動強度に基づいて、検知対象者の心拍数を算出する。心拍数と運動強度は、例えば、以下の関係式で表される。
運動強度=(心拍数−安静時心拍数)÷(最大心拍数−安静時心拍数)×10 式(1)
ここで、安静時心拍数及び最大心拍数は、それぞれ所定値を用いることができる。或いは、安静時心拍数及び最大心拍数は、それぞれ検知対象者毎に設定されてもよい。例えば、最大心拍数は、(220−検知対象者の年齢)が用いられてもよい。或いは、安静時心拍数及び最大心拍数は、検知対象者の実測データが用いられてもよい。
ステップS510では、処理装置100は、ステップS508で算出した心拍数を出力する。心拍数の出力先は、任意であり、例えば、検知対象者を監視するモニタ(図示せず)等に出力されてもよい。尚、心拍数は、直接的な数値で出力されてもよいし、間接的な情報に変換されて出力されてもよい。かかる心拍数のリアルタイムの出力に加えて又は代えて、処理装置100は、ステップS508で算出した心拍数が所定の正常範囲外にあるときに、警告を出力することとしてもよい。
図5に示す処理によれば、ドップラセンサ20の出力信号から検知対象者の運動強度を介して検知対象者の心拍数を算出することができる。
ところで、ドップラセンサ20は、検知対象者の心拍数や呼吸数に関連した検知対象者の身体の微細な変位も検知することができる。即ち、身体の微細な変位は、出力信号の周波数の変化(ドップラ周波数の変化)として現れるので、検知することができる。しかしながら、かかる検知は、実際には、検知対象者が安静状態にあるときにのみ可能である。これは、検知対象者自体が移動すると、かかる移動に起因した反射波が支配的になるためである。
これに対して、図5に示す処理によれば、ドップラセンサ20の出力信号から検知対象者の運動強度を算出し、算出した運動強度に基づいて、検知対象者の心拍数を算出する。これにより、検知対象者自体が移動している状態においても、検知対象者の心拍数を精度良く算出することが可能となる。
尚、図5に示す処理において、処理装置100は、リアルタイムに入力されるドップラセンサ20の出力信号に対してステップS502の処理をリアルタイムに実行してもよい。この場合、ステップS504において、処理装置100は、期間ΔT毎に、期間ΔT分の振幅変化量を演算した時点で、当該期間ΔTおける伸展時波長を算出してもよい。或いは、ステップS504において、処理装置100は、期間ΔTよりも短い所定時間毎に、直近の期間ΔT分の各振幅変化量を用いて、伸展時波長を算出してもよい。この場合、所定時間は、振幅変化量の演算周期と同一であってもよいが、振幅変化量の演算周期よりも長くてもよい。
尚、図5に示す処理では、運動強度から心拍数を算出しているが、図9に示すように、ステップS508の処理を省略してもよい。即ち心拍数の算出は省略されてもよい。かかる構成は、算出した運動強度を利用して、家電等の制御を行う場合に好適である(例えば、図10等参照)。図9に示す処理によれば、ドップラセンサ20の出力信号から検知対象者の運動強度を算出することができる。
尚、図9に示す処理において、ステップS510では、処理装置100は、ステップS506で算出した運動強度を出力する。運動強度の出力先は、任意であり、例えば、検知対象者を監視するモニタ(図示せず)等に出力されてもよい。尚、運動強度は、直接的な数値で出力されてもよいし、間接的な情報に変換されて出力されてもよい。かかる運動強度のリアルタイムの出力に加えて又は代えて、処理装置100は、ステップS506で算出した運動強度が所定値未満(例えば、1未満)にあるときに、警告を出力することとしてもよい。
尚、運動強度は、同じ身体活動であっても、負荷が異なれば異なる値となりうる。例えば、身体活動が同じ"歩行"であっても、重いものを持っている場合と、軽いものを持っている場合とで運動強度が異なる。この点、図5及び図9に示す例では、かかる負荷については考慮せずに或いは軽負荷状態を想定して、運動強度を算出している。尚、図5及び図9に示す処理によれば、ドップラセンサ20単独で検知対象者の運動強度(及び心拍数)を算出することができるが、他のセンサ(例えば画像センサなど)の情報と組み合わせて運動強度を算出してもよい。例えば、他のセンサにより検知対象者の負荷(例えば、重いものを持っている状態等)を検出し、運動強度を補正してもよい。
図10は、人活動量測定装置1の適用例を示す図である。尚、ここでは、一例として、処理装置100は、運動強度のみを算出し、心拍数は算出しないものとする(図9参照)。但し、処理装置100が心拍数を算出する構成(図5参照)であっても成立する。
図10に示す例では、処理装置100の機能は、クラウド400内の処理装置により実現される。具体的には、ドップラセンサ20からの出力信号(センサデータ)は、ゲートウェイ302を介してクラウド400に供給される。尚、この場合、ドップラセンサ20は、空調装置300に設けられてもよい。クラウド400は、家電制御アプリケーション402と、活動状態判断アプリケーション404と、API(Application Programming Interface)406と、運動強度解析エンジン408と、生データデータベース410と、解析データデータベース412とを含む。
運動強度解析エンジン408は、ゲートウェイ302を介して取得したセンサデータを用いて、図9に示す処理に従って、検知対象者Sの運動強度を算出する。尚、ゲートウェイ302を介して取得したセンサデータは、生データデータベース410に記憶される。運動強度解析エンジン408は、算出した運動強度を、解析データデータベース412に記憶すると共に、API406を介して活動状態判断アプリケーション404に供給する。活動状態判断アプリケーション404は、運動強度に基づいて、検知対象者Sの活動状態を判断する。尚、検知対象者Sの活動状態は、メッツ表(国立健康・栄養研究所発行)に記載される各種活動状態に対応してよい。検知対象者Sの活動状態は、例えば、"座位"、"睡眠"、"皿洗い"、"掃除"、"歩行"、"ストレッチ"等であってもよい。活動状態判断アプリケーション404は、検知対象者Sの活動状態の判断結果を家電制御アプリケーション402に供給する。家電制御アプリケーション402は、検知対象者Sの活動状態に応じて空調装置300の制御信号を生成し、制御信号をゲートウェイ302を介して空調装置300に送信する。空調装置300の制御項目は、任意であり、例えばドライ、暖房、冷房といった運転の種類、温度、風量、風向きの方向等を含んでよい。家電制御アプリケーション402は、典型的には、検知対象者Sの運動強度が高いほど検知対象者Sの生活空間内の温度が低くなる態様(検知対象者Sの発する熱を奪う態様)で、空調装置300を制御する。また、逆に検知対象者Sの運動強度が低い場合(例えば、安静状態である場合)、家電制御アプリケーション502は、空調装置300を弱運転又は停止させてよい。尚、家電制御アプリケーション402は、検知対象者Sの生活空間の温度や設定温度等の他のパラメータについても考慮しつつ空調装置300の制御態様を決定してもよい。
尚、図10に示す例では、活動状態判断アプリケーション404を使用しているが、活動状態判断アプリケーション404は省略されてもよい。この場合、家電制御アプリケーション402は、検知対象者Sの運動強度に応じて空調装置300を制御すればよい。
また、図10に示す例では、処理装置100の機能は、クラウド400内の処理装置により実現されているが、処理装置100の機能の一部は、空調装置300及び/又はゲートウェイ302に内蔵されうる処理装置により実現されてもよい。
図11は、人活動量測定装置1の他の適用例を示す図である。尚、ここでは、一例として、処理装置100は、運動強度のみを算出し、心拍数は算出しないものとする(図9参照)。但し、処理装置100が心拍数を算出する構成(図5参照)であっても成立する。
図11に示す例では、処理装置100の機能は、携帯端末500内の処理装置により実現される。具体的には、ドップラセンサ20からの出力信号(センサデータ)は、携帯端末500に供給される。携帯端末500は、スマートフォン、タブレット端末等のような任意の情報端末であってよい。携帯端末500は、家電制御アプリケーション502と、活動状態判断アプリケーション504と、運動強度解析エンジン508と、生データデータベース510と、解析データデータベース512とを含む。
運動強度解析エンジン508は、ドップラセンサ20から受信したセンサデータを用いて、図9に示す処理に従って、検知対象者Sの運動強度を算出する。受信したセンサデータは、生データデータベース510に記憶される。運動強度解析エンジン508は、算出した運動強度を、解析データデータベース512に記憶すると共に、活動状態判断アプリケーション504に供給する。活動状態判断アプリケーション504は、運動強度に基づいて、検知対象者Sの活動状態を判断する。活動状態判断アプリケーション504は、検知対象者Sの活動状態の判断結果を家電制御アプリケーション502に供給する。家電制御アプリケーション502は、検知対象者Sの活動状態に応じて空調装置300の制御信号を生成し空調装置300に送信する。家電制御アプリケーション502は、典型的には、検知対象者Sの運動強度が高いほど検知対象者Sの生活空間内の温度が低くなる態様で、空調装置300を制御する。また、逆に検知対象者Sの運動強度が低い場合(例えば、安静状態である場合)、家電制御アプリケーション502は、空調装置300を弱運転又は停止させてよい。同様に、家電制御アプリケーション502は、検知対象者Sの生活空間の温度や設定温度等の他のパラメータについても考慮しつつ空調装置300の制御態様を決定してもよい。
尚、図11に示す例では、活動状態判断アプリケーション504を使用しているが、活動状態判断アプリケーション504は省略されてもよい。この場合、家電制御アプリケーション502は、検知対象者Sの運動強度に応じて空調装置300を制御すればよい。
また、図11に示す例では、処理装置100の機能は、携帯端末500内の処理装置により実現されているが、処理装置100の機能の一部は、空調装置300に内蔵されうる処理装置により実現されてもよい。
