JP6075099B2 - Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes - Google Patents

Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes Download PDF

Info

Publication number
JP6075099B2
JP6075099B2 JP2013023046A JP2013023046A JP6075099B2 JP 6075099 B2 JP6075099 B2 JP 6075099B2 JP 2013023046 A JP2013023046 A JP 2013023046A JP 2013023046 A JP2013023046 A JP 2013023046A JP 6075099 B2 JP6075099 B2 JP 6075099B2
Authority
JP
Japan
Prior art keywords
building
response value
seismic intensity
damage
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013023046A
Other languages
Japanese (ja)
Other versions
JP2014153191A (en
Inventor
仁 諏訪
仁 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013023046A priority Critical patent/JP6075099B2/en
Publication of JP2014153191A publication Critical patent/JP2014153191A/en
Application granted granted Critical
Publication of JP6075099B2 publication Critical patent/JP6075099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、建物の地震による応答値計算システム及び建物の地震による被害調査表作成方法に関する。   The present invention relates to a response value calculation system for building earthquakes and a damage investigation table creation method for building earthquakes.

首都直下地震帰宅困難者等対策協議会は地震直後の数時間以内に企業自身が自らの建物の安全を確認し、安全の確認された建物内に従業員を待機させることを求めている。このため、地震直後に建物内に滞在している施設管理者などが自らの建物の安全を点検し、建物内に留まれるか否か、すなわち建物の応急的使用が可能か否かを判断する必要があり、東日本大震災後、建物の安全を点検するために用いるチェックリストが示された(例えば、非特許文献1参照)。このようなチェックリストには、施設全体について1建物(傾斜・沈下)、2建物(倒壊危険性)、3隣接建築物・周辺地盤という点検項目が挙げられており、施設内部(居室・通路等)については、1床、2壁・天井材、3廊下・階段、4ドアなどの点検項目が挙げられ、それぞれ点検内容の説明と判定を記載する欄などが設けられている。   The Council for Countermeasures for People Who Have Difficulty Returning to the Earthquake Directly under the Metropolitan Area requires companies to confirm the safety of their buildings within a few hours immediately after the earthquake, and to have employees wait in the buildings where safety is confirmed. For this reason, facility managers etc. staying in the building immediately after the earthquake check the safety of their buildings and determine whether they can stay in the building, that is, whether the building can be used for emergency use. The checklist used to check the safety of buildings after the Great East Japan Earthquake was shown (for example, see Non-Patent Document 1). The checklist includes inspection items for the entire facility: 1 building (tilt / sink), 2 buildings (collapse risk), 3 adjacent buildings, and surrounding ground. ) Includes inspection items such as 1 floor, 2 walls / ceiling material, 3 corridors / stairs, 4 doors, etc., and there are columns for describing the description and determination of inspection contents.

首都直下地震帰宅困難者等対策協議会、事業所における帰宅困難者対策ガイドライン、平成24年9月10日Council for measures such as those who have difficulty returning home from earthquakes, guidelines for measures for those who have difficulty returning home, September 10, 2012

地震による建物の被害は、建物の構造、階床の高さ等により相違し、個々の建物が固有の脆弱性を有している場合もあるため、上記のようなチェックリストだけでは、建物に則する十分な調査に基づいた建物の応急的使用性を判断することができないという課題がある。   Damage to buildings due to earthquakes varies depending on the structure of the building, the height of the floor, etc., and individual buildings may have inherent vulnerabilities. There is a problem that it is impossible to judge the emergency usability of a building based on sufficient investigations.

本発明はかかる従来の課題に鑑みてなされたものであり、その目的とするところは、個々の建物の応急的使用性の判断に、より適した、建物の地震による応答値を計算する建物の地震による応答値計算システム及び計算された応答値に基づいて建物の地震による被害をより適切に調査することが可能な建物の地震による被害調査表作成方法を提供することにある。   The present invention has been made in view of such conventional problems, and the object of the present invention is to calculate the response value of a building that is more suitable for the determination of the emergency use of each building and to calculate the response value due to the earthquake of the building. It is an object of the present invention to provide an earthquake response value calculation system and a building earthquake damage investigation table creation method capable of more appropriately investigating building damage caused by earthquakes based on the calculated response value.

かかる目的を達成するために本発明の建物の地震による応答値計算システムは、複数レベルの工学的基盤の加速度応答スペクトルに適合した複数レベルの工学的基盤の地震動を用いた地盤応答解析により複数レベルの地表面の地震動を計算する地表面地震動計算処理と、前記地表面の地震動の計測震度を計算する計測震度計算処理と、前記複数レベルの前記地表面の地震動に対する、対象とする建物の地震応答解析により、前記複数レベルの前記建物の階毎の応答値を計算する各階応答値計算処理と、前記計測震度と前記階毎の応答値との関係を計算する関係計算処理と、前記階毎の応答値に基づいて前記計測震度の範囲において決定される震度階級に対する前記建物の各階における部位毎の応答値を計算する各部位応答値計算処理と、を実行する制御部を有することを特徴とする建物の地震による応答値計算システムである。
このような建物の地震による応答値計算システムは、複数の震度階級に対応した、建物の各階における応答値が部位毎に計算される。このため、地震の震度階級毎に、建物の各階における各部位の応答値を得ることが可能である。このため、個々の建物の応急的使用性の判断に、より適した、建物の地震による応答値を計算する建物の地震による応答値計算システムを提供することが可能である。
In order to achieve such an object, the earthquake response value calculation system of the present invention is based on a multi-level ground response analysis using multi-level engineering-based seismic motion adapted to multi-level engineering-based acceleration response spectrum. Ground surface ground motion calculation processing for calculating ground motion of the ground surface, Measurement seismic intensity calculation processing for calculating measured ground strength of the ground surface ground motion, and seismic response of the target building to the ground surface ground motion at the plurality of levels By analysis, each floor response value calculation process for calculating the response value for each floor of the plurality of levels of the building, a relationship calculation process for calculating the relationship between the measured seismic intensity and the response value for each floor, and for each floor Each part response value calculation process for calculating a response value for each part in each floor of the building with respect to the seismic intensity class determined in the range of the measured seismic intensity based on the response value is executed. A response value calculation system according to seismic building and having a control unit for.
In such a response value calculation system for building earthquakes, response values on each floor of the building corresponding to a plurality of seismic intensity classes are calculated for each part. For this reason, it is possible to obtain the response value of each part in each floor of the building for each seismic intensity class. Therefore, it is possible to provide a building earthquake response value calculation system that calculates a building earthquake response value, which is more suitable for determining the emergency usability of individual buildings.

かかる建物の地震による応答値計算システムであって、前記各部位応答値計算処理では、前記階毎の応答値に、前記建物の構造部材の応答値に対する各々の前記部位の応答値の増幅率を示す応答倍率を乗じて前記各部位の前記応答値が計算されることが望ましい。
建物に入力される地震動に対する応答は、地表面の地震動が直接入力される構造部材と、例えば吊り下げられた設備などとでは相違する。このため、建物の各階における部位毎の応答値を、地表面の地震動による各階の応答値に応答倍率を乗じて計算することによって、より実際の状態に則した応答値を得ることが可能である。
In the response value calculation system due to the earthquake of the building, in each part response value calculation process, an amplification factor of the response value of each part with respect to the response value of the structural member of the building is set as the response value for each floor. It is desirable that the response value of each part is calculated by multiplying the response magnification shown.
The response to the ground motion input to the building is different between a structural member to which the ground surface ground motion is directly input and, for example, a suspended facility. For this reason, it is possible to obtain a response value in accordance with the actual state by calculating the response value for each part on each floor of the building by multiplying the response value of each floor due to ground motion by the response magnification. .

かかる建物の地震による応答値計算システムであって、前記各々の部位における損傷による限界値を示す損傷度判定データベースを有し、前記各部位の前記応答値の前記限界値に対する割合を示す余裕度を計算することが望ましい。
このような建物の地震による応答値計算システムによれば、計算された余裕度により、地震動により損傷しやすい部位と損傷しにくい部位とを容易に把握することが可能である。
A system for calculating a response value due to an earthquake of such a building, including a damage degree determination database indicating a limit value due to damage in each part, and a margin indicating a ratio of the response value of each part to the limit value It is desirable to calculate.
According to such a response value calculation system due to an earthquake of a building, it is possible to easily grasp a portion that is easily damaged by a ground motion and a portion that is not easily damaged by the calculated margin.

かかる建物の地震による応答値計算システムであって、計算される、前記各階における前記各部位の前記応答値は、最大加速度または最大層間変形角であることが望ましい。
地震による建物の損傷は、最大加速度が主に起因する部位と、最大層間変形角が主に起因する部位とがあるため、各々の部位に適した応答値を求めることにより、建物の損傷をより適切に予測することが可能である。
In this system for calculating a response value due to an earthquake of a building, the calculated response value of each part on each floor is preferably a maximum acceleration or a maximum interlayer deformation angle.
Building damage due to earthquakes includes parts that are mainly caused by the maximum acceleration and parts that are mainly caused by the maximum interlayer deformation angle. It is possible to predict appropriately.

また、対象とする建物の各階及び各部位の情報に基づいて、地震の被災後における前記建物の損傷状態を調査すべき調査対象部位を各階にて抽出する調査対象部位抽出ステップと、複数レベルの工学的基盤の加速度応答スペクトルに適合した複数レベルの工学的基盤の地震動を用いた地盤応答解析により複数レベルの地表面の地震動を計算する地表面地震動計算ステップと、前記地表面の地震動の計測震度を計算する計測震度計算ステップと、前記複数レベルの前記地表面の地震動に対する前記建物の地震応答解析により、前記複数レベルの前記建物の階毎の応答値を計算する各階応答値計算ステップと、前記計測震度と前記階毎の応答値との関係を計算する関係計算ステップと、前記階毎の応答値に基づいて前記計測震度の範囲において決定される震度階級に対する前記建物の各階における前記調査対象部位毎の応答値を計算する各部位応答値計算ステップと、各々の前記調査対象部位における損傷による限界値を示す損傷度判定データベースに基づいて、前記階毎の応答値に対する前記限界値の割合を示す余裕度を計算する余裕度計算ステップと、各階における前記調査対象部位に対応付けて、各々の前記調査対象部位の調査結果を記入する結果記入欄が設けられ、計算された前記余裕度が所定の値より低い前記調査対象部位の前記結果記入欄が明示された被害調査表を作成する被害調査表作成ステップと、を有することを特徴とする建物の地震による被害調査表作成方法である。   In addition, based on the information on each floor and each part of the target building, an investigation target part extraction step for extracting the investigation target part on each floor to investigate the damage state of the building after the earthquake, a plurality of levels A ground surface ground motion calculation step for calculating ground motion of multiple levels of ground surface by ground response analysis using multi-level ground motion of engineering bases adapted to the acceleration response spectrum of the engineering base, and measurement seismic intensity of the ground surface ground motion A measurement seismic intensity calculation step for calculating the response level, and each floor response value calculation step for calculating a response value for each floor of the plurality of levels by the earthquake response analysis of the building with respect to the ground level ground motions of the plurality of levels, A relation calculation step for calculating a relationship between the measured seismic intensity and the response value for each floor, and a determination within the range of the measured seismic intensity based on the response value for each floor. Based on each damage response determination database indicating a limit value due to damage in each survey target part, each part response value calculation step for calculating the response value for each survey target part in each floor of the building with respect to the seismic intensity class, A margin calculation step for calculating a margin indicating the ratio of the limit value to the response value for each floor, and a result entry for entering the survey result of each survey target site in association with the survey target site on each floor A damage investigation table creation step for creating a damage investigation table in which a field is provided, and the calculated result margin of the investigation target part with the calculated margin less than a predetermined value is specified This is a method for creating a damage survey table for buildings.

このような建物の地震による被害調査表作成方法によれば、複数の震度階級に対応した複数のレベルにおいて、建物の各階及び各部位の情報に基づいて抽出した、建物の損傷状態を調査すべき調査対象部位における、地震動に対する応答値が部位毎にて計算される。このため、地震の震度階級毎に、調査対象部位の応答値を得ることが可能である。また、計算された余裕度によって地震動により損傷しやすい部位と損傷しにくい部位とを容易に把握することが可能であり、この余裕度に基づいて、余裕度が所定の値より低い調査対象部位が明示された被害調査表を作成されるので、個々の建物の応急的使用性の判断に、より適した、建物の地震による被害調査表を作成することが可能である。このため、作成された被害調査表を用いて建物の地震による被害調査を行うことにより、専門家でなくとも容易に、迅速且つ適切に建物の応急的使用性の判断をすることが可能である。   According to the method for preparing the damage survey table for an earthquake of a building, the damage state of the building extracted based on the information of each floor and each part of the building should be investigated at multiple levels corresponding to multiple seismic intensity classes. The response value to the ground motion at the survey target site is calculated for each site. For this reason, it is possible to obtain the response value of the survey target part for each seismic intensity class. In addition, it is possible to easily grasp the parts that are easily damaged by earthquake motion and the parts that are not easily damaged by the calculated margin, and based on this margin, there are investigation target sites whose margin is lower than a predetermined value. Since the specified damage survey table is created, it is possible to create a damage survey table due to an earthquake of a building, which is more suitable for determining the emergency usability of individual buildings. For this reason, it is possible to quickly and appropriately determine the emergency usability of a building easily, even if you are not an expert, by conducting damage surveys of the building using the prepared damage survey table. .

本発明によれば、個々の建物の応急的使用性の判断に、より適した、建物の地震による応答値を計算する建物の地震による応答値計算システム及び計算された応答値に基づいて建物の地震による被害をより適切に調査することが可能な建物の地震による被害調査表作成方法を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, the response value calculation system by the earthquake of a building which calculates the response value by the earthquake of a building more suitable for the determination of the emergency usability of each building, and the building's response based on the calculated response value It is possible to provide a method for preparing a damage investigation table for a building that can more appropriately investigate the damage caused by the earthquake.

専門家による被害予測表の作成フローを示す図である。It is a figure which shows the creation flow of the damage prediction table by an expert. 目標スペクトルと作成された地震動に対する加速度応答スペクトルを示す図である。It is a figure which shows the acceleration response spectrum with respect to the target spectrum and the created earthquake motion. ケース1の工学的基盤の地震動を示す図である。It is a figure which shows the ground motion of the engineering base of case 1. FIG. ケース7の工学的基盤の地震動を示す図である。FIG. 6 is a diagram showing the ground motion of the engineering base of case 7. ケース1の地表面の地震動を示す図である。FIG. 3 is a diagram showing the ground motion of the ground surface of case 1. ケース7の地表面の地震動を示す図である。FIG. 6 is a diagram showing the ground motion of the ground surface of case 7. 計測震度と最大加速度との関係を示す図である。It is a figure which shows the relationship between measured seismic intensity and the maximum acceleration. 計測震度と最大層間変形角との関係を示す図である。It is a figure which shows the relationship between a measured seismic intensity and the maximum interlayer deformation angle. 図9(a)は、震度5弱における柱の応答値に対する限界値の余裕度を示す図であり、図9(b)は、震度5弱における柱以外の部位の応答値に対する限界値の余裕度を示す図である。FIG. 9A is a diagram showing margins of limit values for response values of columns at seismic intensity 5 weak, and FIG. 9B is margins of limit values for response values of parts other than columns at seismic intensity 5 weak. It is a figure which shows a degree. 図10(a)は、震度5強における柱の応答値に対する限界値の余裕度を示す図であり、図10(b)は、震度5強における柱以外の部位の応答値に対する限界値の余裕度を示す図である。FIG. 10A is a diagram showing the margin of the limit value for the response value of the column at a seismic intensity of 5+, and FIG. 10B is the margin of the limit value for the response value of a part other than the column at a seismic intensity of 5+. It is a figure which shows a degree. 図11(a)は、震度6弱における柱の応答値に対する限界値の余裕度を示す図であり、図11(b)は、震度6弱における柱以外の部位の応答値に対する限界値の余裕度を示す図である。FIG. 11A is a diagram showing the margin of the limit value for the response value of the column at seismic intensity 6 weak, and FIG. 11B is the margin of the limit value for the response value of a part other than the column at seismic intensity 6 weak. It is a figure which shows a degree. 図12(a)は、震度6強における柱の応答値に対する限界値の余裕度を示す図であり、図12(b)は、震度6強における柱以外の部位の応答値に対する限界値の余裕度を示す図である。FIG. 12A is a diagram showing the margin of the limit value for the response value of the column at seismic intensity 6 strong, and FIG. 12B is the margin of the limit value for the response value of a part other than the column at seismic intensity 6 strong. It is a figure which shows a degree. 建物の応急的使用性判定フローを示す図である。It is a figure which shows the emergency usability determination flow of a building.

以下、本発明に係る実施形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

以下の実施形態では、本発明の建物の地震による応答値計算システムにより計算された建物の応答値に基づき建物の地震による被害調査表を作成する建物の地震による被害調査表作成方法、及び、作成された地震による被害調査表を用いた調査についても説明する。   In the following embodiments, a building earthquake damage survey table creation method for creating a building earthquake damage survey table based on the building response value calculated by the building earthquake response value calculation system of the present invention, and creation We will also explain the survey using the earthquake damage survey table.

本発明の建物の地震による被害調査表作成方法により作成される地震による被害調査表は、地震直後に、専門家ではない例えば施設管理者による建物の応急的使用性の判定をし易くするものであり、地震による被害調査表を作成するための基となる、地震動の計測震度、建物の応答値及び応答値に対する限界値の余裕度を求める処理は、専門家によりコンピュータ処理により実行される。すなわち、建物の地震による応答値計算システムにおける制御部はコンピュータであり、以下に説明する演算処理はコンピュータにより実行される。   The earthquake damage survey table created by the earthquake damage survey table creation method of the present invention facilitates the emergency use of a building by a facility manager who is not an expert immediately after the earthquake, for example. Yes, the processing for obtaining the measurement seismic intensity of the ground motion, the response value of the building, and the margin of the limit value with respect to the response value, which is the basis for creating the damage investigation table due to the earthquake, is executed by an expert by computer processing. That is, the control unit in the response value calculation system for building earthquakes is a computer, and the arithmetic processing described below is executed by the computer.

本実施形態においては、対象とする建物を、RC造8階建ての建物として説明する。   In the present embodiment, the target building will be described as an RC 8-story building.

まず、専門家は、建物に地震動が入力されたときの、地震による建物の被害を予測し、震度階級毎の被害予測表を作成する。
図1は、専門家による被害予測表の作成フローを示す図である。
First, an expert predicts damage to a building due to an earthquake when earthquake motion is input to the building, and creates a damage prediction table for each seismic intensity class.
FIG. 1 is a diagram showing a flow of creating a damage prediction table by an expert.

まず、専門家は、個別の建物特性(構造種別や仕上表など)を考慮して、調査対象部位(構造部材、外装材、内装材、建築設備、防災設備など)を抽出する(調査対象部位抽出ステップ、S101)。このとき、抽出した調査対象部位を表にまとめた調査項目表(表1)を作成してもよい。
First, experts consider the individual building characteristics (structure type, finishing table, etc.) and extract survey target parts (structural members, exterior materials, interior materials, building equipment, disaster prevention equipment, etc.) (survey target parts) Extraction step, S101). At this time, a survey item table (Table 1) in which the extracted survey target parts are summarized in a table may be created.

上記調査項目表に基づき、各階の各部位(調査対象部位)を調査対象とし、各階における各部位に対応した結果記入欄を有する被害調査表(表2)を作成する(S102)。
Based on the survey item table, a damage survey table (Table 2) having a result entry column corresponding to each site on each floor is created (S102).

次に、地震動の目標スペクトルに設定する。ここでは、平成12年建設省告示1461号第四号に示された工学的基盤の地震動加速度応答スペクトルを目標スペクトルに設定する。そして、設定した目標スペクトルの形状に適合するように正弦波合成法により工学的基盤の地震動を作成する(S105)。このとき、震度階級毎に地震被害予測を行う必要があるため、複数レベル(ケース1〜8)の加速度応答スペクトルを設定して工学的基盤の地震動を作成し、各震度階級に対応する加速度応答スペクトルを計算する。各ケースにおける工学的基盤の最大加速度を表3に示す。
Next, the target spectrum of earthquake motion is set. Here, the seismic acceleration response spectrum of the engineering base shown in the Ministry of Construction Notification No. 1461 No. 4 in 2000 is set as the target spectrum. Then, an engineering-based earthquake motion is created by a sine wave synthesis method so as to conform to the set target spectrum shape (S105). At this time, since it is necessary to perform earthquake damage prediction for each seismic intensity class, multiple levels (cases 1 to 8) of acceleration response spectra are set to create engineering-based seismic motion, and the acceleration response corresponding to each seismic intensity class Calculate the spectrum. Table 3 shows the maximum acceleration of the engineering foundation in each case.

ここでは、一例として、ケース7における目標スペクトルと、目標スペクトルの形状に適合するように作成された地震動に対する加速度応答スペクトルを図2に示す。
図2は、目標スペクトルと作成された地震動に対する加速度応答スペクトルを示す図である。また、一例としてケース1とケース7の工学的基盤の地震動を図3、図4に示す。 図3は、ケース1の工学的基盤の地震動を示す図である。図4は、ケース7の工学的基盤の地震動を示す図である。
Here, as an example, FIG. 2 shows the target spectrum in case 7 and the acceleration response spectrum for the earthquake motion created so as to match the shape of the target spectrum.
FIG. 2 is a diagram illustrating a target spectrum and an acceleration response spectrum with respect to the generated ground motion. In addition, as an example, the ground motion of the engineering base of Case 1 and Case 7 is shown in FIGS. FIG. 3 is a diagram showing the ground motion of the engineering base of case 1. FIG. FIG. 4 is a diagram showing the ground motion of the engineering base of case 7.

次に、計算した工学的基盤の地震動に対する地盤応答解析(S106)を行い、ケース1〜ケース8の地表面の地震動を計算する(地表面地震動計算処理、地表面地震動計算ステップ、S107)。計算された各ケースにおける地表面の最大加速度を表4に示す。また一例として、ケース1とケース7の地表面の地震動を図5、図6に示す。図5は、ケース1の地表面の地震動を示す図である。図6は、ケース7の地表面の地震動を示す図である。
Next, the ground response analysis (S106) with respect to the calculated ground motion of the engineering base is performed, and the ground motion of the ground surface of Case 1 to Case 8 is calculated (surface ground motion calculation processing, ground surface ground motion calculation step, S107). Table 4 shows the calculated maximum acceleration on the ground surface in each case. As an example, the ground motions of Case 1 and Case 7 are shown in FIGS. FIG. 5 is a diagram illustrating the ground motion of the ground surface of case 1. FIG. 6 is a diagram illustrating the ground motion of the ground surface of the case 7.

次に、計算したケース1〜ケース8の地表面の地震動と「気象庁震度階級表」の気象庁告示(気象庁震度階級の解説、平成21年3月、気象庁)に示された手法とに基づき、ケース1〜ケース8の地表面の地震動の計測震度を計算する(計測震度計算処理、計測震度計算ステップ、S108)。計算された各ケースにおける地表面の計測震度を表5に示す。
Next, based on the ground surface ground motion calculated in Cases 1 to 8 and the method shown in the Meteorological Agency announcement of the “Meteorological Agency Seismic Intensity Table” (Meteorological Agency Seismic Intensity Class, March 2009, Japan Meteorological Agency) First, the measured seismic intensity of the ground motion of the ground surface of case 8 is calculated (measured seismic intensity calculation process, measured seismic intensity calculating step, S108). Table 5 shows the calculated seismic intensity of the ground surface in each case.

次に、ケース1〜ケース8の地表面の地震動に対して建物各階の地震応答解析を行い(各階応答値計算処理、各階応答値計算ステップ、S109)、計測震度と建物各階の応答値(最大加速度と最大層間変形角)の関係を計算する(関係計算処理、関係計算ステップ、S110)。建物の応答値は、各階及び各部位(各調査対象部位)によって相違するので、ここでは、まず各階に対応した応答値を計算する。本実施形態では、対象とする建物を8階建としたので、各階に対応させて1層〜8層の応答値を計算する。   Next, the earthquake response analysis of each floor of the building is performed for the ground motion of Case 1 to Case 8 (Each floor response value calculation processing, each floor response value calculation step, S109), and the measured seismic intensity and the response value of each floor of the building (maximum The relationship between the acceleration and the maximum interlayer deformation angle is calculated (relation calculation processing, relationship calculation step, S110). Since the response value of the building differs depending on each floor and each part (each investigation target part), the response value corresponding to each floor is first calculated here. In this embodiment, since the target building is 8 stories, the response values of the 1st to 8th layers are calculated corresponding to each floor.

具体的には、対象とする建物をせん断質点系にモデル化し、複数レベルの地表面の地震動に対してせん断質点系モデルの地震応答解析を行い、まず、複数レベルの建物各階の応答値(最大加速度と最大層間変形角)を計算する。   Specifically, the target building is modeled as a shear mass system, and the seismic response analysis of the shear mass system model is performed for seismic motion on multiple levels of the ground surface. Acceleration and maximum interlayer deformation angle) are calculated.

求められた各階の応答値(最大加速度と最大層間変形角)との関係を図7、図8に示す。図7は、計測震度と最大加速度との関係を示す図であり、図8は、計測震度と最大層間変形角との関係を示す図である。
また、計測震度Iと建物各階の応答値Sとの関係は、(式1)で回帰する。

ここに、a,b:回帰係数
FIG. 7 and FIG. 8 show the relationship between the obtained response values (maximum acceleration and maximum interlayer deformation angle) of each floor. FIG. 7 is a diagram showing the relationship between the measured seismic intensity and the maximum acceleration, and FIG. 8 is a diagram showing the relationship between the measured seismic intensity and the maximum interlayer deformation angle.
Further, the relationship between the measured seismic intensity I and the response value S of each floor of the building is regressed by (Equation 1).

Where a and b are regression coefficients

このとき、震度階級ごと(例えば、震度5弱,震度5強,震度6弱,震度6強)の建物各階の応答値(最大加速度と最大層間変形角)を計算するとき、震度階級に対応した計測震度が必要となる。震度階級には計測震度のレンジ幅(範囲)があるため、震度階級ごとに設定した計測震度の値を(式1)式に入力して、震度階級ごと(震度5弱,震度5強,震度6弱,震度6強)の建物各階の応答値(最大加速度と最大層間変形角)を計算する。
ここで、震度階級に対応した計測震度の値は、各震度階級における計測震度のレンジ幅の中央値と設定した。例えば、震度5弱のレンジ幅は、計測震度4.5〜5.0であるため、その中央値4.75を震度5弱の計測震度の値に設定した。各震度階級と設定した計測震度の値を表6に示す。
At this time, when calculating the response values (maximum acceleration and maximum interlayer deformation angle) of each floor of the building for each seismic intensity class (for example, seismic intensity 5 weak, seismic intensity 5 strong, seismic intensity 6 weak, seismic intensity 6 strong) Measurement seismic intensity is required. Since the seismic intensity class has a range (range) of measured seismic intensity, the value of the measured seismic intensity set for each seismic intensity class is entered into (Equation 1), and for each seismic intensity class (seismic intensity 5 weak, seismic intensity 5 strong, seismic intensity Calculate response values (maximum acceleration and maximum interlayer deformation angle) for each floor of the building with 6 weak and 6 seismic intensity.
Here, the value of the measured seismic intensity corresponding to the seismic intensity class was set as the median of the range width of the measured seismic intensity in each seismic intensity class. For example, since the range width of seismic intensity 5 is a measured seismic intensity 4.5 to 5.0, the median value 4.75 is set as the measured seismic intensity value of seismic intensity 5 lower. Table 6 shows the seismic intensity classes and the measured seismic intensity values.

次に、各部位の応答値は、建物各階の応答値(最大加速度と最大層間変形角)に表7に示す応答倍率を乗じて計算する(各部位応答値計算処理、各部位応答値計算ステップ、S111)。応答倍率は、実験等により予め設定した値である。
Next, the response value of each part is calculated by multiplying the response value (maximum acceleration and maximum interlayer deformation angle) of each floor of the building by the response magnification shown in Table 7 (each part response value calculation process, each part response value calculation step) , S111). The response magnification is a value set in advance by an experiment or the like.

表7に示すように、応答値とする応答指標が相違する部位がある。例えば柱の応答指標は最大層間変形角であり、天井は最大加速度である。これは、予め実験等に基づいて地震による建物の損傷に対して着目すべき指標が設定されている。   As shown in Table 7, there is a portion where the response index as the response value is different. For example, the column response index is the maximum interlayer deformation angle, and the ceiling is the maximum acceleration. This is set in advance with an index that should be focused on building damage due to earthquakes based on experiments and the like.

各階及び各部位の応答値は、震度階級ごと(震度5弱,震度5強,震度6弱,震度6強)にそれぞれ計算される。表8〜表11は、震度階級毎に計算された各部位の応答値を示している。
The response value of each floor and each part is calculated for each seismic intensity class (seismic intensity 5 weak, seismic intensity 5 strong, seismic intensity 6 weak, seismic intensity 6 strong). Tables 8 to 11 show the response values of each part calculated for each seismic intensity class.

次に、計算した各部位の応答値に対する限界値の余裕度を計算する(余裕度計算ステップ、S104)。ここで限界値とは、耐震診断等の結果に基づいて地震による被害の度合いや被害の有無を分ける応答値が閾値として設定された値であり、予めデータベース(損傷度判定データベース)等に記憶されている。ここで、各部位に設定された限界値を表12に示す。ここで、表12は紙面の都合上表12−1と表12−2に分けて示している。また、表12中の記号「G」は980cm/S2を示している。
Next, a margin of a limit value with respect to the calculated response value of each part is calculated (a margin calculation step, S104). Here, the limit value is a value in which a response value that divides the degree of damage caused by an earthquake and the presence / absence of damage based on the result of seismic diagnosis is set as a threshold value, and is stored in advance in a database (damage degree determination database) or the like. ing. Here, Table 12 shows the limit values set for each part. Here, Table 12 is divided into Table 12-1 and Table 12-2 for convenience of space. The symbol “G” in Table 12 indicates 980 cm / S 2 .

そして、震度階級ごと(震度5弱,震度5強,震度6弱,震度6強)に各部位の応答値に対する限界値の余裕度Dは、(式2)にて計算される。
D=(限界値)/(応答値) (式2)
And the margin D of the limit value with respect to the response value of each part for every seismic intensity class (seismic intensity 5 weak, seismic intensity 5 strong, seismic intensity 6 weak, seismic intensity 6 strong) is calculated by (Formula 2).
D = (limit value) / (response value) (Formula 2)

各部位の計算結果において、余裕度Dが1以上のときは限界値が応答値よりも大きいので被害無し、余裕度Dが1未満のときは限界値が応答値よりも小さいので被害有りと判定する。   In the calculation result of each part, when the margin D is 1 or more, the limit value is larger than the response value, so there is no damage, and when the margin D is less than 1, the limit value is smaller than the response value, so it is determined that there is damage. To do.

図9(a)は、震度5弱における柱の応答値に対する限界値の余裕度を示す図であり、図9(b)は、震度5弱における柱以外の部位の応答値に対する限界値の余裕度を示す図である。図10(a)は、震度5強における柱の応答値に対する限界値の余裕度を示す図であり、図10(b)は、震度5強における柱以外の部位の応答値に対する限界値の余裕度を示す図である。図11(a)は、震度6弱における柱の応答値に対する限界値の余裕度を示す図であり、図11(b)は、震度6弱における柱以外の部位の応答値に対する限界値の余裕度を示す図である。図12(a)は、震度6強における柱の応答値に対する限界値の余裕度を示す図であり、図12(b)は、震度6強における柱以外の部位の応答値に対する限界値の余裕度を示す図である。   FIG. 9A is a diagram showing margins of limit values for response values of columns at seismic intensity 5 weak, and FIG. 9B is margins of limit values for response values of parts other than columns at seismic intensity 5 weak. It is a figure which shows a degree. FIG. 10A is a diagram showing the margin of the limit value for the response value of the column at a seismic intensity of 5+, and FIG. 10B is the margin of the limit value for the response value of a part other than the column at a seismic intensity of 5+. It is a figure which shows a degree. FIG. 11A is a diagram showing the margin of the limit value for the response value of the column at seismic intensity 6 weak, and FIG. 11B is the margin of the limit value for the response value of a part other than the column at seismic intensity 6 weak. It is a figure which shows a degree. FIG. 12A is a diagram showing the margin of the limit value for the response value of the column at seismic intensity 6 strong, and FIG. 12B is the margin of the limit value for the response value of a part other than the column at seismic intensity 6 strong. It is a figure which shows a degree.

次に、計算された余裕度に基づいて被害の度合または被害の有無を判定し、予め作成した仮被害調査表(表2)に対応付けて、震度階級ごと(震度5弱,震度5強,震度6弱,震度6強)の被害予測表を作成する(S112)。被害予測表では、構造部材以外の被害は、被害無し(余裕度Dが1以上)を“○”で、被害有り(余裕度Dが1未満)を“×”で表示している。表13〜表16に、震度階級ごと(震度5弱,震度5強,震度6弱,震度6強)の被害予測表を示す。   Next, the degree of damage or the presence / absence of damage is determined based on the calculated margin, and is associated with the preliminarily created temporary damage survey table (Table 2), for each seismic intensity class (seismic intensity 5 weak, seismic intensity 5 strong, A damage prediction table having a seismic intensity of 6 and a seismic intensity of 6 is created (S112). In the damage prediction table, damages other than structural members are indicated as “◯” when there is no damage (margin D is 1 or more) and “×” when there is damage (margin D is less than 1). Tables 13 to 16 show damage prediction tables for each seismic intensity class (seismic intensity 5 weak, seismic intensity 5 strong, seismic intensity 6 weak, seismic intensity 6 strong).

表13〜表16には、各震度階級における構造部材の被害の有無及び度合と、構造部材以外の部位の被害の有無が示されている。すなわち、地震発生時に、地震の震度階級に対応して被害予測された重点調査部位が示されている。このため、予め作成された仮被害調査表(表2)において被害が予測される部位、すなわち重点調査部位とされた欄に、重点調査部位である旨を示す表示、例えば、該当する欄の文字や欄自体を着色するなどして明示することにより被害調査表が完成する。   Tables 13 to 16 show the presence / absence and degree of damage to structural members in each seismic intensity class, and the presence / absence of damage to parts other than the structural members. In other words, at the time of the occurrence of the earthquake, the priority survey site where damage was predicted corresponding to the seismic intensity class of the earthquake is shown. For this reason, in the preliminarily created temporary damage survey table (Table 2), the portion that is predicted to be damaged, that is, the column indicating the priority survey site, indicates that the site is the priority survey site, for example, the characters in the corresponding column The damage investigation table is completed by clearly coloring the column itself or coloring it.

次に、被害調査表を用いて建物(部位)の応急的使用性判定を行う方法について説明する。
建物(部位)の応急的使用性判定は、地震発生直後に、例えば施設管理者により行われる。
施設管理者は、地震発生直後、気象庁から発表される震度階級を参照し、上述の方法にて既に作成しておいた震度階級ごとの被害予測表の中から震度階級に応じた被害予測表を選定する。本実施形態では例えば、気象庁から発表された震度階級が震度6弱として説明する。この場合には、震度階級が震度6弱のときの、震度階級に応じた被害予測表として、表15を選択する。
Next, a method for determining the emergency usability of a building (part) using a damage survey table will be described.
The emergency usability determination of a building (part) is performed immediately after an earthquake, for example, by a facility manager.
The facility manager refers to the seismic intensity class announced by the Japan Meteorological Agency immediately after the occurrence of the earthquake, and creates a damage prediction table corresponding to the seismic intensity class from the damage prediction table for each seismic intensity class that has already been created by the above method. Select. In the present embodiment, for example, the seismic intensity class announced by the Japan Meteorological Agency is described as seismic intensity 6 weak. In this case, Table 15 is selected as a damage prediction table corresponding to the seismic intensity class when the seismic intensity class is less than 6.

次に、施設管理者は、震度階級に応じて選択した被害予測表をもとに、被害発生が予測される重点調査部位を被害調査表に記入し、震度階級に応じた被害調査表を作成する(被害調査表作成ステップ)。ここでは、気象庁から発表された震度階級が震度6弱としているので、震度階級に応じた被害調査表は表17となる。表17に示す被害調査表では、被害予測された重点調査部位を着色して示している。   Next, the facility manager fills in the damage survey table for the predicted damage occurrence based on the damage prediction table selected according to the seismic intensity class, and creates the damage survey table according to the seismic intensity class. (Damage investigation table creation step). Here, since the seismic intensity class announced by the Japan Meteorological Agency has a seismic intensity of 6 or less, Table 17 shows the damage survey table according to the seismic intensity class. In the damage survey table shown in Table 17, the priority survey sites predicted to be damaged are colored.

次に、施設管理者は、震度階級に応じた被害調査表を用いて建物の目視調査を実施し、調査結果を震度階級に応じた被害調査表の結果記入欄に記入する。また、仕上材などで隠れて調査が不可能な部位の被害は、震度階級に応じた被害予測表を参照してその被害予測結果を記入する。このとき施設管理者は、構造部材の被害については、無被害、小破、中破、大破のいずれかを被害調査表の該当欄に記載し、構造部材以外の被害については、被害無しとして“○”、または、被害有りとして“×”のいずれかを記載する。以上により、建物の各階かつ各部位を対象に、部位の応急的使用性判定表が作成される。ここで、作成された部位の応急的使用性判定表の一例を表18に示す。   Next, the facility manager conducts a visual inspection of the building using the damage survey table corresponding to the seismic intensity class, and enters the survey results in the result entry column of the damage survey table corresponding to the seismic intensity class. In addition, for damages that cannot be investigated because they are covered with finishing materials, refer to the damage prediction table corresponding to the seismic intensity class and enter the damage prediction results. At this time, the facility manager shall state that there is no damage, minor damage, medium damage, or major damage in the applicable column of the damage survey table for damage to structural members, Enter either “O” or “X” for damage. As described above, the emergency use usability determination table of the part is created for each floor and each part of the building. Here, Table 18 shows an example of an emergency usability determination table for the created part.

次に、施設管理者は、部位の応急的使用性判定表を用いて、構造部材の被害(無被害、小破、中破、大破)と構造部材以外の被害(被害無し、被害有り)をもとに、図13に示す建物の応急的使用性判定フローに基づいて建物の応急的使用性の判定(建物の使用不可、被害場所以外の応急的立入、建物の応急的立入、被害場所以外の応急的使用、建物の応急的使用)を行う。図13は、建物の応急的使用性判定フローを示す図である。   Next, the facility manager uses the emergency usability determination table of the part to determine the damage to the structural member (no damage, minor damage, medium damage, major damage) and the damage other than the structural member (no damage, damage present). Based on the building emergency use determination flow shown in FIG. 13, the building emergency use determination (building use unusable, emergency entry other than the damaged place, building emergency entry, other than the damaged place) Emergency use, building emergency use). FIG. 13 is a diagram showing a building emergency usability determination flow.

建物の応急的使用性の判定は、図13に示すように、まず建物の構造部材の被害状況が判断される(S201)。このとき、構造部材の被害状況として、無被害、小破、中破、大破のいずれかが判定され、「大破」と判定された場合には、構造部材以外の被害に拘わらず、建物の使用を不可と判定する(S202)。「中破」と判定された場合には、構造部材以外の被害を判定し(S203)、被害があった場合には、被害場所以外の応急的立入が可能と判定しS204)、被害が無かった場合には、建物の応急的立入が可能と判定する(S205)。「小破」と判定された場合には、構造部材以外の被害を判定しS206)、被害があった場合には、被害場所以外の応急的使用が可能と判定し(S207)、被害が無かった場合には、建物の応急的使用が可能と判定する(S208)。「無被害」と判定された場合には、建物の応急的使用が可能と判定する。   As shown in FIG. 13, the determination of the emergency usability of the building is made by first determining the damage status of the structural members of the building (S201). At this time, the damage status of the structural member is determined as no damage, minor damage, medium damage, or severe damage. Is determined to be impossible (S202). If it is determined as “destructive”, damage other than the structural member is determined (S203), and if there is damage, it is determined that emergency access other than the damaged place is possible (S204), and there is no damage. If it is found, it is determined that the building can be entered quickly (S205). If it is determined that the damage is small, damage other than the structural member is determined (S206). If there is damage, it is determined that emergency use other than the damaged place is possible (S207), and there is no damage. If it is found, it is determined that the building can be used immediately (S208). If it is determined as “no damage”, it is determined that the building can be used immediately.

建物の応急的使用性判定フローに基づいて建物の応急的使用性の判定した結果、例えば、気象庁から発表された震度階級が震度6弱のときの、建物の応急的使用性の判定の結果は表19となる。尚、表19の「建物の応急的使用性」の欄には、使用可能な用途が記載されている。   As a result of determining the building's emergency usability based on the building's emergency usability determination flow, for example, when the seismic intensity class announced by the Japan Meteorological Agency is less than 6 seismic intensity, Table 19 is obtained. In the column “Emergency usability of building” in Table 19, usable applications are described.

本実施形態の建物の地震による応答値計算システム及び建物の地震による被害調査表作成方法によれば、個々の建物の応急的使用性の判断に、より適した、建物の地震による応答値を計算する建物の地震による応答値計算システム及び計算された応答値に基づいて建物の地震による被害をより適切に調査することが可能な建物の地震による被害調査表作成方法を提供することが可能である。   According to the building earthquake response value calculation system and building earthquake damage survey table creation method of this embodiment, the building earthquake response value is more suitable for determining the emergency usability of individual buildings. It is possible to provide a response value calculation system for building earthquakes and a method for creating a damage investigation table for building earthquakes that can more appropriately investigate building damages based on the calculated response values. .

また、本実施形態のように、建物の地震による応答値計算システムを用いて作成した被害調査表に基づいて、施設管理者等は、地震直後の建物を調査した結果から各部位の応急的使用性判定表を作成し、この部位の応急的使用性判定表に基づいて建物の応急的使用性について判定することにより、専門家ではない施設管理者などが、地震直後に建物の応急的使用性を容易に判定できるようになり、企業などは建物の安全を確認した上で従業員を建物内に滞在させることが可能になる。また、企業などでは、災害対策本部の現地立ち上げの可否や代替施設への移転の判断材料を地震直後に得ることができ、人命の安全確保に加えて事業継続にも貢献できる。さらに、地震発生の数日後に、専門家が建物の応急危険度判定や被災度区分判定を実施するとき、建物の応急的使用性の判定結果を専門家が参照することで、詳細調査の必要な建物の優先順位の決定や詳細調査の迅速化が期待できる。   Also, based on the damage survey table created using the earthquake response value calculation system for buildings as in this embodiment, facility managers etc. can use each part's emergency services from the results of investigating the buildings immediately after the earthquake. By creating a sex judgment table and judging the emergency use of the building based on the emergency use judgment table of this part, the facility manager who is not an expert can use the building's emergency use immediately after the earthquake. This makes it possible for companies to check the safety of the building and allow employees to stay in the building. In addition, companies can obtain information on whether or not the disaster response headquarters can be set up locally or move to an alternative facility immediately after the earthquake, which can contribute to business continuity in addition to ensuring the safety of human lives. Furthermore, a few days after the earthquake occurs, when an expert conducts an emergency risk assessment or a damage severity category judgment for a building, it is necessary to conduct a detailed survey by referring to the judgment result of the emergency useability of the building. It can be expected to determine the priority of buildings and expedite detailed investigations.

Claims (5)

複数レベルの工学的基盤の加速度応答スペクトルに適合した複数レベルの工学的基盤の地震動を用いた地盤応答解析により複数レベルの地表面の地震動を計算する地表面地震動計算処理と、
前記地表面の地震動の計測震度を計算する計測震度計算処理と、
前記複数レベルの前記地表面の地震動に対する、対象とする建物の地震応答解析により、前記複数レベルの前記建物の階毎の応答値を計算する各階応答値計算処理と、
前記計測震度と前記階毎の応答値との関係を計算する関係計算処理と、
前記階毎の応答値に基づいて前記計測震度の範囲において決定される震度階級に対する前記建物の各階における部位毎の応答値を計算する各部位応答値計算処理と、
を実行する制御部を有することを特徴とする建物の地震による応答値計算システム。
Ground surface ground motion calculation processing to calculate ground motion of multiple levels of ground surface by ground response analysis using ground motion of multiple levels of engineering base suitable for acceleration response spectrum of multiple levels of engineering base,
A measurement seismic intensity calculation process for calculating a measurement seismic intensity of the ground surface earthquake motion;
Each floor response value calculation process for calculating a response value for each floor of the building of the plurality of levels by an earthquake response analysis of the target building with respect to the ground motion of the ground surface of the plurality of levels,
A relation calculation process for calculating a relation between the measured seismic intensity and the response value for each floor;
Each part response value calculation process for calculating a response value for each part in each floor of the building with respect to a seismic intensity class determined in the range of the measured seismic intensity based on the response value for each floor;
A response value calculation system due to an earthquake of a building, characterized in that it has a control unit for executing the operation.
請求項1に記載の建物の地震による応答値計算システムであって、
前記各部位応答値計算処理では、前記階毎の応答値に、前記建物の構造部材の応答値に対する各々の前記部位の応答値の増幅率を示す応答倍率を乗じて前記各部位の前記応答値が計算されることを特徴とする建物の地震による応答値計算システム。
It is the response value calculation system by the earthquake of the building of Claim 1,
In each part response value calculation process, the response value of each part is obtained by multiplying the response value for each floor by a response magnification indicating the amplification factor of the response value of each part with respect to the response value of the structural member of the building. A response value calculation system for earthquakes of buildings, characterized in that is calculated.
請求項1または請求項2に記載の建物の地震による応答値計算システムであって、
前記各々の部位における損傷による限界値を示す損傷度判定データベースを有し、
前記各部位の前記応答値の前記限界値に対する割合を示す余裕度を計算することを特徴とする建物の地震による応答値計算システム。
It is a response value calculation system by the earthquake of the building of Claim 1 or Claim 2,
A damage degree determination database indicating a limit value due to damage in each of the parts;
A system for calculating a response value due to an earthquake of a building, wherein a margin indicating a ratio of the response value of each part to the limit value is calculated.
請求項1乃至請求項3のいずれかに記載の建物の地震による応答値計算システムであって、
計算される、前記各階における前記各部位の前記応答値は、最大加速度または最大層間変形角であることを特徴とする建物の地震による応答値計算システム。
It is a response value calculation system by the earthquake of the building in any one of Claims 1 thru | or 3,
The calculated response value of each part on each floor is a maximum acceleration or a maximum interlayer deformation angle, and a response value calculation system due to an earthquake of a building.
対象とする建物の各階及び各部位の情報に基づいて、地震の被災後における前記建物の損傷状態を調査すべき調査対象部位を各階にて抽出する調査対象部位抽出ステップと、
複数レベルの工学的基盤の加速度応答スペクトルに適合した複数レベルの工学的基盤の地震動を用いた地盤応答解析により複数レベルの地表面の地震動を計算する地表面地震動計算ステップと、
前記地表面の地震動の計測震度を計算する計測震度計算ステップと、
前記複数レベルの前記地表面の地震動に対する前記建物の地震応答解析により、前記複数レベルの前記建物の階毎の応答値を計算する各階応答値計算ステップと、
前記計測震度と前記階毎の応答値との関係を計算する関係計算ステップと、
前記階毎の応答値に基づいて前記計測震度の範囲において決定される震度階級に対する前記建物の各階における前記調査対象部位毎の応答値を計算する各部位応答値計算ステップと、
各々の前記調査対象部位における損傷による限界値を示す損傷度判定データベースに基づいて、前記階毎の応答値に対する前記限界値の割合を示す余裕度を計算する余裕度計算ステップと、
各階における前記調査対象部位に対応付けて、各々の前記調査対象部位の調査結果を記入する結果記入欄が設けられ、計算された前記余裕度が所定の値より低い前記調査対象部位の前記結果記入欄が明示された被害調査表を作成する被害調査表作成ステップと、
を有することを特徴とする建物の地震による被害調査表作成方法。
Based on the information on each floor and each part of the target building, an investigation target part extraction step for extracting the investigation target part on each floor to investigate the damage state of the building after the earthquake damage,
Ground surface ground motion calculation step for calculating ground motion of multiple levels by ground response analysis using ground motion of multiple levels of engineering base that fits acceleration response spectrum of multiple levels of engineering base,
A measurement seismic intensity calculation step for calculating a measurement seismic intensity of the ground motion on the ground surface;
Each floor response value calculation step of calculating a response value for each floor of the building of the plurality of levels by an earthquake response analysis of the building with respect to the ground motion of the ground surface of the plurality of levels;
A relation calculating step for calculating a relation between the measured seismic intensity and the response value for each floor;
Each part response value calculation step of calculating a response value for each of the survey target parts in each floor of the building with respect to a seismic intensity class determined in the range of the measured seismic intensity based on the response value for each floor;
A margin calculation step for calculating a margin indicating a ratio of the limit value to a response value for each floor, based on a damage degree determination database indicating a limit value due to damage in each of the investigation target parts;
A result entry field is provided in which a survey result of each survey target site is entered in association with the survey target site on each floor, and the calculated result margin of the survey target site is lower than a predetermined value. A damage investigation table creation step for creating a damage investigation table in which the column is specified;
A method for preparing a damage survey table for an earthquake of a building, characterized by comprising:
JP2013023046A 2013-02-08 2013-02-08 Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes Active JP6075099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013023046A JP6075099B2 (en) 2013-02-08 2013-02-08 Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023046A JP6075099B2 (en) 2013-02-08 2013-02-08 Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes

Publications (2)

Publication Number Publication Date
JP2014153191A JP2014153191A (en) 2014-08-25
JP6075099B2 true JP6075099B2 (en) 2017-02-08

Family

ID=51575195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023046A Active JP6075099B2 (en) 2013-02-08 2013-02-08 Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes

Country Status (1)

Country Link
JP (1) JP6075099B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545100B1 (en) * 2014-10-25 2015-08-17 신동열 Method estimating earthquake-proof magnitude for eastablished building and a system thereof
JP6843645B2 (en) * 2017-02-17 2021-03-17 清水建設株式会社 Judgment device and judgment method
JP7444811B2 (en) * 2021-03-24 2024-03-06 パナソニックホームズ株式会社 Building damage estimation method, building damage estimation system, building damage learning method, building damage learning system and program
CN115047516B (en) * 2022-05-09 2024-02-02 天津市地震局 Python-based long-period spectrum intensity calculation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526694A (en) * 1994-11-15 1996-06-18 Infrastructure Instruments Inc. Instrument for detecting hidden structural damage in multi-story buildings
JP2002168963A (en) * 2000-12-01 2002-06-14 Toshiba Corp Earthquake damage estimation evaluation system
JP2004205467A (en) * 2002-12-26 2004-07-22 Tokyo Electric Power Co Inc:The Estimation method and estimation display method for degree of damage in structure
JP3931979B2 (en) * 2003-02-03 2007-06-20 清水建設株式会社 A simple seismic diagnosis system for building equipment and fixtures
JP2006063593A (en) * 2004-08-25 2006-03-09 Okumura Corp Insepction support method and insepction support system of building suffered from earthquake
JP2007109107A (en) * 2005-10-14 2007-04-26 Shimizu Corp Method, program and apparatus for evaluating damage in building in case of earthquake, and recording medium
JP2008039446A (en) * 2006-08-02 2008-02-21 Kajima Corp Earthquake damage evaluation program
JP5497257B2 (en) * 2007-07-12 2014-05-21 株式会社エー・アンド・デイ Method and apparatus for evaluating earthquake resistance of buildings
JP5113475B2 (en) * 2007-10-04 2013-01-09 戸田建設株式会社 Seismic intensity prediction system for buildings based on earthquake information
JP5418038B2 (en) * 2009-07-22 2014-02-19 株式会社大林組 Seismic risk assessment method
JP2011118510A (en) * 2009-12-01 2011-06-16 Asahi Kasei Homes Co Method for evaluation of building strength

Also Published As

Publication number Publication date
JP2014153191A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
Ruggieri et al. A prioritization RVS methodology for the seismic risk assessment of RC school buildings
Miranda et al. Performance of nonstructural components during the 27 February 2010 Chile earthquake
US10648881B2 (en) Seismic response assessment of man-made structures
Soroushian et al. Experimental fragility analysis of suspension ceiling systems
Annan et al. Seismic vulnerability assessment of modular steel buildings
Aguado et al. The use of a large-scale seismic vulnerability assessment approach for masonry façade walls as an effective tool for evaluating, managing and mitigating seismic risk in historical centers
Applied Technology Council et al. Seismic performance assessment of buildings
JP6075099B2 (en) Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes
Karafagka et al. Analytical tsunami fragility curves for seaport RC buildings and steel light frame warehouses
Shome et al. Loss estimation of tall buildings designed for the PEER tall building initiative project
Mayes et al. Performance based design of buildings to assess damage and downtime and implement a rating system
El Ezz et al. ER2-Earthquake: Interactive web-application for urban seismic risk assessment
Jiang et al. Seismic risk assessment of a 2-storey steel-sheathed CFS building considering different sources of uncertainty
Yeow et al. E-defense shake-table test of a building designed for post-disaster functionality
Wahyuni Vulnerability assessment of reinforced concrete building post-earthquake
Walsh et al. Seismic considerations for the Art Deco interwar reinforced-concrete buildings of Napier, New Zealand
KR102272211B1 (en) Evaluation Method and System of Seismic Performance using Loss-based Analysis Procedure
Baba Hamed et al. Seismic risk assessment of Algerian buildings in urban area
Lizundia et al. Update of FEMA P-154: Rapid visual screening for potential seismic hazards
Karafagka et al. Tsunami fragility curves for seaport structures
Liu et al. Interfacing building response with human behavior under seismic events
Cook et al. Comparison of FEMA P-58 with other building seismic risk assessment methods
Desai et al. PERFORMANCE EVALUATION USING FRAGILITY ANALYSIS OF RC FRAME WALL STRUCTURES
Guragain et al. Development of fragility functions for low strength masonry buildings in Nepal using applied element methods
Yeh et al. Building damage assessment for earthquake loss estimation in Taiwan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150