JP5727336B2 - Conveying method - Google Patents

Conveying method Download PDF

Info

Publication number
JP5727336B2
JP5727336B2 JP2011204777A JP2011204777A JP5727336B2 JP 5727336 B2 JP5727336 B2 JP 5727336B2 JP 2011204777 A JP2011204777 A JP 2011204777A JP 2011204777 A JP2011204777 A JP 2011204777A JP 5727336 B2 JP5727336 B2 JP 5727336B2
Authority
JP
Japan
Prior art keywords
suction
transport
vibration
suction force
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011204777A
Other languages
Japanese (ja)
Other versions
JP2013047142A (en
Inventor
太郎 三村
太郎 三村
誠 赤岩
誠 赤岩
徹 鰐川
徹 鰐川
毅 米倉
毅 米倉
克視 野村
克視 野村
朋彦 吉田
朋彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2011204777A priority Critical patent/JP5727336B2/en
Publication of JP2013047142A publication Critical patent/JP2013047142A/en
Application granted granted Critical
Publication of JP5727336B2 publication Critical patent/JP5727336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Description

本発明は搬送物の搬送方法に係り、特に、微細な電子部品等の搬送物を振動によって搬送する際に好適な、当該搬送物を搬送方向に分離する手段を備えた装置を用いる搬送方法に関する。 The present invention relates to a method for transporting a transported object , and more particularly, to a transport method using a device having means for separating the transported object in a transporting direction, which is suitable when transporting a transported object such as a fine electronic component by vibration. .

一般に、振動によって搬送物を所定の搬送路上で搬送するようにしたパーツフィーダやリニアフィーダと呼ばれる振動式搬送装置が知られている。この装置において、搬送路に沿って搬送物を搬送する際に、搬送物の選別、整列、姿勢変更、個別検査などを行うために、搬送の向きに連続して移動してくる搬送物を前後に分離するための手段を設けることが知られている。この手段としては、搬送路の搬送方向の傾斜角を所定位置で変更し、これにより搬送物の姿勢変化により、或いは、搬送物を所定位置から下流側で上流側よりも高速に移動させることによって前後の搬送物に間隔を設けることが行われていた。   In general, there is known a vibration type conveying device called a parts feeder or a linear feeder that conveys a conveyed product on a predetermined conveying path by vibration. In this device, when transporting a transported object along a transport path, the transported object that moves continuously in the direction of transport to perform sorting, alignment, posture change, individual inspection, etc. It is known to provide means for separating. As this means, the inclination angle of the conveyance direction of the conveyance path is changed at a predetermined position, thereby changing the posture of the conveyance object, or by moving the conveyance object from the predetermined position on the downstream side at a higher speed than the upstream side. An interval has been provided between the front and rear conveyed items.

しかしながら、近年、搬送対象の搬送物が微細化し、しかも高い搬送速度や搬送量が要求されるようになってきたため、搬送路の傾斜角変更で生ずる姿勢変化や搬送抵抗の差を利用する上記の方法では搬送物を確実に前後に分離することができず、その結果、搬送物の検出ミスが生じて不具合が発生するという問題点があった。そこで、以下の特許文献1〜3に示すように、後続の搬送物を一時的に吸引により停止させることにより、前方の搬送物との間に間隔を生じさせる方法が提案されている。   However, in recent years, the objects to be transported have become finer, and higher transport speeds and transport amounts have been demanded. Therefore, the above-described change in posture and the difference in transport resistance caused by changing the tilt angle of the transport path are utilized. In the method, the conveyed product cannot be reliably separated into front and back, and as a result, there is a problem that a detection error of the conveyed product occurs and a problem occurs. Therefore, as shown in Patent Documents 1 to 3 below, a method has been proposed in which a subsequent transported object is temporarily stopped by suction to create an interval between the front transported object.

なお、上記各文献に記載された方法では、いずれも吸引口の開口形状は円形である。   In any of the methods described in the above documents, the opening shape of the suction port is circular.

特開平6−246236号公報JP-A-6-246236 特開2002−137820号公報JP 2002-137820 A 特開2003−300613号公報JP 2003-3000613 A

しかしながら、吸引口の開口形状が円形である場合、部品に及ぼされる吸引力を迅速に変化させることができないという問題点がある。   However, when the opening shape of the suction port is circular, there is a problem that the suction force exerted on the component cannot be changed quickly.

そこで、本発明の課題は、振動式搬送装置による搬送物の搬送状態を吸引力により制御する場合において、吸引力の変化速度を高めることにある。   Therefore, an object of the present invention is to increase the change rate of the suction force when the conveyance state of the conveyed product by the vibration type conveyance device is controlled by the suction force.

斯かる実情に鑑み、本発明の搬送物の搬送方法は、実質的に直方体状の搬送物を振動式搬送装置によって搬送する搬送物の搬送方法において、前記振動式搬送装置は、前記搬送物を支持、案内する搬送面に沿って前記搬送物が搬送される搬送路を備えた搬送体と、該搬送体を前記搬送物が前記搬送路上を搬送の向きに搬送される態様で該搬送の向きに振動させる加振機構と、前記搬送路の前記搬送面に開口する矩形の開口形状を備える吸引口と、該吸引口における吸引力の有無を切り替え可能、或いは、前記吸引力を増減可能に構成された吸引作動手段と、を具備することを特徴とする。   In view of such a situation, the method for transporting a transported object of the present invention is a transporting method for transporting a transported object having a substantially rectangular parallelepiped shape by means of a vibratory transport device. A transport body provided with a transport path for transporting the transported object along a transport surface to be supported and guided; and the transport direction in a mode in which the transported object is transported in the transport direction on the transport path. A vibration mechanism that vibrates at a time, a suction port having a rectangular opening shape that opens on the transport surface of the transport path, and the presence or absence of suction force at the suction port can be switched, or the suction force can be increased or decreased. Suction action means.

本発明によれば、吸引口の開口形状を矩形とすることにより、通気抵抗若しくは圧力損失を低減し、円形である場合よりも吸引力を迅速に変化させることができる。この吸引口の開口形状は、搬送方向と平行な対向する二辺および前記搬送方向と直交する対向する二辺を有することが好ましい。また、開口形状は、搬送物の搬送方向に沿った長さよりも小さい開口長を備えるとともに、搬送物の搬送方向と直交する方向の幅よりも小さい開口幅を備えることが好ましい According to the present invention, by making the shape of the opening of the suction port rectangular, the ventilation resistance or pressure loss can be reduced, and the suction force can be changed more rapidly than when it is circular. The opening shape of the suction port preferably has two opposite sides parallel to the carrying direction and two opposite sides perpendicular to the carrying direction. Moreover, it is preferable that the opening shape has an opening length smaller than the length along the conveying direction of the conveyed product and an opening width smaller than the width in the direction orthogonal to the conveying direction of the conveyed item .

本発明は、搬送物が搬送される搬送路を備えた搬送体を具備する。搬送物は実質的に直方体状であり、例えば、表面実装型の抵抗、コンデンサ、ICなどの電子部品等の部品が挙げられる。搬送路は搬送体の表面に形成された凹溝状や片溝状の通路として構成される場合が多く、搬送方向に延在する螺旋状や直線状に形成される。また、搬送路は搬送物を支持、案内する搬送面を備える。搬送体としては、典型的には内面に螺旋状の搬送路を備えたボウル状の搬送体、或いは、上部表面に直線状の搬送路を備えた直線状の搬送体が挙げられる。   The present invention includes a transport body having a transport path through which a transported object is transported. The conveyed product is substantially a rectangular parallelepiped, and examples thereof include parts such as electronic components such as surface-mounted resistors, capacitors, and ICs. The conveyance path is often configured as a groove-shaped or one-groove-shaped path formed on the surface of the conveyance body, and is formed in a spiral shape or a straight line extending in the conveyance direction. The conveyance path includes a conveyance surface that supports and guides the conveyance object. Typical examples of the transport body include a bowl-shaped transport body having a spiral transport path on the inner surface, and a linear transport body having a straight transport path on the upper surface.

上記搬送体は、加振機構によって搬送の向き(搬送方向の前後)に振動させられる。加振機構は、典型的には電磁駆動体や圧電駆動体などの振動発生源と、この振動発生源で発生した振動を搬送体に伝達し、また、搬送体を振動可能な状態に支持するための板ばね等の弾性部材とが用いられる。この加振機構は、上記搬送路上の搬送物を当該搬送路に沿った搬送の向きに移動させるに必要な前進力を生じさせる態様で上記搬送体を振動させる。通常は、搬送物が接触可能な搬送路の搬送面(内底面)を搬送の向きに斜め上方に振動させる。この搬送の向きに斜め上方の振動方向を有する振動は、搬送物を斜め上方に前進させ、その直後に、搬送面が搬送の向きとは逆向きに斜め下方に戻ることで、搬送物は搬送面から離れたままで前進を続けるといったサイクルを繰り返す。このように、搬送体の振動周期は搬送体が搬送の向きに前進する前進期間と逆向きに後退する後退期間とを含む。   The transport body is vibrated in the transport direction (front and back in the transport direction) by the vibration mechanism. The vibration mechanism typically transmits a vibration generation source such as an electromagnetic drive body or a piezoelectric drive body, vibrations generated by the vibration generation source to the transport body, and supports the transport body in a state where it can vibrate. Therefore, an elastic member such as a leaf spring is used. This vibration mechanism vibrates the transport body in such a manner that a forward force necessary to move the transported object on the transport path in the transport direction along the transport path is generated. Usually, the conveyance surface (inner bottom surface) of the conveyance path with which the conveyed product can contact is vibrated obliquely upward in the conveyance direction. The vibration having the vibration direction obliquely upward in the direction of conveyance advances the conveyance object diagonally upward, and immediately after that, the conveyance surface returns obliquely downward in the direction opposite to the conveyance direction. Repeat the cycle of continuing to move forward while staying away from the surface. As described above, the vibration period of the transport body includes the forward period in which the transport body advances in the transport direction and the reverse period in which the transport body moves backward.

吸引口は搬送路に開口し、本質的に搬送体に対して固定されている。特に、この吸引口は搬送路のうち搬送物が接触可能な搬送面、例えば搬送路の内底面や内側面に開口するように形成されることが好ましい。搬送路に天井面が存在する場合には当該天井面に開口していてもよい。吸引口は真空ポンプやエジェクタなどの排気装置等により構成される吸引装置に対して吸引経路を介して接続される。吸引口の構造は特に限定されないが、吸引力を効率的に搬送物に対して与えるためには、搬送物の搬送姿勢における前記搬送面に対する投影面よりも開口面積が小さく、搬送路上における搬送物の搬送を妨げない形状、すなわち、搬送方向に沿った開口面を備えた構造とされることが好ましい。   The suction port opens in the transport path and is essentially fixed to the transport body. In particular, it is preferable that the suction port is formed so as to open on a conveyance surface with which a conveyed product can contact, for example, an inner bottom surface or an inner side surface of the conveyance path. When a ceiling surface exists in the conveyance path, it may be open to the ceiling surface. The suction port is connected to a suction device constituted by an exhaust device such as a vacuum pump or an ejector via a suction path. The structure of the suction port is not particularly limited, but in order to efficiently apply the suction force to the transported object, the opening area is smaller than the projection surface with respect to the transport surface in the transport posture of the transported object, and the transported object on the transport path It is preferable to have a shape that does not hinder the conveyance, that is, a structure having an opening surface along the conveyance direction.

吸引経路中には電磁弁や空圧作動弁などといった、吸引口における吸引力の有無を切り替え可能又は当該吸引力を増減可能に構成された吸引作動手段が設けられる。この吸引作動手段は、上記吸引口自体を開閉作動させる開閉機構であってもよい。吸引作動手段には、上記電磁弁、空圧作動弁、開閉機構などを駆動する駆動回路が含まれていてもよい。   In the suction path, there is provided a suction operation means configured such that the presence or absence of a suction force at the suction port can be switched or the suction force can be increased or decreased, such as an electromagnetic valve or a pneumatic operation valve. The suction operation means may be an opening / closing mechanism for opening / closing the suction port itself. The suction operation means may include a drive circuit that drives the electromagnetic valve, the pneumatic operation valve, the opening / closing mechanism, and the like.

