JP5233748B2 - Control device for compression self-ignition internal combustion engine - Google Patents

Control device for compression self-ignition internal combustion engine Download PDF

Info

Publication number
JP5233748B2
JP5233748B2 JP2009048751A JP2009048751A JP5233748B2 JP 5233748 B2 JP5233748 B2 JP 5233748B2 JP 2009048751 A JP2009048751 A JP 2009048751A JP 2009048751 A JP2009048751 A JP 2009048751A JP 5233748 B2 JP5233748 B2 JP 5233748B2
Authority
JP
Japan
Prior art keywords
fuel
octane number
internal combustion
compression self
octane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009048751A
Other languages
Japanese (ja)
Other versions
JP2010203304A (en
Inventor
崇 新城
章彦 角方
淳 寺地
耕一 芦田
理晴 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009048751A priority Critical patent/JP5233748B2/en
Publication of JP2010203304A publication Critical patent/JP2010203304A/en
Application granted granted Critical
Publication of JP5233748B2 publication Critical patent/JP5233748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、オクタン価の異なる2種以上の燃料をそれぞれ筒内に供給して圧縮自己着火燃焼を行う圧縮自己着火式内燃機関の制御に関する。   The present invention relates to control of a compression self-ignition internal combustion engine in which two or more kinds of fuels having different octane numbers are respectively supplied into a cylinder to perform compression self-ignition combustion.

特許文献1には、低オクタン価燃料と高オクタン価燃料とを筒内に個々に噴射するようにした内燃機関が開示されている。ここでは、2つの燃料噴射弁からオクタン価の異なる燃料を両者が実質的に重ならないように噴射することで、燃料濃度が均質でかつオクタン価分布のある混合気場を形成するようにしており、これによって広い運転領域で圧縮着火燃焼の実現を図っている。   Patent Document 1 discloses an internal combustion engine in which a low-octane fuel and a high-octane fuel are individually injected into a cylinder. Here, fuels having different octane numbers are injected from the two fuel injection valves so that they do not substantially overlap with each other, so that an air-fuel mixture field having a uniform fuel concentration and an octane number distribution is formed. This achieves compression ignition combustion in a wide operating range.

特開2005−139945号公報JP-A-2005-139945

しかしながら、上記特許文献1の技術では、2つの燃料を別個に分布させることができる反面、中間のオクタン価となる混合した燃料分布を形成できないため、適用可能な運転領域が限定されてしまう。すなわち、特許文献1では、負荷の増加に伴って、低オクタン価燃料と高オクタン価燃料の供給割合を、低オクタン価燃料が少なくなるように制御する旨開示されているが、2つの燃料が混合せずに負荷の増加とともに高オクタン価燃料の量を増加させた場合、低オクタン価燃料によって着火した高オクタン価燃料が一斉に発火するため、燃焼後半が急峻燃焼になって燃焼騒音が過大となり、あるいは燃焼が良好に移行せず、未燃燃料の排出量が増大する。また、負荷の増加に対し低オクタン価燃料が過度に増加すると、低オクタン価燃料が一斉に発火し、燃焼の前半が急峻な燃焼となる。   However, in the technique of the above-described Patent Document 1, two fuels can be distributed separately, but a mixed fuel distribution having an intermediate octane number cannot be formed, so that an applicable operation range is limited. That is, Patent Document 1 discloses that the supply ratio of the low-octane fuel and the low-octane fuel is controlled so as to reduce the low-octane fuel as the load increases, but the two fuels are not mixed. If the amount of high-octane fuel is increased as the load increases, the high-octane fuel ignited by the low-octane fuel will ignite all at once. The amount of unburned fuel increases. Further, if the low octane fuel is excessively increased with the increase in load, the low octane fuel is ignited all at once, and the first half of the combustion becomes steep combustion.

そこで本発明は、オクタン価の異なる2種以上の燃料を筒内に供給し、圧縮自己着火させる圧縮自己着火式内燃機関の制御装置において、機関運転条件に応じて、筒内に分布する燃料の平均オクタン価と、筒内に分布する燃料のオクタン価幅と、を制御することによって、燃焼重心時期と燃焼期間とを制御するようにした。   Therefore, the present invention provides a control device for a compression self-ignition internal combustion engine that supplies two or more kinds of fuels having different octane numbers into a cylinder and performs compression self-ignition, and in accordance with engine operating conditions, an average of the fuel distributed in the cylinder By controlling the octane number and the octane number range of the fuel distributed in the cylinder, the combustion center-of-gravity timing and the combustion period are controlled.

『平均オクタン価』とは、筒内に供給される燃料のオクタン価の平均値であり、例えば低オクタン価燃料と高オクタン価燃料の噴射比率に相当する値である。『オクタン価幅』とは、筒内に分布する混合気中の燃料のオクタン価の中で、最高のオクタン価と最低のオクタン価との差であり、例えば筒内にオクタン価の異なる2つの混合気を分布させる場合、両混合気の燃料のオクタン価の差に相当する。『燃焼重心時期』とは、燃焼による熱発生量が総熱発生量の50%となる時期(クランク角)であり、熱発生量は熱発生率(単位クランク角での熱発生量)の積算値に相当する。   The “average octane number” is an average value of the octane number of the fuel supplied into the cylinder, for example, a value corresponding to the injection ratio of the low octane number fuel and the high octane number fuel. “Octane number range” is the difference between the highest octane number and the lowest octane number among the octane numbers of the fuel in the mixture distributed in the cylinder. For example, two mixtures with different octane numbers are distributed in the cylinder. In this case, this corresponds to the difference in the octane number between the fuels of the two air-fuel mixtures. “Combustion center-of-gravity time” is the time (crank angle) when the amount of heat generated by combustion is 50% of the total heat generated, and the amount of heat generated is the sum of the heat generation rate (heat generated at the unit crank angle). Corresponds to the value.

例えば低負荷側の運転条件範囲においては、燃焼重心時期を圧縮上死点近傍の所定時期に維持することが機関の熱効率の点から望ましい。但し、燃焼重心時期をほぼ一定に維持しつつ負荷の増加に伴って平均オクタン価のみを上昇させると、急峻な燃焼により燃焼騒音を生じるおそれがある。そこで、機関負荷の増加つまり燃料噴射量の増加に伴って、燃焼期間を拡大することで、急峻な燃焼による燃焼騒音の発生を抑制しつつ、燃焼重心時期をほぼ一定に維持することで、熱効率を向上することができる。   For example, in the operating condition range on the low load side, it is desirable from the viewpoint of engine thermal efficiency to maintain the combustion gravity center timing at a predetermined timing near the compression top dead center. However, if only the average octane number is increased with an increase in load while maintaining the combustion center-of-gravity time almost constant, combustion noise may occur due to steep combustion. Therefore, by increasing the engine load, that is, by increasing the fuel injection amount, the combustion period is extended to suppress the generation of combustion noise due to steep combustion, while maintaining the combustion center-of-gravity timing almost constant, thereby improving the thermal efficiency. Can be improved.

高負荷側の運転条件範囲では、燃焼重心時期をほぼ一定に維持したまま、機関負荷の増加に応じて平均オクタン価を高くして燃料噴射量を増量していくと、筒内圧が限界を超えるおそれがある。一方、筒内圧を抑えるために機関負荷の増加に伴って燃焼期間を大きくすると、燃焼期間が過大となって機関の熱効率が低下する。そこで、高負荷側の運転条件範囲では、機関負荷の増加に応じて、上記燃焼重心時期を遅角することで、筒内圧の過度な上昇を抑えつつ、燃焼期間をほぼ一定に維持することで、機関の熱効率の低下を抑制することができる。   In the operating condition range on the high load side, if the average octane number is increased and the fuel injection amount is increased as the engine load increases while the combustion center of gravity is maintained almost constant, the in-cylinder pressure may exceed the limit. There is. On the other hand, if the combustion period is increased as the engine load increases in order to suppress the in-cylinder pressure, the combustion period becomes excessive and the thermal efficiency of the engine decreases. Therefore, in the operating condition range on the high load side, by retarding the combustion center of gravity timing as the engine load increases, the combustion period can be maintained substantially constant while suppressing an excessive increase in the in-cylinder pressure. The reduction in the thermal efficiency of the engine can be suppressed.

本発明によれば、筒内に分布する燃料の平均オクタン価とオクタン価幅とを制御することで、急峻燃焼による燃焼騒音を抑制しつつ、機関負荷等の機関運転条件に応じて、燃焼重心時期と燃焼期間とを適切に変化させることで、機関の熱効率を向上することができる。   According to the present invention, by controlling the average octane number and octane number width of the fuel distributed in the cylinder, while suppressing combustion noise due to steep combustion, according to engine operating conditions such as engine load, By appropriately changing the combustion period, the thermal efficiency of the engine can be improved.

本発明の第1実施例に係る圧縮自己着火式内燃機関の制御装置を示す構成図。The block diagram which shows the control apparatus of the compression self-ignition internal combustion engine which concerns on 1st Example of this invention. 上記第1実施例に係る燃料オクタン価の異なる2つの混合気分布(A),(B)、並びに熱発生率の特性(C)を示す説明図。Explanatory drawing which shows two mixture distribution (A), (B) from which the fuel octane number which concerns on the said 1st Example differs, and the characteristic (C) of a heat release rate. 上記第1実施例に係る負荷に応じた平均オクタン価やオクタン価幅等の変化を示す説明図。Explanatory drawing which shows changes, such as an average octane number and an octane value width | variety according to the load which concerns on the said 1st Example. 低−中負荷域(A)及び中−高負荷域(B)における代表的な負荷での熱発生率を示す説明図。Explanatory drawing which shows the heat release rate in the typical load in a low-medium load area | region (A) and a medium-high load area | region (B). 同じく代表的な負荷での熱発生率を示す説明図。Explanatory drawing which similarly shows the heat release rate in typical load. 本発明の第2実施例に係る負荷に応じた平均オクタン価やオクタン価幅等の変化を示す説明図。Explanatory drawing which shows changes, such as an average octane number and an octane value width | variety according to the load which concerns on 2nd Example of this invention. 本発明の第3実施例に係る筒内に形成される混合気の領域を模式的に示す説明図。Explanatory drawing which shows typically the area | region of the air-fuel mixture formed in the cylinder which concerns on 3rd Example of this invention. 上記第3実施例に係る負荷に応じた平均オクタン価やオクタン価幅等の変化を示す説明図。Explanatory drawing which shows changes, such as an average octane number and an octane value width | variety according to the load which concerns on the said 3rd Example.

図1は、この発明に係る圧縮着火内燃機関の第1実施例を示しており、シリンダヘッド1aとシリンダブロック1bとピストン2とによって燃焼室3が形成されている。この燃焼室3は、吸気弁4を介して吸気ポート6と連通し、かつ排気弁5を介して排気ポート7と連通する。燃焼室3の上面中心部には、2つの燃料噴射弁つまり低オクタン価燃料用燃料噴射弁17と高オクタン価燃料用燃料噴射弁18とが並んで配置されている。   FIG. 1 shows a first embodiment of a compression ignition internal combustion engine according to the present invention. A combustion chamber 3 is formed by a cylinder head 1a, a cylinder block 1b and a piston 2. The combustion chamber 3 communicates with the intake port 6 via the intake valve 4 and communicates with the exhaust port 7 via the exhaust valve 5. Two fuel injection valves, that is, a low-octane fuel injection valve 17 and a high-octane fuel injection valve 18 are arranged side by side at the center of the upper surface of the combustion chamber 3.

低オクタン価燃料噴射弁17には、低オクタン価燃料タンク19より低圧燃料ポンプ21,低圧燃料配管25A,高圧燃料ポンプ23,高圧燃料配管25Bを介して低オクタン価燃料が供給される。同様に、高オクタン価燃料噴射弁18には、低オクタン価燃料タンク20より低圧燃料ポンプ22,低圧燃料配管26A,高圧燃料ポンプ24,高圧燃料配管26Bを介して高オクタン価燃料が供給される。これらの燃料噴射弁17,18に対向して、ピストン2の冠面中央部には、適宜な形状のキャビティ2aが設けられている。これら2つの燃料噴射弁17,18は、いずれも、シリンダ中心軸線を中心とした円錐形の噴霧を形成する。なお、これらの燃料噴射弁17,18は、通常は、全体として円錐形の噴霧を形成するマルチホール型燃料噴射弁が用いられるが、必ずしもこれに限定されず、円錐形の噴霧を形成する単噴孔のものであってもよい。   Low octane number fuel injection valve 17 is supplied with low octane number fuel from low octane number fuel tank 19 through low pressure fuel pump 21, low pressure fuel pipe 25A, high pressure fuel pump 23, and high pressure fuel pipe 25B. Similarly, high octane fuel injection valve 18 is supplied with high octane fuel from low octane fuel tank 20 through low pressure fuel pump 22, low pressure fuel pipe 26A, high pressure fuel pump 24, and high pressure fuel pipe 26B. Opposite to these fuel injection valves 17 and 18, an appropriately shaped cavity 2 a is provided in the center of the crown surface of the piston 2. Both of these two fuel injection valves 17 and 18 form a conical spray centered on the cylinder center axis. The fuel injection valves 17 and 18 are usually multi-hole fuel injection valves that form a conical spray as a whole. However, the present invention is not necessarily limited to this, and a single conical spray is formed. It may be that of a nozzle hole.

吸気コレクタ8の上流には吸入空気量を調整するスロットル弁9が設けられている。制御部10は、機関回転数(速度)を検出するクランク角センサ27,負荷要求に相当するアクセ得開度を検出するアクセル開度センサ11,機関水温を検出する水温センサ12,ノッキングを検出するノックセンサ13等の検出信号に基づいて、スロットル弁のアクチュエータ9aへ制御信号を出力し、スロットル開度を制御するとともに、燃料噴射弁17,18へ制御信号を出力し、各々の燃料噴射時期や噴射量等を制御する。   A throttle valve 9 for adjusting the amount of intake air is provided upstream of the intake collector 8. The control unit 10 detects a crank angle sensor 27 that detects an engine speed (speed), an accelerator opening sensor 11 that detects an access opening corresponding to a load request, a water temperature sensor 12 that detects an engine water temperature, and knocks. Based on a detection signal from the knock sensor 13 or the like, a control signal is output to the actuator 9a of the throttle valve, the throttle opening is controlled, and a control signal is output to the fuel injection valves 17 and 18, and each fuel injection timing and Control the injection amount and so on.

本実施例のように2本の直噴型燃料噴射弁17,18を備える構成においては、燃料噴射時期を、吸気行程又は圧縮行程の前半の予備噴射時期と、圧縮行程後半のメイン噴射時期の少なくとも2回に分けることによって、筒内に燃料のオクタン価が異なる2つの混合気を分布させることができる(混合気成層化手段)。すなわち、図2に示すように、予備噴射時期における燃料噴射によって、筒内に所定オクタン価の均質な混合気F1を形成する一方、メイン噴射時期における燃料噴射によって、筒内の一部(中央部)に異なるオクタン価の成層混合気F2を形成することができる。また、個々の噴射時期での低オクタン価燃料と高オクタン価燃料の噴射比率(噴射量の割合)を制御することによって、個々の混合気F1,F2の燃料のオクタン価を調整することができる(オクタン価調整手段)。このように燃料オクタン価の分布を意図的に生成することで、図2(C)の特性L2に示すように、筒内圧の過度な上昇を抑制しつつ、着火時期や燃焼期間を適正化することが可能となる。例えば負荷の増加に応じて単に筒内の平均オクタン価を上昇させた場合、図2(C)の破線の特性L2に示すように、急峻な燃焼となって燃焼騒音が増大するとともに、筒内圧が過大となってしまう。なお、図中の『RON』はオクタン価を意味している。   In the configuration including the two direct injection fuel injection valves 17 and 18 as in the present embodiment, the fuel injection timing is divided between the preliminary injection timing in the first half of the intake stroke or the compression stroke and the main injection timing in the latter half of the compression stroke. By dividing at least twice, two air-fuel mixtures having different fuel octane numbers can be distributed in the cylinder (air mixture stratification means). That is, as shown in FIG. 2, a homogeneous mixture F1 having a predetermined octane number is formed in the cylinder by fuel injection at the preliminary injection timing, while a part (center portion) in the cylinder is formed by fuel injection at the main injection timing. The stratified mixture F2 having different octane numbers can be formed. Further, by controlling the injection ratio (ratio of injection amount) of the low-octane fuel and the high-octane fuel at each injection timing, the octane number of the fuels of the individual air-fuel mixtures F1, F2 can be adjusted (octane number adjustment). means). By intentionally generating the distribution of the fuel octane number in this way, as shown by the characteristic L2 in FIG. 2C, the ignition timing and the combustion period are optimized while suppressing an excessive increase in the in-cylinder pressure. Is possible. For example, when the average octane number in the cylinder is simply increased in accordance with the increase in load, as shown by the broken line characteristic L2 in FIG. It becomes excessive. In the figure, “RON” means octane number.

図3〜図5を参照して、平均オクタン価aveRONは、筒内に供給された燃料のオクタン価の平均値(オクタン価に応じた燃料の供給量によって、オクタン価に重み付けを行なった上での平均値)であり、オクタン価幅ΔRONは、筒内に分布する混合気の燃料のオクタン価の格差、つまり最も高い最高オクタン価maxRONと最も低い最低オクタン価minRONとの差である。燃焼重心時期θ50は、熱発生量が総熱発生量の50%となる時期(クランク角)であって、必ずしも燃焼期間θ10−90(熱発生量が総熱発生量の10%になった時のクランク角から、90%になった時のクランク角までのクランク角範囲)の中央の時期(クランク角)ではない。燃焼期間θ10−90は、圧力上昇を伴う燃焼期間に相当し、実際の燃焼開始から終了までの期間θ0−100よりも適宜に短い期間に設定される。なお、図3において、符号α1は2つの混合気F1,F2の燃料の分布割合(燃料量の割合)を示している。また、図4,図5は図3の符号(1)〜(5)に示す代表的な負荷での熱発生率(H.R.R.)の特性を示している。   3 to 5, the average octane number aveRON is the average value of the octane number of the fuel supplied into the cylinder (the average value after weighting the octane number according to the amount of fuel supplied according to the octane number). The octane number width ΔRON is the difference between the octane numbers of the fuels of the air-fuel mixture distributed in the cylinder, that is, the difference between the highest highest octane number maxRON and the lowest lowest octane number minRON. The combustion center-of-gravity timing θ50 is a time (crank angle) at which the heat generation amount becomes 50% of the total heat generation amount, and is necessarily the combustion period θ10-90 (when the heat generation amount becomes 10% of the total heat generation amount). This is not the central time (crank angle) of the crank angle range from the crank angle to the crank angle when it reaches 90%. The combustion period θ10-90 corresponds to a combustion period accompanied by a pressure increase, and is set to a period appropriately shorter than the period θ0-100 from the actual start to end of combustion. In FIG. 3, symbol α1 indicates the fuel distribution ratio (fuel ratio) of the two air-fuel mixtures F1 and F2. 4 and 5 show the characteristics of the heat generation rate (HRRR) at typical loads shown in reference numerals (1) to (5) of FIG.

[1]本実施例においては、機関運転条件に応じて、筒内に分布する燃料の平均オクタン価aveRONと、筒内に分布する燃料のオクタン価幅ΔRONと、を制御することによって、燃焼重心時期θ50と、燃焼期間θ10−90と、を制御する。これによって、後述するように、機関負荷等の機関運転条件に応じて燃焼重心時期と燃焼期間とを適切に変化させることで、急峻燃焼による燃焼騒音を抑制しつつ、機関の熱効率を向上することが可能となる。   [1] In this embodiment, the combustion center-of-gravity timing θ50 is controlled by controlling the average octane number aveRON of fuel distributed in the cylinder and the octane number width ΔRON of fuel distributed in the cylinder according to the engine operating conditions. And the combustion period θ10-90. As described later, by appropriately changing the combustion center-of-gravity timing and the combustion period according to the engine operating conditions such as the engine load, the combustion noise due to steep combustion is suppressed and the thermal efficiency of the engine is improved. Is possible.

[2]所定負荷SL未満の低−中負荷域(第1の運転条件範囲)では、図4(A)にも示すように、燃焼重心時期θ50を一定に維持するように、機関負荷の増加に応じて、上記燃焼期間θ10−90を拡大する。すなわち、負荷の増加に応じて燃焼期間θ10−90を拡大することによって、急峻燃焼を抑えつつ負荷増加に応じて燃料噴射量を増量し、かつ、燃焼重心時期θ50をほぼ一定に維持することで、燃焼重心時期θ50の遅角や進角による機関の熱効率の低下を防ぐことができる。   [2] In the low-medium load range (first operating condition range) less than the predetermined load SL, as shown in FIG. 4A, the engine load increases so as to keep the combustion gravity center timing θ50 constant. Accordingly, the combustion period θ10-90 is expanded. That is, by expanding the combustion period θ10-90 according to the increase in load, the fuel injection amount is increased according to the increase in load while suppressing steep combustion, and the combustion center-of-gravity timing θ50 is maintained substantially constant. Further, it is possible to prevent a decrease in the thermal efficiency of the engine due to the retard or advance of the combustion center-of-gravity timing θ50.

[3]具体的には、図3にも示すように、低−中負荷域では、機関負荷の増加に応じて、平均オクタン価を高くしつつ、オクタン価幅を拡大することで、燃焼期間θ10−90を拡大しつつ、燃焼重心時期θ50をほぼ一定に維持することができる。   [3] Specifically, as shown in FIG. 3, in the low-medium load region, the combustion period θ10− is increased by increasing the average octane number while increasing the average octane number as the engine load increases. The combustion center-of-gravity timing θ50 can be maintained substantially constant while 90 is enlarged.

[4]所定負荷SL以上の中−高負荷域(第2の運転条件範囲)では、図5の破線で示すように、燃焼重心時期θ50をほぼ一定に維持したままの熱発生では(クランク角に対する熱発生率が高くなり過ぎて)、筒内圧が限界を超えるおそれがある。一方、燃焼期間θ10−90が過大となると機関の熱効率が低下する。そこで、このような中−高負荷域では、上記燃焼期間θ10−90を一定に維持するように、機関負荷の増加に応じて、燃焼重心時期θ50を遅角する。これによって、筒内圧の過度な上昇を抑えつつ、燃焼期間θ10−90をほぼ一定に維持し、機関の熱効率を向上することができる。   [4] In the middle to high load range (second operating condition range) above the predetermined load SL, as shown by the broken line in FIG. 5, the heat generation with the combustion gravity center timing θ50 maintained substantially constant (crank angle) The heat generation rate for the cylinder becomes too high), and the in-cylinder pressure may exceed the limit. On the other hand, if the combustion period θ10-90 is excessive, the thermal efficiency of the engine decreases. Therefore, in such a medium-high load region, the combustion center-of-gravity timing θ50 is retarded according to the increase in the engine load so as to keep the combustion period θ10-90 constant. Accordingly, the combustion period θ10-90 can be maintained substantially constant while suppressing an excessive increase in the in-cylinder pressure, and the thermal efficiency of the engine can be improved.

[5]具体的には、中−高負荷域では、機関負荷の増加に応じて、平均オクタン価aveRONを高くしつつ、上記オクタン価幅ΔRONを縮小することによって、図5の(4),(5)に示すように、燃焼期間θ10−90をほぼ一定に維持しつつ、燃焼重心時期θ50を遅角させていくことができる。   [5] Specifically, in the medium-high load range, the average octane number aveRON is increased in accordance with the increase in engine load, and the octane number range ΔRON is reduced to reduce (4), (5) in FIG. ), The combustion gravity center timing θ50 can be retarded while maintaining the combustion period θ10-90 substantially constant.

[6]また、中−高負荷域においては、図3に示すように、負荷の増加に応じて燃焼重心時期θ50を遅角させつつ燃焼期間θ10−90をほぼ一定に維持するように、負荷の増加に応じた平均オクタン価の上昇率を低−中負荷域よりも小さくしている。   [6] Also, in the middle-high load range, as shown in FIG. 3, the load is set so that the combustion period θ10-90 is maintained substantially constant while retarding the combustion center-of-gravity timing θ50 as the load increases. The rate of increase of the average octane number corresponding to the increase of is smaller than the low-medium load range.

[7]このように本実施例では、低−中負荷域と中−高負荷域とで、機関負荷の変化に対する平均オクタン価aveRONの変化率とオクタン価幅の変化率とを異ならせることで、全ての負荷域にわたって、図5に示すように熱発生率の特性を適正なものとすることができ、急峻燃焼による燃焼騒音や未燃燃料の排出を抑制しつつ、機関の熱効率の低下を抑制することができる。   [7] As described above, in this embodiment, the change rate of the average octane ave RON and the change rate of the octane value width with respect to the change of the engine load are made different between the low-medium load region and the medium-high load region. As shown in FIG. 5, the characteristics of heat generation rate can be made appropriate over the load range of the engine, and the deterioration of the engine thermal efficiency is suppressed while suppressing the combustion noise and the discharge of unburned fuel due to the steep combustion. be able to.

[8]上記第1実施例では、図2に示すように、燃料のオクタン価が異なる2つの混合気F1,F2を分布させ、両混合気F1,F2の燃料の分布割合α1を異ならせているが、図6に示す第2実施例のように、燃料のオクタン価を筒内で連続的に変化させ、オクタン価が高くなるほど、その燃料の分布割合(燃料量の割合)α2を高くするようにしても良い。   [8] In the first embodiment, as shown in FIG. 2, two fuel mixtures F1 and F2 having different fuel octane numbers are distributed, and the fuel distribution ratio α1 of both the fuel mixtures F1 and F2 is made different. However, as in the second embodiment shown in FIG. 6, the octane number of the fuel is continuously changed in the cylinder, and the higher the octane number, the higher the fuel distribution ratio (fuel amount ratio) α2. Also good.

[9]筒内全体に混合気を均質に分布させるとともに、機関負荷の増加に応じて上記混合気の当量比を高くする場合、図2に示すように、低−中負荷域では、機関負荷の増加に応じて、筒内に分布する燃料の最小オクタン価minRON及び最高オクタン価maxRONの双方をそれぞれ高くすることで、燃焼重心時期θ50をほぼ一定に維持しつつ、燃焼期間θ10−90を拡大していくことができる。つまり、当量比が高くなるほど、着火性が高くなり、燃焼開始時期θ10が進角することから、機関負荷の増加に応じて最小オクタン価minRONを高くしても、当量比の上昇により燃焼開始時期θ10を進角させて、燃焼期間θ10−90を拡大することができる。   [9] When the air-fuel mixture is uniformly distributed throughout the cylinder and the equivalence ratio of the air-fuel mixture is increased in accordance with the increase in the engine load, as shown in FIG. In accordance with the increase in the combustion period, by increasing both the minimum octane number minRON and the maximum octane number maxRON of the fuel distributed in the cylinder, the combustion period θ10-90 is expanded while maintaining the combustion center-of-gravity timing θ50 substantially constant. I can go. That is, as the equivalence ratio increases, the ignitability increases and the combustion start timing θ10 advances. Therefore, even if the minimum octane number minRON is increased as the engine load increases, the combustion start timing θ10 is increased by increasing the equivalence ratio. Can be advanced to expand the combustion period θ10-90.

[10]図7に示す第3実施例では、機関負荷の増加に応じて、混合気F0の当量比をほぼ一定に維持しつつ、上記混合気F0が分布する領域を拡大している。この場合、当量比をほぼ一定に維持することから、低−中負荷域において、上記第1実施例と同様、最小オクタン価minRONを高くすると、燃焼開始時期θ10が遅角し、燃焼期間θ10−90を拡大することができない。そこで、このような場合には、図8に示すように、低−中負荷域においては、機関負荷の増加に応じて最小オクタン価minRONを低くすることで、上記第1実施例と同様、機関負荷の増加に応じて燃焼開始時期θ10を進角させて、燃焼期間θ10−90を拡大することができる。   [10] In the third embodiment shown in FIG. 7, as the engine load increases, the region in which the mixture F0 is distributed is expanded while maintaining the equivalence ratio of the mixture F0 substantially constant. In this case, since the equivalence ratio is maintained substantially constant, in the low-medium load region, as in the first embodiment, when the minimum octane number minRON is increased, the combustion start timing θ10 is retarded and the combustion period θ10-90. Can not be expanded. Therefore, in such a case, as shown in FIG. 8, in the low-medium load region, the engine load is reduced as in the first embodiment by lowering the minimum octane number minRON in accordance with the increase in engine load. The combustion start timing θ10 can be advanced in accordance with the increase in the combustion period to extend the combustion period θ10-90.

[11]ターボ過給機を備えた構成においては、機関負荷の増加に応じて過給圧が増加するために、筒内全体に混合気を均質に分布させた場合であっても、機関負荷の増加に応じて混合気の当量比が低くなる。従って、低−中負荷域において、上記第1実施例のように、負荷の増加に応じて最小オクタン価minRONを高くすると、燃焼開始時期θ10が遅角し、燃焼期間θ10−90を拡大することができない。そこで、このような場合には、上記第3実施例と同様、図8に示すように、低−中負荷域においては、負荷の増加に応じて最小オクタン価minRONを低くすることで、機関負荷の増加に応じて燃焼開始時期θ10を進角させて、燃焼期間θ10−90を拡大することができる。   [11] In the configuration provided with the turbocharger, the supercharging pressure increases as the engine load increases. Therefore, even when the air-fuel mixture is uniformly distributed throughout the cylinder, the engine load The equivalence ratio of the air-fuel mixture decreases as the value increases. Therefore, in the low-medium load region, as in the first embodiment, when the minimum octane number minRON is increased in accordance with the increase in the load, the combustion start timing θ10 is retarded and the combustion period θ10-90 is extended. Can not. Therefore, in such a case, as in the third embodiment, as shown in FIG. 8, in the low-medium load region, the minimum octane number minRON is lowered according to the increase in the load, thereby reducing the engine load. The combustion period θ10-90 can be expanded by advancing the combustion start timing θ10 according to the increase.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば吸気ポートに燃料噴射弁を備える構成においては、吸気行程で吸気ポートに燃料を噴射することによって均質混合気F1を形成するようにしても良い。また、筒内の異なる領域に燃料を噴射する2本の直噴式噴射弁と、それぞれの噴射弁に供給する燃料を改質することによってオクタン価を調整可能な改質器と、を備える構成としても良い。この場合、改質器により適宜に調整されたオクタン価の燃料をそれぞれの噴射弁より筒内の異なる領域に噴射することで、筒内に燃料のオクタン価が異なる2つの混合気を分布させることができる。また、上記機関負荷に代えて、燃料噴射量,最高筒内圧力,最高筒内圧力変化率,あるいは燃焼騒音等に基づいて運転条件範囲を設定したり制御を行うようにしても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, in a configuration in which a fuel injection valve is provided in the intake port, the homogeneous mixture F1 may be formed by injecting fuel into the intake port in the intake stroke. Further, it may be configured to include two direct injection valves that inject fuel into different regions in the cylinder, and a reformer that can adjust the octane number by reforming the fuel supplied to each of the injection valves. good. In this case, it is possible to distribute two air-fuel mixtures having different octane numbers of the fuel in the cylinder by injecting the octane fuel appropriately adjusted by the reformer into different areas in the cylinder from the respective injection valves. . Further, the operating condition range may be set or controlled based on the fuel injection amount, the maximum in-cylinder pressure, the maximum in-cylinder pressure change rate, the combustion noise, or the like instead of the engine load.

3…燃焼室
6…吸気ポート
10…制御部
17…低オクタン価燃料用燃料噴射弁
18…高オクタン価燃料用燃料噴射弁
DESCRIPTION OF SYMBOLS 3 ... Combustion chamber 6 ... Intake port 10 ... Control part 17 ... Fuel injection valve for low octane fuel 18 ... Fuel injection valve for high octane fuel

Claims (14)

オクタン価の異なる2種以上の燃料を筒内に供給し、圧縮自己着火させる圧縮自己着火式内燃機関の制御装置において、
機関運転条件に応じて、筒内に分布する燃料の平均オクタン価と、筒内に分布する燃料のオクタン価幅と、を制御することによって、燃焼重心時期と燃焼期間とを制御することを特徴とする圧縮自己着火式内燃機関の制御装置。
In a control device for a compression self-ignition internal combustion engine that supplies two or more kinds of fuels having different octane numbers into a cylinder and performs compression self-ignition,
By controlling the average octane number of the fuel distributed in the cylinder and the octane width of the fuel distributed in the cylinder according to the engine operating conditions, the combustion center-of-gravity timing and the combustion period are controlled. A control device for a compression self-ignition internal combustion engine.
第1の運転条件範囲では、上記燃焼重心時期を一定に維持するように、機関負荷の増加に応じて、上記燃焼期間を拡大することを特徴とする請求項1に記載の圧縮自己着火式内燃機関の制御装置。   2. The compression self-ignition internal combustion engine according to claim 1, wherein in the first operating condition range, the combustion period is extended in accordance with an increase in engine load so as to maintain the combustion center-of-gravity timing constant. Engine control device. 第1の運転条件範囲では、機関負荷の増加に応じて、上記平均オクタン価を高くしつつ、上記オクタン価幅を拡大することを特徴とする請求項1又は2に記載の圧縮自己着火式内燃機関の制御装置。   3. The compression self-ignition internal combustion engine according to claim 1, wherein, in the first operating condition range, the octane number range is increased while the average octane number is increased in accordance with an increase in engine load. Control device. 第2の運転条件範囲では、上記燃焼期間を一定に維持するように、機関負荷の増加に応じて、上記燃焼重心時期を遅角することを特徴とする請求項1〜3のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   4. The combustion center of gravity timing is retarded in accordance with an increase in engine load so as to maintain the combustion period constant in the second operating condition range. Control device for compression self-ignition internal combustion engine. 第2の運転条件範囲では、機関負荷の増加に応じて、上記平均オクタン価を高くしつつ、上記オクタン価幅を縮小することを特徴とする請求項1〜4のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   5. The compression self-ignition type according to claim 1, wherein, in the second operating condition range, the octane number range is reduced while increasing the average octane number in accordance with an increase in engine load. Control device for internal combustion engine. 第1の運転条件範囲においては、機関負荷の増加に応じて、上記平均オクタン価を高くしつつ、上記オクタン価幅を拡大し、
第2の運転条件範囲においては、機関負荷の増加に応じて、上記平均オクタン価を高くしつつ、上記オクタン価幅を縮小し、かつ、上記平均オクタン価の上昇率を上記第1の運転条件範囲よりも小さくすることを特徴とする請求項1〜5のいずれかに記載の圧縮自己着火式内燃機関の制御装置。
In the first operating condition range, as the engine load increases, the average octane number is increased while the octane number range is expanded.
In the second operating condition range, as the engine load increases, the average octane number is increased while the octane number range is reduced, and the increase rate of the average octane number is set higher than that in the first operating condition range. The control device for a compression self-ignition internal combustion engine according to any one of claims 1 to 5, wherein the control device is made small.
第1の運転条件範囲と第2の運転条件範囲とで、機関負荷の変化に対する上記平均オクタン価の変化率と上記オクタン価幅の変化率の少なくとも一方を異ならせることを特徴とする請求項1〜6のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   The first operating condition range and the second operating condition range differ in at least one of the change rate of the average octane number and the change rate of the octane value range with respect to a change in engine load. A control device for a compression self-ignition internal combustion engine according to any one of the above. 上記第1の運転条件範囲が、機関負荷が所定負荷未満の低−中負荷域であり、
上記第2の運転条件範囲が、機関負荷が上記所定負荷以上の中−高負荷域であることを特徴とする請求項6又は7に記載の圧縮自己着火式内燃機関の制御装置。
The first operating condition range is a low-medium load range where the engine load is less than a predetermined load,
The control apparatus for a compression self-ignition internal combustion engine according to claim 6 or 7, wherein the second operating condition range is a medium-high load range in which the engine load is equal to or greater than the predetermined load.
オクタン価を筒内で連続的に変化させるとともに、オクタン価が高くなるほど、その分布割合を高くすることを特徴とする請求項1〜8のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   The control apparatus for a compression self-ignition internal combustion engine according to any one of claims 1 to 8, wherein the octane number is continuously changed in the cylinder, and the distribution ratio is increased as the octane number is increased. 筒内全体に混合気を分布させるとともに、機関負荷の増加に応じて上記混合気の当量比を高くする場合、機関負荷の増加に応じて、上記混合気内に分布する燃料の最小オクタン価及び最高オクタン価の双方をそれぞれ高くすることを特徴とする請求項1〜9のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   When the air-fuel mixture is distributed throughout the cylinder and the equivalence ratio of the air-fuel mixture is increased as the engine load increases, the minimum octane number and the maximum fuel distributed in the air-fuel mixture as the engine load increases. 10. The control device for a compression self-ignition internal combustion engine according to claim 1, wherein both of the octane numbers are increased. 機関負荷の増加に応じて、混合気の当量比をほぼ一定に維持しつつ、上記混合気が分布する領域を拡大する場合、第1の運転条件範囲においては、機関負荷の増加に応じて、上記混合気内に分布する燃料の最高オクタン価を高くする一方、上記混合気内に分布する燃料の最小オクタン価を低くすることを特徴とする請求項1〜9のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   When the region in which the mixture is distributed is expanded while maintaining the equivalence ratio of the mixture substantially constant as the engine load increases, in the first operating condition range, according to the increase in the engine load, The compression self-ignition type according to any one of claims 1 to 9, wherein the maximum octane number of the fuel distributed in the mixture is increased while the minimum octane number of the fuel distributed in the mixture is decreased. Control device for internal combustion engine. 筒内全体に混合気を分布させるとともに、機関負荷の増加に応じて上記混合気の当量比を低くする場合、第1の運転条件範囲においては、機関負荷の増加に応じて、上記混合気内に分布する燃料の最高オクタン価を高くする一方、上記混合気内に分布する燃料の最小オクタン価を低くすることを特徴とする請求項1〜9のいずれかに記載の圧縮自己着火式内燃機関の制御装置。   When the air-fuel mixture is distributed throughout the cylinder and the equivalence ratio of the air-fuel mixture is decreased according to an increase in the engine load, the air-fuel mixture is increased in the first operating condition range according to the increase in the engine load. 10. The control of a compression self-ignition internal combustion engine according to claim 1, wherein the maximum octane number of the fuel distributed in the fuel is increased while the minimum octane number of the fuel distributed in the mixture is decreased. apparatus. オクタン価の低い燃料の混合気と、オクタン価の高い燃料の混合気と、を筒内の異なる領域にそれぞれ分布させる混合気成層化手段と、
各々の混合気の燃料のオクタン価を調整するオクタン価調整手段と、
を有することを特徴とする請求項1〜12のいずれかに記載の圧縮自己着火式内燃機関の制御装置。
A mixture stratification means for distributing a mixture of fuel having a low octane number and a mixture of fuel having a high octane number to different regions in the cylinder;
Octane number adjusting means for adjusting the octane number of the fuel of each mixture,
The control device for a compression self-ignition internal combustion engine according to any one of claims 1 to 12, wherein:
低オクタン価燃料と高オクタン価燃料をそれぞれ筒内に直接噴射する2本の燃料噴射弁を有し、
上記混合気成層化手段は、吸気行程又は圧縮行程の前半の予備噴射時期に燃料を噴射するとともに、圧縮行程後半のメイン噴射時期に燃料を噴射し、
上記オクタン価調整手段は、各々の噴射時期で、低オクタン価燃料と高オクタン価燃料の噴射比率を制御することを特徴とする請求項13に記載の圧縮自己着火式内燃機関の制御装置。
It has two fuel injection valves that inject low octane fuel and high octane fuel directly into the cylinder,
The mixed gas stratification means injects fuel at a preliminary injection timing in the first half of the intake stroke or compression stroke, and injects fuel at a main injection timing in the latter half of the compression stroke,
14. The control device for a compression self-ignition internal combustion engine according to claim 13, wherein the octane number adjusting means controls the injection ratio of the low octane number fuel and the high octane number fuel at each injection timing.
JP2009048751A 2009-03-03 2009-03-03 Control device for compression self-ignition internal combustion engine Active JP5233748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048751A JP5233748B2 (en) 2009-03-03 2009-03-03 Control device for compression self-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048751A JP5233748B2 (en) 2009-03-03 2009-03-03 Control device for compression self-ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010203304A JP2010203304A (en) 2010-09-16
JP5233748B2 true JP5233748B2 (en) 2013-07-10

Family

ID=42965037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048751A Active JP5233748B2 (en) 2009-03-03 2009-03-03 Control device for compression self-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5233748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612476B2 (en) * 2018-04-09 2020-04-07 Saudi Arabian Oil Company Internal combustion engines which utilize multiple fuels and methods for the operation of such

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214586B2 (en) * 1998-12-11 2009-01-28 日産自動車株式会社 Fuel supply method for gasoline internal combustion engine
JP3928334B2 (en) * 2000-06-15 2007-06-13 日産自動車株式会社 Compression self-ignition internal combustion engine
JP4232568B2 (en) * 2002-07-31 2009-03-04 株式会社豊田中央研究所 Compression self-ignition internal combustion engine and combustion control method thereof
JP4007310B2 (en) * 2003-11-05 2007-11-14 トヨタ自動車株式会社 Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP4023434B2 (en) * 2003-11-13 2007-12-19 トヨタ自動車株式会社 Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel

Also Published As

Publication number Publication date
JP2010203304A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
EP1267070B1 (en) Spark ignition stratified combustion internal combustion engine
US6636797B2 (en) Enhanced multiple injection for auto-ignition in internal combustion engines
US9145843B2 (en) Spark-ignition direct injection engine
US9702316B2 (en) Spark-ignition direct injection engine
US9255539B2 (en) Spark-ignition direct injection engine
US9624868B2 (en) Spark-ignition direct injection engine
JP5494568B2 (en) gasoline engine
US8082093B2 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP5494545B2 (en) Spark ignition gasoline engine
JP2004239208A (en) Engine combustion control device
JP2017145696A (en) Control device of internal combustion engine
JP6252647B1 (en) Control device for premixed compression ignition engine
JP2010196506A (en) Cylinder injection internal combustion engine
US20160201635A1 (en) Control device of engine
JP2010048212A (en) Direct injection type gasoline engine
JP2019105222A (en) Premixing compression ignition type engine
JP2010196517A (en) Control device for internal combustion engine
CN114483353A (en) Engine system
JP5593615B2 (en) Compression self-ignition internal combustion engine
US11293395B2 (en) Control device for engine
JP6471041B2 (en) Injection controller for spark ignition engine
JP2009103054A (en) Control device for internal combustion engine
JP5233748B2 (en) Control device for compression self-ignition internal combustion engine
JP2008184970A (en) Control device of gasoline engine
JP7124921B2 (en) engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3