尚、図10及び図11に示す例では、家電の一例として、空調装置300が想定されている。しかしながら、家電は、空調装置300以外にも多種多様であり、扇風機、床暖房、こたつ、照明器具等を含んでよい。また、制御対象の家電は、1つである必要はなく、複数であってもよい。また、検知対象者Sの運動強度に応じた家電の制御態様は、家電の種類に応じて決定されてよい。例えば、家電が照明器具の場合、家電制御アプリケーション402及び502は、検知対象者Sの運動強度が高い場合に照明器具をオンさせてもよいし、照度を上げることとしてもよい。他方、検知対象者Sの運動強度が低い場合(例えば、安静状態である場合)、家電制御アプリケーション402及び502は、照明器具をオフさせてもよいし、照度を下げることとしてもよい。尚、この場合、ドップラセンサ20は、照明器具に設けられてもよい。
また、図10及び図11に示す例では、クラウド400及び携帯端末500は、家電制御アプリケーション402及び502をそれぞれ備えているが、それに代えて又は加えて、見守りアプリケーションを備えてもよい。見守りアプリケーションは、検知対象者Sの運動強度が所定値未満(例えば、1未満)にあるときに、警告を出力することとしてもよい。警告は、空調装置300に設けられてよいブザー等を介して出力されてもよいし、検知対象者を監視するモニタ(図示せず)やブザー等に出力されてもよい。これにより、例えば春や秋などの空調装置300を使用しない季節においても、ドップラセンサ20からの出力信号を利用して見守り機能を作動させることができる。尚、この見守り機能を効果的に実現するために、ドップラセンサ20は、好ましくは、検知対象者の生活空間の全体を検知できるように、必要に応じて複数個設けられる。
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
例えば、上述した実施例では、演算負荷を低減するために、伸展時波長は、各サンプリング周期における振幅値の変化量(絶対値)を積算することで算出されているが、他の方法で伸展時波長を算出してもよい。例えば、伸展時波長は、三平方の定理を利用した積分により算出されてもよい。
なお、以上の実施例に関し、さらに以下の付記を開示する。
(付記1)
送信機と、
受信機と、
前記送信機から送信された送信波に係る反射波を前記受信機で受信して得られる受信信号の周波数情報と振幅情報とを取得し、取得した周波数情報及び振幅情報と、周波数情報及び振幅情報に対応する運動強度を関係付ける情報とに基づいて、前記送信波を反射させた人の運動強度を算出する処理装置とを含む、人活動量測定装置。
(付記2)
前記処理装置は、所定時間当たりの前記受信信号の波形の長さに基づいて、前記運動強度を算出する、請求項1に記載の人活動量測定装置。
(付記3)
前記処理装置は、前記長さが相対的に長い場合に前記長さが相対的に短い場合よりも前記運動強度が大きくなる態様で、前記運動強度を算出する、請求項2に記載の人活動量測定装置。
(付記4)
前記処理装置は、前記所定時間よりも短い第1時間毎の前記受信信号の振幅の変化量の絶対値を前記所定時間分積算し、積算した変化量の合計値に基づいて、前記運動強度を算出する、請求項2に記載の人活動量測定装置。
(付記5)
前記処理装置は、前記合計値と前記運動強度との関係式に基づいて、前記合計値から前記運動強度を算出する、請求項4に記載の人活動量測定装置。
(付記6)
前記処理装置は、前記運動強度に基づいて、前記人の心拍数を算出する、請求項1〜5のうちのいずれか1項に記載の人活動量測定装置。
(付記7)
前記処理装置は、前記運動強度と、安静時の心拍数と、最大心拍数と、心拍数との関係式に基づいて、前記人の心拍数を算出する、請求項6に記載の人活動量測定装置。
(付記8)
前記処理装置は、算出した前記心拍数が所定範囲外である場合に警報を出力する、付記7に記載の人活動量測定装置。
(付記9)
前記処理装置は、前記運動強度が所定値未満である場合に警報を出力する、請求項1〜5のうちのいずれか1項に記載の人活動量測定装置。
(付記10)
ドップラセンサを備え、
前記ドップラセンサは、前記送信機及び前記送信機を含む、付記1〜9のうちのいずれか1項に記載の人活動量測定装置。
(付記11)
前記処理装置は、前記運動強度に基づいて、前記人の生活空間内の電気機器の制御態様を決定する、付記1〜5のうちのいずれか1項に記載の人活動量測定装置。
(付記12)
前記処理装置は、前記運動強度が相対的に低い場合に前記運動強度が相対的に高い場合に比べて照度が低下する態様で照明器具を制御する、付記11に記載の人活動量測定装置。
(付記13)
前記処理装置は、前記運動強度が相対的に低い場合に前記運動強度が相対的に高い場合に比べて冷却能力が低下する態様で空調装置を制御する、付記11に記載の人活動量測定装置。
(付記14)
前記電気機器に設けられるドップラセンサを備え、
前記ドップラセンサは、前記送信機及び前記送信機を含む、付記11に記載の人活動量測定装置。
(付記15)
コンピューターが、送信機から送信された送信波に係る反射波を受信機で受信して得られる受信信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信波を反射させた人の運動強度を算出する、人活動量測定方法。
(付記16)
送信機から送信された送信波に係る反射波を受信機で受信して得られる受信信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信波を反射させた人の運動強度を算出する処理をコンピューターに実行させるための人活動量測定プログラム。
1 人活動量測定装置
20 ドップラセンサ
100 処理装置
220 送信機
240 受信機