吸引制御手段は上記吸引作動手段を制御する。この吸引制御手段は、上記搬送体の振動周期と同期して、上記吸引力の有無を切り替え、或いは、上記吸引力を増減させることが好ましい。吸引制御手段の制御は搬送体の振動周期と結果的に同期したタイミングでなされるものであれば如何なるものであってもよいが、典型的には、上記搬送体の振動周期、上記加振機構の加振周期、上記加振機構の制御周期などを検出する検出部を含む。この場合、上記検出部としては、搬送体の振動周期を検出する専用の検出器を用いてもよいが、加振機構の制御駆動に用いられる検出信号、制御振動、駆動信号などをそのまま取り入れる構成であることが装置構成上好ましい。   The suction control means controls the suction operation means. It is preferable that the suction control means switches the presence or absence of the suction force or increases or decreases the suction force in synchronization with the vibration cycle of the carrier. As long as the control of the suction control means is performed at a timing that is synchronized with the vibration cycle of the transport body as a result, the suction control means may be any one, but typically, the vibration cycle of the transport body, the excitation mechanism And a detection unit for detecting a control period of the vibration mechanism. In this case, a dedicated detector that detects the vibration period of the carrier may be used as the detection unit, but the detection signal, the control vibration, the drive signal, and the like that are used for the control drive of the vibration mechanism are taken in as they are. It is preferable in terms of the device configuration.

吸引制御手段が上記振動周期ごとに上記吸引口における吸引力の有無を切り替え若しくは吸引力を増減させることで、より確実に搬送物の加減速を生じさせることができる。特に、搬送体の振動周期ごとに、振動周期と同期して、吸引力が生じている期間若しくは吸引力が増大している期間である吸引期間(Tc)と、吸引力が停止している期間若しくは吸引力が減少している期間である非吸引期間(Td)とが設けられることが好ましい。振動周期ごとに振動周期と同期した吸引期間と非吸引期間が設けられることで、振動周期ごとに吸引力の変動態様が定常化されるため、搬送物の分離作用をさらに安定させることができる。ただし、制御タイミングが振動周期に同期したものであれば、複数の上記振動周期ごとに吸引力の有無の切り替えや増減を行うようにしてもよく、また、複数の周期にわたる吸引期間を設けてもよい。   The suction control means can switch the presence / absence of the suction force at the suction port or increase / decrease the suction force for each vibration cycle, so that the acceleration / deceleration of the conveyed product can be caused more reliably. In particular, for each vibration cycle of the conveying body, in synchronization with the vibration cycle, a suction period (Tc) in which a suction force is generated or a suction force is increasing, and a period in which the suction force is stopped Alternatively, it is preferable to provide a non-suction period (Td) in which the suction force is decreasing. By providing a suction period and a non-suction period synchronized with the vibration period for each vibration period, the fluctuation mode of the suction force is made steady for each vibration period, so that the separation effect of the conveyed product can be further stabilized. However, as long as the control timing is synchronized with the vibration cycle, the presence / absence of suction force may be switched or increased / decreased for each of the plurality of vibration cycles, or a suction period over a plurality of cycles may be provided. Good.

搬送体の振動周期ごとに上記吸引期間(Tc)が設けられる場合においては、この吸引期間の位相及び期間の長さ(割合)により、振動周期の前進期間と後退期間との関係を設定することができる。このとき、上記吸引期間は、搬送体が振動の前端位置又は後端位置にある時点を含むことが好ましい。このようにすると、吸引期間の位相を変化させることにより、吸引力による搬送物の減速作用又は加速作用を詳細かつ容易に調整することが可能になる。また、特に減速モードにおいては、吸引期間を短く設定しなくても、搬送物の完全停止を回避することが容易になる。   In the case where the suction period (Tc) is provided for each vibration period of the carrier, the relationship between the forward period and the reverse period of the vibration period is set by the phase of the suction period and the length (ratio) of the period. Can do. At this time, it is preferable that the suction period includes a point in time when the conveyance body is at a front end position or a rear end position of vibration. In this way, by changing the phase of the suction period, it is possible to adjust the decelerating action or the accelerating action of the conveyed product by the suction force in detail and easily. In particular, in the deceleration mode, it is easy to avoid a complete stop of the conveyed product without setting the suction period short.

この場合に、上記吸引期間(Tc)のうち、後退期間(Tb)に対応する時間(後述する後退時吸引時間Tcb)の大きさ又は割合(Tcb/Tb又はTcb/T)に応じて搬送物が減速される。また、吸引口よりも上流側における搬送物の搬送速度が搬送体の前進期間における前進速度よりも或る程度低い場合(搬送速度が相対的に低い場合)には、吸引期間(Tc)のうち、後退期間(Tb)に対応する時間(後述する後退時吸引時間Tcb)の大きさや割合(Tcb/Tb又はTcb/T)と、前進期間に対応する時間(後述する前進時吸引時間Tca)の大きさや割合(Tca/Ta又はTca/T)との兼ね合いに応じて搬送物が加速又は減速される。上記搬送速度の高低は、搬送体の振動方向の上下傾斜角、搬送物と搬送面の間の摩擦係数などによって変化する。   In this case, in the suction period (Tc), the conveyed product according to the size (Tcb / Tb or Tcb / T) of the time corresponding to the reverse period (Tb) (the reverse suction time Tcb described later). Is slowed down. Further, when the transport speed of the transported object upstream of the suction port is somewhat lower than the forward speed in the forward period of the transport body (when the transport speed is relatively low), the suction period (Tc) The size and ratio (Tcb / Tb or Tcb / T) of the time corresponding to the reverse period (Tb) (reverse suction time Tcb described later) and the time corresponding to the forward period (advance suction time Tca described later) The conveyed product is accelerated or decelerated according to the balance with the size and ratio (Tca / Ta or Tca / T). The level of the conveyance speed varies depending on the vertical inclination angle in the vibration direction of the conveyance body, the friction coefficient between the conveyance object and the conveyance surface, and the like.

吸引口は、搬送方向の開口長(La)が搬送物の搬送方向に沿った長さ(Lo)の1/2以下であることが望ましい。これにより、長さ(Lo)に対する開口長(La)の比を小さくできるため、吸引口による吸引力を特定の搬送物に確実に与えることができる。一般的には、上記比を小さくすることで搬送物が吸引口を横切る際に搬送物が吸引口の全体を覆う期間を長くし、当該期間内の振動周期の数を増やすことができるため、一つの搬送物に対して複数回にわたり吸引力を及ぼすことができるから、より確実な減速若しくは加速作用を得ることができる。一方、吸引口自体の形状に関しては、上記開口長(La)が搬送方向と直交する方向の開口幅(Wa)よりも小さい開口形状を有することが好ましい。このようにすると、吸引作用の生ずる開口面積の低下を抑制しつつ、搬送物が吸引口を閉鎖可能な搬送方向に沿った範囲を大きく確保することができるため、搬送物に吸引力をより確実に作用させることができる。   It is desirable that the suction port has an opening length (La) in the transport direction that is ½ or less of a length (Lo) along the transport direction of the transported object. Thereby, since ratio of opening length (La) with respect to length (Lo) can be made small, the suction force by a suction port can be reliably given to a specific conveyance thing. Generally, by reducing the above ratio, when the conveyed product crosses the suction port, the period during which the conveyed item covers the entire suction port can be lengthened, and the number of vibration cycles in the period can be increased. Since a suction force can be applied to a single conveyed object a plurality of times, a more reliable deceleration or acceleration action can be obtained. On the other hand, regarding the shape of the suction port itself, it is preferable that the opening length (La) has an opening shape smaller than the opening width (Wa) in the direction orthogonal to the transport direction. In this way, it is possible to secure a large range along the transport direction in which the transported object can close the suction port while suppressing a decrease in the opening area in which the suction action occurs, so that the suction force is more reliably applied to the transported object. Can act on.

上述の搬送状態の制御は、例えば、或る搬送物を前後の他の搬送物と分離するために行われ得る。この搬送物の分離は搬送物を他の搬送物の影響を回避して検査する場合に行われる。この場合に、検査位置は吸引口の形成位置よりも下流側に設定される。このように、前記吸引口の下流側には搬送物の検査を行う検査位置を備えた検査手段が設けられる場合がある。この場合にはさらに、この検査手段による搬送物の検査結果に応じて、搬送物に対する各種の処理、例えば搬送物の整列、選別、姿勢変更などを行う処理手段が設けられる場合もある。なお、検査手段の有無に拘わらず、吸引口の形成位置よりも下流側に処理位置を備えた処理手段が設けられる場合もある。   Control of the above-mentioned conveyance state can be performed, for example, in order to separate a certain conveyance object from other conveyance objects before and after. This separation of the conveyed product is performed when the conveyed product is inspected while avoiding the influence of other conveyed products. In this case, the inspection position is set downstream of the suction port formation position. As described above, an inspection unit having an inspection position for inspecting a conveyed product may be provided on the downstream side of the suction port. In this case, processing means for performing various processes on the transported object, for example, alignment, sorting, posture change, etc. of the transported object may be provided in accordance with the inspection result of the transported object by the inspection means. Note that, regardless of the presence or absence of the inspection means, there may be a case where a processing means having a processing position downstream from the formation position of the suction port is provided.

本発明によれば、吸引力を迅速に変化させることができるため、吸引力による搬送物の搬送状態の制御を高速に行うことができ、高速搬送にも対応することができるという優れた効果を奏し得る。   According to the present invention, since the suction force can be changed quickly, it is possible to control the transport state of the transported object by the suction force at a high speed, and it is possible to cope with high speed transport. Can play.

本発明に係る実施形態の振動式搬送物搬送装置の制御系を示す概略構成図。The schematic block diagram which shows the control system of the vibration type conveyed product conveying apparatus of embodiment which concerns on this invention. 同実施形態の装置構造を示す側面図。The side view which shows the apparatus structure of the embodiment. 同実施形態の搬送体を取り外した様子を示す正面図(A)及び平面図(B)。The front view (A) and a top view (B) which show a mode that the conveyance body of the embodiment was removed. 同実施形態の搬送体の振動周期(検出信号)E、制御信号F、駆動信号G、弁開閉状態H及び吸引口における吸引力Iの例を示すタイミングチャート。4 is a timing chart showing an example of a vibration period (detection signal) E, a control signal F, a drive signal G, a valve opening / closing state H, and a suction force I at a suction port of the transport body of the embodiment. 同実施形態における搬送路上の搬送物の分離態様(加速モード)を示す側面図。The side view which shows the separation aspect (acceleration mode) of the conveyed product on the conveyance path in the embodiment. 同実施形態における搬送路上の搬送物の分離態様(減速モード)を示す側面図。The side view which shows the separation aspect (deceleration mode) of the conveyed product on the conveyance path in the embodiment. 搬送路の構造と搬送物の位置関係の例を示す断面図(a)〜(c)。Sectional drawing (a)-(c) which shows the example of the positional relationship of the structure of a conveyance path, and a conveyed product. 実施例の搬送路の構成を示す拡大図。The enlarged view which shows the structure of the conveyance path of an Example. 加速モードの実施例の実測データを示すグラフ。The graph which shows the actual measurement data of the Example of acceleration mode. 減速モードの実施例の実測データを示すグラフ。The graph which shows the actual measurement data of the Example of deceleration mode.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。最初に、本実施形態の振動式搬送物搬送装置の概略構成について図1及び図2を参照して説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Initially, the schematic structure of the vibration type conveyed product conveying apparatus of this embodiment is demonstrated with reference to FIG.1 and FIG.2.

図1は本発明に係る振動式搬送装置に用いる制御系を構成する励振用駆動回路100の概略構成を示す概略構成図である。励振用駆動回路100は、商用電源1から供給された交流電圧を整流、平滑し、必要に応じて降圧して所要の直流電圧(以下、単に「供給電圧」という。)Voを供給する直流電源120と、この直流電源120から供給される供給電圧Voを所定周波数の交流の出力電圧Vpに変換するインバータ130と、を備えている。インバータ130から供給される出力電圧Vpはインダクタ140、150を介して振動発生源の励振用素子である圧電素子3に印加される。これらのインダクタ140、150はリップル除去用のチョークコイルである。インダクタ140、150はいずれか一方のみを設けてもよいが、圧電素子3の両側に共に設けることによってバランスがとれ、ノイズ対策上より好ましい。   FIG. 1 is a schematic configuration diagram showing a schematic configuration of an excitation drive circuit 100 that constitutes a control system used in the vibration type conveying apparatus according to the present invention. The excitation drive circuit 100 rectifies and smoothes the AC voltage supplied from the commercial power source 1 and steps down the voltage as necessary to supply a required DC voltage (hereinafter simply referred to as “supply voltage”) Vo. 120 and an inverter 130 for converting the supply voltage Vo supplied from the DC power source 120 into an AC output voltage Vp having a predetermined frequency. The output voltage Vp supplied from the inverter 130 is applied via the inductors 140 and 150 to the piezoelectric element 3 that is an excitation element of the vibration generation source. These inductors 140 and 150 are ripple removing choke coils. Only one of the inductors 140 and 150 may be provided, but it is preferable to provide both of the inductors 140 and 150 on both sides of the piezoelectric element 3, which is preferable in terms of noise countermeasures.

