JP6131450B2 - Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method - Google Patents

Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method Download PDF

Info

Publication number
JP6131450B2
JP6131450B2 JP2013090673A JP2013090673A JP6131450B2 JP 6131450 B2 JP6131450 B2 JP 6131450B2 JP 2013090673 A JP2013090673 A JP 2013090673A JP 2013090673 A JP2013090673 A JP 2013090673A JP 6131450 B2 JP6131450 B2 JP 6131450B2
Authority
JP
Japan
Prior art keywords
activated carbon
cerium oxide
polluted water
supported
supported activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013090673A
Other languages
Japanese (ja)
Other versions
JP2014213233A (en
Inventor
克嘉 蓼沼
克嘉 蓼沼
智彦 川上
智彦 川上
優子 小松崎
優子 小松崎
祐未 鈴木
祐未 鈴木
きよ子 黒澤
きよ子 黒澤
忠洋 根本
忠洋 根本
英之 圷
英之 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Original Assignee
Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd filed Critical Kaken Co Ltd
Priority to JP2013090673A priority Critical patent/JP6131450B2/en
Publication of JP2014213233A publication Critical patent/JP2014213233A/en
Application granted granted Critical
Publication of JP6131450B2 publication Critical patent/JP6131450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)

Description

本発明は、放射性汚染水または工場排水の浄化方法および浄化装置、これらに用いるに適した活性炭、ならびに減容方法に関する。   The present invention relates to a purification method and a purification apparatus for radioactively polluted water or factory waste water, activated carbon suitable for use in these, and a volume reduction method.

福島原発の汚染水には、放射性のアンチモン(Sb−125)、セレン(Se−79)テルル(Te−123m、Te−127、他)、ヨウ素(I−131、I−129)が含まれ、工場排水には放射性物質ではないが上述の元素が含まれる場合がある。また、排水に、ヒ素(As)あるいはホウ素(B)が含まれる場合がある。これらの物質を除去してきれいな水にするために各種の方法が開発され、運用されている。   Contaminated water from the Fukushima nuclear power plant includes radioactive antimony (Sb-125), selenium (Se-79) tellurium (Te-123m, Te-127, etc.), iodine (I-131, I-129), Factory wastewater is not a radioactive substance, but may contain the above-mentioned elements. Moreover, arsenic (As) or boron (B) may be contained in the waste water. Various methods have been developed and put into operation to remove these substances into clean water.

その一つとして、ホウ素吸着剤が知られ、市販されている。この吸着剤は、ホウ素を選択的に回収することが出来る。また、希土類吸着剤が知られている。この吸着剤は、ホウ素除去技術を基にして開発された吸着剤であり、現在ではフッ素、ヒ素、ホウ素、リンについての吸着剤としても用いられている。この吸着剤は、吸着内部に微細な空隙を多数有することで、内部まで水が浸透しやすいため、吸着体との接触面積が大きいことで高い吸着性能を有している。また、放射性物質除去吸着剤として、希土類のセリウムを用いた酸化セリウム含有吸着剤が知られている。これは酸化セリウムを有機バインダで固めて吸着剤としたもので、汚染水から上述した放射性の物質を吸着除去するに有効とされている。   As one of them, boron adsorbent is known and commercially available. This adsorbent can selectively recover boron. In addition, rare earth adsorbents are known. This adsorbent is an adsorbent developed based on boron removal technology, and is currently used as an adsorbent for fluorine, arsenic, boron, and phosphorus. Since this adsorbent has a large number of fine voids inside the adsorption and water easily penetrates into the inside, it has high adsorption performance due to its large contact area with the adsorbent. Further, a cerium oxide-containing adsorbent using rare earth cerium is known as a radioactive substance removing adsorbent. This is an adsorbent obtained by solidifying cerium oxide with an organic binder, and is effective in adsorbing and removing the above-mentioned radioactive substances from contaminated water.

特許文献1には、上述した各種物質の吸着に用いられるものではなく、イソチオシアン酸エステルの臭気を除去するものであるが、活性炭に酸化セリウムを担持させた酸化セリウム添着活性炭が記載されている。   Patent Document 1 describes a cerium oxide-added activated carbon in which cerium oxide is supported on activated carbon, which is not used for the adsorption of various substances described above but removes the odor of isothiocyanate.

特許文献2には、樹脂ビーズに酸化セリウムを担持させた酸化セリウム吸着剤が記載され、汚染水に適用されることが記載されている。   Patent Document 2 describes a cerium oxide adsorbent in which cerium oxide is supported on resin beads, and describes that it is applied to contaminated water.

