JP5834372B2 - Method for producing Fe-Cu-C sintered material - Google Patents

Method for producing Fe-Cu-C sintered material Download PDF

Info

Publication number
JP5834372B2
JP5834372B2 JP2013129608A JP2013129608A JP5834372B2 JP 5834372 B2 JP5834372 B2 JP 5834372B2 JP 2013129608 A JP2013129608 A JP 2013129608A JP 2013129608 A JP2013129608 A JP 2013129608A JP 5834372 B2 JP5834372 B2 JP 5834372B2
Authority
JP
Japan
Prior art keywords
chamber
sintered material
sintering
cooling
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129608A
Other languages
Japanese (ja)
Other versions
JP2015004099A (en
Inventor
裕貴 塚本
裕貴 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2013129608A priority Critical patent/JP5834372B2/en
Publication of JP2015004099A publication Critical patent/JP2015004099A/en
Application granted granted Critical
Publication of JP5834372B2 publication Critical patent/JP5834372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、高価な合金元素の使用を極力抑えて焼結後の硬度・強度を高めた生産性にも優れるFe−Cu−C系焼結材料の製造方法に関する。   The present invention relates to a method for producing a Fe—Cu—C-based sintered material that is excellent in productivity by suppressing the use of an expensive alloy element as much as possible and increasing the hardness and strength after sintering.

Fe−Cu−C系の焼結材料は、粉末の成形、焼結、サイジングの工程を経た後に熱処理を行なって硬度及び強度を高める方法が通常採られている。   For Fe—Cu—C-based sintered materials, a method is generally employed in which heat treatment is performed after powder forming, sintering, and sizing steps to increase the hardness and strength.

Ni、Mo、Co、Mn、Crなどの合金元素を添加して焼入れ性を向上させて硬度や強度を高めることもなされている。例えば、Fe−6Ni−1Cu−0.5Mo−0.55Cの組成の焼結材料は、一般的な焼結炉の冷却速度でマルテンサイト組織を得られると言われている。   Alloy elements such as Ni, Mo, Co, Mn, and Cr are added to improve hardenability and increase hardness and strength. For example, it is said that a sintered material having a composition of Fe-6Ni-1Cu-0.5Mo-0.55C can obtain a martensite structure at a cooling rate of a general sintering furnace.

また、下記特許文献1に開示されるようなセラミックス含有のFe−Cu−C系焼結材料も提案されている。   Further, a ceramic-containing Fe—Cu—C based sintered material as disclosed in Patent Document 1 below has also been proposed.

特開平11−131108号公報JP 11-131108 A

Fe−Cu−C系焼結材料の高硬度化のために従来添加されている合金元素は高価である。従って、その高価な合金元素を極力使用せずに材料の硬度を高めることが望まれる。   Conventionally added alloy elements for increasing the hardness of Fe-Cu-C sintered materials are expensive. Therefore, it is desired to increase the hardness of the material without using the expensive alloy element as much as possible.

でき得るならば、サイジング後の熱処理工程も省略することも望まれる。そこで、流れ作業での焼結が行なえる従来のベルト焼結炉を使用し、その炉による焼結の終段においてシンターハードニングを実施することを検討した。   If possible, it is also desirable to omit the heat treatment step after sizing. Therefore, a conventional belt sintering furnace capable of performing sintering in a flow operation was used, and it was examined that sintering hardening was performed at the final stage of sintering in the furnace.

ところが、ベルト焼結炉は、強制冷却装置を採用しても冷却速度がせいぜい0.5〜1.0℃/sec程度であり、このような速度では満足できる硬度、強度改善の効果を期待できない。   However, the belt sintering furnace has a cooling rate of about 0.5 to 1.0 ° C./sec at most even if a forced cooling device is employed, and satisfactory effects of hardness and strength cannot be expected at such a rate. .

なお、バッチ式焼結炉を用いれば、焼結温度に加熱した材料を冷却液に浸漬してマルテンサイト相を生じさせることができるが、このバッチ式焼結炉では生産性が高まらない。   If a batch-type sintering furnace is used, a material heated to a sintering temperature can be immersed in a cooling liquid to generate a martensite phase. However, productivity does not increase in this batch-type sintering furnace.

また、鉄系焼結材料は、焼結後にスチーム処理を行って鉄の酸化被膜を生じさせる方法で表面の硬度を高めることができるが、この方法では、強度を高めることができない。   Further, the iron-based sintered material can be increased in surface hardness by a method of performing a steam treatment after sintering to produce an iron oxide film, but this method cannot increase the strength.

この発明は、かかる現状技術に鑑みてなされたものであって、高価な合金元素の使用を極力抑えながら生産性に優れた方法でFe−Cu−C系焼結材料の硬度・強度を高めることを課題としている。   The present invention has been made in view of the present state of the art, and increases the hardness and strength of the Fe—Cu—C based sintered material by a method excellent in productivity while suppressing the use of expensive alloy elements as much as possible. Is an issue.

上記の課題を解決するため、原料粉末を加圧成形して得られた成形体の焼結をローラハース炉を使用して行い、炉内において焼結温度に加熱した後に830℃〜900℃まで冷却し、その後、2.5℃/sec〜4.0℃/secの速度で急冷するCuの含有率が0より多くて3.0wt%以下、Cの含有率が0.2〜1.0wt%、残Feの組成のFe−Cu−C系焼結材料の製造方法を提供する。 In order to solve the above-mentioned problems, the green body obtained by pressure-molding the raw material powder is sintered using a roller hearth furnace, heated to the sintering temperature in the furnace, and then cooled to 830 ° C. to 900 ° C. Thereafter, the Cu content rapidly quenched at a rate of 2.5 ° C./sec to 4.0 ° C./sec is more than 0 and 3.0 wt% or less, and the C content is 0.2 to 1.0 wt%. A method for producing an Fe—Cu—C based sintered material having a composition of residual Fe is provided.

その方法で得られる焼結材料は、フェライトと、パーライト中のセメンタイト相の析出間隔が500nm以下の微細パーライトとが混在した組織を有する。 Sintered material obtained by the method, that Yusuke and ferrite, the deposition interval of cementite phase in the pearlite are mixed and the following fine pearlite 500nm tissue.

この発明のFe−Cu−C系焼結材料の製造方法によれば、優れた生産性を確保しながら得られるFe−Cu−C系焼結材料の硬度を高めることができる。   According to the method for producing an Fe—Cu—C based sintered material of the present invention, the hardness of the Fe—Cu—C based sintered material obtained while ensuring excellent productivity can be increased.

ローラハース炉の一例を示す断面図である。It is sectional drawing which shows an example of a roller hearth furnace. 図1のローラハース炉の平面図である。It is a top view of the roller hearth furnace of FIG. ローラハース炉の炉内各部でのワーク温度の変動状況を示す図である。It is a figure which shows the fluctuation | variation state of the workpiece | work temperature in each part in the furnace of a roller hearth furnace. この発明の方法で製造された焼結材料の組織写真である。It is a structure | tissue photograph of the sintered material manufactured by the method of this invention. 0.5℃/secの速度で冷却した通常材の組織写真である。It is a structure | tissue photograph of the normal material cooled at the speed | rate of 0.5 degree-C / sec. この発明の方法で製造された焼結材料と通常材の硬さの評価試験結果を示す図である。It is a figure which shows the evaluation test result of the hardness of the sintered material manufactured by the method of this invention, and a normal material. この発明の方法で製造された焼結材料と通常材の圧環強度の評価試験結果を示す図である。It is a figure which shows the evaluation test result of the crushing strength of the sintered material manufactured with the method of this invention, and a normal material. この発明の方法で製造された焼結材料と通常材の摩耗試験結果示す図である。It is a figure which shows the abrasion test result of the sintered material manufactured by the method of this invention, and a normal material.

以下、この発明のFe−Cu−C系焼結材料の製造方法の実施の形態を、添付図面の図1〜図8に基づいて説明する。   Embodiments of a method for producing an Fe—Cu—C based sintered material according to the present invention will be described below with reference to FIGS.

この発明のFe−Cu−C系焼結材料の製造方法では、原料粉末を加圧成形して得られた成形体の焼結を、ローラハース炉(連続焼結炉)を使用して行う。   In the method for producing an Fe—Cu—C-based sintered material according to the present invention, a green body obtained by pressure forming raw material powder is sintered using a roller hearth furnace (continuous sintering furnace).

そのローラハース炉を用いて原料粉末の成形体を焼結温度に加熱した後、830℃〜900℃まで冷却し、その後、2.5℃/sec〜4.0℃/secの速度で急冷する方法を採る。 A method in which a compact of raw material powder is heated to a sintering temperature using the roller hearth furnace, then cooled to 830 ° C. to 900 ° C., and then rapidly cooled at a rate of 2.5 ° C./sec to 4.0 ° C./sec. Take.

その方法の実施に用いるローラハース炉の一形態を図1及び図2に示す。このローラハース炉は、脱ガスゾーン1、予熱ゾーン2、加熱ゾーン3、冷却ゾーン4を順番に連ならせて構成されている。5は排ガス燃焼炉であり、脱ガスゾーン1において発生した排ガスがこの排ガス燃焼炉5に導入されて処理される。   One embodiment of a roller hearth furnace used for carrying out the method is shown in FIGS. This roller hearth furnace is configured by sequentially connecting a degassing zone 1, a preheating zone 2, a heating zone 3, and a cooling zone 4. Reference numeral 5 denotes an exhaust gas combustion furnace, and the exhaust gas generated in the degassing zone 1 is introduced into the exhaust gas combustion furnace 5 and processed.

加熱ゾーン3は、焼結室3aとその焼結室3aの後方に配置された徐冷室3bとからなる。   The heating zone 3 includes a sintering chamber 3a and a slow cooling chamber 3b arranged behind the sintering chamber 3a.

また、冷却ゾーン4は、急冷室4a、冷却室4bを組み合わせたものになっている。急冷室4aと冷却室4bにおける冷却は窒素ガスを用いて行われる。   The cooling zone 4 is a combination of the quenching chamber 4a and the cooling chamber 4b. Cooling in the quenching chamber 4a and the cooling chamber 4b is performed using nitrogen gas.

設備の最後段の6は、窒素ガスと大気を置換する置換室である。この置換室6は、炉内に大気が流入するのを防止する目的で設けられている。   The last stage 6 of the facility is a replacement chamber for replacing nitrogen gas with the atmosphere. The replacement chamber 6 is provided for the purpose of preventing air from flowing into the furnace.

各ゾーンの内部には、動力駆動の送りローラ7が設けられており、その送りローラ7によってワークを収容したトレイTが炉の上流から下流に向けて搬送される。   Inside each zone, a power-driven feed roller 7 is provided, and the feed roller 7 transports a tray T containing workpieces from upstream to downstream of the furnace.

徐冷室3bの入口と出口には、焼結室3aとの間及び冷却ゾーン4との間を開閉可能に仕切る扉8、9がそれぞれ設けられている。また、急冷室4aの入口と出口にも出入り口を開閉する扉10,11が設けられ、さらに、置換室6の入口部と出口部にも出入り口を開閉する扉12,13が設けられている。   Doors 8 and 9 are provided at the inlet and the outlet of the slow cooling chamber 3b so as to be openable and closable between the sintering chamber 3a and the cooling zone 4, respectively. Further, doors 10 and 11 for opening and closing the entrance and exit of the quenching chamber 4a are provided, and doors 12 and 13 for opening and closing the entrance and exit of the replacement chamber 6 are also provided.

冷却室4bの入口は急冷室4aの出口に、また、冷却室4bの出口は置換室6の入口にそれぞれ連なっており、従って、冷却室4bの出入り口も、急冷室4aの出口の扉11と置換室6の入口の扉12によって開閉されるようになっている。   The inlet of the cooling chamber 4b is connected to the outlet of the quenching chamber 4a, and the outlet of the cooling chamber 4b is connected to the inlet of the replacement chamber 6. Therefore, the inlet / outlet of the cooling chamber 4b is also connected to the outlet door 11 of the quenching chamber 4a. It is opened and closed by a door 12 at the entrance of the replacement chamber 6.

焼結炉の内部に設けた送りローラ7は、速度調整が可能な可変ローラである。冷却ゾーン4の内部に設けられた送りローラ7の搬送速度は、加熱ゾーン3における搬送速度よりも大に設定されている。   The feed roller 7 provided inside the sintering furnace is a variable roller capable of adjusting the speed. The conveying speed of the feed roller 7 provided in the cooling zone 4 is set to be higher than the conveying speed in the heating zone 3.

図1の14はヒータ、図2の15は急冷室用の冷却ファン、図1の16はガスクーラ、17は冷却室用の冷却ファン、18は搬送コンベヤである。   In FIG. 1, 14 is a heater, 15 is a cooling fan for the quenching chamber, 16 is a gas cooler, 17 is a cooling fan for the cooling chamber, and 18 is a conveyor.

例示の炉では、徐冷室出口の扉9から急冷室入口の扉10までの区間を高速で搬送することでワークの温度低下の抑制と、急冷室の温度上昇の防止を図っている。2℃/sec以上の冷却速度を得るための急冷室4aから急冷室4a以降の長手方向中間点までの搬送速度は、徐冷室3bや急冷室4aの長さ、徐冷室3bと急冷室4a間の長さ、急冷室4aにおける冷却能力などによって変動する。   In the illustrated furnace, a section from the slow cooling chamber outlet door 9 to the quenching chamber inlet door 10 is conveyed at a high speed to suppress a decrease in the temperature of the workpiece and to prevent an increase in the temperature of the rapid cooling chamber. The conveying speed from the quenching chamber 4a for obtaining a cooling rate of 2 ° C./sec or more to the longitudinal intermediate point after the quenching chamber 4a is the length of the slow cooling chamber 3b or the quenching chamber 4a, the slow cooling chamber 3b and the quenching chamber. It varies depending on the length between 4a and the cooling capacity in the quenching chamber 4a.

排ガス燃焼炉5の入口から徐冷室3bまでの区間に設けられる送りローラ7の搬送速度は、同一に設定されている。   The conveyance speed of the feed roller 7 provided in the section from the inlet of the exhaust gas combustion furnace 5 to the slow cooling chamber 3b is set to be the same.

この発明の方法で製造する焼結材料は、Cuの含有率が3.0wt%以下(0は除く)〜、Cの含有率が0.2〜1.0wt%、残Feの組成とする。   The sintered material produced by the method of the present invention has a Cu content of 3.0 wt% or less (excluding 0) to C, a C content of 0.2 to 1.0 wt%, and a residual Fe composition.

その組成の原料粉末で形成された成形体(ワーク)を収容したトレイTを搬送ローラ7に載せてローラハース炉内に導入し、脱ガスゾーン1での脱ガス処理後に予熱ゾーン2を通過させてここでワークを700℃〜900℃程度に加熱する。   A tray T containing a molded body (work) formed of the raw material powder having the composition is placed on the conveying roller 7 and introduced into the roller hearth furnace, and after the degassing process in the degassing zone 1, it passes through the preheating zone 2. Here, the workpiece is heated to about 700 ° C to 900 ° C.

その後、トレイTを焼結室3aに導入してここでワークを焼結に必要な温度、例えば、1130℃程度の温度になるまで加熱し、その温度を所定時間保持して焼結を進める。   Thereafter, the tray T is introduced into the sintering chamber 3a, where the workpiece is heated to a temperature required for sintering, for example, about 1130 ° C., and the temperature is maintained for a predetermined time to advance the sintering.

焼結を終えたワークはトレイTとともに徐冷室3bに導入してここで830〜900℃の変態点直上まで冷却し、急冷室4aの入口の扉10が開かれるまで、その温度を保持して待機させる。このとき、扉8、9は閉じられている。 The sintered workpiece is introduced into the slow cooling chamber 3b together with the tray T and cooled to just above the transformation point of 830 to 900 ° C., and the temperature is maintained until the entrance door 10 of the quenching chamber 4a is opened. And wait. At this time, the doors 8 and 9 are closed.

先行するトレイTが急冷室4aでの冷却処理を終えて冷却室4bに送り出されると、扉11が閉じられ、扉9,10が開かれて徐冷室3bから急冷室4aにトレイTが送り込まれる。ここでの搬送速度は温度低下が焼入れに影響の無い小さな範囲に抑えられように設定される。   When the preceding tray T finishes the cooling process in the quenching chamber 4a and is sent to the cooling chamber 4b, the door 11 is closed, the doors 9 and 10 are opened, and the tray T is sent from the slow cooling chamber 3b to the quenching chamber 4a. It is. The conveyance speed here is set so that the temperature drop is suppressed to a small range that does not affect the quenching.

急冷室4a内ではトレイT内のワークに対して窒素ガスが吹きつけられ、それによって焼結後のワークが急速に冷却されて焼入れされる。その冷却は、2℃/sec以上の速度でなされる。冷却速度の上限は特に無いが、現状設備では4℃/sec程度が限界である。   In the quenching chamber 4a, nitrogen gas is blown against the workpiece in the tray T, whereby the sintered workpiece is rapidly cooled and quenched. The cooling is performed at a rate of 2 ° C./sec or more. Although there is no particular upper limit on the cooling rate, the current equipment has a limit of about 4 ° C./sec.

急冷室4aを通過したワークは、トレイTとともに冷却室4bに移されて300℃を下回る温度になるまで冷却され、さらに、冷却室4bから置換室6に向けて搬送され、その間に酸化が起きない温度(200℃以下、より好ましくは150℃以下)まで冷却されて出炉する。   The workpiece that has passed through the quenching chamber 4a is transferred to the cooling chamber 4b together with the tray T, cooled to a temperature lower than 300 ° C., and further conveyed from the cooling chamber 4b toward the replacement chamber 6, during which oxidation occurs. The furnace is cooled to a low temperature (200 ° C. or lower, more preferably 150 ° C. or lower).

かかる方法における炉内各部でのワーク温度の変動状況を図3に示す。この図3は、急冷室4aでの冷却速度を3℃/secに設定したときの温度変化状況を示したものである。   The fluctuation | variation state of the workpiece | work temperature in each part in a furnace in this method is shown in FIG. FIG. 3 shows a temperature change state when the cooling rate in the quenching chamber 4a is set to 3 ° C./sec.

この発明の方法によれば、焼結後の急冷によって、フェライトと、パーライト中のセメンタイト相の析出間隔が500nm以下の微細パーライトとが混在した組織を有する焼結材料が得られる。合金元素であるCu及びCの添加量の割りに冷却速度が小さいため、マルテンサイトは形成されない。   According to the method of the present invention, a sintered material having a structure in which ferrite and fine pearlite having a cementite phase precipitation interval of 500 nm or less are mixed by rapid cooling after sintering. Since the cooling rate is small relative to the addition amounts of Cu and C, which are alloy elements, martensite is not formed.

試作材料の組織を観察した結果、パーライト中のセメンタイト相の析出間隔が500nm以下であったので、これを微細パーライトと定義した。   As a result of observing the structure of the prototype material, the precipitation interval of the cementite phase in pearlite was 500 nm or less, and this was defined as fine pearlite.

その材料の光学顕微鏡による組織写真を図4に示す。また、比較のために、フェライトとパーライトで構成されるFe−Cu−C系焼結材料(通常材)の光学顕微鏡による組織写真を図5に示す。図4のSHは、急冷によりシンターハードニング実施品を示す(以下も同様)。   FIG. 4 shows a structure photograph of the material by an optical microscope. For comparison, FIG. 5 shows a structure photograph of an Fe—Cu—C based sintered material (ordinary material) composed of ferrite and pearlite by an optical microscope. SH in FIG. 4 shows a product subjected to sinter hardening by rapid cooling (the same applies to the following).

図4、図5の組織は、どちらもフェライトとパーライトで構成されている。図5の通常材では、パーライト部分がフェライトとセメンタイトの2相で構成されているのが顕微鏡写真で確認できる。   4 and 5 are both composed of ferrite and pearlite. In the normal material of FIG. 5, it can be confirmed from the micrograph that the pearlite portion is composed of two phases of ferrite and cementite.

一方、図4の材料は、パーライト中のフェライト相とセメンタイト相の間隔が微細であるため、暗い灰色として観察される。   On the other hand, the material of FIG. 4 is observed as dark gray because the interval between the ferrite phase and the cementite phase in pearlite is fine.

シンターハードニングでの冷却速度0.5℃/secの条件で製造される従来の同一組成の焼結材料(通常材)は、パーライト中のセメンタイト相の析出間隔が500nm〜数μmであるのに対し、この発明で言う微細パーライトはパーライト中のセメンタイト相の析出間隔が極めて小さい。   A conventional sintered material (usually material) having the same composition manufactured under conditions of a cooling rate of 0.5 ° C./sec in sintering hardening has a precipitation interval of cementite phase in pearlite of 500 nm to several μm. On the other hand, the fine pearlite referred to in the present invention has a very small precipitation interval of the cementite phase in the pearlite.

冷却速度の上昇によってセメンタイト(FeC)、フェライト(Fe)の核生成頻度が上昇し、その結果、それら2相の間隔が狭くなり、微細パーライトが形成される。そのセメンタイト相の析出間隔が狭い微細パーライトは、硬度が高く、焼結材の硬度、強度、耐摩耗性が改善される。 As the cooling rate increases, the frequency of nucleation of cementite (Fe 3 C) and ferrite (Fe) increases, and as a result, the interval between these two phases becomes narrower and fine pearlite is formed. Fine pearlite having a narrow cementite phase precipitation interval has high hardness, and the hardness, strength, and wear resistance of the sintered material are improved.

Fe−2wt%Cu−0.8wt%Cの組成の原料粉末を使用して密度6.6g/cm、6.8g/cm、及び7.0g/cmの粉末の成形体を作り、これをローラハース炉を使用して1130℃、20分加熱の条件で焼結した。 Using a raw material powder having a composition of Fe-2 wt% Cu-0.8 wt% C, powder compacts having a density of 6.6 g / cm 3 , 6.8 g / cm 3 , and 7.0 g / cm 3 were prepared. This was sintered using a roller hearth furnace at 1130 ° C. for 20 minutes.

そして、その焼結工程において徐冷室での冷却後に急冷室において冷却速度3℃/secで急冷するシンターハードニング(SH)処理を行った。 And in the sintering process, the sintering hardening (SH) process which quenches rapidly with the cooling rate of 3 degree-C / sec in the quenching chamber after cooling in a slow cooling chamber .

次に、こうして作られた焼結材料の硬度、強度、耐摩耗性を評価した。その結果、密度6.8g/cmの材料については硬さが75HRB以上、外径:φ34mm、内径:φ20.2mm、厚み:10mmの試験片のJIS Z 2507に準じた試験における圧環強度が900MPa以上の測定値が得られた。図4の写真は、その6.8g/cmの焼結材料の組織である。 Next, the hardness, strength, and wear resistance of the sintered material thus produced were evaluated. As a result, for materials with a density of 6.8 g / cm 3 , the crushing strength in a test according to JIS Z 2507 of a test piece having a hardness of 75 HRB or more, an outer diameter: φ34 mm, an inner diameter: φ20.2 mm, and a thickness: 10 mm is 900 MPa. The above measured values were obtained. The photograph of FIG. 4 shows the structure of the sintered material of 6.8 g / cm 3 .

密度6.6g/cmの焼結材料の硬さは75HRB程度、密度6.8g/cmの焼結材料の硬さは77HRB程度、密度7.0g/cmの焼結材料の硬さは85HRBに近い値が得られた。その硬さの測定結果を通常材の硬さと比較して図6に示す。 The hardness of the sintered material with a density of 6.6 g / cm 3 is about 75 HRB, the hardness of the sintered material with a density of 6.8 g / cm 3 is about 77 HRB, and the hardness of the sintered material with a density of 7.0 g / cm 3 A value close to 85 HRB was obtained. The measurement result of the hardness is shown in FIG. 6 in comparison with the hardness of a normal material.

材料の硬さは、JIS G 0202に規定されたロックウェル試験によって求めた。   The hardness of the material was determined by the Rockwell test specified in JIS G0202.

また、密度6.8g/cmの材料の圧環強度の測定結果を、通常材の圧環強度と比較して図7に示す。 Moreover, the measurement result of the crushing strength of a material having a density of 6.8 g / cm 3 is shown in FIG. 7 in comparison with the crushing strength of a normal material.

この圧環強度は、JIS Z 2507に準じた圧環強度試験を行なって求めた。その圧環強度試験は、外径:φ34mm、内径:φ20.2mm、厚み:10mmの試験片を試験機{(株)東京試験機製作所製}に径方向に圧力を受けるようにセットし、下記の試験条件にて実施した。
試験条件:最大荷重を40kNに設定し、1.0[FS/min]の定速試験力制御にて加圧。
The crushing strength was obtained by performing a crushing strength test according to JIS Z 2507. In the crushing strength test, a test piece having an outer diameter: φ34 mm, an inner diameter: φ20.2 mm, and a thickness: 10 mm was set on a tester {manufactured by Tokyo Test Machine Co., Ltd.} so as to receive pressure in the radial direction. The test was conducted under the test conditions.
Test conditions: The maximum load is set to 40 kN and pressurization is performed with constant speed test force control of 1.0 [FS / min].

さらに、摩耗試験による摩耗量の測定結果を、通常材の摩耗量と比較して図8に示す。この試験も密度6.8g/cmの焼結材を使用して行った。 Further, the measurement result of the wear amount by the wear test is shown in FIG. 8 in comparison with the wear amount of the normal material. This test was also performed using a sintered material having a density of 6.8 g / cm 3 .

この摩耗試験は、大越式摩耗試験機{(株)東京試験機製作所製}を使用して行った。
試験条件は、 相手材:SCM435
摩擦速度:3.81m/sec
摩擦距離:200m
最終荷重:6.3kg
この条件で試験を行なった後に、試料の摩耗量を下記の近似式(1)を用いて摩耗による損失体積を求めて評価した。
摩耗量Wmm=B×b÷(12r)・・・・・式(1)
ここに B:相手材厚み(3mm)
r:相手材半径(15mm)
b:摩耗幅(実測値)
This wear test was performed using an Ogoshi type wear tester {manufactured by Tokyo Test Machine Co., Ltd.}.
Test conditions are: Opponent material: SCM435
Friction speed: 3.81 m / sec
Friction distance: 200m
Final load: 6.3kg
After performing the test under these conditions, the amount of wear of the sample was evaluated by determining the loss volume due to wear using the following approximate expression (1).
Wear amount Wmm 3 = B × b 3 ÷ (12r) Equation (1)
Here B: thickness of the mating material (3mm)
r: radius of the mating material (15mm)
b: Wear width (actual measured value)

図6の試験結果からわかるように、この発明の方法で製造されたFe−Cu−C系焼結材料は、通常材に比べて10ポイント程度硬さが増している。   As can be seen from the test results in FIG. 6, the Fe—Cu—C-based sintered material produced by the method of the present invention has increased in hardness by about 10 points compared to the normal material.

また、図7からわかるように、圧環強度は、通常材が800MPa強であるのに対し、この発明の方法で製造された焼結材料は950MPa以上となっており、通常材に比べて
摩耗量も図8の通りに減少している。
Further, as can be seen from FIG. 7, the crushing strength of the normal material is over 800 MPa, whereas the sintered material manufactured by the method of the present invention is 950 MPa or more, which is the amount of wear compared to the normal material. As shown in FIG.

1 脱ガスゾーン
2 予熱ゾーン
3 加熱ゾーン
3a 焼結室
3b 徐冷室
4 冷却ゾーン
4a 急冷室
4b 冷却室
5 排ガス燃焼炉
6 置換室
7 送りローラ
8〜13 扉
14 ヒータ
15、17 冷却ファン
16 ガスクーラ
18 搬送コンベヤ
T トレイ
DESCRIPTION OF SYMBOLS 1 Degassing zone 2 Preheating zone 3 Heating zone 3a Sintering chamber 3b Slow cooling chamber 4 Cooling zone 4a Quenching chamber 4b Cooling chamber 5 Exhaust gas combustion furnace 6 Replacement chamber 7 Feed roller 8-13 Door 14 Heater 15, 17 Cooling fan 16 Gas cooler 18 Conveyor T

Claims (1)

Cuの含有率が0より多くて3.0wt%以下、Cの含有率が0.2〜1.0wt%、残Feの組成のFe−Cu−C系焼結材料の製造方法であって、原料粉末を加圧成形して得られた成形体の焼結をローラハース炉を使用して行い、炉内において焼結温度に加熱した後に前記焼結材料の変態点直上の温度である830℃〜900℃まで冷却し、その後、2.5℃/sec〜4.0℃/secの速度で急冷して焼入れを行うFe−Cu−C系焼結材料の製造方法。   A method for producing a Fe—Cu—C based sintered material having a Cu content of more than 0 and 3.0 wt% or less, a C content of 0.2 to 1.0 wt%, and a composition of residual Fe, Sintering of the molded body obtained by pressure forming the raw material powder is performed using a roller hearth furnace, and after heating to the sintering temperature in the furnace, the temperature is directly above the transformation point of the sintered material, from 830 ° C. A method for producing an Fe—Cu—C based sintered material, which is cooled to 900 ° C. and then quenched by quenching at a rate of 2.5 ° C./sec to 4.0 ° C./sec.
JP2013129608A 2013-06-20 2013-06-20 Method for producing Fe-Cu-C sintered material Active JP5834372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129608A JP5834372B2 (en) 2013-06-20 2013-06-20 Method for producing Fe-Cu-C sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129608A JP5834372B2 (en) 2013-06-20 2013-06-20 Method for producing Fe-Cu-C sintered material

Publications (2)

Publication Number Publication Date
JP2015004099A JP2015004099A (en) 2015-01-08
JP5834372B2 true JP5834372B2 (en) 2015-12-24

Family

ID=52300226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129608A Active JP5834372B2 (en) 2013-06-20 2013-06-20 Method for producing Fe-Cu-C sintered material

Country Status (1)

Country Link
JP (1) JP5834372B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167453B2 (en) * 2013-07-08 2017-07-26 住友電工焼結合金株式会社 Sinter hardening method
WO2017002623A1 (en) * 2015-07-01 2017-01-05 日本ピストンリング株式会社 Composite for wear-resistant ring having excellent heat conductivity

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146204A (en) * 1977-05-27 1978-12-20 Riken Piston Ring Ind Co Ltd Production of feecuuc system sintered alloy
JPS59110768A (en) * 1982-12-13 1984-06-26 Toyota Motor Corp Abrasion resistance ferrous sintered body and preparation thereof
JP2557870B2 (en) * 1987-02-26 1996-11-27 東京焼結金属株式会社 Manufacturing method of tough sintered member
JP3694968B2 (en) * 1996-04-23 2005-09-14 Jfeスチール株式会社 Mixed powder for powder metallurgy
JP2001131611A (en) * 1999-11-08 2001-05-15 Mitsubishi Materials Corp Bearing made of free graphite-precipitated ferrous sintered material exhibiting excellent wear resistance under high specific pressure
JP2004115868A (en) * 2002-09-26 2004-04-15 Toyota Motor Corp Method for manufacturing sintered member
US20040115084A1 (en) * 2002-12-12 2004-06-17 Borgwarner Inc. Method of producing powder metal parts
JP4570066B2 (en) * 2003-07-22 2010-10-27 日産自動車株式会社 Method for manufacturing sintered sprocket for silent chain
JP2011157612A (en) * 2010-02-03 2011-08-18 Miki Pulley Co Ltd Method for producing sintered component
JP2011219827A (en) * 2010-04-12 2011-11-04 Miki Pulley Co Ltd Method for producing sintered part and powder molding die
JP5903738B2 (en) * 2012-03-29 2016-04-13 住友電工焼結合金株式会社 Method for producing ferrous sintered alloy
JP5920202B2 (en) * 2012-12-21 2016-05-18 トヨタ自動車株式会社 Sintered forged parts

Also Published As

Publication number Publication date
JP2015004099A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP2012527535A (en) High strength low alloy sintered steel
EP2200769B1 (en) Method of producing a sinter-hardened component
JP5834372B2 (en) Method for producing Fe-Cu-C sintered material
US6533996B2 (en) Method and apparatus for metal processing
US8986605B2 (en) Method and atmosphere for extending belt life in sintering furnace
JP2013204112A (en) Ferrous sintered alloy and method of producing the same
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JP2006219706A (en) Heat-treated iron based sintered component and method for producing the same
JP6112280B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112281B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112283B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6417573B2 (en) Sintered material
Schade et al. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A BAINITIC POWDER METALLURGY STEEL.
JP6112277B1 (en) Method for producing alloy steel powder for powder metallurgy
WO2021199370A1 (en) Method for manufacturing iron-based sintered body
KR102022946B1 (en) Production method for alloy steel powder for powder metallurgy
JP4096747B2 (en) Cold-rolled steel sheet having excellent surface properties and method for producing the same
JP6112278B1 (en) Method for producing alloy steel powder for powder metallurgy
Newkirk Heat Treatment of Powder Metallurgy Steels
SU1560406A1 (en) Method of producing sintered articles based on iron
Pauty et al. ECM Technologies, Large Scale Production Equipment for Heat Treating PM Parts, Improvement and Innovation
Filho et al. Sintered Valve Seat Inserts-Microstructural Characterisation
JP2012126971A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for producing the same
JP2002309302A (en) Method for manufacturing tool-steel powder with increased nitrogen content

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151016

R150 Certificate of patent or registration of utility model

Ref document number: 5834372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250