また、励振用駆動回路100は、圧電素子3の両端電圧Vsを検出するための電圧検出手段である検出トランス170を有し、この検出トランス170の出力は制御部180に接続されている。制御部180は例えばマイクロプロセッサユニット(MPU)等によって構成され、検出トランス170を介して検出された圧電素子3の両端電圧Vsを示す電圧検出値Vdに応じて制御信号Sを出力するようになっている。制御信号Sはインバータ130の周波数を決定する周波数指令値及び電圧値を決定する電圧指令値を実質的に含むものであり、インバータ駆動回路であるPWM回路190に入力され、PWM回路190は駆動信号Dを出力して、インバータ130のFET等からなるスイッチング素子131、132、133、134を駆動し、インバータ130においてPWM駆動により上記所定の交流の出力電圧Vpを生成させる。   Further, the excitation drive circuit 100 includes a detection transformer 170 that is a voltage detection means for detecting the voltage Vs across the piezoelectric element 3, and the output of the detection transformer 170 is connected to the control unit 180. The control unit 180 is configured by, for example, a microprocessor unit (MPU) or the like, and outputs a control signal S according to a voltage detection value Vd indicating the voltage Vs across the piezoelectric element 3 detected via the detection transformer 170. ing. The control signal S substantially includes a frequency command value that determines the frequency of the inverter 130 and a voltage command value that determines the voltage value, and is input to the PWM circuit 190 that is an inverter drive circuit. D is output to drive the switching elements 131, 132, 133, and 134 including FETs of the inverter 130, and the inverter 130 generates the predetermined AC output voltage Vp by PWM driving.

インバータ130の出力電圧Vpは、PWM回路190の駆動信号Dに応じた矩形パルスPの幅(デューティー比)及び周期Tで設定される。例えば、矩形パルスPのデューティー比が駆動信号Dに応じて変わることで電圧実効値が変化するようになっている。また、矩形パルスPの周期t、或いは正負の矩形パルスPの交代周期Tが駆動信号Dに応じて変わることで駆動周波数(f=1/T)が変化するようになっている。上記のデューティー比及び周波数は制御部180の出力する制御信号Sによって制御される。なお、図1の二点鎖線の枠内に示す出力電圧Vpの波形は原理のみを示す模式的なものであり、インバータのスイッチング周期tと出力電圧Vpの周期Tの関係を正確に示すものではない。   The output voltage Vp of the inverter 130 is set by the width (duty ratio) and the period T of the rectangular pulse P corresponding to the drive signal D of the PWM circuit 190. For example, the effective voltage value changes as the duty ratio of the rectangular pulse P changes according to the drive signal D. Further, the drive frequency (f = 1 / T) is changed by changing the period t of the rectangular pulse P or the alternating period T of the positive and negative rectangular pulses P in accordance with the drive signal D. The duty ratio and frequency are controlled by the control signal S output from the control unit 180. The waveform of the output voltage Vp shown in the frame of the two-dot chain line in FIG. 1 is a schematic diagram showing only the principle, and does not accurately show the relationship between the switching cycle t of the inverter and the cycle T of the output voltage Vp. Absent.

本実施形態の制御部180は、電圧基準値Vrを設定可能な設定器181と、周波数基準値frを設定可能な設定器182とを有する。そして、インバータ制御手段である制御部180及びPWM回路190では、上記電圧基準値Vr及び周波数基準値frに応じた電圧値及び周波数となるようにインバータ130を制御するようになっている。また、検出トランス170を介して圧電素子3の両端電圧Vsが検出され、電圧検出値Vdに応じて制御部180が圧電素子3の両端電圧Vsを一定に保つように制御することも可能になっている。例えば、圧電素子3の両端電圧Vsを直接検出し、この両端電圧Vsに対応する電圧検出値Vdを一定(例えば上記電圧基準値Vr)に保持するようにインバータ130を制御することで、従来のようにインバータへの電圧指令値の設定のみで動作させていた場合にくらべると、振動発生源のサイズや数の変動(駆動電流の変動)、或いは、振動負荷の変動に影響を受けず、常に安定した駆動電圧を与えることができる。また、振動発生源に正確な駆動電圧を印加することができるので、駆動電圧を最適化することで振動発生効率を高めることができる。   The control unit 180 of the present embodiment includes a setter 181 that can set the voltage reference value Vr and a setter 182 that can set the frequency reference value fr. The control unit 180 and the PWM circuit 190, which are inverter control means, control the inverter 130 so that the voltage value and the frequency correspond to the voltage reference value Vr and the frequency reference value fr. Further, the voltage Vs across the piezoelectric element 3 is detected via the detection transformer 170, and the control unit 180 can control the voltage Vs across the piezoelectric element 3 to be kept constant according to the voltage detection value Vd. ing. For example, the voltage Vs at both ends of the piezoelectric element 3 is directly detected, and the inverter 130 is controlled so as to keep the voltage detection value Vd corresponding to the voltage Vs at both ends constant (for example, the voltage reference value Vr). Compared to when the inverter is operated only by setting the voltage command value to the inverter, it is always unaffected by fluctuations in the size and number of vibration sources (fluctuation in drive current) or fluctuations in vibration load. A stable driving voltage can be provided. In addition, since an accurate drive voltage can be applied to the vibration generation source, the vibration generation efficiency can be increased by optimizing the drive voltage.

本実施形態では、圧電素子3の共振周波数の検出を上記構成のみによって容易に実施できる。例えば、制御部180においてインバータ130で供給される出力電圧Vpを一定としつつ、駆動周波数を徐々に変化(スイープ)させていくように制御信号Sを生成しながら電圧検出値Vdを監視することで、電圧検出値Vdの極小点(振動発生源のインピーダンス極小点)を共振周波数として検出することができる。また、上記のように検出トランス170を介して検出された電圧検出値Vdを一定に保持するフィードバック制御を行いつつ駆動周波数を徐々に変化させていく場合には、制御信号Sの電圧指令値(例えば、電圧基準値Vrと電圧検出値Vdの差Vr−Vd)の極大点を共振周波数として検出することができる。   In the present embodiment, the resonance frequency of the piezoelectric element 3 can be easily detected only by the above configuration. For example, the control unit 180 monitors the voltage detection value Vd while generating the control signal S so as to gradually change (sweep) the drive frequency while keeping the output voltage Vp supplied by the inverter 130 constant. The minimum point of the voltage detection value Vd (the impedance minimum point of the vibration generating source) can be detected as the resonance frequency. Further, when the drive frequency is gradually changed while performing the feedback control for keeping the voltage detection value Vd detected through the detection transformer 170 constant as described above, the voltage command value ( For example, the maximum point of the difference Vr−Vd) between the voltage reference value Vr and the voltage detection value Vd can be detected as the resonance frequency.

上記の共振周波数の検出は手動で行うことも可能であるが、例えば、制御部180で実行可能な共振点検出プログラムによって自動的に行うこともできる。すなわち、制御信号Sによって一定周期で駆動周波数を一定のステップ量で変化(スイープ)させていくとともに、電圧検出値Vd(電圧制御なしの場合)若しくは電圧指令値(電圧制御ありの場合)を監視し、電圧検出値Vdの極小点若しくは電圧指令値の極大点に達するまで周波数のスイープを継続していけばよい。この場合、共振点をより正確に検出するために、周波数スイープ時において電圧検出値Vdの極小点若しくは電圧指令値の極大点を越えたときに周波数の変化方向を逆転させるとともにステップ量を低減させてさらに検出を続けるという方法を採ることもできる。なお、上記の共振点検出手段は、上記のように動作するように設定された制御部180(例えば、制御部180に用意された共振点検出プログラムの実行動作)によって実現される。   The resonance frequency can be detected manually. For example, the resonance frequency can be automatically detected by a resonance point detection program that can be executed by the control unit 180. In other words, the drive frequency is changed (sweep) at a constant step amount by a control signal S, and the voltage detection value Vd (without voltage control) or the voltage command value (with voltage control) is monitored. Then, the frequency sweep may be continued until the minimum point of the voltage detection value Vd or the maximum point of the voltage command value is reached. In this case, in order to detect the resonance point more accurately, the frequency change direction is reversed and the step amount is reduced when the minimum point of the voltage detection value Vd or the maximum point of the voltage command value is exceeded during frequency sweep. It is also possible to take a method of continuing detection. The resonance point detecting means is realized by the control unit 180 set to operate as described above (for example, an operation of executing a resonance point detection program prepared in the control unit 180).

図2は上記圧電素子3に相当する振動発生源3を備えた振動式搬送装置10の概略側面図、図2(A)は本実施形態の概略正面図、図2(B)は本実施形態の搬送体を省略して示す概略平面図である。   FIG. 2 is a schematic side view of a vibration type conveying apparatus 10 provided with a vibration source 3 corresponding to the piezoelectric element 3, FIG. 2A is a schematic front view of this embodiment, and FIG. 2B is this embodiment. It is a schematic plan view which abbreviate | omits and shows the conveyance body.

本実施形態の振動式搬送装置10は、基台1と、この基台1の上方に配置された搬送体2と、搬送体2を振動させるための振動発生源3と、振動発生源3の一側部分(下端)に接続された連結部材4と、搬送体2と連結部材4との間に連結された第1の弾性支持体5と、振動発生源3の他側部分(上端)に接続され、自由端として構成された慣性体6と、連結部材4と基台1との間に連結された第2の弾性支持体7とを有している。基台1は、設置面上に配置される支持板1Aと、この支持板1A上に固定され、上記第2の弾性支持体7がボルト等を介して固定された取付板1Bとを備えている。   The vibration type conveying apparatus 10 of the present embodiment includes a base 1, a carrier 2 disposed above the base 1, a vibration source 3 for vibrating the carrier 2, and a vibration source 3. On the other side part (upper end) of the coupling member 4 connected to one side part (lower end), the first elastic support body 5 connected between the carrier 2 and the coupling member 4, and the vibration generating source 3 An inertial body 6 connected as a free end and a second elastic support 7 coupled between the coupling member 4 and the base 1 are provided. The base 1 includes a support plate 1A disposed on the installation surface, and a mounting plate 1B fixed on the support plate 1A and the second elastic support 7 fixed through bolts or the like. Yes.

搬送体2は、上記第1の弾性支持体5にボルト等を介して固定された取付材2Aと、この取付材2A上に固定された搬送材2Bとを有し、搬送材2Bには図示しない溝状のトラックが形成されている。このトラックは図2の左右方向に伸び、図示しない搬送物を保持しつつ、後述する振動発生源3から伝達される振動S3により、搬送物を矢印FDの示す向き(以下、単に「搬送の向きFD」という。)へ搬送可能となるように構成されている。   The transport body 2 has an attachment material 2A fixed to the first elastic support body 5 via bolts and the like, and a transport material 2B fixed on the attachment material 2A. Groove-shaped tracks are formed. The track extends in the left-right direction in FIG. 2 and holds the conveyed object (not shown), and the vibration S3 transmitted from the vibration generating source 3 described later causes the conveyed object to be in the direction indicated by the arrow FD (hereinafter simply referred to as “conveying direction”). FD ")).

振動発生源3が上記の圧電素子で構成される場合、この圧電素子を含む圧電型の振動源(圧電駆動体)は、具体的には、弾性板の表裏両面にそれぞれ圧電体層を形成し、これらの圧電体層に所定の電圧を印加することによって屈曲するように構成したバイモルフ型構造を有している。もちろん、弾性板の片面にのみ圧電体層を形成したユニモルフ型構造であっても構わない。これらの圧電型振動源は、外部から所定周波数の交流電力を供給することによって当該周波数に対応する周波数で撓み振動する。   When the vibration generating source 3 is composed of the above-described piezoelectric element, the piezoelectric type vibration source (piezoelectric driving body) including the piezoelectric element specifically has a piezoelectric layer formed on both the front and back surfaces of the elastic plate. The piezoelectric layer has a bimorph type structure configured to bend by applying a predetermined voltage to the piezoelectric layer. Of course, it may be a unimorph type structure in which a piezoelectric layer is formed only on one side of the elastic plate. These piezoelectric vibration sources bend and vibrate at a frequency corresponding to the frequency by supplying AC power having a predetermined frequency from the outside.

本実施形態では、搬送の向きFDに沿って離間した前後2箇所において、上記振動発生源3、連結部材4、第1の弾性支持体5、及び、第2の弾性支持体7の組がそれぞれ設けられている。すなわち、搬送体2が前後2箇所で第1の弾性支持体5及び第2の弾性支持体7により弾性支持されている。また、前方に配置された振動発生源3は前方の第1の弾性支持体5の後方に配置され、さらに後方に配置された慣性体6に接続され、後方に配置された振動発生源3は後方の第1の弾性支持体5の前方に配置され、さらに前方に配置された慣性体6に接続されている。すなわち、慣性体6は2組の振動発生源3の前後方向の中間に配置され、2組の振動発生源3は共通の慣性体6に共に接続されている。   In the present embodiment, the two sets of the vibration source 3, the connecting member 4, the first elastic support body 5 and the second elastic support body 7 are respectively provided at two positions before and after being separated along the conveyance direction FD. Is provided. That is, the transport body 2 is elastically supported by the first elastic support body 5 and the second elastic support body 7 at two locations in the front and rear. Further, the vibration source 3 arranged in the front is arranged behind the first elastic support body 5 in the front, and further connected to the inertia body 6 arranged in the rear, and the vibration source 3 arranged in the rear is It arrange | positions ahead of the back 1st elastic support body 5, and is further connected to the inertia body 6 arrange | positioned ahead. That is, the inertial body 6 is arranged in the middle of the two sets of vibration generating sources 3 in the front-rear direction, and the two sets of vibration generating sources 3 are connected together to the common inertial body 6.

慣性体6は、振動発生源3に接続された慣性板6Aと、この慣性板6Aに固定された慣性ブロック6Bとを有し、上部に配置された慣性板6Aの下方に慣性ブロック6Bが吊り下げ固定された構造となっている。慣性板6Aは搬送体2の直下に隣接して配置され、慣性ブロック6Bは振動発生源3と同じ高さ範囲に重なるように、慣性板6Aから下方に突出するように設けられている。   The inertial body 6 has an inertial plate 6A connected to the vibration source 3 and an inertial block 6B fixed to the inertial plate 6A, and the inertial block 6B is suspended below the inertial plate 6A arranged on the upper part. It has a fixed structure. The inertia plate 6A is disposed immediately adjacent to the conveyance body 2, and the inertia block 6B is provided so as to protrude downward from the inertia plate 6A so as to overlap the same height range as the vibration generating source 3.

第1の弾性支持体5及び第2の弾性支持体7は共に板状の弾性体、例えば板ばねである。第1の弾性支持体5と第2の弾性支持体7は側方から見て共通の直線に沿って配置されている。これによって、両弾性支持体は基台1と搬送体2の間にて単一の板状の弾性体で構成される場合と近似した支持特性を有するものとされる。すなわち、第1の弾性支持体5と第2の弾性支持体7とが前後方向にずれた位置に設けられていると、振動発生源3の姿勢と直交する本来の振動方向S1とは異なる方向の不要な振動モード(例えば、上下方向に揺動する振動モード)が生成され、搬送体2の搬送特性に悪影響を与える虞があるのに対して、上記のように両弾性支持体5,7が共通の直線に沿って配置されることで、不要な振動モードの生成を抑制することができる。   Both the first elastic support 5 and the second elastic support 7 are plate-like elastic bodies, for example, leaf springs. The first elastic support 5 and the second elastic support 7 are arranged along a common straight line when viewed from the side. As a result, both elastic supports have support characteristics that are similar to those of a single plate-like elastic body between the base 1 and the carrier 2. That is, if the first elastic support 5 and the second elastic support 7 are provided at positions shifted in the front-rear direction, the direction is different from the original vibration direction S1 orthogonal to the posture of the vibration source 3. , Unnecessary vibration modes (for example, vibration modes swinging in the vertical direction) are generated, which may adversely affect the transport characteristics of the transport body 2, as described above. Is arranged along a common straight line, generation of unnecessary vibration modes can be suppressed.

また、上記の共通の直線は、振動発生源3の延長方向と平行になるように構成されている。これによって、振動発生源3の延長方向(板面に沿った方向)と直交する方向の撓み振動を効率的に第1弾性支持体5に伝達することができ、効率的に搬送体2を振動させることができる。本実施形態では、搬送体2に対して図示矢印で示すように水平方向に対してやや上下方向に傾斜した方向の振動S3を与えることによって、搬送体2上の図示しない搬送物を搬送の向きFDに沿って搬送できるように構成されている。したがって、このような振動を効率的に伝達するために、振動発生源3を垂直方向に対して前後方向にやや傾斜した方向に延在する姿勢とし、しかも、第1の弾性支持体5及び第2の弾性支持体7を振動発生源3と平行な方向に延在する姿勢としている。   The common straight line is configured to be parallel to the extending direction of the vibration source 3. As a result, it is possible to efficiently transmit the bending vibration in the direction orthogonal to the extending direction of the vibration generating source 3 (the direction along the plate surface) to the first elastic support body 5 and efficiently vibrate the transport body 2. Can be made. In the present embodiment, by giving vibration S3 in a direction slightly tilted in the vertical direction with respect to the horizontal direction as indicated by the illustrated arrow to the transport body 2, a transport object (not shown) on the transport body 2 is transported in the direction of transport. It is comprised so that it can convey along FD. Therefore, in order to efficiently transmit such vibration, the vibration generating source 3 is set to a posture extending slightly in the front-rear direction with respect to the vertical direction, and the first elastic support 5 and the first The second elastic support 7 is configured to extend in a direction parallel to the vibration source 3.

さらに、振動発生源3の下端が連結部材4に連結され、振動発生源3の上端が慣性体6に連結されていることにより、慣性体6を容易に搬送体2に近づけることができるため、相互に逆相で振動する搬送体2と慣性体6とによって生ずるモーメントを低減することができ、不要な振動モードを抑制できる。また、慣性体6(特に慣性ブロック6B)は振動発生源3の高さ範囲に重なるように配置されているので、慣性体6の質量及び体積を大きくしても、装置10を高さ方向にコンパクトに構成することができる。   Furthermore, since the lower end of the vibration generating source 3 is connected to the connecting member 4 and the upper end of the vibration generating source 3 is connected to the inertial body 6, the inertial body 6 can be easily brought close to the transport body 2, Moments generated by the carrier 2 and the inertial body 6 that vibrate in opposite phases can be reduced, and unnecessary vibration modes can be suppressed. Further, since the inertial body 6 (particularly the inertial block 6B) is arranged so as to overlap the height range of the vibration generating source 3, even if the mass and volume of the inertial body 6 are increased, the device 10 is moved in the height direction. It can be configured compactly.

以上のように構成された装置10は、振動発生源3に交流電力が与えられて撓み振動が発生すると、振動発生源3の両側で、連結部材4と慣性体6が振動発生源3の撓み方向に振動する。連結部材4の振動S1は基台1を支点として第1の弾性支持体5及び第2の弾性支持体7によって増幅され、搬送体2に振動S3を生成させる。また、自由端である慣性体6には、連結部材4と逆相の振動位相を有する振動S2が生成される。   In the apparatus 10 configured as described above, when AC vibration is applied to the vibration generation source 3 and bending vibration is generated, the connecting member 4 and the inertial body 6 are bent on the vibration generation source 3 on both sides of the vibration generation source 3. Vibrate in the direction. The vibration S1 of the connecting member 4 is amplified by the first elastic support body 5 and the second elastic support body 7 with the base 1 as a fulcrum, and causes the transport body 2 to generate vibration S3. In addition, a vibration S2 having a vibration phase opposite to that of the connecting member 4 is generated in the inertial body 6 that is a free end.

本実施形態では、上記振動発生源3、連結部材4、第1の弾性支持体5、慣性体6及び第2の弾性支持体7(図示例では振動発生源3、連結部材4、第1の弾性支持体5及び第2の弾性支持体6が搬送の向きFDの前後に一対設けられる。)が搬送体2を振動させるための加振機構に相当する。また、上記の両端電圧Vs(インバータ130の出力)が当該加振機構の駆動信号(図1参照)に相当する。   In the present embodiment, the vibration generating source 3, the connecting member 4, the first elastic support body 5, the inertial body 6, and the second elastic support body 7 (in the illustrated example, the vibration generating source 3, the connecting member 4, the first elastic support body 6). The elastic support body 5 and the second elastic support body 6 are provided in a pair before and after the transport direction FD.) Corresponds to an excitation mechanism for vibrating the transport body 2. Further, the above-described voltage Vs (output of the inverter 130) corresponds to the drive signal (see FIG. 1) of the vibration mechanism.

本実施形態では、図1に示すように、両端電圧Vs(加振機構の駆動信号)を電圧検出手段である検出トランス170で検出し、この検出トランス170の出力(検出信号)Eを吸引制御手段である吸引制御回路210に導入している。吸引制御回路210は吸引制御信号Fを出力し、この吸引制御信号Fは吸引駆動回路220に供給され、吸引駆動回路220から駆動信号Gが例えば圧電アクチュエータにより動作する吸引作動弁230を駆動する。ここで、吸引駆動回路220及び吸引作動弁230は上記の吸引作動手段に相当する。吸引作動弁230は気流や圧力を断続したり切り替えたりできるものであれば特に限定されないが、図示例では、高速応答性を確保するために圧電素子231を弁体として動作する圧電バルブにより構成される。   In the present embodiment, as shown in FIG. 1, the voltage Vs (drive signal for the excitation mechanism) at both ends is detected by a detection transformer 170 as voltage detection means, and the output (detection signal) E of this detection transformer 170 is suction controlled. It is introduced into the suction control circuit 210 as means. The suction control circuit 210 outputs a suction control signal F. The suction control signal F is supplied to the suction drive circuit 220, and the drive signal G from the suction drive circuit 220 drives the suction operation valve 230 operated by, for example, a piezoelectric actuator. Here, the suction drive circuit 220 and the suction operation valve 230 correspond to the above suction operation means. The suction actuating valve 230 is not particularly limited as long as the airflow and pressure can be intermittently switched, but in the illustrated example, the suction actuating valve 230 is configured by a piezoelectric valve that operates using the piezoelectric element 231 as a valve body in order to ensure high-speed response. The

吸引作動弁230の一端は、真空ポンプやエジェクタなどからなる吸引装置(排気装置)240に対して吸引配管241を介して接続されている。また、吸引作動弁230の他端は吸引通気路2dに接続されている。吸引配管241と吸引通気路2dは上記の吸引経路を構成する。吸引通気路2dは、上記搬送体2に設けられた搬送路2aに開口し、吸引口2eを構成する。吸引作動弁230の作動により、吸引装置240による吸引作用(の有無若しくは増減)が上記吸引口2eにおいて制御される。   One end of the suction operation valve 230 is connected to a suction device (exhaust device) 240 such as a vacuum pump or an ejector via a suction pipe 241. The other end of the suction operation valve 230 is connected to the suction air passage 2d. The suction pipe 241 and the suction ventilation path 2d constitute the suction path described above. The suction air passage 2d opens to the transport path 2a provided in the transport body 2, and constitutes a suction port 2e. By the operation of the suction operation valve 230, the suction action (presence / absence or increase / decrease) of the suction device 240 is controlled at the suction port 2e.

上記吸引制御回路210は、検出信号Eに基づいて、位相値Phと作動幅Wgを設定して上記吸引制御信号Fを生成する。図4は、検出信号Eと吸引制御信号Fとの関係を示すグラフである。図示例では検出信号Eは振動数f=1/T(Tは周期)の正弦波であるが、波形は特に限定されない。検出信号Eは搬送体2の振幅を示し、電位の降下期間が搬送の向きFDに搬送体2が前進している前進期間Taであり、電位の上昇期間が搬送体2の搬送の向きFDとは逆向きに後退している後退期間Tbである。搬送体2の振動は一般に前進期間Ta及び後退期間Tbの中間点(後述する原点ないしはゼロクロス点)で前進速度及び後退速度が最大値をとり、搬送体2が振動の前端位置及び後端位置にあるときに0となる。   The suction control circuit 210 sets the phase value Ph and the operating width Wg based on the detection signal E and generates the suction control signal F. FIG. 4 is a graph showing the relationship between the detection signal E and the suction control signal F. In the illustrated example, the detection signal E is a sine wave having a frequency f = 1 / T (T is a period), but the waveform is not particularly limited. The detection signal E indicates the amplitude of the transport body 2, the potential drop period is the forward period Ta in which the transport body 2 is moving forward in the transport direction FD, and the potential rise period is the transport direction FD of the transport body 2. Is a retreat period Tb retreating in the opposite direction. In general, the vibration of the carrier 2 takes the maximum value of the forward speed and the backward speed at the intermediate point (the origin or zero cross point described later) between the forward period Ta and the backward period Tb, and the carrier 2 is at the front end position and the rear end position of the vibration. It becomes 0 when there is.

また、吸引制御信号Fは、検出信号Eの負から正へ移行する原点(ゼロクロス点)t0に対してマイナス側に基準時差tph(位相差θph=tph/T)だけずれた立ち上がり点を有し、パルス幅が期間幅twg(位相幅θwg=twg/T)の矩形パルスであるが、波形は特に限定されない。吸引制御信号Fでは、当該矩形パルスによって、上記原点t0より前の立ち上がり点から上記原点t0より後の立ち下がり点に亘る吸引制御期間が設定される。なお、図示例では位相点の基準時点を原点t0としているが、基準時点は特に限定されず、搬送体2が前端位置にある時点(検出信号Eが極小となる時点)、或いは、搬送体2が後端位置にある時点(検出信号Eが極大となる時点)としてもよい。   Further, the suction control signal F has a rising point shifted by a reference time difference tph (phase difference θph = tph / T) on the minus side with respect to the origin (zero cross point) t0 where the detection signal E shifts from negative to positive. The pulse width is a rectangular pulse having a period width twg (phase width θwg = twg / T), but the waveform is not particularly limited. In the suction control signal F, a suction control period from the rising point before the origin t0 to the falling point after the origin t0 is set by the rectangular pulse. In the illustrated example, the reference time point of the phase point is the origin t0, but the reference time point is not particularly limited, and the time point when the carrier 2 is at the front end position (the time point when the detection signal E is minimal) or the carrier body 2 May be a time point at which the detection signal E is at the rear end position (a time point when the detection signal E becomes maximum).

上記吸引制御信号Fが吸引駆動回路220に入力されると、吸引駆動回路220は吸引制御信号Fに対応する駆動信号Gを出力し、この駆動信号Gに応じて、吸引作動弁230は、弁開閉状態Hに示すように、上記吸引制御期間に対応する吸引作動期間において吸引作動弁230を開き、吸引を行う。この吸引作動弁230の作動は、吸引力Iに示すように、吸引口2eにおいて作動期間に対応して吸引力を生じる(或いは、吸引力が増大する)吸引期間Tcを形成する。なお、図示の吸引力Iは、説明の都合上、吸引口2eが閉鎖された状態における吸引力の変化態様を示すものであり、実際の吸引口2eの開口位置における計測圧力そのものを示すものではない。   When the suction control signal F is input to the suction drive circuit 220, the suction drive circuit 220 outputs a drive signal G corresponding to the suction control signal F. In response to the drive signal G, the suction operation valve 230 As shown in the open / closed state H, the suction operation valve 230 is opened and suction is performed in the suction operation period corresponding to the suction control period. As shown by the suction force I, the operation of the suction operation valve 230 forms a suction period Tc in which suction force is generated at the suction port 2e corresponding to the operation period (or the suction force increases). Note that the illustrated suction force I indicates a change of the suction force in a state where the suction port 2e is closed for convenience of explanation, and does not indicate the measurement pressure itself at the actual opening position of the suction port 2e. Absent.

本実施形態の場合、上記吸引期間Tcは振動周期Tごとに形成される。また、振動周期Tごとに吸引力が停止する(或いは、吸引力が減少する)非吸引期間Tdが設けられる。吸引期間Tcと非吸引期間Tdは搬送物PTの搬送速度に対して実質的に作用し得る吸引力の有無によって判別されるが、振動周期T内で吸引力が漸次変化していく場合など厳密に分けられない態様でも構わない。上記吸引期間Tcのうち、搬送体2の前進期間Taに対応する時間である前進時吸引時間Tcaと、後退期間Tbに対応する時間である後退時吸引時間Tcbの関係により、吸引口2eを横切る搬送物PTの加減速状態が決定される。   In the case of the present embodiment, the suction period Tc is formed every vibration period T. Further, a non-suction period Td is provided in which the suction force stops (or the suction force decreases) every vibration cycle T. The suction period Tc and the non-suction period Td are determined based on the presence or absence of a suction force that can substantially act on the transport speed of the transported object PT. A mode that cannot be divided into two types may be used. Of the suction period Tc, the suction port 2e is traversed by the relationship between the forward suction time Tca that is a time corresponding to the forward period Ta of the carrier 2 and the reverse suction time Tcb that is a time corresponding to the reverse period Tb. The acceleration / deceleration state of the conveyed product PT is determined.

搬送物PTの加減速状態の設定は、上記吸引制御回路210に設けられた位相調整部211と時間調整部212により定められる。位相調整部211は上記吸引制御信号Fの位相(具体的には上記基準時差tph又は位相差θph)を外部入力(手動操作を受ける場合を含む。)により、若しくは自動で調整する。また、時間調整部212は上記吸引制御信号Fの期間幅twg又は位相幅θwg)を外部入力(手動操作を受ける場合を含む。)により、若しくは自動で調整する。   The setting of the acceleration / deceleration state of the conveyed product PT is determined by the phase adjustment unit 211 and the time adjustment unit 212 provided in the suction control circuit 210. The phase adjustment unit 211 adjusts the phase of the suction control signal F (specifically, the reference time difference tph or the phase difference θph) by external input (including a case where a manual operation is received) or automatically. The time adjustment unit 212 adjusts the period width twg or the phase width θwg) of the suction control signal F by an external input (including a case where a manual operation is received) or automatically.

吸引作動手段を構成する吸引作動弁230の作動タイミングは、所望の期間の長さと位相とを有する吸引期間Tcと非吸引期間Tdを実現するために、吸引作動手段における作動のタイムラグ及び吸引力の応答性を考慮して適宜のタイミングで制御すればよい。図示例では、吸引期間Tcは、搬送体2が振動の後端位置にある時点を含むように、当該時点の前後にわたり設定されている。一方、図4に点線で示すように、吸引期間Tcを搬送体2が振動の前端位置にある時点を含むように、当該時点の前後にわたり設定することも可能である。このように吸引期間Tcが上記時点のいずれかを含むように設定すると、吸引期間Tcにおいて前進期間Taに相当する時間部分と、後退期間Tbに相当する時間部分とが共に含まれることになるため、後述する加速モードと減速モードの選択、或いは、加速モード又は減速モードの加減速の程度を吸引期間Tcの位相変化により詳細かつ容易に調整可能となる。また、吸引期間Tcの期間の長さを或る程度確保した場合でも(当該期間を短くしなくても)、吸引期間Tcの少なくとも一部が前進期間Taに対応するため、或いは、吸引期間Tcが後退期間Tbの多くを占めることが防止されるため、減速作用が過大となって搬送物PTが停止してしまうことを容易に防止できる。もっとも、本発明では、吸引力の制御により搬送物PTを停止させる場合を排除するものではない。   The operation timing of the suction operation valve 230 constituting the suction operation means is determined so that the time lag of the operation and the suction force of the suction operation means are realized in order to realize the suction period Tc and the non-suction period Td having the desired length and phase. Control may be performed at an appropriate timing in consideration of responsiveness. In the illustrated example, the suction period Tc is set before and after the time point so as to include the time point when the transport body 2 is at the rear end position of the vibration. On the other hand, as shown by a dotted line in FIG. 4, the suction period Tc can be set before and after the time point so as to include the time point when the transport body 2 is at the front end position of the vibration. Thus, when the suction period Tc is set to include any of the above-mentioned points in time, both the time part corresponding to the forward period Ta and the time part corresponding to the backward period Tb are included in the suction period Tc. The selection of an acceleration mode and a deceleration mode, which will be described later, or the degree of acceleration / deceleration in the acceleration mode or the deceleration mode can be adjusted in detail and easily by changing the phase of the suction period Tc. Further, even when a certain length of the suction period Tc is secured (even if the period is not shortened), at least a part of the suction period Tc corresponds to the forward period Ta, or the suction period Tc Is prevented from occupying most of the reverse period Tb, so that it is possible to easily prevent the decelerating action from becoming excessive and the conveyed object PT from stopping. However, in the present invention, the case where the conveyed product PT is stopped by controlling the suction force is not excluded.

なお、吸引期間Tcが、搬送体2が振動の前端位置にある時点を含む態様と、後端位置にある時点を含む態様のいずれを選択するかは、加速モードと減速モードのいずれを用いるか、或いは、搬送物PTの搬送速度が高いか低いかなど、種々の条件に応じて決定される。ただし、吸引期間Tcは、搬送体2が前端位置にある時点と後端位置にある時点の双方を含むように設定されていてもよく、逆に、両時点を含まないように設定されていても構わない。後者においては、吸引期間Tcが前進期間Taと後退期間Tbのいずれか一方のみに設けられ、他方には設けられないようにすれば、加速作用と減速作用のいずれか一方のみを搬送物PTに及ぼすことができる。前述のように搬送体2の振動速度は中間点で最大となるが、搬送体2の前進時又は後退時において搬送物PTが受ける応力は後端位置又は前端位置からの加速時(中間点に向かう期間)に主として生ずるので、搬送物PTの搬送状態(搬送速度)への影響を高めるという観点から見ても、吸引期間Tcが搬送体2の前端位置又は後端位置に相当する時点を含むことが効果的である。   Which of the acceleration mode and the deceleration mode is used to select the mode in which the suction period Tc includes the time point when the transport body 2 is at the front end position of vibration or the mode including the time point at the rear end position is selected. Alternatively, it is determined according to various conditions such as whether the conveyance speed of the conveyed product PT is high or low. However, the suction period Tc may be set so as to include both the time point at which the transport body 2 is at the front end position and the time point at the rear end position, and conversely, the suction period Tc is set not to include both time points. It doesn't matter. In the latter case, if the suction period Tc is provided only in one of the forward period Ta and the reverse period Tb and not provided in the other, only one of the acceleration action and the deceleration action is applied to the conveyed object PT. Can affect. As described above, the vibration speed of the transport body 2 is maximum at the intermediate point, but the stress received by the transported object PT when the transport body 2 moves forward or backward is increased during acceleration from the rear end position or the front end position (at the intermediate point). The suction period Tc includes a time point corresponding to the front end position or the rear end position of the transport body 2 from the viewpoint of increasing the influence on the transport state (transport speed) of the transported object PT. It is effective.

図5及び図6は、本実施形態の制御方法を搬送物の分離処理に用いる場合に、搬送体2に形成された搬送路2a上の搬送物PTの加速モードと減速モードの移動態様を模式的に示す説明図である。図5に示すように、前進期間において吸引口2eから吸引力を受けることにより、吸引口2e周辺の加速領域において搬送物PTが加速される場合には、後続の搬送物から前方へ引き離されることにより、前後の搬送物間に間隔CLが生ずる。その後、搬送物PTの搬送速度は次第に減速し、間隔CLが減少していく。或る搬送物がその前後の搬送物との間にいずれも間隔を有し、分離されている分離領域内において、検査位置を設けることにより、上記或る搬送物PTを前後の搬送物に妨害されずに検査することができる。このような吸引力に基づく加速モードによる搬送物PTの分離作用は、後述するように、従来の停止若しくは減速による分離作用とは異なり、後続の搬送物に影響を与えにくいという利点を有する。したがって、本発明に係る振動周期と同期したタイミングによる吸引力の制御方法に限らず、吸引口2eからもたらされる吸引力によって加速して分離する手法は有効である。   FIGS. 5 and 6 schematically illustrate the movement modes of the acceleration mode and the deceleration mode of the conveyance object PT on the conveyance path 2a formed in the conveyance body 2 when the control method of the present embodiment is used for the separation process of the conveyance object. FIG. As shown in FIG. 5, when the conveyed product PT is accelerated in the acceleration region around the suction port 2 e by receiving the suction force from the suction port 2 e during the forward period, it is pulled forward from the subsequent conveyed product. As a result, a gap CL is generated between the front and rear conveyed items. Thereafter, the conveyance speed of the conveyed product PT is gradually reduced, and the interval CL decreases. A certain transported object is spaced from the preceding and following transported objects, and an inspection position is provided in the separated separation area to obstruct the certain transported object PT from the preceding and following transported objects. Can be inspected. As will be described later, the separation action of the conveyed product PT in the acceleration mode based on the suction force has an advantage that it does not easily affect the subsequent conveyance object, unlike the separation action by the conventional stop or deceleration. Therefore, not only the suction force control method based on the timing synchronized with the vibration cycle according to the present invention, but also a method of accelerating and separating by the suction force provided from the suction port 2e is effective.

一方、図6に示すように、後退期間において吸引口2eから吸引力を受けることにより、吸引口2e周辺の減速領域において搬送物PTが減速される場合には、前方の搬送物との間に間隔CLが生じる。この場合にも一定の分離領域内に検査位置が設定される。このような吸引力に基づく減速モードによる搬送物PTの分離作用は従来の手法と共通するところがあるが、本発明の場合には搬送体2の振動周期と同期したタイミングで吸引力を制御するため、搬送物PTに対する吸引力の作用が、振動周期とのタイミング上の関係が変動することによって不安定になるといったことを低減できるという利点がある。   On the other hand, as shown in FIG. 6, when the conveyed product PT is decelerated in the deceleration region around the suction port 2e by receiving the suction force from the suction port 2e during the retreat period, An interval CL occurs. Also in this case, the inspection position is set in a certain separation region. The separation action of the conveyed product PT in the deceleration mode based on such a suction force is in common with the conventional method. However, in the present invention, the suction force is controlled at a timing synchronized with the vibration cycle of the carrier 2. There is an advantage that the action of the suction force on the transported object PT can be reduced from becoming unstable due to fluctuations in the timing relationship with the vibration period.

図7(a)〜(c)は搬送路2aの搬送の向きFDと直交する断面を示す断面図である。図7(a)及び(b)の例では、搬送路2aが二つの相互に交差して共に傾斜した搬送面2b、2cで構成され、一方の傾斜した搬送面に吸引通気路2dが開口して吸引口2eが設けられている。図7(a)の例では搬送面2bより急傾斜の搬送面2cに吸引口2eが設けられ、図7(b)の例では、搬送面2cより緩傾斜の搬送面2bに吸引口2eが設けられている。また、図7(c)の例では、搬送路2aが水平な搬送面2bと、その両側にある垂直な搬送面(傾斜していてもよい。)2cとによって構成され、吸引通気路2dが搬送面2bに開口して吸引口2eが設けられている。なお、図7(c)の構造においても、搬送面2cに吸引経路2dを開口させて吸引口2eを形成してもよい。上述のように吸引口2eは搬送路2aの搬送面上に設けられているので、図5及び図6に示すように、搬送物PTが搬送路5aに沿って搬送の向きFDに移動する過程で、搬送物PTは吸引口2aの傍らを必ず通過する。   7A to 7C are cross-sectional views showing a cross section orthogonal to the transport direction FD of the transport path 2a. In the example of FIGS. 7A and 7B, the transport path 2a is composed of two transport surfaces 2b and 2c that intersect and cross each other, and the suction ventilation path 2d opens on one of the tilted transport surfaces. The suction port 2e is provided. In the example of FIG. 7A, the suction port 2e is provided on the transport surface 2c that is steeper than the transport surface 2b. In the example of FIG. 7B, the suction port 2e is provided on the transport surface 2b that is gentler than the transport surface 2c. Is provided. In the example of FIG. 7C, the transport path 2a is constituted by a horizontal transport surface 2b and vertical transport surfaces (which may be inclined) 2c on both sides thereof, and the suction vent path 2d is formed. A suction port 2e is provided in the transport surface 2b. 7C, the suction port 2e may be formed by opening the suction path 2d on the transport surface 2c. Since the suction port 2e is provided on the transport surface of the transport path 2a as described above, as shown in FIG. 5 and FIG. 6, the process in which the transport object PT moves in the transport direction FD along the transport path 5a. Therefore, the conveyed product PT always passes by the side of the suction port 2a.

図8は、実際にボウル型のパーツフィーダの螺旋状の搬送路の一部に、吸引口2eと、その下流側に配置された検査位置とを設けた場合の拡大図である。ここで、搬送物PTは直方体状の部品であり、吸引口2eは、搬送物PTの搬送方向に沿った長さLoよりも小さい開口長Laを備えるとともに、搬送物PTの搬送方向とは直交する方向の幅よりも小さい開口幅Waを備えた矩形の開口形状を備えている。吸引口2eの開口形状を矩形とすることにより、開口形状が短辺と同じ直径を備えた円形の場合に比べて、通気抵抗若しくは圧力損失を低減することができるため、搬送物PTに与える吸引力の強さ、或いは、吸引力の変化速度を高めることができる。図示のように、吸引口2eの矩形の開口形状は、搬送方向FDに平行な対向する二辺と、搬送方向FDと直交する対向する二辺とを備えている。ここで、上記開口長Laは上記長さLoの1/2以下であることが好ましい。これによれば、La/Loの比を小さくできるため、搬送物PTが吸引口2eを横切る際の吸引口2eの全体を搬送物PTが覆う期間を長く確保することができ、その結果、当該期間内に振動周期T(好ましくは複数の振動周期)が含まれるように構成しやすくなるため、搬送物PTに確実に吸引力を作用させることができる。ただし、開口長Laを小さくし過ぎると吸引面積が低下するため、搬送物PTの搬送速度と振動周期との関係に応じて必要な吸引力を確保するように開口長Laを設定することが望ましい。また、図示のように開口長Laは開口幅Waよりも小さく、La<Waが成立すると、吸引面積(吸引口2eの開口面積)の低下を抑制しつつ、吸引口2eの全体を覆うことが可能な搬送物PTの搬送方向の位置範囲を広げることができるため、搬送物PTに対する加減速領域(加減速期間)を長くとることができ、或いは、振動周期と搬送物PTの搬送位置との関係が変化しても確実に搬送物PTに吸引力を及ぼすことができるため、安定した制御態様(分離作用)を得ることができる。また、当該搬送物PTの搬送方向前後の他の搬送物に対する上記吸引力の影響を低減することもできる。   FIG. 8 is an enlarged view when the suction port 2e and the inspection position arranged on the downstream side thereof are provided in part of the spiral conveyance path of the bowl-type parts feeder. Here, the conveyed product PT is a rectangular parallelepiped component, and the suction port 2e has an opening length La smaller than a length Lo along the conveying direction of the conveyed product PT and is orthogonal to the conveying direction of the conveyed product PT. A rectangular opening shape having an opening width Wa smaller than the width in the direction to be provided is provided. By making the opening shape of the suction port 2e rectangular, it is possible to reduce ventilation resistance or pressure loss compared to the case where the opening shape is a circle having the same diameter as the short side, and therefore suction applied to the conveyed object PT. It is possible to increase the strength of the force or the changing speed of the suction force. As illustrated, the rectangular opening shape of the suction port 2e includes two opposite sides parallel to the transport direction FD and two opposite sides orthogonal to the transport direction FD. Here, the opening length La is preferably ½ or less of the length Lo. According to this, since the ratio of La / Lo can be reduced, it is possible to ensure a long period during which the conveyed product PT covers the entire suction port 2e when the conveyed product PT crosses the suction port 2e. Since it becomes easy to configure so that the vibration period T (preferably a plurality of vibration periods) is included in the period, it is possible to reliably apply the suction force to the conveyed object PT. However, if the opening length La is too small, the suction area is reduced. Therefore, it is desirable to set the opening length La so as to ensure a necessary suction force according to the relationship between the transport speed of the transported object PT and the vibration cycle. . Further, as shown in the figure, the opening length La is smaller than the opening width Wa, and when La <Wa is established, it is possible to cover the entire suction port 2e while suppressing a decrease in the suction area (opening area of the suction port 2e). Since the position range in the conveyance direction of the conveyed product PT can be expanded, the acceleration / deceleration region (acceleration / deceleration period) for the conveyed product PT can be increased, or the vibration period and the conveyance position of the conveyed product PT can be increased. Even if the relationship changes, a suction force can be reliably exerted on the conveyed product PT, so that a stable control mode (separation action) can be obtained. Further, it is possible to reduce the influence of the suction force with respect to other transported objects before and after the transported object PT in the transport direction.

上記吸引口2eの下流側には、図示しない検出器(例えば光センサなど)のスリット状の検出領域3aが設けられ、搬送物PTの前端が検出領域3aにかかると検出信号が出力されるようになっている。また、この検出信号を受けたときに搬送物PTを検査範囲(検査位置)4aにおいて検査する図示しない検査装置が設けられる。この検査装置は、検査範囲4a内にある搬送物PTに対して、例えば光学的手段(画像の撮影、反射率の測定など)により検査し、搬送物PTそのものの良否、姿勢(向き)の良否等を判別する。検査結果が良であれば搬送物PTはそのまま搬送路2a上を下流側へ搬送され、検査結果が否である場合には、搬送路2aの上部に開口する気流噴出口5aから圧縮空気などの気流を搬送物PTに吹き付けることにより、当該搬送物PTは上記検査範囲4aとほぼ同じ位置において搬送路2a上から排除される。例えばボウル型の搬送体であれば、このように排除された搬送物は内底部(上流端)に戻される。   On the downstream side of the suction port 2e, a slit-like detection region 3a of a detector (not shown) (for example, an optical sensor) is provided, and a detection signal is output when the front end of the conveyed object PT hits the detection region 3a. It has become. Further, an inspection device (not shown) for inspecting the conveyed product PT in the inspection range (inspection position) 4a when receiving this detection signal is provided. This inspection apparatus inspects the transported object PT in the inspection range 4a by, for example, optical means (photographing of images, measurement of reflectance, etc.), and the quality of the transported object PT itself and the quality of the posture (orientation). Etc. are discriminated. If the inspection result is good, the conveyed product PT is directly conveyed downstream on the conveyance path 2a, and if the inspection result is negative, compressed air or the like is sent from the air flow outlet 5a opened on the upper part of the conveyance path 2a. By blowing the airflow onto the conveyed product PT, the conveyed product PT is excluded from the conveyance path 2a at substantially the same position as the inspection range 4a. For example, in the case of a bowl-type transport body, the transported material thus removed is returned to the inner bottom (upstream end).

図9は、実際に上記搬送路2a上において吸引口2eの吸引力を搬送体2の振動周期に同期させて変化させた場合において、加速モードの制御態様としたときの測定結果を示すグラフである。ここで、最上部の制御グラフは制御信号(図示例ではデューティー比1であるが、図4に示すように特に限定されない。)のタイミングを示し、二番目の振幅グラフは搬送体2の検出振幅の実測データ、三番目の圧力グラフは吸引口2eの近傍(吸引通気路2dのうち吸引作動弁230よりも吸引口2eに近い位置)の圧力の実測データを示す。ここで、制御信号が0のときに吸引力が発生(増大)し、制御信号が1のときに吸引力が停止(減少)するように吸引作動弁230が制御される。また、振幅グラフが極大値をとる時点が搬送体2が後端位置にある時点であり、振幅グラフが極小値をとる時点が搬送体2が前端位置にある時点である。したがって、振幅グラフが降下している期間が前進期間Ta、上昇している期間が後退期間Tbとなる。さらに、圧力グラフにおいて実際に搬送物PTが吸引口2eに近接して実際に吸引力が発生した範囲をハッチングで示してある。なお、当該範囲内においても圧力(負圧、すなわち吸引力)は圧力グラフに示されるように増減するため、吸引力による加減速作用も、ハッチングした領域の上下方向の長さ(或いは、単位時間幅における面積)の大小に応じて増減する。   FIG. 9 is a graph showing measurement results when the control mode of the acceleration mode is set when the suction force of the suction port 2e is actually changed in synchronization with the vibration cycle of the transport body 2 on the transport path 2a. is there. Here, the uppermost control graph shows the timing of the control signal (in the illustrated example, the duty ratio is 1 but is not particularly limited as shown in FIG. 4), and the second amplitude graph is the detected amplitude of the carrier 2. , The third pressure graph shows measured data of pressure in the vicinity of the suction port 2e (position in the suction air passage 2d closer to the suction port 2e than the suction operation valve 230). Here, when the control signal is 0, the suction force is generated (increased), and when the control signal is 1, the suction valve 230 is controlled so that the suction force stops (decreases). In addition, the time when the amplitude graph takes the maximum value is the time when the carrier 2 is at the rear end position, and the time when the amplitude graph takes the minimum value is the time when the carrier 2 is at the front end position. Therefore, the period during which the amplitude graph is falling is the forward period Ta, and the period during which the amplitude graph is rising is the backward period Tb. Further, in the pressure graph, the range in which the conveyed product PT is actually close to the suction port 2e and the actual suction force is generated is indicated by hatching. Even within this range, the pressure (negative pressure, that is, the suction force) increases or decreases as shown in the pressure graph, so that the acceleration / deceleration action by the suction force is also the vertical length (or unit time) of the hatched region. Increase or decrease according to the size of the area in the width.

この加速モードの制御態様では、制御信号の吸引開始タイミングに相当する時点の位相θaを前進期間Taの開始時点よりも90度前にずらし、これによって、実際に吸引口2eで吸引力が発生する吸引期間Tcは、搬送体2が振動の前端位置にある時点を含むように、当該時点の前後にわたり設定される。また、この吸引期間Tcは、前進期間Taにおいて長く、後退期間Tbにおいて短くなるように設定される。すなわち、前述の前進時吸引時間Tcaが後退時吸引時間Tcbより大きく、Tca>Tcbが成立するタイミングで制御される。このようにすると、搬送体2が前進している間に搬送物PTに吸引力が主体的に与えられるため、搬送物PTは吸引口2eに引き付けられて搬送体2の前進速度に近い速度まで加速される。ただし、この加速モードでは、分離に必要な間隔CLを十分に得るには、搬送物PTの吸引口2eよりも上流側における搬送速度が搬送体2の前進速度より或る程度低くなっている必要がある。   In this control mode of the acceleration mode, the phase θa at the time corresponding to the suction start timing of the control signal is shifted 90 degrees before the start time of the forward period Ta, thereby actually generating the suction force at the suction port 2e. The suction period Tc is set before and after the time point so as to include the time point when the transport body 2 is at the front end position of the vibration. The suction period Tc is set to be long in the forward period Ta and short in the reverse period Tb. That is, the above-described forward suction time Tca is longer than the backward suction time Tcb, and the control is performed at the timing when Tca> Tcb is satisfied. In this way, since the suction force is mainly given to the transported object PT while the transporting body 2 is moving forward, the transporting object PT is attracted to the suction port 2e to a speed close to the forward speed of the transporting body 2. Accelerated. However, in this acceleration mode, the transport speed on the upstream side of the suction port 2e of the transported object PT needs to be somewhat lower than the forward speed of the transport body 2 in order to sufficiently obtain the interval CL necessary for separation. There is.

この加速モードでは、図5に示すように、搬送物PTを加速させて後続の搬送物との間に間隔CLを設けるので、後続の搬送物の搬送速度を低下させる虞がなく、また、後続の搬送物からの押し出し力の影響を受けることもない。ここで、上記圧力グラフでは、吸引口2eを搬送物PTが横切るときのみ吸引口2eが閉鎖されることにより圧力が低下して吸引力が搬送物PTに及ぼされていることがわかるが、吸引口2eの近傍に搬送物PTが存在しない場合には吸引口2eが閉鎖されないために計測圧力は低下しない。図示例では、一つの搬送物PTが、ほぼ4.5周期(4.5T)の間において吸引口2eの近傍に接近して吸引力を受けながら加速されていることが理解できる。   In this acceleration mode, as shown in FIG. 5, since the transported object PT is accelerated and a gap CL is provided between the transported object PT and the subsequent transported object, there is no possibility of reducing the transport speed of the subsequent transported object. It is not affected by the pushing force from the conveyed product. Here, in the pressure graph, it can be seen that the suction port 2e is closed only when the conveyed product PT crosses the suction port 2e, so that the pressure is reduced and the suction force is exerted on the conveyed product PT. When the conveyed product PT does not exist in the vicinity of the mouth 2e, the suction pressure 2e is not closed, so that the measurement pressure does not decrease. In the illustrated example, it can be understood that one conveyed object PT is accelerated while approaching the vicinity of the suction port 2e and receiving a suction force during approximately 4.5 cycles (4.5 T).

図10は、実際に上記搬送路2a上において吸引口2eの吸引力を搬送体2の振動周期に同期させて変化させた場合において、減速モードの制御態様としたときの測定結果を示すグラフである。ここで、制御グラフ、振幅グラフ及び圧力グラフは図9の場合と同様である。この減速モードにおいては、制御信号の吸引開始タイミングに相当する時点の位相θaを図9の場合よりもΔθ=50度ほど遅らせることで、吸引期間Tcが前進期間Taよりも後退期間Tbにおいて長くなるように設定される。すなわち、上述の後退時吸引時間Tcbが前進時吸引時間Tcaとほぼ等しいか、或いは、それよりも大きく、Tcb〜Tca又はTcb>Tcaが成立する。この場合には、搬送物PTの搬送速度に対する影響は基本的には後退時の方が前進時よりも大きいため、前進時吸引時間における加速作用はほとんど得られないのに対し後退時吸引時間における減速作用は確実に生ずるから、搬送物PTは後退中の吸引口2eに引き付けられて減速される。   FIG. 10 is a graph showing the measurement results when the control mode of the deceleration mode is set when the suction force of the suction port 2e is actually changed in synchronization with the vibration cycle of the transport body 2 on the transport path 2a. is there. Here, the control graph, the amplitude graph, and the pressure graph are the same as those in FIG. In this deceleration mode, by delaying the phase θa at the time corresponding to the suction start timing of the control signal by Δθ = 50 degrees from the case of FIG. 9, the suction period Tc becomes longer in the reverse period Tb than in the forward period Ta. It is set as follows. That is, the above-described reverse suction time Tcb is substantially equal to or longer than the forward suction time Tca, and Tcb to Tca or Tcb> Tca is established. In this case, since the influence on the conveyance speed of the conveyed object PT is basically larger at the time of retreat than at the time of advance, almost no acceleration action is obtained at the time of suction at the time of advance, whereas at the time of suction at the time of retreat. Since the decelerating action surely occurs, the conveyed product PT is attracted to the reverse suction port 2e and decelerated.

この減速モードでは、図6に示すように、搬送体2の減速により前方の搬送物から分離されて間隔が生ずるため、搬送物PTの吸引口2eよりも上流側における搬送速度が比較的高い場合でも支障なく分離作用を得ることができる。また、吸引力による減速作用は搬送体2の振動周期ごとに後退期間Tbにのみ発生し、減速作用を与える後退時吸引時間Tcbは後退期間Tb内で任意に設定できるとともに加速作用を与える前進時吸引時間Tcaも存在するため、搬送物PTを完全に停止させてしまう虞も少なく、しかも、安定した減速作用を得ることができる。   In this deceleration mode, as shown in FIG. 6, the transport body 2 is separated from the forward transported object by the deceleration, so that an interval is generated, and therefore the transport speed on the upstream side of the suction port 2 e of the transported object PT is relatively high. However, the separation effect can be obtained without any trouble. Further, the deceleration action due to the suction force occurs only in the reverse period Tb for each vibration cycle of the transport body 2, and the reverse suction time Tcb for giving the deceleration action can be arbitrarily set within the reverse period Tb and the forward time giving the acceleration action Since the suction time Tca is also present, there is little risk of the transported object PT being completely stopped, and a stable deceleration operation can be obtained.

ここで、図9の場合と同様に、上記圧力グラフでは、吸引口2eを搬送物PTが横切るときのみ吸引口2eが閉鎖されることにより圧力が低下して吸引力が搬送物PTに及ぼされていることがわかるが、吸引口2eの近傍に搬送物PTが存在しない場合には吸引口2eが閉鎖されないために計測圧力は低下しない。図示例では、一つの搬送物PTが、ほぼ6周期(6T)の間において吸引口2eの近傍に接近して吸引力を受けながら減速されていることが理解できる。   Here, as in the case of FIG. 9, in the above pressure graph, the suction port 2e is closed only when the conveyed product PT crosses the suction port 2e, so that the pressure is reduced and the suction force is exerted on the conveyed product PT. However, when the conveyed product PT does not exist in the vicinity of the suction port 2e, the suction port 2e is not closed, so that the measurement pressure does not decrease. In the illustrated example, it can be understood that one conveyed product PT is decelerated while approaching the vicinity of the suction port 2e and receiving a suction force in approximately six cycles (6T).

本実施形態では、搬送体2の振動周期ごとに振動周期と同期したタイミングで設定される吸引期間Tcを設けているため、振動周期ごとにタイミング制御された吸引力を確実に搬送物PTに及ぼすことができる。特に、図示例のように一つの振動周期T内に一つの吸引期間Tcのみを設けることが、吸引力の応答性が悪い場合や振動周波数が高い場合でも、吸引力の制御の容易性を確保できる点で好ましい。また、振動周期に同期した制御信号により位相を調整して一つの吸引期間Tcにおける前進期間Taと後退期間Tbに対応する時間の振り分け、或いは、いずれかへの偏在の態様を設定することにより、搬送物PTに対する加速作用と減速作用の切り替え、或いは、加減速作用の増減の程度をより詳細に調整することができる。   In this embodiment, since the suction period Tc set at the timing synchronized with the vibration cycle is provided for each vibration cycle of the transport body 2, the suction force controlled in timing for each vibration cycle is reliably exerted on the transported object PT. be able to. In particular, providing only one suction period Tc within one vibration period T as in the illustrated example ensures easy control of the suction force even when the suction force response is poor or the vibration frequency is high. It is preferable in that it can be performed. In addition, by adjusting the phase by a control signal synchronized with the vibration period and setting the time distribution corresponding to the forward period Ta and the reverse period Tb in one suction period Tc, or by setting the uneven distribution mode to either, The degree of increase / decrease in acceleration / deceleration action or acceleration / deceleration action on the conveyed object PT can be adjusted in more detail.

本実施形態では、吸引口2eが矩形の開口形状を備えることにより、角部のない円形の開口形状に比べて、通気抵抗若しくは圧力損失を低減することができるため、搬送物PTに与える吸引力の強さ、或いは、吸引力の変化速度を高めることができる。理由としては、開口形状に角部があると、大気圧への復帰過程において、開口縁の全長が大きくなるため大気の流入効率が向上する、開口中心周りの圧力差が大きくなって気流が乱れるため吸引力が急速に失われるなどの原因が考えられる。また、開口形状の各辺の中央付近から開口形状の中心に向かう圧力勾配が増大し、開口形状の中心周りに圧力勾配の差が生じるため、この差によって開口形状の辺の中央から中心に向かう早い気流が発生するから、この早い気流によって周囲の空気も巻き込まれるので、開口近傍が早い段階で大気圧に戻り、場合によっては大気圧に対して正圧になり、これにより迅速な吸引力の低下が起こることも考えられる In the present embodiment, since the suction port 2e has a rectangular opening shape, it is possible to reduce ventilation resistance or pressure loss compared to a circular opening shape without corners, and therefore suction force applied to the conveyed product PT. It is possible to increase the strength or the changing speed of the suction force. The reason for this is that if there are corners in the opening shape, the entire length of the opening edge will increase during the process of returning to atmospheric pressure, improving the inflow efficiency of the atmosphere, and increasing the pressure difference around the opening center will disrupt the airflow. For this reason, the cause such as the rapid loss of suction power can be considered. In addition, since the pressure gradient from the vicinity of the center of each side of the opening shape toward the center of the opening shape increases and a difference in pressure gradient occurs around the center of the opening shape, this difference leads to the center from the center of the side of the opening shape. Since an early air flow is generated, the surrounding air is also engulfed by this early air flow, so that the vicinity of the opening returns to the atmospheric pressure at an early stage, and in some cases becomes a positive pressure with respect to the atmospheric pressure. A decrease may also occur .

吸引力を効率的に搬送物に対して与えるためには、上述のように搬送路2aの搬送面に開口する吸引口2eは、搬送物PTの搬送姿勢における搬送面に対する投影面よりも開口面積を小さくすることが好ましい。このとき、搬送路上における搬送物PTは振動によって或る程度移動するので、吸引口2eが搬送物PTの投影面よりはみ出しにくくなるように上記投影面に対する吸引口2eのマージンを確保しつつ、吸引力の低下をもたらす開口面積の低下を抑制するには、開口形状の姿勢を上記投影面に整合させ、搬送方向FDに平行な対向する二辺と搬送方向FDと直交する対向する二辺を有する矩形の開口形状にすることが好ましい。例えば、吸引口2eの開口形状と上記投影面との間に所定の上記マージンを確保した場合、開口形状が矩形のときには、円形のときに比べて、搬送物PTと搬送面との間の隙間の搬送物PTの外面から吸引口2eの開口縁までの平均距離を短くすることができるため、吸引停止時における開口部近傍の上記隙間を介した外気導入による圧力上昇の速度を高め、迅速に吸引力を低下させることが可能になる。   In order to efficiently apply the suction force to the conveyed product, the suction port 2e that opens on the conveyance surface of the conveyance path 2a as described above has an opening area that is larger than the projection surface with respect to the conveyance surface in the conveyance posture of the conveyance object PT. Is preferably reduced. At this time, the transported object PT on the transport path moves to some extent due to vibration, so that the suction port 2e is not easily protruded from the projection surface of the transported object PT, while the margin of the suction port 2e with respect to the projection surface is secured. In order to suppress a decrease in the opening area that causes a decrease in force, the orientation of the opening shape is aligned with the projection plane, and there are two opposite sides parallel to the conveyance direction FD and two opposite sides perpendicular to the conveyance direction FD. A rectangular opening shape is preferred. For example, when a predetermined margin is ensured between the opening shape of the suction port 2e and the projection surface, when the opening shape is rectangular, the gap between the conveyed object PT and the conveying surface is larger than when the opening shape is circular. Since the average distance from the outer surface of the conveyed product PT to the opening edge of the suction port 2e can be shortened, the speed of the pressure increase due to the introduction of outside air through the gap near the opening at the time of suction stop is increased and quickly The suction force can be reduced.

尚、本発明の振動式搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、搬送体2の振動周期Tごとに一つの吸引期間Tcとそれ以外の非吸引期間Tdとを設け、この吸引期間Tcの位相と前進期間Ta及び後退期間Tbとの対応関係を設定することにより搬送物PTを加減速しているが、吸引力の有無や増減のタイミングが振動周期と同期してさえいれば、搬送物PTの長さ、吸引口2eの開口長、上流側での搬送物PTの搬送速度、搬送体2の振動周波数などに応じて、振動の複数の周期ごとに一つの吸引期間Tcを設けてもよく、或いは逆に、振動周期T内に複数の吸引期間Tcを設けてもよい。また、上記実測データでは搬送物PTを搬送方向に分離する場合について示したが、搬送物PTの搬送速度を制御、調整する種々の場合に用いることができる。この場合、複数の吸引口を搬送方向に配列させ、複数箇所で個々に、或いは、連続して、搬送速度の増大、減少、増減などを実現するようにしてもよい。   Note that the vibratory conveyance device of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, in the above-described embodiment, one suction period Tc and the other non-suction period Td are provided for each vibration period T of the transport body 2, and the correspondence between the phase of the suction period Tc and the forward period Ta and the backward period Tb is provided. Although the conveyed object PT is accelerated / decelerated by setting the relationship, the length of the conveyed object PT, the opening length of the suction port 2e, as long as the presence / absence of the suction force and the timing of increase / decrease are synchronized with the vibration cycle, One suction period Tc may be provided for each of a plurality of periods of vibration according to the conveyance speed of the conveyed object PT on the upstream side, the vibration frequency of the conveyance body 2, or the like. The suction period Tc may be provided. Moreover, although the case where the transported object PT is separated in the transport direction is shown in the actual measurement data, it can be used in various cases where the transport speed of the transported object PT is controlled and adjusted. In this case, a plurality of suction ports may be arranged in the transport direction, and increase, decrease, increase / decrease, etc. of the transport speed may be realized individually or continuously at a plurality of locations.

また、本実施形態では、上記減速作用若しくは加速作用を及ぼす態様として、無条件に振動周期Tごとに吸引口2eにおいて吸引力を生じさせているが、搬送路2aの所定箇所に搬送物PTを検出する検出器を設け、当該検出器の検出信号に応じて、振動周期Tに同期した吸引力を生じさせるか否か、或いは、振動周期Tに対する吸引力の発生タイミングを変更(切り替え)するか否かを決めるようにしてもよい。   In the present embodiment, as an aspect of exerting the deceleration action or the acceleration action, a suction force is unconditionally generated at the suction port 2e for each vibration period T. However, the transported object PT is placed at a predetermined position on the transport path 2a. Whether to generate a suction force synchronized with the vibration cycle T or to change (switch) the generation timing of the suction force with respect to the vibration cycle T according to the detection signal of the detector. You may make it decide whether or not.

さらに、本実施形態では、搬送物PTに対して減速作用と加速作用のいずれかを及ぼす場合について主として説明をしたが、同じ搬送物PTに対して、減速作用を及ぼした後に加速作用を及ぼしたり、加速作用を及ぼした後に減速作用を及ぼしたりしてもよい。この場合に、搬送物PTが吸引口2eを横切る期間が複数の振動周期に亘るときには、減速作用を与える後退期間と加速作用を与える前進期間とを同一の振動周期内の期間だけでなく別の振動周期内の期間にも設定することができるため、一つの吸引口2eにより同じ搬送物PTに対して減速作用と加速作用を実現することができる。一方、複数の吸引口2eを搬送方向に配列し、減速作用を与える吸引口2eと加速作用を与える吸引口2eとを別々に設けてもよい。   Furthermore, in the present embodiment, the description has mainly been given of the case where either the deceleration action or the acceleration action is exerted on the conveyed product PT. However, the acceleration action is exerted on the same conveyed object PT after the deceleration action is exerted. Further, the acceleration action may be applied and then the deceleration action may be applied. In this case, when the period in which the conveyed object PT crosses the suction port 2e extends over a plurality of vibration periods, the reverse period for applying the deceleration action and the forward period for applying the acceleration action are not limited to periods within the same vibration period. Since the period within the vibration cycle can also be set, the deceleration action and the acceleration action can be realized for the same conveyed object PT by one suction port 2e. On the other hand, a plurality of suction ports 2e may be arranged in the transport direction, and a suction port 2e that provides a deceleration action and a suction port 2e that provides an acceleration action may be provided separately.

10…振動式搬送装置、2…搬送体、3…振動発生源、2a…搬送路、2b,2c…搬送面、2d…吸引通気路、2e…吸引口、210…吸引制御回路、220…吸引駆動回路、230…吸引作動弁、240…吸引装置、T…振動周期、Ta…前進期間、Tb…後退期間、Tc…吸引期間、Td…非吸引期間、Tca…前進時吸引時間、Tcb…後退時吸引時間、Lo…長さ、La…開口長 DESCRIPTION OF SYMBOLS 10 ... Vibration type conveying apparatus, 2 ... Conveyance body, 3 ... Vibration generating source, 2a ... Conveyance path, 2b, 2c ... Conveyance surface, 2d ... Suction air passage, 2e ... Suction port, 210 ... Suction control circuit, 220 ... Suction Drive circuit, 230 ... suction operation valve, 240 ... suction device, T ... vibration period, Ta ... forward period, Tb ... reverse period, Tc ... suction period, Td ... non-suction period, Tca ... forward suction time, Tcb ... reverse Suction time, Lo ... length, La ... opening length

Claims (6)

実質的に直方体状の搬送物を振動式搬送装置によって搬送する搬送物の搬送方法において、
前記振動式搬送装置は、
前記搬送物を支持、案内する搬送面に沿って前記搬送物が搬送される搬送路を備えた搬送体と、
該搬送体を前記搬送物が前記搬送路上を搬送の向きに搬送される態様で該搬送の向きに振動させる加振機構と、
前記搬送路の前記搬送面に開口する矩形の開口形状を備える吸引口と、
該吸引口における吸引力の有無を切り替え可能、或いは、前記吸引力を増減可能に構成された吸引作動手段と、
を具備し、
前記開口形状は、搬送方向と平行な対向する二辺および前記搬送方向と直交する対向する二辺を有し、前記搬送物の前記搬送方向に沿った長さよりも小さい開口長を備えるとともに、前記搬送物の前記搬送方向と直交する方向の幅よりも小さい開口幅を備え、
前記開口長は、前記搬送物の前記搬送方向に沿った長さの1/2以下であり、
前記吸引力の有無の切り替え若しくは増減が前記加振機構による前記搬送体の振動周期と同期して生ずるように前記吸引作動手段を制御し、一つの前記搬送物に対して前記吸引力の有無の切り替え若しくは増減の複数回に亘って前記吸引力を作用させることを特徴とする搬送物の搬送方法。
In the conveyance method of the conveyance object which conveys a substantially rectangular parallelepiped conveyance object by a vibration type conveyance device,
The vibratory transfer device is
A transport body provided with a transport path along which a transport object is transported along a transport surface that supports and guides the transport object;
An excitation mechanism that vibrates the transport body in the transport direction in a mode in which the transport object is transported in the transport direction on the transport path;
A suction port having a rectangular opening shape opening in the transport surface of the transport path;
A suction actuating means configured to switch the presence or absence of a suction force at the suction port, or configured to increase or decrease the suction force;
Comprising
The opening shape has two opposite sides parallel to the conveying direction and two opposite sides perpendicular to the conveying direction, and has an opening length smaller than the length along the conveying direction of the conveyed object, and It has an opening width smaller than the width in the direction orthogonal to the conveyance direction of the conveyed product,
The opening length is ½ or less of the length along the transport direction of the transported object,
The suction actuating means is controlled so that the switching or increase / decrease of the presence / absence of the suction force occurs in synchronization with the vibration cycle of the transport body by the vibration mechanism, and the presence / absence of the suction force for one transported object. A method for conveying a conveyed product, wherein the suction force is applied over a plurality of times of switching or increasing / decreasing.
前記吸引力の有無の切り替え若しくは増減が前記振動周期毎に生ずるように前記吸引作動手段を制御することを特徴とする請求項1に記載の搬送物の搬送方法。   2. The method for transporting a transported object according to claim 1, wherein the suction actuating unit is controlled so that switching or increasing / decreasing of the presence / absence of the suction force occurs at each vibration cycle. 前記開口長が前記開口幅よりも小さいことを特徴とする請求項1又は2に記載の搬送物の搬送方法。   The method for transporting a conveyed product according to claim 1, wherein the opening length is smaller than the opening width. 前記吸引力の有無の切り替え若しくは増減を、前記振動周期内の前記搬送体の前進時において前記搬送物に前記吸引力が与えられる前進時吸引時間(Tca)が前記搬送体の後退時において前記搬送物に前記吸引力が与えられる後退時吸引時間(Tcb)より大きくなるように、制御することにより、前記搬送物が前記吸引口を横切ったときに前記吸引力により加速されるようにすることを特徴とする請求項1乃至3のいずれか一項に記載の搬送物の搬送方法。 Whether the suction force is switched or increased / decreased, the forward suction time (Tca) in which the suction force is applied to the transport object when the transport body moves forward within the vibration period is the transport time when the transport body moves backward. By controlling so as to be longer than the reverse suction time (Tcb) in which the suction force is applied to the object, the object is accelerated by the suction force when the object crosses the suction port. The conveyance method of the conveyed product as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned. 前記吸引力の有無の切り替え若しくは増減を、前記振動周期内の前記搬送体の後退時において前記搬送物に前記吸引力が与えられる後退時吸引時間(Tcb)が前記搬送体の前進時において前記搬送物に前記吸引力が与えられる前進時吸引時間(Tca)と等しいか、それより大きくなるように、制御することにより、前記搬送物が前記吸引口を横切ったときに前記吸引力により減速されるようにすることを特徴とする請求項1乃至3のいずれか一項に記載の搬送物の搬送方法。 Whether the suction force is switched or increased / decreased, the reverse suction time (Tcb) during which the suction force is applied to the transport object when the transport body is retracted within the vibration period is the transport time when the transport body is moving forward. By controlling so that the suction time (Tca) at which the suction force is applied to an object is equal to or longer than the suction time (Tca) during advancement, the object is decelerated by the suction force when the object crosses the suction port. The conveyance method of the conveyed product as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned. 前記搬送路の前記吸引口の下流側には前記搬送物に対する検出器の検出領域(3a)が設けられ、前記搬送物が前記検出領域(3a)にかかると前記検出器の検出信号が出力されることにより検査装置の検査範囲(4a)内にある前記搬送物が前記検査装置により検査されることを特徴とする請求項1乃至5のいずれか一項に記載の搬送物の搬送方法。 A detection area (3a) of the detector for the conveyed object is provided on the downstream side of the suction port of the conveyance path, and a detection signal of the detector is output when the conveyed object reaches the detection area (3a). The said conveyed product in the inspection range (4a) of an inspection apparatus is test | inspected by the said inspection apparatus by this , The conveying method of the conveyed article as described in any one of Claim 1 thru | or 5 characterized by the above-mentioned.
JP2011204777A 2011-07-26 2011-09-20 Conveying method Active JP5727336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204777A JP5727336B2 (en) 2011-07-26 2011-09-20 Conveying method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011163061 2011-07-26
JP2011163061 2011-07-26
JP2011204777A JP5727336B2 (en) 2011-07-26 2011-09-20 Conveying method

Publications (2)

Publication Number Publication Date
JP2013047142A JP2013047142A (en) 2013-03-07
JP5727336B2 true JP5727336B2 (en) 2015-06-03

Family

ID=48010406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204777A Active JP5727336B2 (en) 2011-07-26 2011-09-20 Conveying method

Country Status (1)

Country Link
JP (1) JP5727336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135598B2 (en) * 2013-08-20 2017-05-31 株式会社村田製作所 Chip transfer device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246236A (en) * 1993-02-26 1994-09-06 Ntn Corp Parts feeder

Also Published As

Publication number Publication date
JP2013047142A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CN102673959B (en) Workpiece supply device
JP3418507B2 (en) Piezoelectric vibration control method
JP2005255351A (en) Part conveyance device and article conveyance method
JP5727336B2 (en) Conveying method
JP6189979B2 (en) Circulating transfer device
JP2015101430A (en) Workpiece transport device
JP2006335487A (en) Vibratory parts feeder
JP6405950B2 (en) Fastening parts conveyor
KR20170126456A (en) Control device for vibration feeder and vibration feeder
JP2006298578A (en) Parts feeder
JP2013028469A (en) Vibration-type conveyance device
JP2015147632A (en) electromagnetic feeder
JP2003192119A (en) Component supply device
JP4653984B2 (en) Mold take-out device
CN103997882A (en) Electronic component supplying device, electronic component installation device and electronic component supplying method
JP6871072B2 (en) Molded product take-out machine
JP4576512B2 (en) Component alignment apparatus and component alignment method
JP4550934B1 (en) Pneumatic action system for conveying parts and component conveying apparatus
JP4555383B1 (en) Pneumatic action system for conveying parts and component conveying apparatus
JP2006111450A (en) Device for delivering and stacking sheets on stack
JP2019018568A5 (en)
JP7273412B2 (en) Conveyance control method for conveying system and conveying system
JP7440343B2 (en) sheet feeding device
JP2003192118A (en) Component supply device
JP6772005B2 (en) Parts supply device and parts supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250