Claims (10)

  1. 送信機と、
    受信機と、を有するドップラーセンサと、
    前記ドップラーセンサの出力信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信機から送信された送信波を反射させた人の運動強度を算出する処理装置とを含む、人活動量測定装置。
  2. 前記処理装置は、所定時間当たりの前記出力信号の波形の長さに基づいて、前記運動強度を算出する、請求項1に記載の人活動量測定装置。
  3. 前記処理装置は、前記長さが相対的に長い場合に前記長さが相対的に短い場合よりも前記運動強度が大きくなる態様で、前記運動強度を算出する、請求項2に記載の人活動量測定装置。
  4. 前記処理装置は、前記所定時間よりも短い第1時間毎の前記出力信号の振幅の変化量の絶対値を前記所定時間分積算し、積算した変化量の合計値に基づいて、前記運動強度を算出する、請求項2に記載の人活動量測定装置。
  5. 前記処理装置は、前記合計値と前記運動強度との関係式に基づいて、前記合計値から前記運動強度を算出する、請求項4に記載の人活動量測定装置。
  6. 前記処理装置は、前記運動強度に基づいて、前記人の心拍数を算出する、請求項1〜5のうちのいずれか1項に記載の人活動量測定装置。
  7. 前記処理装置は、前記運動強度と、安静時の心拍数と、最大心拍数と、心拍数との関係式に基づいて、前記人の心拍数を算出する、請求項6に記載の人活動量測定装置。
  8. 前記処理装置は、前記運動強度が所定値未満である場合に警報を出力する、請求項1〜5のうちのいずれか1項に記載の人活動量測定装置。
  9. コンピューターが、送信機と、受信機と、を有するドップラーセンサの出力信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信機から送信された送信波を反射させた人の運動強度を算出する、人活動量測定方法。
  10. 送信機と、受信機と、を有するドップラーセンサの出力信号の周波数情報と振幅情報とを取得し、取得した周波数情報と振幅情報と、周波数情報と振幅情報に対応する運動強度とを関係付ける情報に基づいて、前記送信機から送信された送信波を反射させた人の運動強度を算出する処理をコンピューターに実行させる人活動量測定プログラム。
JP2014115053A 2014-06-03 2014-06-03 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム Active JP6337623B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115053A JP6337623B2 (ja) 2014-06-03 2014-06-03 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115053A JP6337623B2 (ja) 2014-06-03 2014-06-03 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム

Publications (2)

Publication Number Publication Date
JP2015228911A JP2015228911A (ja) 2015-12-21
JP6337623B2 true JP6337623B2 (ja) 2018-06-06

Family

ID=54886050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115053A Active JP6337623B2 (ja) 2014-06-03 2014-06-03 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム

Country Status (1)

Country Link
JP (1) JP6337623B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6716951B2 (ja) * 2016-02-25 2020-07-01 富士通株式会社 センサ情報処理装置、センサユニット、及び、センサ情報処理プログラム
EP3476292A4 (en) 2016-06-27 2019-06-26 Fujitsu Limited BIOLOGICAL RHYTHM DETECTION DEVICE, DETECTION METHOD, AND DETECTION PROGRAM

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057438B2 (ja) * 1998-09-11 2000-06-26 日本アビオニクス株式会社 非接触式心肺機能監視装置
JP4405343B2 (ja) * 2004-08-23 2010-01-27 株式会社デンソー 心拍計測装置
JP2007315724A (ja) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd 空気調和機
US8721554B2 (en) * 2007-07-12 2014-05-13 University Of Florida Research Foundation, Inc. Random body movement cancellation for non-contact vital sign detection
JP2009072417A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 生体情報処理装置及び方法
JP5392919B2 (ja) * 2010-06-23 2014-01-22 日本電信電話株式会社 生体情報計測装置及び生体情報計測方法
JP5708341B2 (ja) * 2011-07-21 2015-04-30 セイコーエプソン株式会社 生体情報処理装置及び生体情報処理方法
JP2013202289A (ja) * 2012-03-29 2013-10-07 Seiko Epson Corp 拍動検出装置、電子機器及びプログラム
JP6064431B2 (ja) * 2012-08-17 2017-01-25 富士通株式会社 運動判定プログラム、携帯電子機器、運動判定方法及び情報処理装置
JP5935593B2 (ja) * 2012-08-22 2016-06-15 富士通株式会社 心拍推定装置及び方法、並びにプログラム
JP5578292B1 (ja) * 2014-03-20 2014-08-27 横浜ゴム株式会社 移動体の速度計測装置

Also Published As

Publication number Publication date
JP2015228911A (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
WO2020042444A1 (zh) 人体存在探测器及其人体存在探测方法
US10563879B2 (en) Air conditioner, sensor unit, and control system
US9980655B2 (en) Heart rate monitor device
US10492720B2 (en) System and method for determining sleep stage
JP5350721B2 (ja) 居住者監視システムおよび居住者監視方法
US20180289332A1 (en) Sensor system, sensor information processing apparatus, non-transitory computer-readable recording medium having stored therein sensor information processing program, and bed
US20120271121A1 (en) Integrated Biometric Sensing and Display Device
JP6249943B2 (ja) 発熱検出装置
KR102494874B1 (ko) 일상생활 능력정보 기반 치매 예측 방법 및 그 장치
JP6716951B2 (ja) センサ情報処理装置、センサユニット、及び、センサ情報処理プログラム
KR20210091700A (ko) 웨어러블 디바이스들 상에서 ppg 신호 품질의 중재를 활용하기 위한 임베디드 ppg 신호 대 잡음비 정의의 정량화
JP2017000484A (ja) 非接触活動量センサ及び空調機
KR101993649B1 (ko) 가우시안 분포를 이용한 생활패턴 규칙성 산출 방법 및 그 장치
JP6337623B2 (ja) 人活動量測定装置、人活動量測定方法及び人活動量測定プログラム
Song et al. Unobtrusive occupancy and vital signs sensing for human building interactive systems
JP7006199B2 (ja) データ生成装置、データ生成方法、データ生成プログラムおよびセンサ装置
JP7468350B2 (ja) 状態監視装置および状態監視装置の制御方法
JP2023521416A (ja) 環境健康監視および予測的評価を可能にする非接触型センサー駆動デバイス、システム、および方法
CN109068980B (zh) 控制活体主体的一个或多个生命体征的测量
US10736541B2 (en) Monitoring liquid and/or food consumption of a person
CN107049293B (zh) 传感器信息处理设备
JP2019195732A (ja) センサ情報処理装置
JP2019153295A (ja) 自己管理支援システム
JP2023094448A (ja) 見守りシステム
Das et al. Design and Implementation of Portable and Compact Human Heartbeat Rate Monitoring System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150