JP5371584B2 - 磁性キャリア、二成分現像剤及び補給用現像剤 - Google Patents

磁性キャリア、二成分現像剤及び補給用現像剤 Download PDF

Info

Publication number
JP5371584B2
JP5371584B2 JP2009158550A JP2009158550A JP5371584B2 JP 5371584 B2 JP5371584 B2 JP 5371584B2 JP 2009158550 A JP2009158550 A JP 2009158550A JP 2009158550 A JP2009158550 A JP 2009158550A JP 5371584 B2 JP5371584 B2 JP 5371584B2
Authority
JP
Japan
Prior art keywords
resin
toner
mass
magnetic carrier
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009158550A
Other languages
English (en)
Other versions
JP2011013524A (ja
Inventor
恵理子 柳瀬
直樹 岡本
和男 寺内
洋二朗 堀田
宜良 梅田
哲也 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009158550A priority Critical patent/JP5371584B2/ja
Publication of JP2011013524A publication Critical patent/JP2011013524A/ja
Application granted granted Critical
Publication of JP5371584B2 publication Critical patent/JP5371584B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真法及び静電記録法に用いられる現像剤に含有される磁性キャリア、及びこの磁性キャリアとトナーとを有する二成分系現像剤並びに補給用現像剤に関する。
電子写真法において静電荷像を現像する工程は、帯電させたトナー粒子を静電荷像の静電相互作用を利用して静電荷像上に付着させて画像形成を行うものである。静電荷像を現像するための現像剤には、磁性体を樹脂中に分散してなる磁性トナーを用いる一成分系現像剤と、非磁性トナーを磁性キャリアと混合して用いる二成分系現像剤とがある。特に高画質を要求されるフルカラー複写機又はフルカラープリンタ等のフルカラー画像形成装置では、後者が好適に用いられている。
二成分系現像剤に用いられる磁性キャリアとしては、帯電量の安定化、キャリアの耐久性向上などの目的で、フェライト粒子や磁性体分散型樹脂コア表面に樹脂をコートしたコートキャリアが用いられている。
コートキャリアに関する提案は多数なされており、例えば、電荷注入を防止し、耐久性のあるキャリアとして、特定のモノマーを使用したフッ素系樹脂をコートしたキャリアが提案されている(特許文献1)。この場合、特定のフッ素系樹脂を用いることで均一コート性も向上しているが、フッ素系樹脂はネガ帯電性が強く、ネガトナーに対して帯電量の立ち上がりが遅い場合がある。逆に低湿下での印字比率の少ない画像を連続してプリントする場合には、帯電量が増加する場合がある。
また、特定のモノマーとメタクリル酸メチルモノマーとの共重合体をコートし、水に対する接触角が95°以上であるキャリア(特許文献2)が提案されている。
このようなコート樹脂を用いることで、帯電安定性が図れ、離型性を向上させることができ、耐久安定性にも優れている。しかし、コア材の種類によってはコアとコート樹脂の密着性が不安定であり、剥がれやすい場合がある。
また昨今のフルカラー複写機又はフルカラープリンタ等の高速化に絶え得る耐久性を保持させる為、トナーの流動性を付与する外添剤を多量に添加する傾向にある。この場合懸念されるのは、外添剤がキャリア表面を汚染することによる帯電能の低下であり、これらの問題を解決するため、更なる高性能の磁性キャリア、二成分系現像剤及び補給用現像剤が待望されている。
特開平10−307430号公報 特開2007−279588号公報
本発明の目的は、上記の課題を解決した磁性キャリア、二成分系現像剤及び補給用現像剤を提供することにある。
また、本発明の目的は、現像耐久性と環境安定性に優れ、長期にわたって高画質な画像形成を行うことができる磁性キャリア、二成分系現像剤及び補給用現像剤を提供することにある。
更に、本発明の目的は、高負荷型の複写機においても帯電安定性に優れ、高温高湿環境においても長期にわたり安定した画像を得ることができる磁性キャリア、二成分系現像剤及び補給用現像剤を提供することにある。
本発明は、キャリアコアの表面に樹脂被覆層を有する磁性キャリアであり、
該樹脂被覆層を形成している樹脂は、
i)すくなくとも、後述の式(A1)で表されるモノマーと、後述の式(A2)で表され、重量平均分子量が3000以上20000以下であるマクロモノマーとを共重合することにより得られる樹脂であって、該マクロモノマーに由来するユニットの割合が、0.5質量%以上30.0質量%以下であり、
ii)THF可溶分のTHF中でのサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwが5nm以上30nm以下であり、数平均分子量Mnが2.3×104以上1.0×105以下である
ことを特徴とする磁性キャリアに関する。
また、本発明は、上記磁性キャリアとトナーとを少なくとも有する二成分系現像剤に関する。
更に、本発明は、補給用現像剤を補給しながら現像を行う画像形成方法に使用する為の補給用現像剤であり、該補給用現像剤は上記磁性キャリア及びトナーを少なくとも含み、上記磁性キャリア1質量部に対してトナーが2部以上50部以下の配合割合で含有されていることを特徴とする補給用現像剤に関する。
本発明の磁性キャリアを用いることによって、現像耐久性と環境安定性に優れ、外添剤によるキャリア汚染を防ぐことで長期にわたり高画質を維持できる。特に高温高湿環境下における長期の使用においても高い帯電性を維持することができ、カブリ悪化や画像濃度低下の無い優れた画像品位を安定して得ることができる。
フルカラー画像形成装置の概略構成図である。 図1中の現像器の概略構成図である。 磁性キャリア、キャリアコアの比抵抗値を測定する装置の概略構成図である。 画像上に発生するゴーストの概念図である。
以下、本発明を詳細に説明する。
<磁性キャリア>
キャリアコアの表面を被覆する樹脂被覆層について説明する。
本発明においてキャリアコアの表面を被覆するのに用いられる被覆樹脂は、テトラヒドロフラン(THF)可溶分のTHF中でのサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwが5nm以上30nm以下であり、数平均分子量Mnが2.3×104以上1.0×105以下であることを特徴とする。
慣性半径Rwは高分子鎖の広がりを示している。詳細は明らかでないが、本発明者らが検討を行ったところ、この慣性半径Rwと数平均分子量Mnがキャリアへのコート性能に大きく関与していることが分かってきた。即ち、本発明のように適度な分子の広がりと分子量を有するものはキャリアコアへの密着性とコート安定性が高く、均一でクレータのないコート層を形成することができる。加えて、数平均分子量Mnが特定の値にあることで帯電の立ち上がりが早く、補給されたトナーが素早く立ち上がり、シャープな帯電量分布を維持することが出来る。これにより高温高湿環境下における高印字率画像耐久においてもカブリの悪化がない良好な画像が得られる。
慣性半径Rwが5nmより小さい場合には被覆樹脂の分子の広がりが小さく、分子鎖同士が絡み合う頻度が低いため、キャリアコアへの密着性が低くなる。また、高負荷現像においては樹脂被覆層の剥がれが発生してしまう。よって耐久試験におけるトリボ低下やリークが発生してしまう。
慣性半径Rwが30nmを超える場合には、分子鎖の広がりや絡み合いが大きくなりすぎて、キャリアコアへの均一コート性が低下してしまう。つまり、コート時にキャリア同士の凝集が発生し易くなり、それが分離した時の界面において一部コアが露出したクレータ状のリークポイント(以後クレータ)が多数形成されてしまう。このようなキャリアを使用すると、電荷の注入を受けやすくなるため、耐久初期から注入によりネガ化したキャリアが現像してしまう、所謂注入キャリ着が発生してしまう。また、もちろんこのようなキャリアは帯電付与能も低いため、特に高温高湿環境における耐久試験においては著しいトリボ低下を引き起こす。
また、数平均分子量Mnが2.3×104より小さい場合には、トナーの帯電の立ち上がりが遅くなる。特に、高印字耐久のように多量のトナーが補給される場合には、低トリボ成分が増加して帯電量分布がブロードになるため、カブリの悪化やトナー飛散による感光体汚染、画像不良が発生してしまう。
一方、数平均分子量Mnが1.0×105を超える場合には、分子量が大きすぎてワニスの粘度が高くなるため、コートの均一性が低下して、キャリア表面の平滑性が損なわれたり、クレータ数が増加して注入キャリ着が発生したりしてしまう。
また、本発明の樹脂被覆層を形成している樹脂は、THF可溶分のTHF中でのSEC−MALLS測定における慣性半径Rw(nm)と重量平均分子量Mwが下記式を満足することが好ましい。
2.0×10-4≦Rw/Mw≦1.0×10-3
慣性半径Rwと重量平均分子量Mwの関係はその分子の分岐度や架橋密度と深い関連性がある。Rw/Mwが2.0×10-4以上1.0×10-3以下の範囲にあることで、適度な剛性とカーボンブラックなどその他添加剤の分散性を高いレベルで保つことができる。そのため、高負荷現像方式での高温高湿環境における使用においても、コート剤の剥がれが無く高い現像性(帯電立ち上がりの速さ)を維持することができるため、ゴーストの発生を抑制することができる。また、カーボンブラックの分散性が良好となり、リークの発生も抑制される。
Rw/Mwが2.0×10-4以上であると、一定値以上の架橋点間距離を有すると考えられる。そのため、カーボンブラックなどの添加剤を分子中に保持することができ、分散性を高いレベルで保つことができる。一方、Rw/Mwが1.0×10-3以下であることで、一定以上の架橋構造を有するため、適度な剛性を保ち、コアへの密着性が高くなる。
本発明の樹脂被覆層を形成している樹脂は、少なくともマクロモノマーを含有する2種以上のモノマーを共重合することにより得られた樹脂を含有することが好ましい。マクロモノマーを共重合成分として用いることで、本発明の慣性半径Rwの範囲や慣性半径Rwと重量平均分子量Mwの比Rw/Mwの範囲を達成することが容易になる。このため、キャリアコアへの樹脂被覆層の密着性及びコート均一性を高めることができ、コート樹脂層の靭性、耐摩耗性が高くなる。更に、コート材にカーボンブラック等の微粒子を添加してもコート材から脱離し難くなる。
該マクロモノマーとしては、少なくともアクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、スチレン、アクリロニトリル、メタクリロニトリルから選ばれる1種又は2種以上のモノマーを重合することにより得られたマクロモノマーを使用することが好ましい。具体的には、下記式(A2)で表されるマクロモノマーである。
Figure 0005371584