特開平8−994号公報JP-A-8-994 特開2006−320847号公報JP 2006-320847 A

原発の汚染水には、放射性のアンチモン、セレン、テルル、ホウ素、ヨウ素が含まれる。工場排水には、これらの元素が放射性ではない有害物質として含まれている場合がある。原発の汚染水または工場排水に含まれるこれらの物質を含むこれらの有害物質は、オキソ酸化合物の形態である場合が多い。有害物質が、オキソ酸形態をとると、一般的な吸着剤では除去しにくい。上述した酸化セリウム含有吸着剤は、原発の汚染水に用いて有効であるが、主成分が希土類のセリウムを主成分として少量の有機バインダで固めた形態として形成されるものであるので、高価な吸着剤となり、汚染水の処理法が高価なものとなる。また、セリウムは、焼却して減容し処分する時に、有機物バインダを低温で燃焼させる作用があるので、温度コントロール、すなわち安全性に慎重を期することが求められ、上述した有害物質を吸着した後の焼却減容化のときに主成分として使用された大容量の酸化セリウムが残差として残されることのために減容率を向上させることに問題があった。   Primary polluted water contains radioactive antimony, selenium, tellurium, boron and iodine. Industrial wastewater may contain these elements as hazardous substances that are not radioactive. These harmful substances, including those contained in primary polluted water or industrial wastewater, are often in the form of oxo acid compounds. If the harmful substance is in the form of oxo acid, it is difficult to remove it with a general adsorbent. The cerium oxide-containing adsorbent described above is effective for use in primary contaminated water. However, the cerium oxide-containing adsorbent is expensive because it is formed as a form in which the main component is a rare earth cerium as a main component and solidified with a small amount of an organic binder. It becomes an adsorbent, and the treatment method of contaminated water becomes expensive. In addition, cerium has the effect of burning the organic binder at a low temperature when it is incinerated to reduce the volume and dispose of it. Therefore, it is required to carefully control the temperature, that is, to ensure safety, and adsorbs the harmful substances mentioned above. There was a problem in improving the volume reduction rate because the large volume of cerium oxide used as the main component in the subsequent incineration volume reduction was left as a residual.

本発明は、かかる点に鑑み上述した有害物質であるオキソ酸化合物の吸着除去に有効で、温度コントロールが容易で安全性があり、吸着した後の処理にあたって高い減容化率が得られ、しかも希土類のような高価な吸着剤を大量に用いる必要のない処理方法および処理装置を提供することを目的とする。   The present invention is effective in adsorbing and removing the oxo acid compound, which is a harmful substance described above in view of the above points, is easy to control the temperature, is safe, has a high volume reduction rate in the treatment after adsorption, and It is an object of the present invention to provide a processing method and a processing apparatus that do not require a large amount of an expensive adsorbent such as rare earth.

本発明は、放射性汚染水または工場排水中のオキソ酸化合物を形成された酸化セリウム担持活性炭に吸着することで放射性汚染水または工場排水を浄化する放射性汚染水または工場排水浄化方法であり、オキソ酸化合物が、アンチモン、ヒ素、セレン、テルル、ホウ素、ヨウ素の内のいずれかの元素からなるオキソ酸化合物であり、酸化セリウム担持活性炭が、活性炭へのセリウム水溶液含浸後に150から200℃内の加熱処理がなされて形成されたことを特徴とする放射性汚染水または工場排水浄化方法を提供する。 The present invention is a radioactive contaminated water or industrial waste water purification method for purifying radioactive contaminated water or industrial waste water by adsorbing radioactive contaminated water or cerium oxide on charcoal formed an oxo acid compound in the plant effluent, oxoacids compound, antimony, arsenic, selenium, tellurium, boron, Ri oxo acid compound der consisting of either of elements of iodine, cerium oxide supported activated carbon, heated to 150 from the 200 ° C. after an aqueous solution of cerium impregnation on activated carbon process provides a radioactive contaminated water or industrial waste water purification how, characterized in that formed is made.

また、本発明は、上記の放射性汚染水または工場排水浄化方法に用いられる酸化セリウム担持活性炭の形成方法であって、当該酸化セリウム担持活性炭が、活性炭へのセリウム水溶液含浸後に150から200℃内の加熱処理がなされて形成されたことを特徴とする放射性汚染水または工場排水浄化方法に用いられる酸化セリウム担持活性炭の形成方法を提供する。 The present invention is also a method for forming cerium oxide-supported activated carbon used in the method for purifying radioactive polluted water or factory waste water, wherein the cerium oxide-supported activated carbon is within a temperature range of 150 to 200 ° C. after impregnation of the activated carbon with cerium aqueous solution. Provided is a method for forming cerium oxide-supported activated carbon used in a method for purifying radioactive polluted water or factory waste water, which is formed by heat treatment .

また、本発明は、オキソ酸化合物を吸着した酸化セリウム担持活性炭を燃焼することで、燃焼前の酸化セリウム担持活性炭の重量に比して減容された残渣の重量が3〜16%にまで減容できることを特徴とする酸化セリウムを含有する酸化セリウム担持活性炭の燃焼減容方法を提供する。   Further, according to the present invention, by burning the cerium oxide-supported activated carbon adsorbing the oxo acid compound, the weight of the residue reduced to 3 to 16% is reduced compared to the weight of the cerium oxide-supported activated carbon before combustion. Disclosed is a method for reducing the combustion volume of cerium oxide-supported activated carbon containing cerium oxide, which is characterized by being capable of being accommodated.

本発明は、上述したように、放射性汚染水または工場排水浄化に際して、オキソ酸化合物を、酸化セリウム担持活性炭を用いて放射性汚染水または工場排水中のオキソ酸化合物を吸着するようにしているので、担持量が少なくてオキソ酸化合物の吸着除去に有効で、温度コントロールが容易で安全性があり、吸着した後の処理にあたって高い減容化率が得られ、しかも高価な希土類のセリウムを大量に吸着剤として用いないで済む処理方法および処理装置を構成することができる。   In the present invention, as described above, when purifying radioactive polluted water or factory wastewater, the oxoacid compound is adsorbed to the radioactive polluted water or factory wastewater using cerium oxide-supported activated carbon. Low loading, effective for adsorption removal of oxo acid compounds, easy temperature control, safe, high volume reduction rate after adsorption, and large amount of expensive rare earth cerium adsorbed A processing method and a processing apparatus that do not need to be used as an agent can be configured.

セリア(酸化セリウム)担持活性炭の製造工程を示す図。The figure which shows the manufacturing process of a ceria (cerium oxide) carrying activated carbon. Sb吸着量の比較図。The comparison figure of Sb adsorption amount. オキソ酸イオン(Sb)吸着率を示す図。The figure which shows an oxo acid ion (Sb) adsorption rate. オキソ酸イオン(Te)吸着率を示す図。The figure which shows an oxo acid ion (Te) adsorption rate. オキソ酸イオン(As)吸着率を示す図。The figure which shows an oxo acid ion (As) adsorption rate. オキソ酸イオン(Se)吸着率を示す図。The figure which shows an oxo acid ion (Se) adsorption rate. ヨウ化物イオン(I-)吸着率を示す図。The figure which shows the iodide ion (I < - >) adsorption rate. オキソ酸イオン(IO )吸着率を示す図。Oxoacid ions (IO 3 -) shows the adsorption rate. 125Sbカラム吸着ゾーンを示す図。 The figure which shows a 125 Sb column adsorption | suction zone. 125Sbカラム出口濃度を示す図。 The figure which shows a 125 Sb column exit density | concentration. Ce溶脱率の比較図。The comparison figure of Ce leaching rate. 焼却による減容効果の比較図。Comparison chart of volume reduction effect by incineration.

オキソ酸とは、ある原子にヒドロキシル基とオキソ基が結合しており、かつそのヒドロキシル基が酸性プロトンを与える化合物のことを指す。本実施例が対象とするオキソ酸化合物は、アンチモン、ヒ素、セレン、テルル、ホウ素、ヨウ素の内のいずれかの元素からなるオキソ酸化合物である。   Oxo acid refers to a compound in which a hydroxyl group and an oxo group are bonded to an atom and the hydroxyl group gives an acidic proton. The oxo acid compound targeted by this example is an oxo acid compound composed of any one of antimony, arsenic, selenium, tellurium, boron, and iodine.

図1は、セリア担持活性炭、すなわち酸化セリウム担持活性炭の製法を示す。   FIG. 1 shows a method for producing ceria-supported activated carbon, that is, cerium oxide-supported activated carbon.

図1において、乾燥した粒状あるいは粉末状の活性炭1に、セリウム水溶液をスプレーし、含浸2させる。その後に空気中で、150〜200℃で低温加熱3する。放冷することで酸化性セリウム担持活性炭を形成する。このように低温加熱することでセリウムをセリア(酸化セリウム)の形態で活性炭に安定的に担持してセリア(酸化セリウム)担持活性炭を形成させる。加熱は、低温ほど望ましいが、活性炭の燃焼を防止し、放冷する上で150〜200℃が適している。

In FIG. 1, cerium aqueous solution is sprayed and impregnated 2 on dry granular or powdered activated carbon 1. After that, low-temperature heating 3 is performed at 150 to 200 ° C. in air. Oxidized cerium-supported activated carbon is formed by allowing to cool. By heating at low temperature in this way, cerium is stably supported on activated carbon in the form of ceria (cerium oxide) to form ceria (cerium oxide) -supported activated carbon. Heating is desirable at lower temperatures, but 150 to 200 ° C. is suitable for preventing the activated carbon from burning and allowing to cool.

この低温加熱よって、セリウムの原子価が3価から4価に変換した酸化セリウムが形成され、オキソ酸イオンに対して吸着性が増え、同時に水に対して不溶性となるため、水中に長期間浸漬して使用可能な酸化セリウム担持活性炭4を得ることが出来る。
このようにして、150〜200℃内での加熱処理がなされて形成された水に不溶性の酸化セリウムを担持する活性炭が形成される。
This low temperature heating forms cerium oxide in which the valence of cerium is converted from trivalent to tetravalent, increasing adsorption to oxoacid ions and at the same time becoming insoluble in water. Thus, usable cerium oxide-supported activated carbon 4 can be obtained.
Thus, activated carbon carrying cerium oxide insoluble in water formed by heat treatment at 150 to 200 ° C. is formed.

酸化セリウム担持活性炭の吸着作用について:
形成された酸化セリウム担持活性炭を用いて、放射性汚染水または工場排水中のオキソ酸化合物を酸化セリウム担持活性炭に吸着することで放射性汚染水または工場排水を浄化する。酸化セリウム担持粉末活性炭および酸化セリウム担持粒状活性炭では次のようになる。
1)酸化セリウム担持粉末活性炭: Sb, As, Se, Teなどの有害物質や放射性物質を含む汚染水に酸化セリウム担持粉末活性炭を添加し充分に撹拌混合させる。その後、放置沈降あるいは凝集剤を添加し沈殿除去することで、液中から有害物質を除去し汚染水を浄化する。
2)酸化セリウム担持粒状活性炭: 吸着塔に充填し、Sb, Asなどの有害物質や放射性物質を含む汚染水を通液することで、有害物質を除去し、汚染水を浄化する。
Adsorption of cerium oxide-supported activated carbon:
Using the formed cerium oxide-supported activated carbon, the radioactively contaminated water or factory wastewater is purified by adsorbing the oxo acid compound in the radioactively contaminated water or factory wastewater to the cerium oxide-supported activated carbon. In the case of cerium oxide-supported powdered activated carbon and cerium oxide-supported granular activated carbon, the results are as follows.
1) Cerium oxide-supported powdered activated carbon: Add cerium oxide-supported powdered activated carbon to contaminated water containing harmful substances and radioactive substances such as Sb, As, Se, Te, and mix thoroughly. Then, by removing the sediment by leaving it to settle or adding a flocculant, harmful substances are removed from the liquid and the contaminated water is purified.
2) Granular activated carbon carrying cerium oxide: Removes harmful substances and purifies contaminated water by filling the adsorption tower and passing contaminated water containing harmful substances such as Sb and As and radioactive substances.

対象とするオキソ酸イオンの例
[As] AsO4 3-
[Sb] SbO3-, Sb(OH)6 -
[Se] SeO4 2-
[Te] TeO3 2-
[I] IO3 -
[B] BO3 3-, B(OH)4 -
酸化セリウム担持活性炭のオキソ酸吸着の基本式は次のようになる。
CeO2-OH(吸着ヒドロキシル基) + オキソ酸[例; Sb(OH)6 -] →CeO2-Sb(OH)6 + OH-
CeO2-OH(吸着ヒドロキシル基)は、酸化セリウム担持活性炭CeO2/ACの水和状態である。
除去対象のオキソ酸についての化学反応式は次のようである。
[アンチモン] CeO-OH + Sb(OH) -→ CeO-Sb(OH) + OH-
[ヒ素] CeO-3OH + AsO 3-→ CeO-AsO + 3OH-
[セレン] CeO-2OH + SeO42- → CeO-SeO + 2OH-
[テルル] CeO-2OH + TeO 2- → CeO-TeO + 2OH-
[ヨウ素] CeO-OH + I- → CeO-I + OH-
CeO-OH + IO - → CeO-IO + OH-
[ホウ素] CeO-OH + B(OH) - → CeO-B(OH) + OH-
酸化セリウム担持活性炭は、活性炭としての機能をあわせ持つため、上述した化学反応を阻害するような物質を吸着する。酸化セリウム担持活性炭に一般的な活性炭を混合して上述した化学反応を阻害する物質を吸着させるようにしてもよい。
Examples of target oxoacid ions
[As] AsO 4 3-
[Sb] SbO 3 -, Sb (OH) 6 -
[Se] SeO 4 2-
[Te] TeO 3 2-
[I] IO 3 -
[B] BO 3 3-, B (OH) 4 -
The basic formula for oxo acid adsorption of cerium oxide-supported activated carbon is as follows.
CeO 2 -OH (adsorption hydroxyl group) + oxo acid [Example; Sb (OH) 6 -] → CeO 2 -Sb (OH) 6 + OH -
CeO 2 —OH (adsorbed hydroxyl group) is a hydration state of cerium oxide-supported activated carbon CeO 2 / AC.
The chemical reaction formula for the oxo acid to be removed is as follows.
[Antimony] CeO 2 —OH + Sb (OH) 6 → CeO 2 —Sb (OH) 6 + OH
[Arsenic] CeO 2 -3OH + AsO 4 3- → CeO 2 -AsO 4 + 3OH -
[Selenium] CeO 2 -2OH + SeO4 2- → CeO 2 -SeO 4 + 2OH -
[Tellurium] CeO 2 -2OH + TeO 3 2- → CeO 2 -TeO 3 + 2OH -
[Iodine] CeO 2 -OH + I - → CeO 2 -I + OH -
CeO 2 -OH + IO 3 - → CeO 2 -IO 3 + OH -
[Boron] CeO 2 -OH + B (OH ) 4 - → CeO 2 -B (OH) 4 + OH -
Since cerium oxide-supported activated carbon also has a function as activated carbon, it adsorbs substances that inhibit the above-described chemical reaction. A general activated carbon may be mixed with cerium oxide-supported activated carbon to adsorb a substance that inhibits the above-described chemical reaction.

オキソ酸化合物を吸着した酸化セリウム担持活性炭を減容処理する。
使用済み酸化セリウ担持活性炭の廃棄方法について:
酸化セリウム担持担持活性炭を、Sb, As, Se, Teなどの有害物質や放射性物質を含む汚染水と接触反応させて有害物質が吸着した酸化セリウム担持活性炭の廃棄方法として、温風(70~80℃程度)で乾燥後、250℃前後で活性炭を低温燃焼させ減容する方法が採用される。
The volume of cerium oxide-supported activated carbon adsorbed with oxo acid compound is reduced.
About the disposal method of used cerium oxide-supported activated carbon:
As a method of disposing of cerium oxide-supported activated carbon in which the cerium oxide-supported activated carbon is contacted with contaminated water containing harmful substances and radioactive substances such as Sb, As, Se, Te, etc. After drying at about ℃), a method of reducing the volume by burning the activated carbon at a low temperature around 250 ℃ is adopted.

この低温燃焼で、酸化セリウム担持活性炭の廃棄物の体積・重量は80~95%程度(灰分残量 5~20%程度)に減少させることが出来る。   By this low-temperature combustion, the volume and weight of the cerium oxide-supported activated carbon waste can be reduced to about 80 to 95% (ash content is about 5 to 20%).

低温燃焼のため、吸着有害物質の焼却に伴う揮発・揮散を低減できる。
焼却残さ(灰分残量 5~20%)をコンクリートなどで固化することで、有害物をコンパクトに安全に封じ込めることができる。
Because of low-temperature combustion, volatilization and volatilization associated with incineration of adsorbed harmful substances can be reduced.
By solidifying the incineration residue (remaining ash content 5 to 20%) with concrete, harmful substances can be contained in a compact and safe manner.

図2は、酸化セリウム担持活性炭のSb吸着性能を示す。図2は、0.1mg-Sb添加/100ml蒸留水ベースにおけるSb吸着量の比較を示す。ここで、市販の酸化セリウム吸着剤は、酸化セリウムを有機バインダで固めた吸着剤で、Sb吸着性能を有する。未処理ACとは、活性炭についてアルカリ処理しない状態での活性炭を示し、中和AC活性炭とは、活性炭についてアルカリ処理して中和した活性炭を示す。AC活性炭としては、日本エンバイロケミカルズ社の粒状の白鷺(登録商標)LH2c32/60ssおよび株式会社クラレ社のクラレコール(登録商標)GW-H32/60を用いたが、活性炭基材の差異は認められない。   FIG. 2 shows the Sb adsorption performance of cerium oxide-supported activated carbon. FIG. 2 shows a comparison of the amount of Sb adsorption on the basis of 0.1 mg-Sb addition / 100 ml distilled water. Here, the commercially available cerium oxide adsorbent is an adsorbent obtained by solidifying cerium oxide with an organic binder and has Sb adsorption performance. Untreated AC indicates activated carbon in a state in which activated carbon is not alkali-treated, and neutralized AC activated carbon indicates activated carbon neutralized by alkali treatment of activated carbon. As the AC activated carbon, granular white birch (registered trademark) LH2c32 / 60ss of Nippon Enviro Chemicals and Kuraray Coal (registered trademark) GW-H32 / 60 of Kuraray Co., Ltd. were used, but differences in the activated carbon substrate were observed. Absent.

図2から、0.1mmol- CeO/g(AC)は、いずれの活性炭についても、Sb吸着量において市販の酸化セリウム吸着剤と同等の性能を示すことが分かる。活性炭(AC)1gに対する酸化セリウム担持量として、0.1mmol以上において同等性能を示すが、セリウムは高価格のため、酸化セリウム担持量は0.1mmolでよい。このことは、酸化セリウム担持量を1.0mmolとすることが出来るが、0.1mmolあれば性能は十分に確保されることを示す。 From FIG. 2, it can be seen that 0.1 mmol-CeO 2 / g (AC) shows the same performance as that of a commercially available cerium oxide adsorbent in the amount of Sb adsorption for any activated carbon. As the amount of cerium oxide supported on 1 g of activated carbon (AC), the equivalent performance is shown at 0.1 mmol or more, but cerium is high in price, so the amount of cerium oxide supported may be 0.1 mmol. This indicates that the supported amount of cerium oxide can be 1.0 mmol, but the performance is sufficiently secured if 0.1 mmol is used.

図3から図8は、各種オキソ酸イオン類吸着率についてのカラム法による試験結果を示す。   3 to 8 show the test results by the column method for the adsorption rates of various oxoacid ions.

試験の条件は、次の通りである。
[試験液]Sb,Te,As,Se,I-,IO3 -各250ppb/純粋ベース
[吸着剤]酸化セリウム担持量;(0.1mmol)/g(AC), 製作時の加熱温度;160℃、AC活性炭母材;GW-H32/60(5cm)、市販のCeO2吸着剤(5cm
[通液条件]SV 40h-1,LV 2.8m/h
図9および図10は、酸化セリウム担持活性炭への125Sbのカラム法による吸着試験結果を示す。
カラム試験条件は、次の通りである。
The test conditions are as follows.
[Test solution] Sb, Te, As, Se , I -, IO 3 - each 250 ppb / pure base [sorbent Cerium oxide support amount; (0.1mmol) / g (AC ), the heating temperature at the time of production; 160 ℃, AC activated carbon matrix; GW-H32 / 60 (5 cm 3 ), commercially available CeO 2 adsorbent (5 cm 3 )
[Liquid flow conditions] SV 40h -1 , LV 2.8m / h
FIG. 9 and FIG. 10 show the results of an adsorption test by a 125 Sb column method on activated carbon supported on cerium oxide.
The column test conditions are as follows.

カラム試験条件
吸着剤 酸化セリウム担持活性炭
吸着剤体積 10cm
Sb125試験液 6Bq/ml
Sb濃度 Sb8.35ppb
Sb試験液量 500ml
SV 28.4h-1
LV 4m/h
カラム内径 0.952cm
カラム断面積 0.711cm
吸着剤充てん層高 14.1cm
通液速度 4.74ml/min
284ml/h
図9に示されるように、放射性Sbは、125Sbカラム吸着ゾーンのカラム入口付近で酸化セリウム担持活性炭にほぼ全量吸着され、酸化セリウム担持活性炭に、オキソ酸イオンの有効な吸着性能があることが分かる。
図10に示すように、この有効性は、カラム通液量が変わっても変化がないことが分かる。このように、酸化セリウム担持活性炭に、オキソ酸イオンの有効な吸着性能があることが分かる。
Column test conditions Adsorbent Cerium oxide-supported activated carbon Adsorbent volume 10cm 3
Sb125 test solution 6Bq / ml
Sb concentration Sb8.35ppb
Sb test solution volume 500ml
SV 28.4h -1
LV 4m / h
Column inner diameter 0.952cm
Column cross-sectional area 0.711 cm 2
Adsorbent packed bed height 14.1cm
Flow rate 4.74ml / min
284ml / h
As shown in FIG. 9, almost all of the radioactive Sb is adsorbed on the cerium oxide-supported activated carbon in the vicinity of the column inlet of the 125 Sb column adsorption zone, and the cerium oxide-supported activated carbon has an effective adsorption performance of oxo acid ions. I understand.
As shown in FIG. 10, it can be seen that this effectiveness does not change even if the column flow rate changes. Thus, it can be seen that the cerium oxide-supported activated carbon has an effective adsorption performance for oxoacid ions.

ここで、市販の酸化セリウム吸着剤のCe含有量分析結果を示す。

Figure 0006131450
Here, the Ce content analysis result of a commercially available cerium oxide adsorbent is shown.
Figure 0006131450

市販の酸化セリウム吸着剤の酸化セリウム含有量を測定した結果、およそ3.9mmol/cm3であった。
実施例の酸化セリウム担持活性炭の0.1mmol/g-活性炭は、およそ0.04mmol/cm3であるので酸化セリウム担持活性炭の酸化セリウム量は、同体積の市販の酸化セリウム吸着剤の約1/100であることがわかった。
As a result of measuring the cerium oxide content of the commercially available cerium oxide adsorbent, it was approximately 3.9 mmol / cm 3 .
Since the 0.1 mmol / g-activated carbon of the activated cerium oxide-supported activated carbon of the example is about 0.04 mmol / cm 3 , the amount of cerium oxide of the activated cerium oxide-supported activated carbon is about 1/100 of the same volume of commercially available cerium oxide adsorbent. I found out.

これらの図に示すデータおよび上述の市販の酸化セリウム吸着剤のCe含有量分析結果から酸化セリウム担持活性炭は、市販の酸化セリウム吸着剤に比べて、酸化セリウムの吸着量は1/100でありながらSbおよびその他のオキソ酸化合物の吸着量が同程度の性能を示すことが分かる。   From the data shown in these figures and the Ce content analysis results of the above-mentioned commercially available cerium oxide adsorbents, the cerium oxide-supported activated carbon has a 1/100 adsorption amount of cerium oxide compared to the commercially available cerium oxide adsorbent. It can be seen that the adsorption amounts of Sb and other oxo acid compounds show similar performance.

図11は、0.1mg-Sb添加/100ml蒸留水ベースにおけるCe溶脱率の比較を示す。ここで、AC母材には図2と同様の活性炭が使用された。酸化セリウム担持活性炭製作時の加熱温度がCe溶脱率に大きく影響を与えることが分かる。酸化セリウム担持活性炭製作時の加熱温度は、140〜220℃、望ましくは150〜200℃である。この範囲で加熱処理することで、オキソ酸化合物の実用的な吸着性能としては十分であり、溶脱率の小さな酸化セリウム担持活性を製作することができる。   FIG. 11 shows a comparison of Ce leaching rates on the basis of 0.1 mg-Sb addition / 100 ml distilled water. Here, activated carbon similar to that shown in FIG. 2 was used as the AC base material. It can be seen that the heating temperature during the production of cerium oxide-supported activated carbon greatly affects the Ce leaching rate. The heating temperature at the time of producing cerium oxide-supported activated carbon is 140 to 220 ° C, preferably 150 to 200 ° C. By performing the heat treatment within this range, the practical adsorption performance of the oxoacid compound is sufficient, and a cerium oxide supporting activity with a low leaching rate can be produced.

図12は、酸化セリウム担持活性炭および市販の酸化セリウム吸着剤の燃焼による減容データ[TG-DTA]を示す。
図12に示されるように、未処理活性炭、酸化セリウム担持活性炭は減率が98.5%、97%、84%と示されるようにかなり大きな減容になるのに比較して、市販の酸化セリウム吸着剤では、25%で示されるように減容率が小さい。
FIG. 12 shows volume reduction data [TG-DTA] due to combustion of cerium oxide-supported activated carbon and a commercially available cerium oxide adsorbent.
As shown in FIG. 12, the untreated activated carbon and cerium oxide-supported activated carbon are compared with the commercially available oxidation in comparison with the significant reduction in volume reduction as shown by 98.5%, 97%, and 84%. The cerium adsorbent has a small volume reduction rate as shown by 25%.

このように、上述した図に示すデータおよび上述の市販の酸化セリウム吸着剤のCe含有量分析結果から酸化セリウム担持活性炭は、市販の酸化セリウム吸着剤に比べて、酸化セリウムの使用量は1/100でありながらSbの吸着量は同程度の性能を示すことに加えて、オキソ酸化合物を吸着した酸化セリウム担持活性炭を燃焼することで、燃焼前の酸化セリウム担持活性炭の重量に比して残渣の重量が3〜16%にまで減容することができる。   Thus, from the data shown in the above-mentioned figure and the Ce content analysis result of the above-mentioned commercially available cerium oxide adsorbent, the cerium oxide-supported activated carbon is used at a rate of 1 / compared to the commercially available cerium oxide adsorbent. In addition to exhibiting the same level of Sb adsorption performance as 100, the cerium oxide-supported activated carbon adsorbed with the oxoacid compound is burned, so that the residue compared to the weight of the cerium oxide-supported activated carbon before combustion. The volume can be reduced to 3 to 16%.

オキソ酸化合物を吸着した酸化セリウム担持活性炭を燃焼することで、燃焼前の酸化セリウム担持活性炭の重量に比して焼却残渣の重量として3〜16%にまで減容可能なように酸化セリウムの担持量を調整することが出来る。   The cerium oxide-supported activated carbon that adsorbs the oxo acid compound is combusted so that the weight of the incineration residue can be reduced to 3 to 16% compared to the weight of the cerium oxide-supported activated carbon before combustion. The amount can be adjusted.

燃焼性について見てみると、市販の酸化セリウム吸着剤にあっては、本発明の酸化セリウム担持活性炭に比べCeO2使用量が10〜100倍量のため、100℃付近の低温で燃焼が開始してしまう。このような低温での燃焼特性を有する場合、活性炭の乾燥に日常的に用いられる温風乾燥(通常、70〜80℃程度)程度でも着火し燃焼する恐れがあるなどの安全性に問題があり、温度コントロールを慎重に行わなければならない。 これに対して、酸化セリウム担持活性炭は、200から250℃で燃焼が開始して安全性が確保され、かつ活性炭単独の場合の燃焼開始温度が500℃に比べ省エネ性に優れていることが分かる。 Looking at flammability, the commercially available cerium oxide adsorbent uses 10 to 100 times the amount of CeO 2 used compared with the activated carbon of cerium oxide of the present invention, so combustion starts at a low temperature around 100 ° C. Resulting in. If it has combustion characteristics at such a low temperature, there is a problem in safety, such as the possibility of ignition and combustion even with warm air drying (usually about 70 to 80 ° C.) that is routinely used for drying activated carbon. The temperature control must be done carefully. In contrast, cerium oxide-supported activated carbon is combusted at 200 to 250 ° C. to ensure safety, and it can be seen that the combustion starting temperature in the case of activated carbon alone is superior in energy saving compared to 500 ° C. .

1…粒状〜粉末状活性炭(乾燥品)、2…セリウム水溶液含浸、3…100〜200℃加熱、4…生成されたセリア(酸化セリウム)担持活性炭。   DESCRIPTION OF SYMBOLS 1 ... Granular-powder activated carbon (dry product), 2 ... impregnation with cerium aqueous solution, 3 ... heating at 100-200 ° C, 4 ... generated ceria (cerium oxide) carrying activated carbon.

Claims (2)

放射性汚染水または工場排水中のオキソ酸化合物を形成された酸化セリウム担持活性炭に吸着することで放射性汚染水または工場排水を浄化する放射性汚染水または工場排水浄化方法であり、オキソ酸化合物が、アンチモン、ヒ素、セレン、テルル、ホウ素、ヨウ素の内のいずれかあるいは複数の元素からなるオキソ酸化合物であり、酸化セリウム担持活性炭が、活性炭へのセリウム水溶液含浸後に150から200℃内の加熱処理がなされて形成されたことを特徴とする放射性汚染水または工場排水浄化方法。 A method for purifying radioactive polluted water or factory wastewater by adsorbing the radioactive polluted water or factory effluent with cerium oxide-supported activated carbon formed with oxoacid compounds, wherein the oxoacid compound is antimony , arsenic, selenium, tellurium, boron, Ri oxo acid compound der consisting of either or a plurality of elements of the iodine, cerium oxide supported activated carbon, heat treatment at 150 from the 200 ° C. after an aqueous solution of cerium impregnation of the activated carbon radioactive contaminated water or industrial waste water purification how, characterized in that formed is made. 請求項1に記載された放射性汚染水または工場排水浄化方法に用いられる酸化セリウム担持活性炭の形成方法であって、当該酸化セリウム担持活性炭が、活性炭へのセリウム水溶液含浸後に150から200℃内の加熱処理がなされて形成されたことを特徴とする放射性汚染水または工場排水浄化方法に用いられる酸化セリウム担持活性炭の形成方法 A method for forming a cerium oxide-supported activated carbon used in the method for purifying radioactive polluted water or factory waste water according to claim 1, wherein the cerium oxide-supported activated carbon is heated within 150 to 200 ° C after impregnation of the activated carbon with a cerium aqueous solution. A method of forming cerium oxide-supported activated carbon for use in a method for purifying radioactive polluted water or industrial wastewater, characterized by being formed by treatment .
JP2013090673A 2013-04-23 2013-04-23 Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method Expired - Fee Related JP6131450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090673A JP6131450B2 (en) 2013-04-23 2013-04-23 Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090673A JP6131450B2 (en) 2013-04-23 2013-04-23 Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method

Publications (2)

Publication Number Publication Date
JP2014213233A JP2014213233A (en) 2014-11-17
JP6131450B2 true JP6131450B2 (en) 2017-05-24

Family

ID=51939533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090673A Expired - Fee Related JP6131450B2 (en) 2013-04-23 2013-04-23 Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method

Country Status (1)

Country Link
JP (1) JP6131450B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793231B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
JP5793230B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
JP5969636B2 (en) * 2015-01-26 2016-08-17 日本化学工業株式会社 Adsorbent and production method thereof
JP6238932B2 (en) * 2015-06-04 2017-11-29 株式会社荏原製作所 Iodine compound adsorbent, method for producing the same, and method and apparatus for treating radioactive liquid waste using iodine compound adsorbent
US11123709B2 (en) 2017-01-31 2021-09-21 Mitsui Mining & Smelting Co., Ltd. Molded article
CN110240161B (en) * 2019-07-10 2022-07-12 合肥工业大学 Preparation method of straw-based activated carbon supercapacitor electrode material for enhancing energy storage efficiency through acidic mine wastewater
CN115888651A (en) * 2022-11-24 2023-04-04 武汉大学 Cerium oxide sulfur-doped carbon aerogel micro-microsphere and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132986A (en) * 1983-01-18 1984-07-31 Asahi Chem Ind Co Ltd Separation of borate ion
JPH08994A (en) * 1994-06-21 1996-01-09 Kuraray Chem Corp Metal oxide adsorptive activated carbon
JP4297663B2 (en) * 2002-08-20 2009-07-15 東北電力株式会社 Boron recovery method
US7338603B1 (en) * 2005-07-27 2008-03-04 Molycorp, Inc. Process using rare earths to remove oxyanions from aqueous streams

Also Published As

Publication number Publication date
JP2014213233A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6131450B2 (en) Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method
Hasan et al. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent
Reda et al. Bismuth-based materials for iodine capture and storage: A review
Fasfous et al. Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution
Riley et al. Silver-loaded aluminosilicate aerogels as iodine sorbents
Berenguer et al. Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon
Riley et al. Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture
Du et al. Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated sorbents
Valdés et al. Effect of ozone treatment on surface properties of activated carbon
Awwad et al. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk
Choe et al. Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction
Yakout Effect of porosity and surface chemistry on the adsorption-desorption of uranium (VI) from aqueous solution and groundwater
Tran et al. Synthesis of Cu‐doped MOF‐235 for the degradation of methylene blue under visible light irradiation
Liang et al. Evaluation of activated carbon for remediating benzene contamination: Adsorption and oxidative regeneration
Nikić et al. Arsenic adsorption on Fe–Mn modified granular activated carbon (GAC–FeMn): batch and fixed-bed column studies
Balasundaram et al. Technology for mercury removal from flue gas of coal based thermal power plants: A comprehensive review
KR101512248B1 (en) Porous adsorbents for trapping radioactive iodine gas and fabrication method thereof
JP2021522994A (en) Treatment to reduce the environmental availability of environmental pollutants
Andrunik et al. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities
Liu et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating
JP2014102085A (en) Radioactive substance adsorbent, and collection method and collection apparatus of radioactive substance using the same
Ma et al. Efficient removal of thallium from flow gas using manganite‐based catalysts by gas–solid‐phase catalytic oxidation at low temperature
Huawei et al. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke
JP5872186B2 (en) Production method of radioactive metal adsorbent and adsorption method of radioactive metal
Almquist et al. Pyrolysis of deinked paper sludge to synthesize adsorbents for elemental Hg vapors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6131450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees