JP5347415B2 - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP5347415B2
JP5347415B2 JP2008259311A JP2008259311A JP5347415B2 JP 5347415 B2 JP5347415 B2 JP 5347415B2 JP 2008259311 A JP2008259311 A JP 2008259311A JP 2008259311 A JP2008259311 A JP 2008259311A JP 5347415 B2 JP5347415 B2 JP 5347415B2
Authority
JP
Japan
Prior art keywords
power supply
uninterruptible power
bypass
output voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008259311A
Other languages
Japanese (ja)
Other versions
JP2010093884A (en
Inventor
一喜 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008259311A priority Critical patent/JP5347415B2/en
Publication of JP2010093884A publication Critical patent/JP2010093884A/en
Application granted granted Critical
Publication of JP5347415B2 publication Critical patent/JP5347415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an uninterruptible power supply system, which includes two systems of power supplies made of two sets of uninterruptible power supplies and a cross board for selecting a power system of either system between these two systems and feeding power to a load, thereby improving reliability on feeding. <P>SOLUTION: The system synchronizes the output voltage of an uninterruptible power supply in the second system with the output voltage of a bypass power supply in the second system by each of synchronism selecting circuits 150 installed severally in uninterruptible power supply circuits 40 and 50, and also synchronizes the output voltage of an uninterruptible power supply in the first system with the output voltage of a bypass power supply in the first system by each of synchronism selecting circuits 150 installed in uninterruptible power supply circuits 10 and 20, when AC power supplies 1 and 4 are each in sound states and the uninterruptible power supply circuits 10 and 20 are in parallel operation via closed contactors 31 and 32 in a bus panel 30, and likewise the uninterruptible power supply circuits 40 and 50 are in parallel operation via closed contactors 61 and 62 in a bus panel 60, and for example, the uninterruptible power supply in the second system is set to the master in the synchronous state of this uninterruptible power supply system, as a usual state of this uninterruptible power supply system. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤とを備えた無停電電源システムに関する。   The present invention relates to an uninterruptible power supply that operates a plurality of uninterruptible power supplies formed in parallel from a power conversion circuit and a bypass power supply, an uninterruptible power supply that includes a power conversion circuit that is operated in parallel, and a bypass power supply. The uninterruptible power supply to be formed, the two power sources formed by using any two sets of the uninterruptible power supply that operates the uninterruptible power supply formed from the power conversion circuit and the bypass power supply, The present invention relates to an uninterruptible power supply system including a switching board that selects any one of the power supplies of the system and supplies power to a load.

この種の無停電電源システムでは、各系統を電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源とし、一方の系統から負荷に給電し、他方の系統はバックアップ電源とすることで、この無停電電源システムの負荷への給電動作の信頼性を向上させているが、さらに、この無停電電源システムのメインテナンス作業中も含めて、年中休み無く、負荷への給電を続けることが要請されている。   In this type of uninterruptible power supply system, each system is composed of an uninterruptible power supply unit that operates a plurality of uninterruptible power supplies formed by a power conversion circuit and a bypass power supply in parallel, and a power conversion circuit that is operated in parallel An uninterruptible power supply formed from an uninterruptible power supply and a bypass power supply, or an uninterruptible power supply formed from a power conversion circuit and a bypass power supply, using either two sets of uninterruptible power supplies The reliability of the power supply operation to the load of this uninterruptible power supply system is improved by using two power supplies, supplying power from one system to the load, and using the other system as a backup power supply. There is a need to continue to supply power to the load throughout the year, including during maintenance work for uninterruptible power systems.

この要請に対応するために、2系統の電源電圧間の位相同期制御を行い、該2系統の電源のうちの何れか1系統の電源を選定して負荷に給電する切換盤は、サイリスタを逆並列接続にした交流スイッチ(サイリスタスイッチ)からなる高速スイッチ回路で形成される高速切換盤とすることで、この無停電電源システムのメインテナンスなどの際の前記負荷への給電の切換えを、無瞬断且つショックレスに行うことができるようにしていた。   In order to meet this requirement, a switching board that performs phase synchronization control between two power supply voltages, selects one of the two power supplies, and supplies power to the load, reverses the thyristor. By using a high-speed switching panel formed by a high-speed switch circuit consisting of AC switches (thyristor switches) connected in parallel, switching the power supply to the load during maintenance of this uninterruptible power supply system is possible without interruption And it was designed to be shockless.

このような構成の無停電電源システムとしては、下記特許文献に記載されているものなどが知られている。
特開2007−215344号公報
As an uninterruptible power supply system having such a configuration, those described in the following patent documents are known.
JP 2007-215344 A

上述の従来の無停電電源システムにおいて、2系統の電源電圧間の位相同期制御を行う際には同期対象(マスタ)の無停電電源装置を固定していることから、このマスタ側のバイパス電源のみに不具合が発生し、マスタ側の無停電電源装置の出力電圧が前記バイパス電源の電圧に同期できない状態のとき、すなわち、マスタ側の無停電電源装置が内部同期状態のときにも、他系統の無停電電源装置の出力電圧はマスタ側の無停電電源装置の出力電圧に同期させていることから、双方の無停電電源装置の出力電圧は健全な他系統のバイパス電源の電圧とは非同期の状態になっている。   In the above-described conventional uninterruptible power supply system, when performing phase synchronization control between two power supply voltages, the synchronization target (master) uninterruptible power supply is fixed. When the output voltage of the uninterruptible power supply on the master side cannot be synchronized with the voltage of the bypass power supply, that is, when the uninterruptible power supply on the master side is in the internal synchronization state, Since the output voltage of the uninterruptible power supply is synchronized with the output voltage of the uninterruptible power supply on the master side, the output voltage of both uninterruptible power supplies is asynchronous with the voltage of the healthy other bypass power supply. It has become.

このような非同期の状態で動作中に、万一、負荷に過電流が発生したときなどは、この過電流が給電中の無停電電源装置に波及しないように、高速切換盤では健全な他系統のバイパス電源への給電切換が行われるが、この切換時には負荷に擾乱した電圧が印加されるという問題点があった。   If an overcurrent occurs in the load during operation in such an asynchronous state, the high-speed switching panel can prevent other systems that are healthy so that this overcurrent does not spill over to the uninterruptible power supply unit that is supplying power. However, there is a problem in that a disturbed voltage is applied to the load at the time of switching.

この発明の目的は、上記問題点を解消するために、同期対象の系統を適宜変更することにより、この無停電電源システムから負荷への給電信頼性の向上を計った無停電電源システムを提供することにある。   An object of the present invention is to provide an uninterruptible power supply system that improves the reliability of power supply from the uninterruptible power supply system to a load by appropriately changing the system to be synchronized in order to solve the above problems. There is.

この第1の発明は、電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤と、前記それぞれの無停電電源装置の同期状態を選択する同期選択回路とを備えた無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、
前記同期対象に設定された系統の前記無停電電源装置のバイパス電源および前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が共に異常のときには、前記同期対象に設定された系統の前記無停電電源装置は内部同期状態に切換えて運転を継続し、前記同期対象に設定されていない系統の前記無停電電源装置の出力電圧は前記内部同期状態に切換わった無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする。
The first aspect of the present invention is an uninterruptible power supply that operates in parallel a plurality of uninterruptible power supplies formed from a power conversion circuit and a bypass power supply, and an uninterruptible power supply and bypass that are configured from a power conversion circuit that is operated in parallel. An uninterruptible power supply formed from a power supply, two power supplies formed using any two of the uninterruptible power supply that operates a single unit of an uninterruptible power supply formed from a power conversion circuit and a bypass power supply, and An uninterruptible power supply comprising a switching board for selecting any one of the two power supplies and supplying power to the load, and a synchronization selection circuit for selecting a synchronization state of each of the uninterruptible power supply devices In the system,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is While the uninterruptible power supply system is operating in a normal state synchronized with the output voltage of the bypass power supply of the system,
When the bypass power of the uninterruptible power supply of the system set as the synchronization target and the bypass power of the uninterruptible power supply of the system not set as the synchronization target are both abnormal, the system set as the synchronization target The uninterruptible power supply is switched to the internal synchronization state and continues to operate, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is The operation is continued by switching to synchronize with the output voltage.

第2の発明は前記無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に前記同期対象に設定された系統の前記無停電電源装置のバイパス電源が異常で、前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が正常のときには、前記バイパス電源が消失した系統の前記無停電電源装置の出力電圧は同期対象に設定されていない系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする。
2nd invention is the said uninterruptible power supply system,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is The bypass power supply of the uninterruptible power supply of the system that is set as the synchronization target while the uninterruptible power supply system is operating in the normal state synchronized with the output voltage of the bypass power supply of the system is different. When the bypass power supply of the uninterruptible power supply of the system not set as the synchronization target is normal, the output voltage of the uninterruptible power supply of the system where the bypass power supply is lost is not set as the synchronization target The operation is continued by switching so as to synchronize with the output voltage of the uninterruptible power supply.

第3の発明は前記無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、
前記同期対象に設定された系統の前記無停電電源装置のバイパス電源が正常で、前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が異常のときには、前記バイパス電源が消失した系統の前記無停電電源装置の出力電圧は同期対象に設定された系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする。
3rd invention is the said uninterruptible power supply system,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is While the uninterruptible power supply system is operating in a normal state synchronized with the output voltage of the bypass power supply of the system,
When the bypass power supply of the uninterruptible power supply of the system set as the synchronization target is normal and the bypass power supply of the uninterruptible power supply of the system not set as the synchronization target is abnormal, the bypass power supply disappeared The output voltage of the uninterruptible power supply of the system is switched so as to be synchronized with the output voltage of the uninterruptible power supply of the system set to be synchronized, and the operation is continued.

第4の発明は前記無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、前記同期選択回路により、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、前記同期対象に設定された系統の前記無停電電源装置のバイパス電源および前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が各系個別の非常用発電機にそれぞれ切換わったときには、前記同期対象に設定された系統の前記無停電電源装置の出力電圧は該系統の前記バイパス電源の出力電圧に同期させつつ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧は同期対象に設定された系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続する
4th invention is the said uninterruptible power supply system,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage The synchronization selection circuit synchronizes the output voltage of the uninterruptible power supply of the system set to be synchronized with the output voltage of the bypass power supply of the system, and the uninterruptible power of the system not set to be synchronized While the uninterruptible power supply system is operating in a normal state in which the output voltage of the power supply apparatus is synchronized with the output voltage of the bypass power supply of the system, the uninterruptible power supply of the system set as the synchronization target When the bypass power supply of the power source device and the bypass power supply of the uninterruptible power supply device of the system not set as the synchronization target are respectively switched to the emergency generators individually for each system, the system of the system set as the synchronization target While the output voltage of the uninterruptible power supply is synchronized with the output voltage of the bypass power supply of the system, the output voltage of the uninterruptible power supply of the system that is not set to be synchronized is that of the system that is set to be synchronized. Switch to synchronize with the output voltage of the power failure power supply and continue operation

第5の発明は、前記第1〜4の何れかの発明の無停電電源システムにおいて、
前記同期選択回路を各無停電電源それぞれに設けるとともに、これらの同期選択回路間の信号の授受を中継する信号中継回路を各無停電電源装置それぞれに備えたことを特徴とする。
A fifth invention is the uninterruptible power supply system according to any one of the first to fourth inventions,
The synchronization selection circuit is provided in each uninterruptible power supply, and each uninterruptible power supply apparatus is provided with a signal relay circuit that relays transmission / reception of signals between the synchronization selection circuits.

この発明によれば、同期対象に設定された系統の前記無停電電源装置の出力電圧に対して、通常状態では、後述の如く、同期対象に設定されていない系統の前記無停電電源装置の出力電圧をほぼ同期させ、何れかのバイパス電源に不具合が生じたときには、その不具合の状態に応じて、前記同期選択回路により、同期対象の系統を適宜変更することにより、双方の無停電電源装置の出力電圧間の位相を同期させて、この無停電電源システムから負荷への給電信頼性の向上を計ることができる。   According to the present invention, with respect to the output voltage of the uninterruptible power supply of the system set as the synchronization target, in the normal state, as described later, the output of the uninterruptible power supply of the system not set as the synchronization target When the voltage is almost synchronized and any of the bypass power supplies has a problem, the synchronization selection circuit appropriately changes the system to be synchronized according to the state of the problem, so that both uninterruptible power supplies By synchronizing the phase between the output voltages, it is possible to improve the reliability of power supply from the uninterruptible power supply system to the load.

図1は、この発明の実施の形態を示す無停電電源システムの回路構成図である。   FIG. 1 is a circuit configuration diagram of an uninterruptible power supply system showing an embodiment of the present invention.

この図において、1は商用の電力系統から供給される交流電源、2は交流電源1に停電などが発生しているときのバックアップ電源としての非常用発電機、3は無停電電源装置への入力電源を交流電源1と非常用発電機3との間で切替える切替コンタクタ、同様に、4は商用の電力系統から供給される交流電源、5は交流電源4に停電などが発生しているときのバックアップ電源としての非常用発電機、6は無停電電源装置への入力電源を交流電源4と非常用発電機5との間で切替える切替コンタクタであり、交流電源1,4が共に健全な通常状態では、切替コンタクタ3,6はそれぞれ交流電源1,4側に閉路している。   In this figure, 1 is an AC power source supplied from a commercial power system, 2 is an emergency generator as a backup power source when a power failure or the like occurs in the AC power source 1, and 3 is an input to an uninterruptible power supply A switching contactor for switching the power source between the AC power source 1 and the emergency generator 3, similarly, 4 is an AC power source supplied from a commercial power system, 5 is when a power failure occurs in the AC power source 4, etc. An emergency generator as a backup power source, 6 is a switching contactor for switching the input power to the uninterruptible power supply between the AC power source 4 and the emergency generator 5, and the AC power sources 1 and 4 are both in a normal normal state. Then, the switching contactors 3 and 6 are closed on the AC power sources 1 and 4 side, respectively.

また、図1に示す第1系の無停電電源装置は無停電電源10,20と、母線盤30とから形成され、同様に、図示の第2系の無停電電源装置は無停電電源40,50と、母線盤60とから形成されている。   Further, the first system uninterruptible power supply shown in FIG. 1 is formed of uninterruptible power supplies 10 and 20 and a busbar board 30. Similarly, the second uninterruptible power supply shown in FIG. 50 and a bus bar 60.

この母線盤30にはコンタクタ31,32と、後述の同期選択回路150間の信号の授受を中継する信号中継回路33とを備え、同様に、母線盤60にはコンタクタ61,62と、信号中継回路33と同じ機能をする信号中継回路63とを備えている。   The bus board 30 includes contactors 31 and 32 and a signal relay circuit 33 that relays transmission / reception of signals between the synchronization selection circuits 150 described later. Similarly, the bus board 60 includes contactors 61 and 62 and signal relays. A signal relay circuit 63 having the same function as the circuit 33 is provided.

さらに、図1に示す無停電電源システムは第1系の無停電電源装置および第2系の無停電電源装置と、負荷1への給電を第1系の無停電電源装置と第2系の無停電電源装置と間で切換える切換盤としての高速切換盤70と、負荷2への給電を第1系の無停電電源装置と第2系の無停電電源装置と間で切換える切換盤としての高速切換盤80と、負荷3への給電を第1系の無停電電源装置と第2系の無停電電源装置と間で切換える切換盤としての高速切換盤90とから形成されている。   Further, the uninterruptible power supply system shown in FIG. 1 includes a first system uninterruptible power supply apparatus and a second system uninterruptible power supply apparatus, power supply to the load 1, and the first system uninterruptible power supply apparatus and the second system uninterruptible power supply system. High-speed switching board 70 as a switching board for switching between the power failure power supply and high-speed switching as a switching board for switching the power supply to the load 2 between the first uninterruptible power supply and the second uninterruptible power supply. The panel 80 and a high-speed switching panel 90 as a switching panel that switches power supply to the load 3 between the first uninterruptible power supply and the second uninterruptible power supply.

この高速切換盤70,80,90それぞれは、サイリスタを逆並列接続にした交流スイッチ(サイリスタスイッチ)からなる高速スイッチ回路で形成されている。   Each of the high-speed switching boards 70, 80, 90 is formed of a high-speed switch circuit composed of an AC switch (thyristor switch) in which thyristors are connected in reverse parallel.

さらに、図1に示した無停電電源システムでは無停電電源10,20は母線盤30の閉路したコンタクタ31,32を介して並列運転をしており、同様に、無停電電源40,50は母線盤60の閉路したコンタクタ61,62を介して並列運転をしている。   Further, in the uninterruptible power supply system shown in FIG. 1, the uninterruptible power supplies 10 and 20 are operated in parallel via the contactors 31 and 32 with the busbar panel 30 closed. Similarly, the uninterruptible power supplies 40 and 50 are connected to the busbars. Parallel operation is performed via contactors 61 and 62 in which the panel 60 is closed.

図2は、図1に示した無停電電源10,20,40,50の詳細回路構成図である。   FIG. 2 is a detailed circuit configuration diagram of the uninterruptible power supplies 10, 20, 40, and 50 shown in FIG.

図2において、101はコンタクタ、102はダイオード整流回路などからなるコンバータ、103はコンバータ102からの直流電圧を所望の交流電圧に変換するための半導体逆変換回路とその制御回路からなるインバータであり、このコンバータ102とインバータ103とで電力変換回路を形成している。また、104はコンタクタ、105はコンバータ102への入力電源に停電が発生したときに閉路して蓄電池106からインバータ103への直流電圧を供給するためにコンタクタ、107は図示のようにサイリスタを逆並列接続にしたサイリスタスイッチ、108はサイリスタスイッチ107がオンした直後から閉路し、サイリスタスイッチ107がオフする直前に開路するコンタクタ、109はインバータ103の出力電圧、すなわち、前記電力変換回路の出力電圧を検出する電圧検出器、110はサイリスタスイッチ107の入力電圧、すなわち、自系のバイパス電圧を検出する電圧検出器、111は他系の母線電圧を検出する電圧検出器である。   In FIG. 2, 101 is a contactor, 102 is a converter comprising a diode rectifier circuit, 103 is an inverter comprising a semiconductor reverse conversion circuit for converting the DC voltage from the converter 102 into a desired AC voltage and its control circuit, The converter 102 and the inverter 103 form a power conversion circuit. Further, 104 is a contactor, 105 is closed to supply a DC voltage from the storage battery 106 to the inverter 103 when a power failure occurs in the input power to the converter 102, and 107 is an anti-parallel thyristor as shown in the figure. The connected thyristor switch 108 is closed immediately after the thyristor switch 107 is turned on, and the contactor opened immediately before the thyristor switch 107 is turned off. 109 is the output voltage of the inverter 103, that is, the output voltage of the power conversion circuit. A voltage detector 110 for detecting the input voltage of the thyristor switch 107, that is, a voltage detector for detecting the bypass voltage of the own system, and a voltage detector 111 for detecting the bus voltage of the other system.

ここで、インバータ103を形成する制御回路では、周知の技術を用いて、無停電電源間の並列運転するための横流抑制制御なども行っている。   Here, in the control circuit forming the inverter 103, cross current suppression control for performing parallel operation between uninterruptible power supplies is also performed using a known technique.

また、このサイリスタスイッチ107とコンタクタ108とは、コンバータ102,インバータ103などに不具合が発生してインバータ103から所望の交流電圧が出力できなくなったときなどにコンタクタ104を開路させつつ、上述のようにオン状態にして、この無停電電源の出力電圧の継続を図るために備えている。   Further, the thyristor switch 107 and the contactor 108 open the contactor 104 when a malfunction occurs in the converter 102, the inverter 103, etc., and a desired AC voltage cannot be output from the inverter 103, as described above. It is prepared to keep the output voltage of this uninterruptible power supply in the on state.

さらに、同期選択回路150は電圧検出器109,110,111それぞれの検出信号と、信号中継回路33または信号中継回路63から受信した信号とに基づいて、インバータ103を形成する前記制御回路での後述の同期制御を行うための位相差信号などを送出している。   Further, the synchronization selection circuit 150 is described later in the control circuit that forms the inverter 103 based on the detection signals of the voltage detectors 109, 110, and 111 and the signal received from the signal relay circuit 33 or the signal relay circuit 63. A phase difference signal or the like for performing synchronization control is sent out.

なお、図1,2で示した無停電電源システムにおいては、各系統は2台の無停電電源10,20(または40,50)を並列運転させ、それぞれの無停電電源にはバイパス電源を有する構成の場合を示しているが、各系統は3台以上の無停電電源による並列運転でもよいし、1台の無停電電源による単機運転としてもよい。さらに、各系統は複数台の並列運転する電力変換回路に対して1組のバイパス電源を有する構成でもよい。   In the uninterruptible power supply system shown in FIGS. 1 and 2, each system operates two uninterruptible power supplies 10 and 20 (or 40 and 50) in parallel, and each uninterruptible power supply has a bypass power supply. Although the case of the configuration is shown, each system may be operated in parallel by three or more uninterruptible power supplies, or may be a single machine operation by one uninterruptible power supply. Further, each system may have a set of bypass power supplies for a plurality of power conversion circuits operating in parallel.

図3は、図2に示した同期選択回路150の詳細回路構成図である。   FIG. 3 is a detailed circuit configuration diagram of the synchronization selection circuit 150 shown in FIG.

図3において、151は図2に示す電圧検出器109により検出された前記電力変換回路の出力電圧の検出信号、すなわち、インバータ103の出力電圧の検出信号と、図2に示す電圧検出器110により検出された自系バイパス電圧の検出信号との位相差を求める位相差演算A回路、152は電圧検出器109により検出されたインバータ103の出力電圧の検出信号と、図2に示す電圧検出器111により検出された他系母線電圧の検出信号との位相差を求める位相差演算B回路、153は後述の切換演算回路200により、その接点の切換動作が行われ、位相差演算A回路151又は位相差演算B回路152から得られる位相差信号をインバータ103の制御回路へ送出する切換スイッチである。   3, reference numeral 151 denotes a detection signal of the output voltage of the power conversion circuit detected by the voltage detector 109 shown in FIG. 2, that is, a detection signal of the output voltage of the inverter 103, and a voltage detector 110 shown in FIG. A phase difference calculation A circuit for obtaining a phase difference from the detected signal of the own system bypass voltage, 152 is a detection signal of the output voltage of the inverter 103 detected by the voltage detector 109, and a voltage detector 111 shown in FIG. The phase difference calculation B circuit 153 for obtaining the phase difference from the detection signal of the other system bus voltage detected by the above-described switching operation of the contact is performed by the switching calculation circuit 200 described later, and the phase difference calculation A circuit 151 or This is a changeover switch for sending the phase difference signal obtained from the phase difference calculation B circuit 152 to the control circuit of the inverter 103.

また、周波数・電圧レベル判定A回路154は前記自系バイパス電圧の検出信号からその周波数と電圧が定格の所定値以内(例えば、前記自系バイパス電圧の周波数が定格周波数のプラスマイナス1%以内でその電圧が定格電圧のプラスマイナス10%以内)であれば、論理レベル1「バイバス電圧正常A」を出力し、他の状態では論理レベル0を出力する。さらに、同期判定A回路155は位相差演算A回路151から得られる位相差が所定値以内(例えば、プラスマイナス8度(電気角)以内)であれば、論理レベル1「バイバス同期B」を出力し、他の状態では論理レベル0を出力する。   Further, the frequency / voltage level determination A circuit 154 determines that the frequency and voltage are within a predetermined rated value from the detection signal of the local system bypass voltage (for example, the frequency of the local system bypass voltage is within ± 1% of the rated frequency). If the voltage is within plus or minus 10% of the rated voltage), a logic level 1 “normal bypass voltage A” is output, and a logic level 0 is output in other states. Further, if the phase difference obtained from the phase difference calculation A circuit 151 is within a predetermined value (for example, within plus or minus 8 degrees (electrical angle)), the synchronization determination A circuit 155 outputs a logic level 1 “bypass synchronization B”. In other states, logic level 0 is output.

同様に、周波数・電圧レベル判定B回路156は前記他系母線電圧の検出信号からその周波数と電圧が定格の所定値以内(例えば、前記自系バイパス電圧の周波数が定格周波数のプラスマイナス1%以内でその電圧が定格電圧のプラスマイナス10%以内)であれば、論理レベル1「他系母線電圧正常」を出力する。同期判定B回路157は位相差演算B回路152から得られる位相差が所定値以内(例えば、プラスマイナス8度(電気角)以内)であれば、論理レベル1「他系母線同期」を出力する。   Similarly, the frequency / voltage level determination B circuit 156 determines that the frequency and voltage of the other system bus voltage detection signal are within a predetermined rated value (for example, the frequency of the local system bypass voltage is within ± 1% of the rated frequency). If the voltage is within ± 10% of the rated voltage), a logic level 1 “normal bus voltage of other system” is output. If the phase difference obtained from the phase difference calculation B circuit 152 is within a predetermined value (for example, within plus or minus 8 degrees (electrical angle)), the synchronization determination B circuit 157 outputs a logic level 1 “other system bus synchronization”. .

なお、この同期選択回路150の構成要素は全て周知の技術を用いて形成されている。   Note that all the components of the synchronization selection circuit 150 are formed using a known technique.

図4は、図3に示した切換演算回路200の詳細回路構成図であり、この切換演算回路200において、201〜207,209〜214,217〜219はアンド素子、208,215はオア素子、216はラッチ素子である。   FIG. 4 is a detailed circuit configuration diagram of the switching operation circuit 200 shown in FIG. 3. In this switching operation circuit 200, 201 to 207, 209 to 214, and 217 to 219 are AND elements, 208 and 215 are OR elements, Reference numeral 216 denotes a latch element.

図5は、図1〜4の部分詳細説明図であり、第1系無停電電源装置の無停電電源に備える同期選択回路150,母線盤に備える信号中継回路33と、第2系無停電電源装置の無停電電源に備える同期選択回路150,母線盤に備える信号中継回路63との間での信号の授受動作を示している。   FIG. 5 is a partial detailed explanatory view of FIGS. 1 to 4, in which a synchronization selection circuit 150 provided in the uninterruptible power supply of the first system uninterruptible power supply, a signal relay circuit 33 provided in the busbar board, and a second system uninterruptible power supply. Signal transmission / reception operations are shown between the synchronization selection circuit 150 provided in the uninterruptible power supply of the apparatus and the signal relay circuit 63 provided in the bus board.

この図では、以下に説明をするモード1〜5での切換演算回路200の動作を解かり易くするために、第1系の同期選択回路150で導出された「バイパス電圧正常A」,「バイパス同期B」,「母線同期追従モードC」それぞれは、信号中継回路33と信号中継回路63とを介しつつ、「他系バイパス電圧正常」,「他系バイパス同期」,「他系母線同期追従モード」として、第2系の同期選択回路150に伝達される。同様に、第2系の同期選択回路150で導出された「バイパス電圧正常A」,「バイパス同期B」,「母線同期追従モードC」それぞれは、信号中継回路63と信号中継回路33とを介しつつ、「他系バイパス電圧正常」,「他系バイパス同期」,「他系母線同期追従モード」として、第1系の同期選択回路150に伝達される。   In this figure, in order to facilitate understanding of the operation of the switching arithmetic circuit 200 in modes 1 to 5 described below, “normal bypass voltage A” and “bypass” derived by the first system synchronous selection circuit 150 are shown. The “synchronization B” and “bus synchronization follow-up mode C” are respectively connected to the “other system bypass voltage normal”, “other system bypass synchronization”, and “other system bus synchronization follow-up modes” via the signal relay circuit 33 and the signal relay circuit 63. ”Is transmitted to the second-system synchronization selection circuit 150. Similarly, the “normal bypass voltage A”, “bypass synchronization B”, and “bus synchronization follow-up mode C” derived by the second-system synchronization selection circuit 150 are respectively connected via the signal relay circuit 63 and the signal relay circuit 33. On the other hand, it is transmitted to the first system synchronization selection circuit 150 as “other system bypass voltage normal”, “other system bypass synchronization”, and “other system bus synchronization follow-up mode”.

このとき、図1に示した無停電電源システムでは、各系統は2台の無停電電源10,20(または40,50)を並列運転させている構成であることから、無停電電源10,20それぞれからの「バイパス電圧正常A」,「バイパス同期B」,「母線同期追従モードC」は信号中継回路33内でそれぞれ論理和演算されて、信号中継回路63側へ伝達し、同様に、無停電電源40,50それぞれからの「バイパス電圧正常A」,「バイパス同期B」,「母線同期追従モードC」は信号中継回路63内でそれぞれ論理和演算されて、信号中継回路33側へ伝達すればよい。   At this time, in the uninterruptible power supply system shown in FIG. 1, each system has a configuration in which two uninterruptible power supplies 10 and 20 (or 40 and 50) are operated in parallel. The “normal bypass voltage A”, “bypass synchronization B”, and “bus synchronization follow-up mode C” from each of them are logically ORed in the signal relay circuit 33 and transmitted to the signal relay circuit 63 side. The “bypass voltage normal A”, “bypass synchronization B”, and “bus synchronization follow-up mode C” from the power interruption power sources 40 and 50 are respectively logically ORed in the signal relay circuit 63 and transmitted to the signal relay circuit 33 side. That's fine.

図6は、図1に示した無停電電源システムにおけるバイパス電源の状態の変化に対応した第1系の無停電電源装置および第2系の無停電電源装置それぞれの同期対象と、高速切換盤70,80,90での同期状態とを示すマトリックス図である。   FIG. 6 shows synchronization targets of the first uninterruptible power supply and the second uninterruptible power supply corresponding to changes in the state of the bypass power supply in the uninterruptible power supply system shown in FIG. , 80 and 90 are matrix diagrams showing synchronization states.

なお、このマトリックス図では、この無停電電源システムの図示しない運転シーケンス回路からの指令により、高速切換盤70,80,90それぞれは第1系の無停電電源装置側から負荷1,2,3それぞれに給電している状態に設定し、第2系の無停電電源装置は第1系の無停電電源装置に対するバックアップ電源の状態に設定している。すなわち、前記運転シーケンス回路からの指令により、第2系の無停電電源装置がこの無停電電源システムの同期状態のマスタに設定されている。   In this matrix diagram, the high-speed switching panels 70, 80, 90 are respectively connected to the loads 1, 2, 3 from the first uninterruptible power supply side according to a command from an operation sequence circuit (not shown) of the uninterruptible power supply system. The second uninterruptible power supply is set to a state of a backup power source with respect to the first uninterruptible power supply. In other words, the second uninterruptible power supply is set as the master in the synchronized state of the uninterruptible power supply system by a command from the operation sequence circuit.

図6に示したモード1〜5について、図3に示した同期選択回路150と、図7〜16に示した切換演算回路200の動作説明図とを参照しつつ、以下に説明する。   The modes 1 to 5 shown in FIG. 6 will be described below with reference to the operation selection diagrams of the synchronization selection circuit 150 shown in FIG. 3 and the switching arithmetic circuit 200 shown in FIGS.

先ず、この無停電電源システムの通常状態として、交流電源1,4それぞれが健全、従って、第1,2系のバイパス電源も健全な状態にあり、無停電電源10,20は母線盤30の閉路したコンタクタ31,32を介して並列運転をしており、同様に、無停電電源40,50は母線盤60の閉路したコンタクタ61,62を介して並列運転しており、上述の如く、第2系の無停電電源装置がこの無停電電源システムの同期状態のマスタに設定されているときが図6のモード1の状態である。   First, as the normal state of the uninterruptible power supply system, each of the AC power supplies 1 and 4 is healthy. Therefore, the bypass power supplies of the first and second systems are also in a healthy state, and the uninterruptible power supplies 10 and 20 The uninterruptible power supplies 40 and 50 are similarly operated in parallel via the closed contactors 61 and 62 of the bus bar 60, as described above. The state of mode 1 in FIG. 6 is when the uninterruptible power supply of the system is set as the synchronized master of the uninterruptible power supply system.

このときには、無停電電源回路40,50それぞれに備える同期選択回路150それぞれにより、同期対象に設定(マスタに設定)された第2系の無停電電源装置の出力電圧を第2系のバイパス電源の出力電圧に同期させ、また、無停電電源回路10,20に備える同期選択回路150それぞれにより、同期対象に設定されていない第1系の無停電電源装置の出力電圧を第1系のバイパス電源の出力電圧に同期させた状態にしている。   At this time, the output voltage of the second uninterruptible power supply set as the synchronization target (set to the master) by the synchronization selection circuit 150 provided in each of the uninterruptible power supply circuits 40 and 50 is set to the second system bypass power supply. The output voltage of the first uninterruptible power supply unit that is not set as the synchronization target is synchronized with the output voltage by each of the synchronization selection circuits 150 included in the uninterruptible power supply circuits 10 and 20. Synchronized with the output voltage.

図7,8は、モード1の状態での同期選択回路150の動作を説明する回路図である。   7 and 8 are circuit diagrams for explaining the operation of the synchronization selection circuit 150 in the mode 1 state.

すなわち、図7に示すモード1の状態での第1系の無停電電源装置を形成する無停電電源回路10,20に備える同期選択回路150の切換演算回路200では、同期選択回路150からの「バイパス電圧正常A」と「バイパス同期B」の信号を受けたアンド素子201の出力は論理レベル1、無停電電源回路40,50に備える同期選択回路150からの「バイパス電圧正常A」すなわち「他系バイパス電圧正常」と「バイパス同期B」すなわち「他系バイパス同期」の信号を受けたアンド素子202の出力は論理レベル1、同期選択回路150からの「他系母線電圧正常」と「他系母線同期」の信号を受けたアンド素子203の出力は論理レベル0、従って、アンド素子204の出力は論理レベル0、同様に、アンド素子205〜207それぞれの出力は論理レベル0であることからオア素子208の出力は論理レベル0である。   That is, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 10 and 20 forming the first uninterruptible power supply apparatus in the mode 1 state shown in FIG. The output of the AND element 201 that has received the signals “bypass voltage normal A” and “bypass synchronization B” is logic level 1, “bypass voltage normal A” from the synchronization selection circuit 150 included in the uninterruptible power supply circuits 40, 50, “others”. The output of the AND element 202 that has received the signals “normal system bypass voltage” and “bypass synchronization B”, ie, “other system bypass synchronization”, is at logic level 1, “other system bus voltage normal” and “other system voltage from the synchronization selection circuit 150. The output of the AND element 203 that has received the “bus synchronization” signal is the logic level 0, and therefore the output of the AND element 204 is the logic level 0. Similarly, the AND elements 205 to 207 The output of the respectively output of the OR element 208 from being a logic level 0 is a logic level zero.

また、第1系の無停電電源装置は同期対象に設定されていないことからアンド素子209の出力は論理レベル0、さらに、前記「バイパス電圧正常A」と「バイパス同期B」の信号を受けたアンド素子210の出力は論理レベル1と、前記「他系バイパス電圧正常」と「他系バイパス同期」の信号を受けたアンド素子211の出力は論理レベル1と、同期選択回路150からの「他系母線電圧正常」と「他系母線同期」の信号を受けたアンド素子2212の出力は論理レベル1とにより、アンド素子213の出力は論理レベル1であり、アンド素子214の出力は論理レベル0であることからオア素子215の出力は論理レベル1である。   Since the first uninterruptible power supply is not set as the synchronization target, the output of the AND element 209 receives the logic level 0 and the signals “normal bypass voltage A” and “bypass synchronization B”. The output of the AND element 210 is logic level 1, and the output of the AND element 211 receiving the signals of “other system bypass voltage normal” and “other system bypass synchronization” is the logic level 1, and “others” from the synchronization selection circuit 150. The output of the AND element 2212 that has received the signals of “system bus voltage normal” and “other system bus synchronization” is the logic level 1, the output of the AND element 213 is the logic level 1, and the output of the AND element 214 is the logic level 0. Therefore, the output of the OR element 215 is at the logic level 1.

従って、ラッチ素子216の出力Qは論理レベル0となり、アンド素子217の出力は論理レベル1であることから、この同期選択回路150の切換スイッチ153は位相差演算A回路151側に閉路し、その結果、第1系の無停電電源装置の出力電圧を第1系のバイパス電源の出力電圧に同期させた状態にしている。   Therefore, since the output Q of the latch element 216 is logic level 0 and the output of the AND element 217 is logic level 1, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation A circuit 151 side. As a result, the output voltage of the first uninterruptible power supply is synchronized with the output voltage of the first bypass power supply.

このときのアンド素子218の出力は論理レベル0であることから、第1系の無停電電源装置は「母線追従モードC」の状態ではない。   Since the output of the AND element 218 at this time is at the logic level 0, the uninterruptible power supply of the first system is not in the “bus tracking mode C” state.

また、図8に示すモード1の状態での第2系の無停電電源装置を形成する無停電電源回路40,50に備える同期選択回路150の切換演算回路200では、図7での切換演算回路200と同様に、オア素子208の出力は論理レベル0、オア素子215の出力は論理レベル1であることから、ラッチ素子216の出力Qは論理レベル0となり、アンド素子217の出力は論理レベル1であることから、この同期選択回路150の切換スイッチ153は位相差演算A回路151側に閉路し、その結果、第2系の無停電電源装置の出力電圧を第2系のバイパス電源の出力電圧に同期させた状態にしており、第2系の無停電電源装置は「母線追従モードC」の状態ではない。   Further, in the switching operation circuit 200 of the synchronization selection circuit 150 provided in the uninterruptible power supply circuits 40 and 50 forming the second uninterruptible power supply device in the mode 1 state shown in FIG. 8, the switching operation circuit in FIG. Similarly to 200, the output of the OR element 208 is at logic level 0, and the output of the OR element 215 is at logic level 1, so the output Q of the latch element 216 is at logic level 0, and the output of the AND element 217 is at logic level 1. Therefore, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation A circuit 151 side. As a result, the output voltage of the second uninterruptible power supply is changed to the output voltage of the second bypass power supply. The second system uninterruptible power supply is not in the “bus tracking mode C” state.

すなわち、モード1の状態では、無停電電源回路40,50に備える同期選択回路150それぞれにより、同期対象に設定(マスタに設定)された第2系の無停電電源装置の出力電圧を第2系のバイパス電源の出力電圧に同期させ、また、無停電電源回路10,20に備える同期選択回路150それぞれにより、同期対象に設定されていない第1系の無停電電源装置の出力電圧を第1系のバイパス電源の出力電圧に同期させている。   In other words, in the state of mode 1, the output voltage of the second uninterruptible power supply set as the synchronization target (set to the master) by each of the synchronization selection circuits 150 included in the uninterruptible power supply circuits 40 and 50 is set to the second system. The output voltage of the first uninterruptible power supply that is not set as the synchronization target is synchronized with the output voltage of the bypass power supply of the first uninterruptible power supply circuit 10 and 20 by the respective synchronization selection circuits 150 provided in the uninterruptible power supply circuits 10 and 20. It is synchronized with the output voltage of the bypass power supply.

この状態のときには、一般に、図1に示した交流電源1と交流電源2とは同一の商用電源系統からこの無停電電源システムの設置場所などで2系統に分割されたものであることから、その出力電圧間の位相差は極僅かであることに着目すると、高速切換盤70,80,90では、第1系の無停電電源装置の出力電圧と第2系の無停電電源装置の出力電圧とはほぼ同期状態(間接同期状態)と認識でき、この無停電電源システムのメインテナンスなどの際の負荷1〜3への高速切換盤70,80,90での給電の切換えを、無瞬断且つショックレスに行うことができる。   In this state, the AC power source 1 and the AC power source 2 shown in FIG. 1 are generally divided into two systems from the same commercial power system at the location of the uninterruptible power system. Focusing on the fact that the phase difference between the output voltages is very small, in the high-speed switching boards 70, 80, 90, the output voltage of the first uninterruptible power supply and the output voltage of the second uninterruptible power supply Can be recognized as an almost synchronized state (indirect synchronized state), and switching of power supply with the high-speed switching panels 70, 80, 90 to the loads 1 to 3 at the time of maintenance of the uninterruptible power supply system can be performed without interruption and shock. Can be done less.

以下のモード2〜4での動作は、この無停電電源システムの動作状態がモード1の状態からモード2〜4の何れかの状態に変わったとして、説明を行っている。   The following operations in modes 2 to 4 are described assuming that the operation state of the uninterruptible power supply system has changed from the state of mode 1 to any of modes 2 to 4.

すなわち、モード2は、交流電源1,4それぞれが健全、従って、第1,2系のバイパス電源も健全な状態(モード1)から、交流電源1,4の双方共に停電し、従って、第1,2系のバイパス電源も共に停電した状態になっているときである。   That is, in mode 2, both AC power supplies 1 and 4 are healthy, and therefore the first and second system bypass power supplies are also healthy (mode 1). This is when both of the bypass power supplies of system 2 are in a power failure state.

図9,10は、モード2の状態での同期選択回路150の動作を説明する回路図である。   9 and 10 are circuit diagrams illustrating the operation of the synchronization selection circuit 150 in the mode 2 state.

すなわち、図9に示すモード2の状態での第1系の無停電電源装置を形成する無停電電源回路10,20に備える同期選択回路150の切換演算回路200では、第1,2系のバイパス電源も共に停電した状態にあり、同期対象に設定されてないことからアンド素子206の出力は論理1レベルになっており、また、アンド素子206の出力も論理0レベルになっていることから、オア素子208の出力は論理レベル1、オア素子215の出力は論理レベル0となり、ラッチ素子216の出力Qは論理レベル1になっている。   That is, the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 10 and 20 forming the first uninterruptible power supply apparatus in the mode 2 state shown in FIG. Since both power supplies are in a power failure state and are not set to be synchronized, the output of the AND element 206 is at a logic 1 level, and the output of the AND element 206 is also at a logic 0 level. The output of the OR element 208 is at logic level 1, the output of the OR element 215 is at logic level 0, and the output Q of the latch element 216 is at logic level 1.

従って、アンド素子217の出力は論理レベル0であることから、この同期選択回路150の切換スイッチ153は位相差演算B回路152側に閉路し、その結果、第1系の無停電電源装置の出力電圧を第2系の母線電圧に同期させた状態にしており、従って、第1系の無停電電源装置は「母線追従モードC」の状態になっている。   Accordingly, since the output of the AND element 217 is at the logic level 0, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation B circuit 152 side, and as a result, the output of the first system uninterruptible power supply device. The voltage is in a state of being synchronized with the bus voltage of the second system. Therefore, the uninterruptible power supply of the first system is in the “bus tracking mode C” state.

また、図10に示すモード2の状態での第2系の無停電電源装置を形成する無停電電源回路40,50に備える同期選択回路150の切換演算回路200では、同期対象に設定設定されていること、第1系(他系)の無停電電源装置は「母線追従モードC」すなわち「他系母線同期追従モード」となっていることから、アンド素子209の出力が論理1レベルとなり、従って、ラッチ素子216の出力Qは論理レベル0となり、アンド素子217,218それぞれの出力は論理レベル0になることから、アンド素子219の出力が論理1レベルとなり、このときには、第2系の無停電電源装置は同期選択回路150出力の位相差信号を遮断し、無停電電源回路40,50に備える内部発振器による自走状態、すなわち、内部同期の状態にする。   Further, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 40 and 50 forming the second uninterruptible power supply device in the mode 2 state shown in FIG. Since the uninterruptible power supply of the first system (other system) is in the “bus tracking mode C”, that is, the “other system bus synchronization tracking mode”, the output of the AND element 209 becomes the logic 1 level, and accordingly Since the output Q of the latch element 216 becomes logic level 0 and the outputs of the AND elements 217 and 218 become logic level 0, the output of the AND element 219 becomes logic 1 level. The power supply device cuts off the phase difference signal output from the synchronization selection circuit 150 and sets the self-running state by the internal oscillator included in the uninterruptible power supply circuits 40 and 50, that is, the state of internal synchronization.

従って、高速切換盤70,80,90では、第1系の無停電電源装置の出力電圧と第2系の無停電電源装置の出力電圧とは同期状態にあり、この無停電電源システムのメインテナンスなどの際の負荷1〜3への高速切換盤70,80,90での給電の切換えを、無瞬断且つショックレスに行うことができる。   Therefore, in the high-speed switching boards 70, 80, 90, the output voltage of the first uninterruptible power supply and the output voltage of the second uninterruptible power supply are in a synchronized state. In this case, the power supply can be switched to the loads 1 to 3 by the high-speed switching boards 70, 80, 90 without interruption and without shock.

次に、モード3は、交流電源1,4それぞれが健全、従って、第1,2系のバイパス電源も健全な状態(モード1)から、交流電源4のみに停電などの異常が発生した状態になっているときである。   Next, in mode 3, each of the AC power supplies 1 and 4 is healthy. Therefore, the first and second system bypass power supplies are also in a healthy state (mode 1). It is when

図11,12は、このモード3の状態での同期選択回路150の動作を説明する回路図である。   11 and 12 are circuit diagrams for explaining the operation of the synchronization selection circuit 150 in the mode 3 state.

すなわち、図11に示すモード3の状態での第1系の無停電電源装置を形成する無停電電源回路10,20に備える同期選択回路150の切換演算回路200では、図7での切換演算回路200と同様に、オア素子208の出力は論理レベル0、また、オア素子213の出力は論理レベル0になるが、オア素子214の出力は論理レベル1に変わることからオア素子215は論理レベル1を継続し、従って、ラッチ素子216の出力Qは論理レベル0となり、アンド素子217の出力は論理レベル1であることから、この同期選択回路150の切換スイッチ153は位相差演算A回路151側に閉路し、その結果、第1系の無停電電源装置の出力電圧を第1系のバイパス電源の出力電圧に同期させた状態にしており、第1系の無停電電源装置は「母線追従モードC」の状態ではない。   That is, in the switching operation circuit 200 of the synchronization selection circuit 150 provided in the uninterruptible power supply circuits 10 and 20 forming the first uninterruptible power supply device in the mode 3 state shown in FIG. 11, the switching operation circuit in FIG. As with 200, the output of the OR element 208 is at logic level 0, and the output of the OR element 213 is at logic level 0, but the output of the OR element 214 changes to logic level 1, so that the OR element 215 is at logic level 1. Therefore, since the output Q of the latch element 216 is at the logic level 0 and the output of the AND element 217 is at the logic level 1, the changeover switch 153 of the synchronization selection circuit 150 is moved to the phase difference calculation A circuit 151 side. As a result, the output voltage of the first system uninterruptible power supply is synchronized with the output voltage of the first system bypass power supply. Not a state of "bus follow-up mode C".

また、図12に示すモード3の状態での第2系の無停電電源装置を形成する無停電電源回路40,50に備える同期選択回路150の切換演算回路200では、同期対象に設定設定されていること、自系のバイパス電圧が異常(論理レベル0)であること、他系のバイパス電圧が正常(論理レベル1)であること、他系の無停電電源装置は「母線追従モードC」すなわち「他系母線追従モード」ではないことからアンド素子207の出力が論理1レベルとなり、従って、オア素子208の出力は論理レベル1に変わる。また、アンド素子213の出力も論理レベル0に変わることからオア素子215の出力も論理レベル0に変わる。   Further, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 provided in the uninterruptible power supply circuits 40 and 50 forming the second uninterruptible power supply apparatus in the mode 3 state shown in FIG. That the bypass voltage of the own system is abnormal (logic level 0), that the bypass voltage of the other system is normal (logic level 1), that the uninterruptible power supply of the other system is Since it is not in the “other-system bus tracking mode”, the output of the AND element 207 becomes a logic 1 level, and therefore the output of the OR element 208 changes to a logic level 1. Further, since the output of the AND element 213 also changes to the logic level 0, the output of the OR element 215 also changes to the logic level 0.

その結果、ラッチ素子216の出力Qは論理レベル1に変わる。従って、アンド素子217の出力は論理レベル0であることから、この同期選択回路150の切換スイッチ153は位相差演算B回路152側に閉路し、その結果、第2系の無停電電源装置の出力電圧を第1系の母線電圧に同期させた状態にしており、従って、第2系の無停電電源装置は「他系母線追従モード」の状態になっている。   As a result, the output Q of the latch element 216 changes to logic level 1. Accordingly, since the output of the AND element 217 is at the logic level 0, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation B circuit 152 side, and as a result, the output of the second uninterruptible power supply apparatus. The voltage is synchronized with the bus voltage of the first system, and therefore the uninterruptible power supply of the second system is in the “other system bus tracking mode”.

従って、高速切換盤70,80,90では、第1系の無停電電源装置の出力電圧と第2系の無停電電源装置の出力電圧とは同期状態にあり、この無停電電源システムのメインテナンスなどの際の負荷1〜3への高速切換盤70,80,90での給電の切換えを、無瞬断且つショックレスに行うことができる。   Therefore, in the high-speed switching boards 70, 80, 90, the output voltage of the first uninterruptible power supply and the output voltage of the second uninterruptible power supply are in a synchronized state. In this case, the power supply can be switched to the loads 1 to 3 by the high-speed switching boards 70, 80, 90 without interruption and without shock.

またモード4は、交流電源1,4それぞれが健全、従って、第1,2系のバイパス電源も健全な状態(モード1)から、交流電源1のみに停電などの異常が発生した状態になっているときである。   In mode 4, each of the AC power supplies 1 and 4 is healthy. Therefore, the first and second system bypass power supplies are also healthy (mode 1), and only the AC power supply 1 has an abnormality such as a power failure. When you are.

図13,14は、このモード4の状態での同期選択回路150の動作を説明する回路図である。   13 and 14 are circuit diagrams for explaining the operation of the synchronization selection circuit 150 in the mode 4 state.

すなわち、図13に示すモード4の状態での第1系の無停電電源装置を形成する無停電電源回路10,20に備える同期選択回路150の切換演算回路200では、同期対象に設定設定されていないこと、自系のバイパス電圧が異常(論理レベル0)であること、他系のバイパス電圧が正常(論理レベル1)であることからアンド素子205の出力が論理1レベルとなり、従って、オア素子208の出力は論理レベル1に変わる。また、アンド素子213の出力も論理レベル0に変わることからオア素子215の出力も論理レベル0に変わる。   That is, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 10 and 20 forming the first uninterruptible power supply apparatus in the mode 4 state shown in FIG. Since the bypass voltage of the own system is abnormal (logic level 0) and the bypass voltage of the other system is normal (logic level 1), the output of the AND element 205 becomes the logic 1 level. The output of 208 changes to logic level 1. Further, since the output of the AND element 213 also changes to the logic level 0, the output of the OR element 215 also changes to the logic level 0.

その結果、ラッチ素子216の出力Qは論理レベル1に変わる。従って、アンド素子217の出力は論理レベル0であることから、この同期選択回路150の切換スイッチ153は位相差演算B回路152側に閉路し、その結果、第1系の無停電電源装置の出力電圧を第2系の母線電圧に同期させた状態にしており、従って、第1系の無停電電源装置は「母線追従モードC」の状態になっている。   As a result, the output Q of the latch element 216 changes to logic level 1. Accordingly, since the output of the AND element 217 is at the logic level 0, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation B circuit 152 side, and as a result, the output of the first system uninterruptible power supply device. The voltage is in a state of being synchronized with the bus voltage of the second system. Therefore, the uninterruptible power supply of the first system is in the “bus tracking mode C” state.

また、図14に示すモード4の状態での第2系の無停電電源装置を形成する無停電電源回路40,50に備える同期選択回路150の切換演算回路200では、同期対象に設定設定されていること、第1系(他系)の無停電電源装置は「母線追従モードC」すなわち「他系母線追従モード」となっていることからアンド素子209の出力が論理1レベルとなり、また、バイパス電圧が正常、他系バイパス電圧が異常、他系バイパス同期も行われていないことからアンド素子214の出力も論理レベル1であることから、ラッチ素子216の出力Qは論理レベル0となり、アンド素子217の出力は論理レベル1であることから、この同期選択回路150の切換スイッチ153は位相差演算A回路151側に閉路し、その結果、第2系の無停電電源装置の出力電圧を第2系のバイパス電源の出力電圧に同期させた状態にしており、第2系の無停電電源装置は「母線追従モードC」の状態ではない。   Further, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 40 and 50 forming the second uninterruptible power supply apparatus in the mode 4 state shown in FIG. The uninterruptible power supply of the first system (other system) is in “bus tracking mode C”, that is, “other system bus tracking mode”. Since the voltage is normal, the other system bypass voltage is abnormal, and the other system bypass synchronization is not performed, the output of the AND element 214 is also at the logic level 1. Therefore, the output Q of the latch element 216 is at the logic level 0. Since the output of 217 is logic level 1, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation A circuit 151 side, and as a result, the second system uninterruptible power supply The output voltage of the source device is in a state synchronized with the output voltage of the bypass power source of the second system, the second system uninterruptible power supply is not a state of "bus following mode C".

従って、高速切換盤70,80,90では、第1系の無停電電源装置の出力電圧と第2系の無停電電源装置の出力電圧とは同期状態にあり、この無停電電源システムのメインテナンスなどの際の負荷1〜3への高速切換盤70,80,90での給電の切換えを、無瞬断且つショックレスに行うことができる。   Therefore, in the high-speed switching boards 70, 80, 90, the output voltage of the first uninterruptible power supply and the output voltage of the second uninterruptible power supply are in a synchronized state. In this case, the power supply can be switched to the loads 1 to 3 by the high-speed switching boards 70, 80, 90 without interruption and without shock.

さらにモード5は、交流電源1,4それぞれが健全、従って、第1,2系のバイパス電源も健全な状態(モード1)から、交流電源1,4の双方が共に停電し、従って、第1,2系のバイパス電源も共に停電した状態(モード2)となり、この停電が継続しているために、非常用発電機2,5の双方が立ち上がったときの状態である。   Further, in mode 5, since the AC power supplies 1 and 4 are both healthy and the bypass power supplies of the first and second systems are also healthy (mode 1), both of the AC power supplies 1 and 4 are blacked out. , The two bypass power supplies are both in a power outage (mode 2), and since this power outage continues, both emergency generators 2 and 5 are in a state of starting up.

以下のモード5での動作は、この無停電電源システムの動作状態がモード2の状態からモード5の状態に変わったとして、説明を行っている。   The operation in the following mode 5 is described on the assumption that the operation state of the uninterruptible power supply system has changed from the mode 2 state to the mode 5 state.

図15,16は、このモード5の状態での同期選択回路150の動作を説明する回路図である。   15 and 16 are circuit diagrams for explaining the operation of the synchronization selection circuit 150 in the mode 5 state.

すなわち、図15に示すモード5の状態での第1系の無停電電源装置を形成する無停電電源回路10,20に備える同期選択回路150の切換演算回路200では、第1,2系のバイパス電源も共に復電した状態にあり、他系は他系バイパスに同期した状態にあり、同期対象に設定されてないことからアンド素子204の出力は論理1レベルになり、その結果、オア素子208の出力は論理レベル1、オア素子215の出力は論理レベル0となり、ラッチ素子216の出力Qは論理レベル1になっている。   That is, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 included in the uninterruptible power supply circuits 10 and 20 forming the first uninterruptible power supply apparatus in the mode 5 state shown in FIG. Since both the power supplies are in a restored state, the other system is synchronized with the other system bypass, and is not set as a synchronization target, the output of the AND element 204 becomes a logic 1 level. As a result, the OR element 208 Is at logic level 1, the output of the OR element 215 is at logic level 0, and the output Q of the latch element 216 is at logic level 1.

従って、アンド素子217の出力は論理レベル0であることから、この同期選択回路150の切換スイッチ153は位相差演算B回路152側に閉路し、その結果、第1系の無停電電源装置の出力電圧を第2系の母線電圧に同期させた状態にしており、従って、第1系の無停電電源装置は「母線追従モードC」の状態のままになっている。   Accordingly, since the output of the AND element 217 is at the logic level 0, the changeover switch 153 of the synchronization selection circuit 150 is closed to the phase difference calculation B circuit 152 side, and as a result, the output of the first system uninterruptible power supply device The voltage is synchronized with the bus voltage of the second system, and therefore the uninterruptible power supply of the first system remains in the “bus tracking mode C” state.

また、図16に示すモード5の状態での第2系の無停電電源装置を形成する無停電電源回路40,50に備える同期選択回路150の切換演算回路200では、同期対象に設定設定されていること、第1系(他系)の無停電電源装置は「母線追従モードC」すなわち「他系母線追従モード」となっていることから、アンド素子209の出力が論理1レベルとなり、従って、ラッチ素子216の出力Qは論理レベル0となり、バイパス電圧が正常に復帰したことからアンド素子217の出力は論理レベル1になり、先述の内部同期の状態から、第2系の無停電電源装置の出力電圧を第2系のバイパス電源の出力電圧に同期させた状態に復旧する。   Further, in the switching arithmetic circuit 200 of the synchronization selection circuit 150 provided in the uninterruptible power supply circuits 40 and 50 forming the second uninterruptible power supply apparatus in the mode 5 state shown in FIG. The uninterruptible power supply of the first system (other system) is in “bus tracking mode C”, that is, “other system bus tracking mode”, so that the output of the AND element 209 is at the logic 1 level. The output Q of the latch element 216 becomes a logic level 0, and the output of the AND element 217 becomes a logic level 1 because the bypass voltage has returned to normal. From the state of internal synchronization described above, The output voltage is restored to the state synchronized with the output voltage of the second system bypass power supply.

従って、高速切換盤70,80,90では、第1系の無停電電源装置の出力電圧と第2系の無停電電源装置の出力電圧とは同期状態にあり、この無停電電源システムのメインテナンスなどの際の負荷1〜3への高速切換盤70,80,90での給電の切換えを、無瞬断且つショックレスに行うことができる。   Therefore, in the high-speed switching boards 70, 80, 90, the output voltage of the first uninterruptible power supply and the output voltage of the second uninterruptible power supply are in a synchronized state. In this case, the power supply can be switched to the loads 1 to 3 by the high-speed switching boards 70, 80, 90 without interruption and without shock.

なお、非常用発電機2の出力電圧と非常用発電機5の出力電圧とは、その電圧値をほぼ等しくすることは容易であるが、その位相差をほぼ零にすることは容易ではないので、モード5の状態では、第1系の無停電電源装置の出力電圧を第2系の母線電圧、すなわち、非常用発電機5の出力電圧に同期させた状態に設定している。   The output voltage of the emergency generator 2 and the output voltage of the emergency generator 5 are easy to make the voltage values almost equal, but it is not easy to make the phase difference substantially zero. In the state of mode 5, the output voltage of the first uninterruptible power supply is set to be synchronized with the second system bus voltage, that is, the output voltage of the emergency generator 5.

この発明の実施の形態を示す無停電電源システムの回路構成図The circuit block diagram of the uninterruptible power supply system which shows embodiment of this invention 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図2の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図3の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図1〜4の部分詳細説明図Detailed description of parts of FIGS. この発明の動作を説明する同期マトリックス図Synchronization matrix diagram illustrating the operation of the present invention 図5のモード1の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 1 of FIG. 図5のモード1の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 1 of FIG. 図5のモード2の動作を説明する回路構成図FIG. 5 is a circuit configuration diagram illustrating the operation of mode 2 in FIG. 図5のモード2の動作を説明する回路構成図FIG. 5 is a circuit configuration diagram illustrating the operation of mode 2 in FIG. 図5のモード3の動作を説明する回路構成図Circuit configuration diagram for explaining the operation of mode 3 in FIG. 図5のモード3の動作を説明する回路構成図Circuit configuration diagram for explaining the operation of mode 3 in FIG. 図5のモード4の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 4 of FIG. 図5のモード4の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 4 of FIG. 図5のモード5の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 5 of FIG. 図5のモード5の動作を説明する回路構成図Circuit configuration diagram explaining operation of mode 5 of FIG.

1,4…交流電源、2,5…非常用発電機、3,6…切替スイッチ、10,20,40,50…無停電電源、30,60…母線盤、31,32,61,62…コンタクタ、33,63…信号中継回路、70,80,90…高速切換盤、101,104,105,108…コンタクタ、102…コンバータ、103…インバータ、106…蓄電池、107…サイリスタスイッチ、109〜111…電圧検出器、151…位相差演算A回路、152…位相差演算B回路、153…切換スイッチ、154…周波数・電圧レベル判定A回路、155…同期判定A回路、156…周波数・電圧レベル判定B回路、157…同期判定B回路、200…切換演算回路。

DESCRIPTION OF SYMBOLS 1,4 ... AC power supply, 2,5 ... Emergency generator, 3,6 ... Changeover switch 10, 20, 40, 50 ... Uninterruptible power supply, 30, 60 ... Busbar board, 31, 32, 61, 62 ... Contactor 33, 63 ... Signal relay circuit, 70, 80, 90 ... High-speed switching board, 101, 104, 105, 108 ... Contactor, 102 ... Converter, 103 ... Inverter, 106 ... Storage battery, 107 ... Thyristor switch, 109-111 DESCRIPTION OF SYMBOLS ... Voltage detector, 151 ... Phase difference calculation A circuit, 152 ... Phase difference calculation B circuit, 153 ... Changeover switch, 154 ... Frequency / voltage level judgment A circuit, 155 ... Synchronization judgment A circuit, 156 ... Frequency / voltage level judgment B circuit, 157... Synchronization determination B circuit, 200... Switching arithmetic circuit.

Claims (5)

電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤と、前記それぞれの無停電電源装置の同期状態を選択する同期選択回路とを備えた無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、前記同期対象に設定された系統の前記無停電電源装置のバイパス電源および前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が共に異常のときには、前記同期対象に設定された系統の前記無停電電源装置は内部同期状態に切換えて運転を継続し、前記同期対象に設定されていない系統の前記無停電電源装置の出力電圧は前記内部同期状態に切換わった無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする無停電電源システム。
An uninterruptible power supply that operates multiple uninterruptible power supplies formed from a power conversion circuit and a bypass power supply in parallel, and an uninterruptible power supply that consists of an uninterruptible power supply configured from multiple power conversion circuits operated in parallel and a bypass power supply Two power supplies formed by using any two sets of uninterruptible power supply units that operate the uninterruptible power supply formed from the power failure power supply, the power conversion circuit and the bypass power supply, and the two power supplies An uninterruptible power supply system comprising a switching board for selecting a power source of any one of the above and supplying power to a load, and a synchronization selection circuit for selecting a synchronization state of each of the uninterruptible power supply devices,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is While the uninterruptible power supply system is operating in a normal state synchronized with the output voltage of the bypass power supply of the system, the bypass power supply of the uninterruptible power supply of the system set as the synchronization target And when the bypass power supply of the uninterruptible power supply of the system not set as the synchronization target is abnormal, the uninterruptible power supply of the system set as the synchronization target switches to the internal synchronization state and continues operation. The output voltage of the uninterruptible power supply of the system not set as the synchronization target is switched so as to be synchronized with the output voltage of the uninterruptible power supply switched to the internal synchronization state, and the operation is continued. Uninterruptible power supply system.
電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤と、前記それぞれの無停電電源装置の同期状態を選択する同期選択回路とを備えた無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、前記同期対象に設定された系統の前記無停電電源装置のバイパス電源が異常で、前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が正常のときには、前記バイパス電源が消失した系統の前記無停電電源装置の出力電圧は同期対象に設定されていない系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする無停電電源システム。
An uninterruptible power supply that operates multiple uninterruptible power supplies formed from a power conversion circuit and a bypass power supply in parallel, and an uninterruptible power supply that consists of an uninterruptible power supply configured from multiple power conversion circuits operated in parallel and a bypass power supply Two power supplies formed by using any two sets of uninterruptible power supply units that operate the uninterruptible power supply formed from the power failure power supply, the power conversion circuit and the bypass power supply, and the two power supplies An uninterruptible power supply system comprising a switching board for selecting a power source of any one of the above and supplying power to a load, and a synchronization selection circuit for selecting a synchronization state of each of the uninterruptible power supply devices,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is While the uninterruptible power supply system is operating in a normal state synchronized with the output voltage of the bypass power supply of the system, the bypass power supply of the uninterruptible power supply of the system set as the synchronization target is Normally, when the bypass power supply of the uninterruptible power supply of the system not set as the synchronization target is normal, the output voltage of the uninterruptible power supply of the system where the bypass power supply disappears is not set as the synchronization target An uninterruptible power supply system, wherein the operation is continued by switching so as to synchronize with the output voltage of the uninterruptible power supply of the system.
電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤と、前記それぞれの無停電電源装置の同期状態を選択する同期選択回路とを備えた無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、前記同期対象に設定された系統の前記無停電電源装置のバイパス電源が正常で、前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が異常のときには、前記バイパス電源が消失した系統の前記無停電電源装置の出力電圧は同期対象に設定された系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする無停電電源システム。
An uninterruptible power supply that operates multiple uninterruptible power supplies formed from a power conversion circuit and a bypass power supply in parallel, and an uninterruptible power supply that consists of an uninterruptible power supply configured from multiple power conversion circuits operated in parallel and a bypass power supply Two power supplies formed by using any two sets of uninterruptible power supply units that operate the uninterruptible power supply formed from the power failure power supply, the power conversion circuit and the bypass power supply, and the two power supplies An uninterruptible power supply system comprising a switching board for selecting a power source of any one of the above and supplying power to a load, and a synchronization selection circuit for selecting a synchronization state of each of the uninterruptible power supply devices,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage Based on this, the output voltage of the uninterruptible power supply of the system set as the synchronization target is synchronized with the output voltage of the bypass power supply of the system, and the output voltage of the uninterruptible power supply of the system not set as the synchronization target is While the uninterruptible power supply system is operating in a normal state synchronized with the output voltage of the bypass power supply of the system, the bypass power supply of the uninterruptible power supply of the system set as the synchronization target is Normally, when the bypass power supply of the uninterruptible power supply of the system not set as the synchronization target is abnormal, the output voltage of the uninterruptible power supply of the system where the bypass power supply is lost is the system set as the synchronization target The uninterruptible power supply system is characterized in that the operation is continued by switching to synchronize with the output voltage of the uninterruptible power supply.
電力変換回路とバイパス電源とから形成される無停電電源を複数台並列運転する無停電電源装置,複数台並列運転される電力変換回路から構成される無停電電源とバイパス電源とから形成される無停電電源装置,電力変換回路とバイパス電源とから形成される無停電電源を単機運転する無停電電源装置の内の何れか2組用いて形成される2系統の電源と、この2系統の電源の内の何れか1系統の電源を選定して負荷に給電する切換盤と、前記それぞれの無停電電源装置の同期状態を選択する同期選択回路とを備えた無停電電源システムにおいて、
前記同期選択回路が、自系バイパス電圧,電力変換回路の出力電圧,他系母線電圧それぞれを入力検出信号とするとともに、同期対象に設定する指令信号と、自系バイパス電圧,他系母線電圧それぞれの周波数および電圧レベルの判定結果と、自系バイパス電圧と電力変換回路の出力電圧との位相差の判定結果と、電力変換回路の出力電圧と他系母線電圧との位相差の判定結果とに基づいて、前記同期選択回路により、同期対象に設定された系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧を該系統のバイパス電源の出力電圧に同期させた通常状態にして前記無停電電源システムが動作中に、前記同期対象に設定された系統の前記無停電電源装置のバイパス電源および前記同期対象に設定されていない系統の前記無停電電源装置のバイパス電源が各系個別の非常用発電機にそれぞれ切換わったときには、前記同期対象に設定された系統の前記無停電電源装置の出力電圧は該系統の前記バイパス電源の出力電圧に同期させつつ、同期対象に設定されていない系統の前記無停電電源装置の出力電圧は同期対象に設定された系統の前記無停電電源装置の出力電圧に同期させるように切換えて運転を継続することを特徴とする無停電電源システム。
An uninterruptible power supply that operates multiple uninterruptible power supplies formed from a power conversion circuit and a bypass power supply in parallel, and an uninterruptible power supply that consists of an uninterruptible power supply configured from multiple power conversion circuits operated in parallel and a bypass power supply Two power supplies formed by using any two sets of uninterruptible power supply units that operate the uninterruptible power supply formed from the power failure power supply, the power conversion circuit and the bypass power supply, and the two power supplies An uninterruptible power supply system comprising a switching board for selecting a power source of any one of the above and supplying power to a load, and a synchronization selection circuit for selecting a synchronization state of each of the uninterruptible power supply devices,
The synchronization selection circuit uses the own system bypass voltage, the output voltage of the power conversion circuit, and the other system bus voltage as input detection signals, and the command signal to be set as the synchronization target, the own system bypass voltage, and the other system bus voltage, respectively. Frequency and voltage level determination results, phase difference between the own system bypass voltage and the output voltage of the power conversion circuit, and phase difference determination result between the output voltage of the power conversion circuit and the other system bus voltage The synchronization selection circuit synchronizes the output voltage of the uninterruptible power supply of the system set to be synchronized with the output voltage of the bypass power supply of the system, and the uninterruptible power of the system not set to be synchronized While the uninterruptible power supply system is operating in a normal state in which the output voltage of the power supply apparatus is synchronized with the output voltage of the bypass power supply of the system, the uninterruptible power supply of the system set as the synchronization target When the bypass power supply of the power source device and the bypass power supply of the uninterruptible power supply device of the system not set as the synchronization target are respectively switched to the emergency generators individually for each system, the system of the system set as the synchronization target While the output voltage of the uninterruptible power supply is synchronized with the output voltage of the bypass power supply of the system, the output voltage of the uninterruptible power supply of the system that is not set to be synchronized is that of the system that is set to be synchronized. An uninterruptible power supply system characterized in that operation is continued by switching to synchronize with the output voltage of the blackout power supply.
請求項1乃至4の何れかに記載の無停電電源システムにおいて、
前記同期選択回路を各無停電電源それぞれに設けるとともに、これらの同期選択回路間の信号の授受を中継する信号中継回路を各無停電電源装置それぞれに備えたことを特徴とする無停電電源システム。
The uninterruptible power supply system according to any one of claims 1 to 4 ,
An uninterruptible power supply system characterized in that each of the uninterruptible power supplies is provided with the synchronization selection circuit in each uninterruptible power supply, and each uninterruptible power supply apparatus includes a signal relay circuit that relays transmission / reception of signals between these synchronization selection circuits.
JP2008259311A 2008-10-06 2008-10-06 Uninterruptible power supply system Active JP5347415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259311A JP5347415B2 (en) 2008-10-06 2008-10-06 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259311A JP5347415B2 (en) 2008-10-06 2008-10-06 Uninterruptible power supply system

Publications (2)

Publication Number Publication Date
JP2010093884A JP2010093884A (en) 2010-04-22
JP5347415B2 true JP5347415B2 (en) 2013-11-20

Family

ID=42256046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259311A Active JP5347415B2 (en) 2008-10-06 2008-10-06 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP5347415B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082508A (en) * 2019-12-31 2020-04-28 华为技术有限公司 Control method and control device for power supply device in data center
US10734522B2 (en) * 2016-06-15 2020-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device structure with gate stacks

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130406B2 (en) * 2012-08-24 2015-09-08 Ainet Registry, Llc System and method for efficient power distribution and backup
US10084341B2 (en) * 2014-06-26 2018-09-25 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power source
JP6985787B2 (en) * 2016-02-29 2021-12-22 株式会社明電舎 How to turn on the power converter and bypass circuit breaker
KR102314220B1 (en) * 2019-12-16 2021-10-18 주식회사 어니언소프트웨어 Data center power supply system and Power supply method of data center power supply system
JP7452741B1 (en) 2023-06-13 2024-03-19 富士電機株式会社 uninterruptible power system
JP7439979B1 (en) 2023-06-13 2024-02-28 富士電機株式会社 Uninterruptible power supply system and power supply method using the uninterruptible power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4309789B2 (en) * 2004-03-16 2009-08-05 株式会社東芝 Uninterruptible power supply system
JP4462230B2 (en) * 2006-05-09 2010-05-12 富士電機システムズ株式会社 Uninterruptible power supply system
JP5196372B2 (en) * 2008-06-06 2013-05-15 株式会社日立製作所 Uninterruptible power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734522B2 (en) * 2016-06-15 2020-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device structure with gate stacks
CN111082508A (en) * 2019-12-31 2020-04-28 华为技术有限公司 Control method and control device for power supply device in data center

Also Published As

Publication number Publication date
JP2010093884A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5347415B2 (en) Uninterruptible power supply system
JP6190059B2 (en) Uninterruptible power system
EP3012943B1 (en) Protection methods and switches in uninterruptible power supply systems
JP4462230B2 (en) Uninterruptible power supply system
JP5809029B2 (en) Uninterruptible power system
WO2010150389A1 (en) Low-frequency breaker
CN103814500B (en) Power-supply system
JP2017050933A (en) Uninterruptible power supply system
JP5768165B2 (en) Uninterruptible power supply system
JP2008022643A (en) Uninterruptible power supply system
JP2008312371A (en) Common backup uninterruptible power supply system
JPH09247952A (en) Uninterrupted operation method and uninterrupted power supply apparatus
JP2009303419A (en) Uninterruptible power supply
JP4309789B2 (en) Uninterruptible power supply system
JP5639752B2 (en) Uninterruptible power supply system
JP5444774B2 (en) Uninterruptible power supply system
JP6435715B2 (en) Uninterruptible power system
RU208087U1 (en) DEVICE FOR AUTOMATIC STANDBY STANDBY
JPH06189469A (en) Uninterruptible power supply
JP2015107033A (en) Parallel-off control device, parallel-off control method and power conditioner
JP2007189861A (en) Uninterruptible power supply system
JP2003087999A (en) Uninterruptible power supply and ac switch interrupting method therefor
JP2009296830A (en) Uninterruptible power supply device
RU148724U1 (en) UNINTERRUPTIBLE POWER SUPPLY WITH AUTOMATIC START-UP OF BACK-UP POWER SUPPLY
US11283289B2 (en) Uninterruptible power supply system having stranded power recovery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250