(式中、Aはアクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、スチレン、アクリロニトリル、メタクリロニトリルから選ばれる1種又は2種以上のモノマーを重合することにより得られた重合体を示し、R3はHまたはCH3を示す。)
上記のような構造を有するマクロモノマーであると、他のモノマーとの共重合反応性が良好であるため好ましい。中でも、メタクリル酸メチルを重合することにより得られたマクロモノマーであると、トナーへの帯電付与能が高く、高温高湿環境下における長期使用においてもトナー帯電量低下を抑制することが出来るため特に好ましい。
マクロモノマー単体の重量平均分子量としては、3000以上20000以下が好ましい。密着性、耐久性をより向上させ、残留モノマーをさらに低減させるためには、重量平均分子量が4000以上15000以下であることがより好ましい。
また、上記マクロモノマーユニットの共重合体中の割合は、0.5質量%以上30.0質量%以下が好ましい。マクロモノマーユニットを0.5質量%以上30.0質量%以下の割合で含有することにより、本発明の慣性半径Rwの範囲や慣性半径Rwと重量平均分子量Mwの比Rw/Mwの範囲を達成することが容易になり、均一被覆性が高まるため好ましい。
本発明の樹脂被覆層を形成している樹脂は、少なくとも該マクロモノマーと下記式(A1)で表されるモノマーとを共重合することにより得られた樹脂であることが好ましい。
Figure 0005371584
(式中、R1は炭素数4以上22以下の炭化水素基を示し、R2はHまたはCH3を示す。)
式(A1)で示される構造を有するモノマーを共重合成分として用いることで、得られる樹脂の結晶性が高まり、トナーとの離型性を高めることができる。そして、トナーへの素早い帯電付与が可能となり高現像性を得ることができるため、高温高湿環境下における長期使用においてもゴーストの発生を抑制することが出来るので好ましい。また、式(A1)で示される構造を有するモノマーにおいてR1が炭素数4以上22以下であると、キャリアコアとの親和性が高いため非常に高いレベルで均一被覆される。そのため、高温高湿環境下における長期耐久においてもリークによる画像不良が発生しないので好ましい。
また、R1の炭素数4以上の炭化水素基としては、鎖状の炭化水素基であっても、環状の炭化水素基であってもよい。R1が炭素数4以上の炭化水素基を有する上記式(A1)で示される構造を有するモノマーとしては、例えば以下のものが挙げられる。アクリル酸ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸ドデシル、アクリル酸トリデシル、アクリル酸テトラデシル、アクリル酸ペンタデシル、アクリル酸ヘキサデシル、アクリル酸ヘプタデシル、アクリル酸ステアリル、アクリル酸シクロブチル、アクリル酸シクロペンチル、アクリル酸シクロヘキシル、アクリル酸シクロヘプチル、アクリル酸ジシクロペンテニル、アクリル酸ジシクロペンタニル、アクリル酸イソボルニル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ドデシル、メタクリル酸トリデシル、メタクリル酸テトラデシル、メタクリル酸ペンタデシル、メタクリル酸ヘキサデシル、メタクリル酸ヘプタデシル及びメタクリル酸オクタデシル、メタクリル酸シクロブチル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンテニル及びメタクリル酸ジシクロペンタニル等が挙げられ、これらのモノマーから1種あるいは2種以上を選択してもよい。
尚、式(A1)で示される構造を有するモノマーは、共重合体においては以下のユニットとして存在する。
Figure 0005371584
(式中、R1は炭素数4以上22以下の炭化水素基を示し、R2はHまたはCH3を示す。)
本発明の樹脂被覆層を形成している樹脂は、少なくともマクロモノマーと前記式(A1)で表されるモノマーとメタクリル酸メチルモノマーとを共重合することにより得られた樹脂であることが好ましく、さらには、共重合体中のメタクリル酸メチルモノマーユニットの割合が1質量%以上50質量%以下の樹脂であることが好ましい。
共重合体中にメタクリル酸メチルモノマーユニットを1質量%以上の割合で含有することでトナーへの帯電付与能が高く、高温高湿環境下においてもトナー帯電量低下を抑制することが出来る。さらに、上記マクロモノマーや前記式(A1)で表されるモノマーとの共重合反応性も高いので、マクロモノマーが分子鎖中に均一に組み込まれた被覆樹脂を得ることができる。このような樹脂であると、カーボンブラックなどの添加剤の分散性が非常に良好なものとなり、トナー帯電量の環境変動を抑えることが出来るために好ましい。
また、共重合体中のメタクリル酸メチルモノマーユニットの割合が50質量%以下であることで、上記マクロモノマーユニットや前記式(A1)で表されるモノマーユニットが共重合体中で相当量存在することになる。そのため、本発明のRwや好ましいRw/Mwの値を得ることが容易になり、また被覆樹脂の離型性を高めることができるので好ましい。
本発明において用いられる被覆樹脂は、従来公知の重合方法により得ることができる。具体的には、乳化重合、懸濁重合、分散重合、溶液重合法等が挙げられる。
本発明の被覆樹脂の慣性半径Rwや数平均分子量Mn、重量平均分子量Mwを得るためには、被覆樹脂の分子量分布や構造、使用するアクリルモノマーやマクロモノマーの種類や比率、または用いる開始剤の種類や添加量、重合温度を調整することで可能となる。特に、本発明の数平均分子量Mnの範囲を得るためには、得られた共重合樹脂ワニスをメタノールや水などの極性溶媒に再沈殿させて、低分子量成分を除去する工程を追加したり、重合開始剤を追加添加、もしくは追加添加と共に重合温度を上げる工程を追加したりすることが好ましい。
本発明の樹脂被覆層は、被覆樹脂中にカーボンブラックが含有されていることが好ましい。カーボンブラックは、その高い導電性を有するため、電子写真用キャリアの比抵抗を適宜コントロールすることができる。その結果トナーが現像した後のカウンターチャージを逃がし現像性を高めることができ、また、放置後のトナー帯電量の減衰を抑えることができる。さらには、カーボンブラックを添加することでフィラー効果が発現し、樹脂被覆層に剛性と弾性を付与することができるため好ましい。
本発明で使用するカーボンブラックの比表面積は30m2/g以上200m2/g以下であることが好ましく、さらには40m2/g以上150m2/g以下であることが好ましい。また、1次粒子径が10nm以上55nm以下であることが好ましく、さらには15nm以上50nm以下であることが好ましい。
比表面積は30m2/g未満である場合、カーボンブラックが被覆樹脂から脱離し易くなる。200m2/gを超えると被覆樹脂が脆くなり、コート剥がれ等を起こし易くなる。
一次粒子径が10nmより小さいと、均一な分散が困難であり、磁性キャリアの抵抗制御ができず良好な現像性が得られにくい。また、カーボンブラックの平均一次粒子径が55nmより大きい場合には、カーボンブラックの遊離が発生しやすい。
本発明の被覆樹脂中に含有されているカーボンブラックの分散径は、体積基準で0.10μm以上1.00μm以下であることが好ましい。測定方法は、まず磁性キャリアをトルエンに溶解させ、磁性キャリアから樹脂被覆層を溶出させる。そして、その溶出させた溶液をレーザー回折粒度分布測定機にてカーボンブラック粒子の粒度分布の測定を行う。
カーボンブラックの分散径が0.10μm未満である場合は、抵抗調整効果が少なく磁性キャリアの抵抗が高くなりやすく現像性が低下しやすくなる。また抵抗調整をするためには多量に添加することが必要になり、放置した際に帯電を顕著に漏えいしてしまい、カブリやトナー飛散が発生しやすくなる。また分散径が1.00μmより大きい場合は、カーボンブラック粒子の遊離が発生しやすく画像不良の原因となる。また充分なフィラー効果が得られ難い。さらに好ましい分散径の範囲は、0.20μm以上0.80μm以下である。
被覆樹脂に添加するカーボンブラックの含有量は、被覆樹脂100質量部に対して、0.1質量部以上20質量部以下であることが好ましい。0.1質量部未満ではカーボンブラック添加の効果が得られ難く、20質量部を超えるとカーボンブラックの脱離による色味低下の懸念がある。
その他、被覆樹脂にはトナーへの帯電付与能を高める、現像性を高めるといった目的で微粒子を含有させても良い。被覆樹脂層に含まれる微粒子としては、有機材料および無機材料のいずれの微粒子であってもよいが、被覆する際に、微粒子の形状を保持することができる強度を有している架橋樹脂微粒子或いは無機微粒子が好ましい。架橋樹脂微粒子を形成する架橋樹脂としては、架橋ポリメチルメタクリレート樹脂、架橋ポリスチレン樹脂、メラミン樹脂、グアナミン樹脂、尿素樹脂、フェノール樹脂及びナイロン樹脂が挙げられる。また、無機微粒子としては、シリカ、アルミナ、チタニア等が挙げられる。被覆層における該微粒子の含有量は、被覆樹脂100質量部に対して、0.1質量部以上10質量部以下であることが好ましい。
キャリコア表面への上記共重合体の被覆処理の方法については、特に制限されず、公知の方法で行うことができる。例えば、磁性キャリアコアとコート樹脂溶液を撹拌しながら溶剤を揮発させ、磁性キャリアコア表面にコート樹脂をコートする所謂浸漬法がある。具体的には、万能混合撹拌機(不二パウダル社製)、ナウターミキサ(ホソカワミクロン社製)等が挙げられる。また、流動層を形成しながらスプレーノズルからコート樹脂溶液を吹きつけ、磁性キャリアコア表面にコート樹脂をコートする方法もある。具体的には、スピラコーター(岡田精工社製)、スパイラフロー(フロイント産業社製)が挙げられる。また、コート樹脂を粒子の状態で磁性キャリアコアに対して、乾式でコートを行う方法もある。具体的には、ハイブリダイザー(奈良機械製作所社製)、メカノフュージョン(ホソカワミクロン社製)、ハイフレックスグラル(深江パウテック製)、シータ・コンポーザ(徳寿工作所社製)等の装置を用いた処理方法を挙げることができる。
次に、キャリアコアについて説明する。
キャリアコアは、マグネタイト粒子、フェライト粒子、磁性体分散型樹脂粒子等の公知の磁性粒子を用いることができる。中でも磁性体分散型樹脂粒子や中空形状またはポーラス形状を有しているフェライト粒子、或いは、このような形状を有するフェライト粒子の空隙に樹脂を含有させたものが、キャリアの真密度を低くできるために好適である。フェライト粒子の空隙に含有させる樹脂としては、コート樹脂として使用する共重合体樹脂を用いることもできるが、これに限らず、公知の樹脂を用いることができ、中でも熱硬化性樹脂であることが好ましい。キャリアの真密度を低くすることによって、トナーに対するストレスを軽減でき、トナースペントの発生を抑制できる。またドット再現性を改善することができ、高精細な画像を得ることができるようになる。
中空形状またはポーラス形状を有するフェライト粒子は、固め見掛け密度をρ1(g/cm3)、真密度をρ2(g/cm3)とした時、ρ1が0.80以上2.40以下であり、ρ1/ρ2が0.20以上0.42以下であることが好ましい。このような真密度に対する固め見掛け密度が大幅に小さい粒子は、粒子内部に空隙を多く有しているものと考えられる。このような構造を有する粒子では、空隙の存在によって電荷の流れが適度に制限され、現像性に優れたものとなる。
中空形状またはポーラス形状を有するフェライト粒子を得るためには、焼成時に温度を低めに調整して結晶の成長速度をコントロールする方法や発泡剤や有機微粒子の空孔形成剤を添加し空孔を生じさせる方法が挙げられる。また、焼成時の雰囲気を、低酸素濃度にコントロールする、キャリアコアの抵抗をコントロールし、現像性に優れたキャリアを得ることができる。
中空形状またはポーラス形状を有するフェライト粒子は、粒子内部の空隙にコート樹脂とは異なる樹脂成分を充填させ、それをキャリアコアとして用いることもできる。充填させる樹脂成分としては、フェライト成分に対する濡れ性が高いものであることが好ましく、熱可塑性樹脂や熱硬化性樹脂のどちらを用いてもかまわない。好ましくは、熱硬化性樹脂を用い、硬化させた状態での粒子に本発明の被覆樹脂をコートすることで、コート処理時の充填樹脂が表面に露出することなく、コートができる。中でも濡れ性が高い樹脂成分を用いた場合には、空隙の充填を容易に行うことができる。
熱可塑性樹脂としては、コート樹脂として用いる共重合体が好ましいが、それ以外にも例えば、以下のものが挙げられる。ポリスチレン、ポリメチルメタクリレート、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−ブタジエン共重合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ酢酸ビニル、ポリフッ化ビニリデン樹脂、フルオロカーボン樹脂、パーフルオロカーボン樹脂、溶剤可溶性パーフルオロカーボン樹脂、ポリビニルピロリドン、石油樹脂、ノボラック樹脂、飽和アルキルポリエステル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレートといった芳香族ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂。
熱硬化性樹脂としては、例えば、以下のものが挙げられる。フェノール樹脂、変性フェノール樹脂、マレイン樹脂、アルキド樹脂、エポキシ樹脂、アクリル樹脂、無水マレイン酸とテレフタル酸と多価アルコールとの重縮合によって得られる不飽和ポリエステル、尿素樹脂、メラミン樹脂、尿素−メラミン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂、メラミン−グアナミン樹脂、アセトグアナミン樹脂、グリプタール樹脂、フラン樹脂、シリコーン樹脂、ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂。
上記した樹脂の中でもシリコーン樹脂が特に好ましい。シリコーン樹脂としては、従来から知られているシリコーン樹脂が使用可能である。具体的には、オルガノシロキサン結合のみからなるストレートシリコーン樹脂、及び、該ストレートシリコーン樹脂をアルキッド、ポリエステル、エポキシ、ウレタンなどで変性したシリコーン樹脂が挙げられる。
中空形状またはポーラス形状を有するフェライト粒子の空隙に樹脂成分を充填する方法としては、樹脂成分を溶剤に希釈し、その希釈液中に多孔質磁性コア粒子に添加する方法が挙げられる。ここに用いられる溶剤は、各樹脂成分を溶解できるものであればよい。有機溶剤に可溶な樹脂である場合は、トルエン、キシレン、セルソルブブチルアセテート、メチルエチルケトン、メチルイソブチルケトン、メタノールの如き有機溶剤を用いればよい。また、水溶性の樹脂成分又はエマルジョンタイプの樹脂成分である場合には、水を用いればよい。前記多孔質磁性コア粒子内部に、溶剤で希釈された樹脂成分を添加させる方法としては、浸漬法、スプレー法、ハケ塗り法、流動床、及び混練法の如き塗布方法により樹脂成分を含浸させ、その後、溶剤を揮発させる方法が挙げられる。熱硬化性樹脂を充填する場合には、前記溶剤を揮発させた後、用いる樹脂の硬化する温度まで温度を上げて、硬化反応をさせた上で、コート処理を行うことが好ましい。
一方、磁性体分散型樹脂粒子の具体的な製造方法としては、以下の方法が挙げられる。例えば、鉄粉、マグネタイト粒子、フェライト粒子の如きサブミクロンの磁性体を熱可塑性樹脂中に分散させるように混練し、所望のキャリア粒径まで粉砕し、必要に応じて熱的または機械的な球形化処理を施して得ることができる。また、上記磁性体をモノマー中に分散させ、モノマーを重合して樹脂を形成することにより製造することも可能である。この場合の樹脂としては、ビニル樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリウレタン樹脂、ポリイミド樹脂、セルロース樹脂、シリコーン樹脂、アクリル樹脂及びポリエーテル樹脂の如き樹脂が挙げられる。樹脂は、一種であっても、二種以上の混合樹脂であってもよい。特に、フェノール樹脂は、キャリアコアの強度を高めるという点で好ましい。真密度や比抵抗の調整は、磁性体の量を調整することによって行うことができる。具体的には、磁性体粒子の場合、キャリアに対して70質量%以上95質量%以下添加することが好ましい。
磁性キャリアコアは、体積基準の50%粒径(D50)が18μm以上98μm以下であることがコート樹脂を均一にコートでき、キャリア付着防止及び高画質画像を得るための現像剤磁気ブラシの密度を適度にする上で好ましい。尚、磁性キャリアとしての好適な体積基準の50%粒径(D50)は、20μm以上100μm以下である。
磁性キャリアコアの比抵抗は、電界強度500V/cmにおける比抵抗値が1.0×103Ω・cm以上1.0×109Ω・cm以下であることが好ましい。現像性を高めることができるという点で、1.0×105Ω・cm乃至5.0×108Ω・cm以下であることがより好ましい。比抵抗値が上記の範囲にある場合、低電界強度においても良好な現像性が得られるようになる。
なお、キャリアコアの比抵抗値については、含有させるフェライト等の磁性体の比抵抗を調整したり、及び含有させる磁性体の量を変えたりすることによって調整することができる。
次に、磁性キャリアについて説明する。
磁性キャリアは、磁化の強さが1000/4π(kA/m)の磁界下で、40Am2/kg以上70Am2/kg以下であることが好ましい。より好ましくは45Am2/kg以上65Am2/kg以下、更に好ましくは45Am2/kg以上62Am2/kg以下である。磁性キャリアの磁化の強さが上記の範囲内にある場合には、現像スリーブへの磁気的拘束力が適度であるため、キャリア付着の発生をより良好に抑制できる。また、磁気ブラシ中でトナーに与えられるストレスを低減することができるため、トナーの劣化や他の部材に対する付着を良好に抑制できる。また、磁性キャリアの磁化の強さは、含有される樹脂量で適宜調整することができる。
また、キャリアの残留磁化は20.0Am2/kg以下であることが好ましく、5.0Am2/kg以下であることがより好ましい。また保磁力は20.0kA/m以下であることが好ましく、18.0kA/m以下であることが好ましい。キャリアの残留磁化及び保磁力が上記の範囲内である場合には、現像剤として特に良好な流動性が得られ、良好なドット再現性が得られる。
磁性キャリアは、真密度が2.5g/cm3以上4.2g/cm3以下であることが好ましく、3.2g/cm3以上4.0g/cm3以下であることがより好ましい。この範囲の真密度を有するキャリアを含む二成分系現像剤は、トナーへかかる負荷が少なく、キャリアへのトナースペントの発生が抑制される。また、低電界強度における良好な現像性とキャリア付着の防止を両立させるためにもこの範囲の真密度がキャリアにとって好ましい。
磁性キャリアは、体積基準の50%粒子径(D50)が20μm以上100μm以下であることが、トナーへの摩擦帯電付与能と画像領域へのキャリア付着の抑制と高画質化の観点から好ましい。より好ましくは25μm以上70μmである。
磁性キャリアの比抵抗は、電界強度500V/cmにおける比抵抗値が1.0×105Ω・cm以上1.0×1012Ω・cm以下であることが好ましい。現像性を高めることと、リークの発生を抑制できるという点で、1.0×108Ω・cm乃至1.0×1011Ω・cm以下であることがより好ましい。比抵抗値が上記の範囲にある場合、低電界強度においても良好な現像性が得られるようになる。
なお、磁性キャリアの比抵抗値については、含有させるカーボンブラック等の無機微粒子あるいは架橋樹脂微粒子の添加量を変えることによって調整することができる。
<トナー>
次に、二成分系現像剤に磁性キャリアと共に含有されるトナーについて説明する。
トナーは、重量平均粒径(D4)が3.0μm以上8.0μm以下であることが高画質及び耐久性を両立するために好ましい。重量平均粒径(D4)が上記の範囲内にある場合には、トナーの流動性が良好であり、十分な帯電量を得やすく、また、良好な解像度を得やすい。
トナーは、平均円形度が0.940以上1.000以下であることが好ましい。トナーの平均円形度が上記の範囲内にある場合には、キャリアとトナーとの離型性が良好となる。また、良好なクリーニング性が得られやすい。尚、平均円形度は、フロー式粒子像測定装置によって計測された粒子の円形度を、円形度範囲0.20乃至1.00を800分割したチャンネルに振り分けて解析した円形度分布に基づくものである。フロー式粒子像測定装置としては、一視野が512画素×512画素であり、1画素あたり0.37μm×0.37μmの解像度である装置を用いた。
重量平均粒径が上記範囲であり、平均円形度が上記範囲であるトナーと、本発明のコート樹脂を被覆したキャリアとを併用することにより、現像剤としての流動性を適度にコントロール出来る。その結果、現像剤担持体上における二成分系現像剤の搬送性が良好となり、また、キャリアからのトナー離れが良好となり、優れた現像性が得られるようになる。粒径が大きく、円形度の高いトナーと用いた場合には、トナーとキャリア間の離型性が高くなりすぎるために、現像剤担持体上で現像剤がスリップして、搬送不良をおこしやすくなる場合がある。また、粒径が小さく、円形度の低いトナーとを用いた場合には、トナーとキャリアとの付着力が高すぎるために本発明の被覆樹脂であっても現像性が低下する場合がある。
また、トナーは、結着樹脂と着色剤を含有するトナー粒子を有するものが用いられる。
トナー粒子に含有される結着樹脂としては、例えば、以下のものが挙げられる。ポリエステル、ポリスチレン;ポリ−p−クロルスチレン、ポリビニルトルエンの如きスチレン誘導体の重合体;スチレン−p−クロルスチレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体の如きスチレン共重合体;ポリ塩化ビニル、フェノール樹脂、変性フェノール樹脂、マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂;脂肪族多価アルコール、脂肪族ジカルボン酸、芳香族ジカルボン酸、芳香族ジアルコール類及びジフェノール類から選択される単量体を構造単位として有するポリエステル樹脂;ポリウレタン樹脂、ポリアミド樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油樹脂。
トナーは、粉砕法で製造されたものであっても、懸濁重合法や乳化凝集法といった水系媒質中でトナー粒子を製造する方法で得られたものであってもよい。
平均円形度が高いトナーを得るためには、懸濁重合法や乳化凝集法といった水系媒質中でトナー粒子を製造する方法を用いることが好ましい。
懸濁重合法を行う際に用いることのできる重合性単量体としては、例えば、以下のものが挙げられる。スチレン系モノマー、アクリル系モノマー、メタクリル系モノマー、エチレン不飽和モノオレフィレン類のモノマー、ビニルエステル類のモノマー、ビニルエーテル類のモノマー、ビニルケトン類のモノマー、N−ビニル化合物のモノマー、その他のビニルモノマー。
スチレン系モノマーとしては、例えば、以下のものが挙げられる。スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、3,4−ジクロルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン。
アクリル系モノマーとしては、例えば、以下のものが挙げられる。アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸ジメチルアミノエチル、アクリル酸フェニルの如きアクリル酸エステル類やアクリル酸及びアクリル酸アミド類。
また、メタクリル系モノマーとしては、例えば、以下のものが挙げられる。メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸−2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きメタクリル酸エステル類やメタクリル酸及びメタクリル酸アミド類。
エチレン不飽和モノオレフィレン類のモノマーとしては、例えば、エチレン、プロピレン、ブチレン、イソブチレンが挙げられる。
ビニルエステル類のモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニルが挙げられる。
ビニルエーテル類のモノマーとしては、例えば、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルが挙げられる。
ビニルケトン類のモノマーとしては、例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンが挙げられる。
N−ビニル化合物のモノマーとしては、例えば、N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドンが挙げられる。
その他のビニルモノマーとしては、例えば、ビニルナフタリン類、アクリロニトリル、メタクリロニトル、アクリルアミドの如きアクリル酸誘導体又はメタクリル酸誘導体が挙げられる。
これらのビニル系モノマーは単独で又は2つ以上を用いることができる。
ビニル系樹脂を製造する際に用いられる重合開始剤としては、例えば、以下のものが挙げられる。2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリルの如きアゾ系又はジアゾ系重合開始剤、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、ジ−t−ブチルペルオキシド、ジクシルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシド、2,2−ビス(4,4−t−ブチルペルオキシシクロヘキシル)プロパン、トリス−(t−ブチルペルオキシ)トリアジンの如き過酸化物系開始剤や過酸化物を側鎖に有する開始剤、過硫酸カリウム、過硫酸アンモニウムの如き過硫酸塩、過酸化水素。
また、ラジカル重合性の三官能以上の重合開始剤の例としては、例えば、トリス(t−ブチルパーオキシ)トリアジン、ビニルトリス(t−ブチルパーオキシ)シラン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジ−t−アミルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジ−t−オクチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)ブタンの如きラジカル重合性多官能重合開始剤が挙げられる。
本発明のトナーは離型剤を含有しても良く、例えば以下のものが使用可能である。低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合物、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックスの如き脂肪族炭化水素系ワックス、酸化ポリエチレンワックスの如き脂肪族炭化水素系ワックスの酸化物、またはそれらのブロック共重合物、カルナバワックス、モンタン酸エステルワックス、ベヘン酸ベヘニルの如き脂肪酸エステルを主成分とするワックス類、脱酸カルナバワックスの如き脂肪酸エステル類を一部又は全部を脱酸化したもの。
好適な離型剤としては、炭化水素系ワックス及びパラフィンワックスが挙げられる。トナーは示差走査熱量分析で得られるトナーの吸熱曲線において、温度30℃以上200℃以下の範囲に1つ又は2つ以上の吸熱ピークがあり、該吸熱ピーク中の最大吸熱ピークのピーク温度が50℃以上110℃以下にあることが好ましい。このような離型剤を用いた場合には、トナーとキャリアとの付着力が小さく、現像性に優れ、かつ低温定着性と耐久性に優れたトナーを得ることができる。
離型剤の含有量は、結着樹脂100質量部に対して1質量部以上15質量部以下であることが好ましく、3質量部以上10質量部以下であることがより好ましい。離型剤の含有量が上記範囲内であると、良好な離型性が得られるとともに磁性キャリアへの汚染性も抑制できる。
また、トナーは荷電制御剤を含有していてもよい。荷電制御剤としては、例えば、有機金属錯体、金属塩、及びキレート化合物が挙げられる。有機金属錯体としては、例えば、モノアゾ金属錯体、アセチルアセトン金属錯体、ヒドロキシカルボン酸金属錯体、ポリカルボン酸金属錯体、ポリオール金属錯体が挙げられる。その他には、カルボン酸の金属塩、カルボン酸無水物、エステル類の如きカルボン酸誘導体や芳香族系化合物の縮合体も挙げられる。また、ビスフェノール類、カリックスアレーンの如きフェノール誘導体も荷電制御剤として用いることができる。トナーの帯電立ち上がりを良好にする点から、中でも芳香族カルボン酸の金属化合物が、トナーの帯電の立ち上がりが良好になるという点で好ましい。
荷電制御剤の含有量は、結着樹脂100質量部に対して0.1質量部以上10.0質量部以下であることが好ましく、0.2質量部以上5.0質量部以下であることがより好ましい。荷電制御剤を上記の範囲内で用いた場合には、高温高湿から低温低湿までの環境において安定した摩擦帯電を行うことができる。
二成分系現像剤におけるトナーの摩擦帯電量は、絶対値が25mC/kg以上65mC/kg以下であることが好ましい。ここで規定する摩擦帯電量は、トナー濃度が3質量%以上20質量%以下となるように調製した現像剤をポリ瓶に入れ、ターブラーミキサーや各種振とう機により、2分間混合した際の帯電量である。上記の範囲であれば、高画質な画像を得やすく、カブリのない画像を得えられやすい。
トナーに含有される着色剤としては、以下のものが挙げられる。
黒色着色剤としては、カーボンブラック;磁性体;イエロー着色剤とマゼンタ着色剤及びシアン着色剤とを用いて黒色に調色したものが挙げられる。
着色剤には、顔料を単独で使用してもかまわないが、染料と顔料とを併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
マゼンタトナー用着色顔料としては、以下のものが挙げられる。C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48、49、50、51、52、53、54、55、57、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、163、202、206、207.209、238;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35。
マゼンタトナー用染料としては、以下のものが挙げられる。C.I.ソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109、121;C.I.ディスパースレッド9;C.I.ソルベントバイオレット8、13、14、21、27;C.I.ディスパーバイオレット1の如き油溶染料、C.I.ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39、40;C.I.ベーシックバイオレット1、3、7、10、14、15、21、25、26、27、28の如き塩基性染料。
シアントナー用着色顔料としては、以下のものが挙げられる。C.I.ピグメントブルー2、3、15:3、15:4、16、17;C.I.バットブルー6;C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチル基を1乃至5個置換した銅フタロシアニン顔料。
イエロー用着色顔料としては、以下のものが挙げられる。C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、185;C.I.バットイエロー1、3、20。
イエロー用着色染料としては、C.I.ソルベントイエロー162が挙げられる。
着色剤の使用量は、結着樹脂100質量部に対して、好ましくは0.1乃至30質量部であり、より好ましくは0.5乃至20質量部であり、最も好ましくは3乃至15質量部である。
トナーには、トナーとキャリアとの離型性を高めるためのスペーサー粒子として、個数分布基準の最大ピーク粒径80nm以上200nm以下のシリカ粒子が外添されることが好ましい。スペーサー粒子として機能させつつ、トナーからの脱離をより良好に抑制するためには、100nm以上150nm以下であることがより好ましい。
また、トナーの流動性を改善させるためには、個数分布基準の最大ピーク粒径が20nm以上50nm以下の無機微粒子を含有させることが好ましく、両者を併用することも好ましい形態である。
更に、流動性や転写性の向上を狙って、トナー粒子にその他の外添剤が添加されていてもよい。トナー粒子表面に外添される外添剤は、酸化チタン、酸化アルミナ、シリカの如き無機微粒子を含むことが好ましく、複数の種類を併用しても良い。
該外添剤の総含有量は、トナー粒子100質量部に対して、0.3質量部以上5.0質量部以下であることが好ましく、0.8質量部以上4.0質量部以下であることがより好ましい。その中で個数分布基準の最大ピーク粒径80nm以上200nm以下のシリカ粒子の含有量は、0.1質量部以上2.5質量部以下、より好ましくは、0.5質量部以上2.0質量部以下である。この範囲内であれば、スペーサー粒子として効果がより顕著となる。
また、外添剤として用いられるシリカ粒子や無機微粒子の表面は、疎水化処理をされていることが好ましい。疎水化処理は、各種チタンカップリング剤、シランカップリング剤の如きカップリング剤;脂肪酸及びその金属塩;シリコーンオイル;またはそれらの組み合わせによってなされることが好ましい。
チタンカップリング剤としては、例えば、以下のものが挙げられる。テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート。
また、シランカップリング剤としては、例えば、以下のものが挙げられる。γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン。
脂肪酸としては、例えば、以下のものが挙げられる。ウンデシル酸、ラウリン酸、トリデシル酸、ドデシル酸、ミリスチン酸、パルミチン酸、ペンタデシル酸、ステアリン酸、ヘプタデシル酸、アラキン酸、モンタン酸、オレイン酸、リノール酸、アラキドン酸の如き長鎖脂肪酸。それらの脂肪酸金属塩の金属としては、例えば、亜鉛、鉄、マグネシウム、アルミニウム、カルシウム、ナトリウム、リチウムが挙げられる。
シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アミノ変性シリコーンオイルが挙げられる。
疎水化処理は、被処理粒子に対して1質量%以上30質量%以下(より好ましくは3質量%以上7質量%以下)の疎水化処理剤を被処理粒子に添加して、被処理粒子を被覆することにより行われることが好ましい。
疎水化処理された外添剤の疎水化の程度は特に限定されないが、例えば、処理後の疎水化度が40以上98以下であることが好ましい。疎水化度とは、試料のメタノールに対する濡れ性を示すものであり、疎水性の指標である。
本発明の二成分系現像剤においては、上記トナーと上記磁性キャリアの混合比率は磁性キャリア100質量部に対して、トナーは2質量部以上35質量部以下の範囲で使用することが好ましい。より好ましくは4質量部以上25質量部以下であり、特に好ましくは5質量部以上20質量部以下である。2質量部未満では画像濃度が低下しやすく、35質量部を超えるとカブリや機内飛散が発生しやすい。
本発明の補給用現像剤は、少なくとも上記トナー及び上記磁性キャリアを含有することを特徴とする。上記補給用現像剤は、該補給用現像剤を現像器に補給しながら現像し、且つ少なくとも現像器内部で過剰になった磁性キャリアを現像器から排出する二成分現像剤方法に使用できる。
上記補給用現像剤は、現像剤の耐久性を高めるという観点から、上記磁性キャリア1質量部に対して上記トナーを2質量部以上50質量部以下の配合割合で含有させることを特徴とする。
上記補給用現像剤において、磁性キャリア1質量部に対しトナーの含有量が2質量部未満であると、特に印刷濃度の高い画像を高速で印刷した場合に補給用現像剤を多量に補給することが必要になる。その結果、補給用現像剤と現像器中の現像剤が十分に混合しないうちに現像に使用され、トナーの帯電が不均一になりやすく、その結果、画質が低下することがある。また、排出される現像剤量が多くなってしまう。
また、磁性キャリア1質量部に対しトナーが50質量部より多く含有されると、劣化した磁性キャリアが排出されずに長期間使用され、磁性キャリアの劣化が進行し画像が低下することがある。
上記現像器に最初に充填される二成分現像剤及び上記補給用現像剤に用いる、上記トナー及び上記磁性キャリアは、それぞれ同一であっても異なっていてもかまわない。
次に本発明の補給用現像剤を用いる現像装置を備えた画像形成装置について例を挙げて説明するが、本発明の現像方法に使用される現像装置はこれに限るものではない。
図1は、本発明の画像形成方法をフルカラー画像形成装置に適用した概略図を示す。補給用現像剤に含有されるキャリアによって増量した余剰キャリアは、容量UP分がオーバーフローして現像剤回収オーガに取り込まれ、補給用現像剤容器あるいは別の回収容器へ搬送される。
フルカラー画像形成装置本体には、第1画像形成ユニットPa、第2画像形成ユニットPb、第3画像形成ユニットPc及び第4画像形成ユニットPdが併設され、各々異なった色の画像が潜像形成、現像、転写のプロセスを経て転写材上に形成される。
画像形成装置に併設される各画像形成ユニットの構成について第1の画像形成ユニットPaを例に挙げて説明する。
第1の画像形成ユニットPaは、静電潜像担持体としての直径30mmの感光体61aを具備し、この感光体61aは矢印a方向へ回転移動される。帯電手段としての一次帯電器62aは、直径16mmのスリーブの表面に形成された帯電用磁気ブラシが感光体61aの表面に接触するように配置されている。レーザー光67aは、一次帯電器62aにより表面が均一に帯電されている感光体61aに静電潜像を形成するために、図示されていない露光装置により照射される。感光体61a上に担持されている静電潜像を現像してカラートナー像を形成するための現像手段としての現像装置63aは、カラートナーを保持している。転写手段としての転写ブレード64aは、感光体61aの表面に形成されたカラートナー像をベルト状の転写材担持体68によって搬送されて来る転写材(記録材)の面に転写する。この転写ブレード64aは、転写材担持体68の裏面に当接して転写バイアスを印加し得るものである。
第1の画像形成ユニットPaは、一次帯電器62aによって感光体61aを均一に一次帯電した後、露光装置67aにより感光体に静電潜像を形成し、現像装置63aで静電潜像をカラートナーを用いて現像し、この現像されたトナー像を第1の転写部(感光体と転写材の当接位置)で転写材を担持搬送するベルト状の転写材担持体68の裏面側に当接する転写ブレード64aから転写バイアスを印加することによって転写材の表面に転写する。
現像によりトナーが消費され、T/C比が低下すると、その低下をコイルのインダクタンスを利用して現像剤の透磁率の変化を測定するトナー濃度検知センサー85で検知し、消費されたトナー量に応じて補給用現像剤容器65aから補給用現像剤を補給する。なお、トナー濃度検知センサー85は図示されないコイルを内部に有している。
本画像形成装置は、第1の画像形成ユニットPaと同様の構成で、現像装置に保有されるカラートナーの色の異なる第2の画像形成ユニットPb、第3の画像形成ユニットPc、第4の画像形成ユニットPdの4つの画像形成ユニットを併設するものである。例えば、第1の画像形成ユニットPaにイエロートナー、第2の画像形成ユニットPbにマゼンタトナー、第3の画像形成ユニットPcにシアントナー、及び第4の画像形成ユニットPdにブラックトナーをそれぞれ用い、各画像形成ユニットの転写部で各カラートナーの転写材上への転写が順次行なわれる。この工程で、レジストレーションを合わせつつ、同一転写材上に一回の転写材の移動で各カラートナーは重ね合わせられ、終了すると分離帯電器69によって転写材担持体68上から転写材が分離され、搬送ベルトの如き搬送手段によって定着装置70に送られ、ただ一回の定着によって最終のフルカラー画像が得られる。
定着装置70は、一対の直径40mmの定着ローラ71と直径30mmの加圧ローラ72を有し、定着ローラ71は、内部に加熱手段75及び76を有している。
転写材上に転写された未定着のカラートナー像は、この定着装置70の定着ローラ71と加圧ローラ72との圧接部を通過することにより、熱及び圧力の作用により転写材上に定着される。
図1において、転写材担持体68は、無端のベルト状部材であり、このベルト状部材は、80の駆動ローラによって矢印e方向に移動するものである。他に、転写ベルトクリーニング装置79、ベルト従動ローラ81であり、ベルト除電器82を有し、一対のレジストローラ83は転写材ホルダー内の転写材を転写材担持体68に搬送するためものである。
転写手段としては、転写材担持体の裏面側に当接する転写ブレードに代えて、ローラ状の転写ローラの如き転写材担持体の裏面側に当接して転写バイアスを直接印加可能な接触転写手段を用いることが可能である。
さらに、上記の接触転写手段に代えて一般的に用いられている転写材担持体の裏面側に非接触で配置されているコロナ帯電器から転写バイアスを印加して転写を行う非接触の転写手段を用いることも可能である。しかしながら、転写バイアス印加時のオゾンの発生量を制御できる点で接触転写手段を用いることが、より好ましい。
図2では余剰キャリアの回収方法について説明する。
上記のような複写動作が繰り返されると、図2の現像器内の現像槽17内に収納されている現像剤中のトナーは徐々に消費され、キャリアに対するトナーの比率、すなわちトナー濃度が低下していく。このトナー濃度の変化は、図示しないトナー濃度センサーによりトナー濃度が現像に必要な適性範囲内に常に入るようにフィードバック制御される。上記制御によりトナー補給部9の補給口から、現像器内の現像槽17に供給される。
一方、現像槽17内の現像剤中のキャリアは、現像により消費されることはなく、現像槽17内でのトナーと一緒に撹拌され、マグネットロールの磁力、および静電潜像担持体との接触等の影響により、徐々に表面等が汚染されて劣化していく。このようにキャリアが劣化していくと、トナーに所定の帯電量を付与し得なくなり、画質の低下を生じることになる。そこで、上記の現像器内の消費されない劣化したキャリアを新しいキャリアと置換する必要がある。図2では新しいキャリアを現像装置内に補給する手段として、現像により消費されたトナーを補給するためのトナーカートリッジの中に補給用キャリアを混合した現像剤を入れる。そして、トナー補給部9の補給口から、各々の現像器63a、63b、63c、63dに補給する。
過剰になったキャリアは、下記のように現像器側現像剤排出口より排出される。
図1の現像器63a、63b、63c、63dが感光体61a、61b、61c、61dに対向し、現像動作を行っている位置で、現像器に設けられた現像器側現像剤排出口34から溢出した現像剤は、連通管36内を移動し、現像剤回収口35から排出される。
本発明の現像方法としては、具体的には、現像剤担持体に交流電圧を印加して、現像領域に交番電界を形成しつつ、磁気ブラシが感光体に接触している状態で現像を行うことが好ましい。現像剤担持体(現像スリーブ)6と感光ドラムの距離(S−D間距離)は、100乃至1000μmであることがキャリア付着防止及びドット再現性の向上において良好である。100μmより狭いと現像剤の供給が不十分になりやすく、画像濃度が低くなり、1000μmを超えると磁極S1からの磁力線が広がり磁気ブラシの密度が低くなり、ドット再現性に劣ったり、磁性コートキャリアを拘束する力が弱まりキャリア付着が生じやすくなる。
交番電界のピーク間の電圧は300乃至3000Vが好ましく、周波数は500乃至10000Hz、好ましくは1000乃至7000Hzであり、それぞれプロセスにより適宜選択して用いることができる。この場合、交番電界を形成するための交流バイアスの波形としては三角波、矩形波、正弦波、あるいはDuty比を変えた波形が挙げられる。ときにトナー像の形成速度の変化に対応するためには、非連続の交流バイアス電圧を有する現像バイアス電圧(断続的な交番重畳電圧)を現像剤担持体に印加して現像を行うことが好ましい。印加電圧が300Vより低いと十分な画像濃度が得られにくく、また非画像部のカブリトナーを良好に回収することができない場合がある。また、3000Vを超える場合には磁気ブラシを介して、潜像を乱してしまい、画質低下を招く場合がある。
良好に帯電したトナーを有する二成分系現像剤を使用することで、カブリ取り電圧(Vback)を低くすることができ、感光体の一次帯電を低めることができるために感光体寿命を長寿命化できる。Vbackは、現像システムにもよるが200V以下、より好ましくは150V以下が良い。コントラスト電位としては、十分画像濃度が出るように100乃至400Vが好ましく用いられる。
また、周波数が500Hzより低いと、プロセススピードにも関係するが、静電潜像担持体に接触したトナーが現像スリーブに戻される際に、十分な振動が与えられずカブリが生じやすくなる。10000Hzを超えると、電界に対してトナーが追随できず画質低下を招きやすい。
感光体の構成としては、通常、画像形成装置に用いられる感光体と同じで良く、例えば、アルミニウム、SUS等の導電性基体の上に、順に導電層、下引き層、電荷発生層、電荷輸送層、必要に応じて電荷注入層を設ける構成の感光体が挙げられる。導電層、下引き層、電荷発生層、電荷輸送層は、通常、感光体に用いられるもので良い。感光体の最表面層として、例えば電荷注入層あるいは保護層を用いてもよい。
上記磁性キャリア及びトナーの各種物性の測定法について以下に説明する。
<被覆樹脂の慣性半径Rw、数平均分子量Mn、重量平均分子量Mw>
本発明の被覆樹脂0.04gをTHF20mlに分散し溶解後、24時間静置した後、0.2μmフィルターで濾過し、その濾過を試料として用いる。
[分析条件]
分離カラム:Shodex KF−807+KF−805+KF−803+KF−G
カラム温度:40℃
移動相溶媒:THF
移動相流速:1.0ml/min.
試料濃度 :約0.2%
注入量 :400μl
検出器1 :多角度光散乱検出器 Wyatt DAWN EOS
検出器2 :示差屈折率検出器 Shodex RI−71
[測定理論]
LS=(dn/dc)2×C×Mw×KLS
LS:検出器の測定電圧値(V)
dn/dc:試料1gあたりの屈折率の増分(ml/g)
本発明ではポリスチレンの文献値から0.185ml/gとした。
C:濃度(g/ml)
KLS:測定電圧と散乱強度(還元レイリー比)の係数(装置定数)
SEC−MALLSでは、SECカラムの分子篩いにより分子サイズで分離され、絶対分子量(Mn及びMw)と濃度(C)が刻々変化し溶出されてくるため別途濃度検出器をMALLSと組み合わせ測定する必要がある。その信号強度を濃度Cに換算し分子量(Mn及びMw)を求める。本発明では、濃度検出器として示差屈折率検出器(RI)を使用し、RI検出器の信号強度(RI)を濃度(C)に換算し用いる。
RI=(dn/dc)×C×KRI
KRI:測定電圧と屈折率の係数(RI定数:ポリスチレン標準にて校正)
分子サイズ〔慣性半径(Rw)〕はDebye Plotにより算出した。
<磁性キャリア表面のクレータ数>
磁性キャリア表面のクレータ数は、SEM観察により測定することができる。
加速電圧2.0kV、倍率500倍で磁性キャリアのSEM撮影を4視野行う。観察される磁性キャリアの個数と、磁性キャリア表面に存在するクレータ状の凹凸(クレータ)の個数をそれぞれカウントし、磁性キャリア100個中に存在するクレータ数を算出する。
<磁性キャリアから被覆樹脂を分離する方法>
キャリア10gをトルエン50mlが入ったビーカーに入れる。そして、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機「VS−150」(ヴェルヴォクリーア社製)を用いて2分間分散処理を行った。その後、キャリアコアが流れないようにキャリアコアを磁石で固定しながら、上澄み液のみを取り分ける。この操作を5回以上繰り返し、集めた上澄み液をエバポレーターで減圧留去した後、50℃で窒素フローしている乾燥機に入れて3時間乾燥させ、樹脂固形物を得る。その後、得られた樹脂固形物をアセトン8mlに溶解し、5000rpmで10分間遠心分離を行って上澄み液のみを取り出し、カーボンブラックなどの添加物を除去する。得られた上澄み液をエバポレーターで減圧留去し、50℃で窒素フローしている乾燥機に入れて24時間乾燥させて、被覆樹脂を得た。
<磁性キャリアからキャリアコアを分離する方法>
キャリア10gをトルエン50mlが入ったビーカーに入れる。そして、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機「VS−150」(ヴェルヴォクリーア社製)を用いて2分間分散処理を行った。その後、キャリアコアが流れないように、キャリアコアを磁石で固定しながら、上澄み液を取り除いた。この操作を5回以上繰り返し、その後、50℃で窒素フローしている乾燥機に入れて24時間乾燥させ、キャリアコアを得た。
<被覆樹脂中のカーボンブラック分散径>
磁性キャリア0.5gに対して、トルエンを50ml加えて発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機(例えば「VS−150」(ヴェルヴォクリーア社製など)を用いて2分間分散処理を行いカーボンブラック粒子を溶出させる。キャリアコアを磁石で固定しながら上澄み液のみを取分ける。この上澄み液を極小容量試料循環器を取り付けたマイクロトラック粒度分布測定装置MT3000(日機装)にて測定を行った。
<キャリア及びキャリアコアの比抵抗>
本発明に用いられる磁性キャリアの比抵抗は、図3に概略される測定装置を用いて測定される。抵抗測定セルEに磁性キャリア47を充填し、充填された磁性キャリアに接するように下部電極41および上部電極42を配し、これらの電極間に電圧を印加し、そのときに流れる電流を測定することによって磁性キャリアの比抵抗を求める。
サンプル量を10.0g測りとり、サンプルを抵抗測定セルに充填し、サンプルの厚みdを正確に測定した。電圧の印加条件は、印加条件I、II、IIIの順に印加し、印加条件IIIでの印加電圧での電流を測定した。その後、それぞれの電界強度(V/cm)における比抵抗(Ω・cm)を下記計算式により求めた。印加条件IIIの時の電界強度100V/cm(即ち、印加電圧/d=100(V/cm)になる時)における比抵抗を、多孔質磁性コア粒子の比抵抗とした。
印加条件I:(0Vから500Vに変更:30秒おき100Vずつステップ状に増大)
II:(500Vで30秒ホールド)
III:(500Vから0Vに変更:30秒おき100Vずつステップ状に減少)
磁性キャリアの比抵抗の測定条件は、磁性キャリアと電極との接触面積S=2.4cm2、上部電極の荷重240gとした。サンプル量を1.0g測りとり、サンプルを抵抗測定セルに充填し、サンプルの厚みdを正確に測定した。電圧の印加条件は、印加条件I、II、IIIの順に印加し、印加条件IIIの印加電圧での電流を測定した。その後、それぞれの電界強度(V/cm)における比抵抗(Ω・cm)を下記計算式により求めた。印加条件IIIの時の電界強度3000V/cm(即ち、印加電圧/d=3000(V/cm)になる時)における比抵抗を、磁性キャリアの比抵抗とした。
印加条件I:(0Vから1000Vに変更:30秒おき200Vずつステップ状に増大)
II:(1000Vで30秒ホールド)
III:(1000Vから0Vに変更:30秒おき200Vずつステップ状に減少)
式):比抵抗(Ω・cm)=(印加電圧(V)/測定電流(A))×S(cm2)/d(cm)
上記式中、“印加電圧(V)/d(cm)”の値は、多孔質磁性コア粒子の測定においては100(V/cm)であり、キャリアの測定においては3000(V/cm)である。
<磁性キャリアの磁化の強さの測定方法>
磁性キャリアの磁化の強さは、振動磁場型磁気特性測定装置(Vibrating sample magnetometer)や直流磁化特性記録装置(B−Hトレーサー)で求めることが可能である。後述の実施例においては、振動磁場型磁気特性測定装置BHV−30(理研電子(株)製)で以下の手順で測定した。
円筒状のプラスチック容器にキャリアを十分に密に充填したものを試料として用い、1000/4π(kA/m)の外部磁場における磁化モーメントを測定した。また、該容器に充填したキャリアの実際の質量を測定した。これらより、キャリアの磁化の強さ(Am2/kg)、残留磁化(Am2/kg)、保磁力(kA/m)を求めた。
<磁性キャリアの体積分布基準50%粒径(D50)、及び100μm以上の割合(体積%)の測定方法>
粒度分布測定は、マイクロトラックMT3300EX(日機装社製)にて測定を行った。測定には、乾式測定用のTurbotrac試料供給機を装着して行った。
<磁性キャリアおよびキャリアコアの真密度の測定方法>
真密度は、乾式自動密度計オートピクノメータ(ユアサアイオニクス社製)を用いて測定した。
<キャリアコアの固め見掛け密度の測定方法>
i)中空形状またはポーラス形状を有するフェライト粒子の場合
試料として中空形状またはポーラス形状を有するフェライト粒子を用意できる場合にはそれを測定試料として用い、磁性キャリアしかない場合には、以下の方法でフェライト粒子を取り出して用いる。
磁性キャリアを10.0g準備し、るつぼ中に入れる。N2ガス導入口、排気装置ユニットを装着したマッフル炉(FP−310、ヤマト科学製)を用い、N2ガスを導入しながら、900℃で16時間加熱した。その後、磁性キャリアの温度が50℃以下になるまで放置した。
50mlのポリ瓶中に加熱後の磁性キャリアを入れ、ドデシルベンゼンスルホン酸ナトリウムを0.2g、水を20g加え、磁性キャリアに付着しているスス等を洗浄した。この時、磁性キャリアが流れないようにするために、磁石で固定して行った。また、アルキルベンゼンスルホン酸塩が試料に残らないように水で5回以上すすいだ。その後、60℃で24時間乾燥させた。以上のようにして、磁性キャリアからフェライト粒子を取り出した。
上記の如くして取り出したフェライト粒子を用いて、パウダーテスターPT−R(ホソカワミクロン社製)で、固め見掛け密度を測定した。
測定においては、目開き500μmの篩を用いて、振幅を1mmで振動させながら、ちょうど10mlとなるまでフェライト粒子を補給しつつ、金属性カップを振幅18mmにて上下往復180回タッピングした。そして、タッピング後のキャリアコア粒子質量から、固め見掛け密度(g/cm3)を計算した。
ii)中空形状またはポーラス形状を有するフェライト粒子以外の場合
試料としてキャリアコアを用意できる場合にはそれを測定試料として用い、樹脂コートされた磁性キャリアしかない場合には、以下の方法でコート樹脂を除去し、キャリアコアを取り出して用いる。
磁性キャリアを10g準備し、ビーカーにトルエンを50ml入れ、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機「VS−150」(ヴェルヴォクリーア社製)を用いて2分間分散処理を行った。次いで、キャリアコアが流れないように磁石で固定しながら、溶解されたコート樹脂を含む上澄み液を取り除いた。これらの操作を5回以上繰り返し、上澄み液が透明になることを確認した。その後、50℃で窒素フローしている乾燥機に入れ、24時間乾燥させてキャリアコアを得た。
上記の如くして取り出したキャリアコアを用いて、i)の場合と同様にして硬め見掛け密度(g/cm3)を測定した。
<キャリアコアのゆるみ見掛け密度の測定方法>
固め見掛け密度の測定と同様にしてキャリアコアを分離した後、JIS−Z2504に準じ、測定を行う。
<トナーの重量平均粒径(D4)の測定方法>
トナーの重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように専用ソフトの設定を行った。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力が120Wである超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
<トナーの平均円形度の測定方法>
トナーの平均円形度は、フロー式粒子像分析装置「FPIA−3000型」(シスメックス社製)によって、校正作業時の測定・解析条件で測定できる。
フロー式粒子像分析装置「FPIA−3000型」(シスメックス社製)の測定原理は、流れている粒子を静止画像として撮像し、画像解析を行うというものである。試料チャンバーへ加えられた試料は、試料吸引シリンジによって、フラットシースフローセルに送り込まれる。フラットシースフローに送り込まれた試料は、シース液に挟まれて扁平な流れを形成する。フラットシースフローセル内を通過する試料に対しては、1/60秒間隔でストロボ光が照射されており、流れている粒子を静止画像として撮影することが可能である。また、扁平な流れであるため、焦点の合った状態で撮像される。粒子像はCCDカメラで撮像され、撮像された画像は512×512の画像処理解像度(一画素あたり0.37×0.37μm)で画像処理され、各粒子像の輪郭抽出を行い、粒子像の投影面積や周囲長等が計測される。
次に、各粒子像の投影面積Sと周囲長Lを求める。上記面積Sと周囲長Lを用いて円相当径と円形度を求める。円形当径とは、粒子像の投影面積と同じ面積を持つ円の直径のことであり、円形度は、円形当径から求めた円の周囲長を粒子投影像の周囲長で割った値として定義され、次式で算出される。
C=2×(π×S)1/2/L
粒子像が円形の時に円形度は1.000になり、粒子像の外周の凹凸の程度が大きくなればなるほど円形度は小さい値になる。
各粒子の円形度を算出後、円形度0.2乃至1.0の範囲を800分割し、測定粒子数を用いて平均円形度の算出を行う。
具体的な測定方法としては、イオン交換水20mlに、分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1ml加えた後、測定試料0.5gを加える。そして、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機「VS−150」(ヴェルヴォクリーア社製)を用いて2分間分散処理を行い、測定用の分散液とした。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。
測定には、標準対物レンズ(10倍)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE−900A」(シスメックス社製)を使用する。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて30000個の粒子を計測する。粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径2.00μm以上200.00μm以下に限定し、トナーの平均円形度を求める。
測定にあたっては、測定開始前に標準ラテックス粒子(Duke Scientific社製5200Aをイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。その際、解析粒子径を円相当径2.00μm以上200.00μm以下に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行う。
以下、実施例を参照して本発明をより具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。
<被覆樹脂用共重合体1の製造例>
表1で示されるモノマーと、式(1)で示さるような一方の末端にエチレン性不飽和基(メタクリロイル基)を有し、式中Xが表1で示されるモノマーを重合することにより得られたマクロモノマーとを、還流冷却器、温度計、窒素吸い込み管、及びすり合わせ方式撹拌装置を有する四つ口フラスコに加えた。さらにトルエン90質量部、メチルエチルケトン110質量部、及びアゾビスイソバレロニトリル2.0質量部を加えた。得られた混合物を、窒素気流下70℃で10時間保持し、重合反応を行った。重合反応終了後、反応溶液を5倍量のメタノール中に滴下して沈殿させ、上澄みをデカントして固形物を取り出し、さらにメタノールでの洗浄を繰り返し、ろ過、乾燥してグラフト共重合体固形物を得た。得られたグラフト共重合体固形物35質量部を、トルエン36質量部、メチルエチルケトン29質量部に溶解させて、グラフト共重合体溶液(固形分35質量%)を得た。これを被覆樹脂1とする。得られた被覆樹脂1の物性を表1に示す。
Figure 0005371584
<被覆樹脂用共重合体2乃至9、及び11乃至15の製造例>
被覆樹脂1の製造と同様にして、表1に示すモノマーと、式(1)中のXが表1で示されるモノマーを使用することで被覆樹脂2乃至9、及び11乃至15を得た。得られた被覆樹脂2乃至9、及び11乃至15の物性を表1に示す。
<被覆樹脂用共重合体10及び16の製造例>
被覆樹脂1の製造と同様にして、表1に示すモノマーと、式(1)中のXが表1で示されるモノマーを使用し、窒素気流下70℃で重合反応を行った。3時間保持した後、さらにアゾビスイソバレロニトリル1.0質量部を添加し、反応温度を80℃に上げて5時間保持し、反応を完結させた。重合反応終了後、反応溶液を5倍量のメタノール中に滴下して沈殿させ、上澄みをデカントして固形物を取り出し、さらにメタノールでの洗浄を繰り返し、ろ過、乾燥してグラフト共重合体固形物を得た。得られたグラフト共重合体固形物35質量部を、トルエン36質量部、メチルエチルケトン29質量部に溶解させて、グラフト共重合体溶液(固形分35質量%)を得た。これを被覆樹脂10及び16とする。得られた被覆樹脂10の物性を表1に示す。
<被覆樹脂用共重合体17及び18の製造例>
被覆樹脂1の製造と同様にして、表1に示すモノマーと、式(1)中のXが表1で示されるモノマーを使用し、窒素気流下70℃で10時間保持し、重合反応を行った。重合反応終了後、メタノールによる沈殿、洗浄工程を行わずにグラフト共重合体溶液(固形分33%)を得た。これを被覆樹脂17及び18とする。
得られた被覆樹脂17および18の物性を表1に示す。
Figure 0005371584
<キャリアコアの製造>
マグネタイト微粒子(球形、個数平均粒径250nm、磁化の強さ65Am2/kg、残留磁化4.2Am2/kg、保磁力4.4kA/m、500V/cmにおける比抵抗3.3×105Ω・cm)と、シラン系カップリング剤(3−(2−アミノエチルアミノプロピル)トリメトキシシラン)(マグネタイト微粒子の質量に対して3.0質量%の量)とを、容器に導入した。そして、該容器内において温度100℃以上で高速混合撹拌して、マグネタイト微粒子を表面処理した。
・フェノール 10質量部
・ホルムアルデヒド溶液(ホルムアルデヒド37質量%水溶液) 16質量部
・表面処理した上記マグネタイト微粒子 84質量部
上記材料を反応釜に導入し、温度40℃にしてよく混合した。その後、撹拌しながら平均昇温速度3℃/分で、温度85℃に加熱し、28質量%アンモニア水4質量部および水25質量部を反応釜に加えた。温度85℃にて保持し、3時間重合反応させて硬化させた。このときの撹拌翼の周速は1.8m/秒とした。
重合反応させた後、温度30℃まで冷却して水を添加した。上澄み液を除去して得られた沈殿物を水洗し、さらに風乾した。得られた風乾物を、減圧下(5hPa以下)にて、温度60℃で乾燥して、樹脂中に磁性体が分散された体積分布基準の50%粒径(D50)35μm、ゆるみ見かけ密度1.90g/cm3のキャリアコア(a)を得た。キャリアコア(a)の比抵抗は2.2×108Ω・cm、固め見掛け密度2.11g/cm3、真密度3.60g/cm3であった。また、磁化の強さ55Am2/kg、残留磁化3.5Am2/kg、保磁力4.3kA/mであった。
<磁性キャリア1乃至18の製造例>
被覆樹脂1を固形分10質量%になるようにトルエンに溶解した。その中にカーボンブラック(一次粒子径が27nm、比表面積が80m2/g)を、被覆樹脂固形分100質量部に対して15.0質量部、架橋メラミン粒子(個数分布基準の最大ピーク粒径が250nm)を被覆樹脂固形分100質量部に対して2.0質量部添加し、充分に撹拌、分散させた。
次にコート装置として万能混合撹拌機(不二パウダル製)を用い、キャリアコア100質量部に対して、コート量(固形分として)が1.5質量部になるようコート溶液を3回に分けて投入した。その際、混合機内を減圧し、窒素を導入して、雰囲気を窒素置換した。温度65℃に加熱し、窒素雰囲気で減圧(700MPa)を保ちつつ、撹拌し、キャリアがさらさらになるまで溶剤を除去した。さらに撹拌を行いつつ、窒素を導入しながら温度100℃に加熱し、1時間保持した。冷却後、磁性キャリア1を得た。得られた磁性キャリア1の物性を表2に示す。
さらに磁性キャリア1と同様、表2に示す被覆樹脂(キャリアコア100質量部に対して樹脂固形分1.5質量部で固定)を使用して磁性キャリア2乃至18を得た。磁性キャリア2乃至18の物性を表2に示す。
Figure 0005371584
(トナーの製造例1)
ビニル系共重合体ユニットを得るための材料として、スチレン10質量部、2−エチルヘキシルアクリレート5質量部、フマル酸2質量部、α−メチルスチレンの2量体5質量部、ジクミルパーオキサイド5質量部を滴下ロートに入れた。また、ポリエステル重合体ユニットを得るための材料として、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン25質量部、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン15質量部、テレフタル酸9質量部、無水トリメリット酸5質量部、フマル酸24質量部及び2−エチルヘキサン酸錫0.2質量部をガラス製4リットルの四つ口フラスコに入れた。この四つ口フラスコに温度計、撹拌棒、コンデンサー及び窒素導入管を取りつけ、マントルヒーター内に設置した。次に四つ口フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、温度130℃の温度で撹拌しつつ、先の滴下ロートより、ビニル系単量体及び重合開始剤を約4時間かけて滴下した。次いで、温度を200℃まで昇温し、4時間反応させ、重量平均分子量78,000、数平均分子量3800のハイブリッド樹脂を得た。
・上記ハイブリッド樹脂 100質量部
・精製ノルマルパラフィン(最大吸熱ピーク温度80℃) 5.0質量部
・3,5−ジ−t−ブチルサリチル酸アルミニウム化合物 0.5質量部
・C.I.ピグメントブルー15:3 5.0質量部
上記の処方の材料をヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で混合した後、温度130℃に設定した二軸混練機(PCM−30型、池貝鉄工(株)製)にて混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られたトナー粗砕物を、高圧気体を用いた衝突式気流粉砕機を用いて微粉砕した。さらに、得られた微粉砕物を分級し、さらにハイブリダイザー(奈良機械製作所製)処理装置を用い5回繰り返し球形化処理を行い、重量平均粒径(D4)5.8μm、平均円形度0.957のシアントナー粒子を得た。
同様にしてC.I.ピグメントブルー15:3の替わりにC.I.ピグメントイエロー74を7.0質量部、C.I.ピグメントレッド122を6.0質量部、磁性キャリア1の製造で用いたカーボンブラックを5.0質量部使用して、それぞれイエロー、マゼンタ、ブラックトナー粒子を調製した。
得られた各トナー粒子100質量部に、個数分布基準の最大ピーク粒径110nmであり、ヘキサメチルジシラザンで処理された疎水化度94のシリカ粒子を1.0質量部、個数分布基準の最大ピーク粒径50nmであり、疎水化度70の酸化チタン粒子を0.9質量部、個数分布基準の最大ピーク粒径20nmであり、疎水化度98のシリコーンオイル処理シリカ粒子を0.5質量部添加した。そして、ヘンシェルミキサー(三井三池化工機製)で混合して、重量平均粒径5.9μm、平均円形度0.956の各色トナーを得た。
〔実施例1〕
キャリア1の92質量部に対し、各色トナーを8質量部加え、ターブラーミキサーにより2分間混合し、二成分系現像剤を調製した。
一方、キャリア1を10質量部に対し、トナー1を90質量部加え、常温常湿23℃50%RHの環境において、V型混合機により5分間混合し、補給用現像剤とし、補給現像剤収容装置内の補給用現像剤容器に充填した。
この二成分系現像剤および補給用現像剤を用いて以下の評価を行った結果を表及びに示す。
画像形成装置として、キヤノン製カラー複写機imagePRESS C7000VPを下記条件で出力できるように改造し、各色現像器に上記現像剤を入れ、下記条件で画像面積比率30%の画像5万枚の耐久試験前後での各種評価を行った。
条件:
印刷環境 温度30℃/湿度80RH%(以下「H/H」)
温度23℃/湿度5RH%(以下「N/L」)
紙(1) カラーレーザーコピアペーパー(81.4g/m2
紙(2) カラーレーザーコピア光沢厚紙NS−701(150g/m2
(いずれもキヤノンマーケティングジャパン株式会社)
画像形成速度 A4サイズ、フルカラーで40枚/分で出力できるように改造した。
現像条件 現像コントラストを自由に変更できるように改造した。
現像器空回転 本体の現像器のスリーブ周速を自由に変更し、空回転できるように改造した。
(1)スリーブ上ΔQ/M
初期のスリーブ上のトナー帯電量(μC/g)から、耐久後のスリーブ上のトナー帯電量(μC/g)を差し引いた値より評価した。
A:10以下
B:10以上、15以下
C:15以上、20以下
D:20以上、25以下
E:25以上
なお製品として問題ないレベルは、A乃至Cである。
(2)画像ぶつぶつの評価(耐久後)
耐久後、感光体上に現像されるトナー量が0.55mg/cm2となるために必要とされる現像コントラストを調整し、A4全面ベタ画像をカラーレーザーコピア光沢厚紙NS−701に出力した。この時の白く抜けたような画像上のぶつぶつの個数をカウントし、各色単色で出力したA4紙1枚画像のぶつぶつの数を平均したもので表した。
A:2個以内。
B:2個より多く、4個以下。
C:4個より多く、6個以下。
D:6個より多く、8個以下。
E:8個より多く、11個以下。
F:11個より多く、15個以下。
G:15個より多い。
なお製品として問題ないレベルは、A乃至Dである。
(3)カブリ(耐久後)
耐久後、A4全面ベタ白画像をカラーレーザーコピアペーパーで出力した。カブリは白地部分の白色度をリフレクトメーター(東京電色社製)により測定し、その白色度と転写紙の白色度の差からカブリ濃度(%)を算出し、評価した。評価基準は次の通りである。
A:非常に良好(0.5%未満)
B:良好(0.5%以上、1.0%未満)
C:やや良好(1.0%以上、1.5%未満)
D:普通(1.5%以上、2.5%未満)
E:やや悪い(2.5%以上、3.0%未満)
F:悪い(3.0%以上、4.0%未満)
G:非常に悪い(4.0%以上)
なお製品として問題ないレベルは、A乃至Dである。
(4)ドット再現性(耐久後)
耐久後、ハーフトーン画像(30H画像)をカラーレーザーコピアペーパーで出力した。この画像を目視にて観察し、前記画像のドットの再現性について以下の基準に基づき評価した。なお、30H画像とは、256階調を16進数で表示した値であり、00Hをベタ白とし、FFHをベタ黒とするときのハーフトーン画像である。
A:全くガサツキを感じなく、なめらかな画像である。
B:ガサツキをあまり感じない。
C:ややガサツキ感はあるが、実用上問題ないレベルである。
D:ガサツキ感がある。
E:非常にガサツキ感がある。
なお製品として問題ないレベルは、A乃至Cである。
(5)ゴースト(耐久後)
耐久後、図4に示す画像を出力し、以下の基準により目視で評価した。
A:ゴーストは発生していない。
B:軽微なゴーストが発生しているものの、良好な画像。
C:ゴーストは発生しているものの、実用的には問題の無い画質。
D:ゴーストが悪く、実用上好ましくない画像。
実施例1では、各評価とも非常に優れた画像特性を示した。結果を表3に示す。
〔実施例2乃至10、参考例1
実施例1と同様に、磁性キャリア2乃至11を使用して二成分現像剤と補給用現像剤を調整した。実施例1と同様にして評価を行ったところ、すべて問題のない画像特性が得られた。結果を表3に示す。
〔比較例1乃至7〕
実施例1と同様に、磁性キャリア12乃至18を使用して二成分現像剤と補給用現像剤を調整した。実施例1と同様にして評価を行ったところ、特にHH環境において著しく帯電量が低下し、画像ぶつぶつ、ゴーストのレベルも悪かった。また、NL環境下においてはカブリの悪化が著しかった。結果を表3に示す。
Figure 0005371584
41 下部電極、42 上部電極、43 絶縁物、44 電流計、45 電圧計、46 定電圧装置、47 磁性キャリア、48 ガイドリング、E 抵抗測定セル、L 試料厚み

Claims (5)

  1. キャリアコアの表面に樹脂被覆層を有する磁性キャリアであり、
    該樹脂被覆層を形成している樹脂は、
    i)すくなくとも、下記式(A1)で表されるモノマーと、下記式(A2)で表され、重量平均分子量が3000以上20000以下であるマクロモノマーとを共重合することにより得られる樹脂であって、該マクロモノマーに由来するユニットの割合が、0.5質量%以上30.0質量%以下であり、
    ii)THF可溶分のTHF中でのサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwが5nm以上30nm以下であり、数平均分子量Mnが2.3×104以上1.0×105以下である
    ことを特徴とする磁性キャリア。
    Figure 0005371584
    (式中、R 1 は炭素数4以上22以下の炭化水素基を示し、R 2 はHまたはCH 3 を示す。)
    Figure 0005371584
    (式中、Aは、アクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、スチレン、アクリロニトリル、メタクリロニトリルからなる群より選ばれる1種又は2種以上のモノマーを重合することにより得られた重合体を示し、R 3 はHまたはCH 3 を示す。)
  2. 該樹脂被覆層を形成している樹脂は、THF可溶分のTHF中でのSEC−MALLS測定における慣性半径Rw(nm)と重量平均分子量Mwが下記式を満足することを特徴とする請求項1に記載の磁性キャリア。
    2.0×10-4≦Rw/Mw≦1.0×10-3
  3. 該樹脂被覆層を形成している樹脂が、前記式(A2)で表わされるマクロモノマーと前記式(A1)で表されるモノマーとメタクリル酸メチルモノマーとを共重合することにより得られた樹脂を少なくとも含有し、該共重合することにより得られた樹脂中の該メタクリル酸メチルモノマーユニットの割合が1質量%以上50質量%以下であることを特徴とする請求項1又は2に記載の磁性キャリア。
  4. キャリアコアの表面に樹脂被覆層を有する磁性キャリアとトナーとを少なくとも有する二成分系現像剤であり、該磁性キャリアは、請求項1乃至のいずれかに記載の磁性キャリアであることを特徴とする二成分現像剤。
  5. 補給用現像剤を補給しながら現像を行う画像形成方法に使用する為の補給用現像剤であり、該補給用現像剤は磁性キャリア及びトナーを少なくとも含み、該磁性キャリア1質量部に対してトナーが2質量部以上50質量部以下の配合割合で含有されており、該磁性キャリアは、請求項1乃至のいずれかに記載の磁性キャリアであることを特徴とする補給用現像剤。
JP2009158550A 2009-07-03 2009-07-03 磁性キャリア、二成分現像剤及び補給用現像剤 Expired - Fee Related JP5371584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158550A JP5371584B2 (ja) 2009-07-03 2009-07-03 磁性キャリア、二成分現像剤及び補給用現像剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158550A JP5371584B2 (ja) 2009-07-03 2009-07-03 磁性キャリア、二成分現像剤及び補給用現像剤

Publications (2)

Publication Number Publication Date
JP2011013524A JP2011013524A (ja) 2011-01-20
JP5371584B2 true JP5371584B2 (ja) 2013-12-18

Family

ID=43592456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158550A Expired - Fee Related JP5371584B2 (ja) 2009-07-03 2009-07-03 磁性キャリア、二成分現像剤及び補給用現像剤

Country Status (1)

Country Link
JP (1) JP5371584B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983458B2 (ja) * 2013-02-20 2016-08-31 富士ゼロックス株式会社 静電荷像現像用キャリア、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP5998991B2 (ja) * 2013-03-12 2016-09-28 富士ゼロックス株式会社 静電荷像現像用キャリア、静電荷像現像用現像剤、現像剤カートリッジ、プロセスカートリッジおよび画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049183A (ja) * 2000-05-22 2002-02-15 Fuji Xerox Co Ltd 静電潜像現像用帯電部材、静電潜像現像剤、及び画像形成方法
JP4434967B2 (ja) * 2005-01-12 2010-03-17 キヤノン株式会社 磁性トナー
JP2008224882A (ja) * 2007-03-09 2008-09-25 Canon Inc 二成分系現像剤及び補給用現像剤

Also Published As

Publication number Publication date
JP2011013524A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5106308B2 (ja) 磁性キャリア及び二成分系現像剤
US9034551B2 (en) Two-component developer
US8455168B2 (en) Electrophotographic developer, developer cartridge, process cartridge, and image forming apparatus
JP2007279588A (ja) 補給用現像剤及び画像形成方法
JP2011197569A (ja) 静電荷像現像用キャリア、静電荷像現像剤、プロセスカートリッジ、画像形成装置、及び、画像形成方法
EP0844536A2 (en) Image forming method
JPWO2004079457A1 (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成方法
JP5020712B2 (ja) 画像形成方法
JP2005258031A (ja) 静電潜像現像用トナー、静電潜像現像剤及び画像形成方法
JP2002258538A (ja) 補給用現像剤及び現像方法
JP2005338809A (ja) 画像形成方法及び画像形成装置
US9158226B1 (en) Image forming apparatus, electrostatic charge image developing carrier set, and process cartridge set
JP5517520B2 (ja) 磁性キャリア、二成分系現像剤及び補給用現像剤
JP4607008B2 (ja) キャリア、並びに現像剤、現像剤入り容器、プロセスカートリッジ、画像形成装置、及び画像形成方法
US8685608B2 (en) Two-component developer, developer cartridge, process cartridge, and image forming apparatus
JP2007310275A (ja) 磁性キャリア及び二成分系現像剤
JP5641924B2 (ja) 補給用カートリッジ及び画像形成方法
US5705306A (en) Toner for forming electrophotographic image and developers using the same
JP5371584B2 (ja) 磁性キャリア、二成分現像剤及び補給用現像剤
JP2002091090A (ja) 樹脂コートキャリア、二成分系現像剤及び画像形成方法
JP2005250154A (ja) トナーとその製造方法、二成分現像剤及び画像形成装置
JP2011164239A (ja) 補給用カートリッジ及び画像形成方法
JP5737997B2 (ja) トナー
US9625847B2 (en) Electrostatic charge image developing carrier, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
JP2007127815A (ja) 静電荷像現像用トナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R151 Written notification of patent or utility model registration

Ref document number: 5371584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees