JP5232474B2 - Matrix means for reducing combustion volume - Google Patents

Matrix means for reducing combustion volume Download PDF

Info

Publication number
JP5232474B2
JP5232474B2 JP2007551388A JP2007551388A JP5232474B2 JP 5232474 B2 JP5232474 B2 JP 5232474B2 JP 2007551388 A JP2007551388 A JP 2007551388A JP 2007551388 A JP2007551388 A JP 2007551388A JP 5232474 B2 JP5232474 B2 JP 5232474B2
Authority
JP
Japan
Prior art keywords
inlet
fuel
oxidant
matrix means
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007551388A
Other languages
Japanese (ja)
Other versions
JP2008527310A (en
Inventor
ロバート ストレムペック ジョセフ
シー.レンザー ロナルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock and Wilcox Power Generation Group Inc
Original Assignee
Babcock and Wilcox Power Generation Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock and Wilcox Power Generation Group Inc filed Critical Babcock and Wilcox Power Generation Group Inc
Publication of JP2008527310A publication Critical patent/JP2008527310A/en
Application granted granted Critical
Publication of JP5232474B2 publication Critical patent/JP5232474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • F22B21/343Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D3/00Burners using capillary action
    • F23D3/40Burners using capillary action the capillary action taking place in one or more rigid porous bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/84Flame spreading or otherwise shaping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/40Intermediate treatments between stages
    • F23C2201/401Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/106Assemblies of different layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00012Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14582Special features of gas burners with outlets consisting of layers of spherical particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Massaging Devices (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

A steam generating boiler having a matrix means (8) for reducing combustion volume. Matrix means (8) is placed in the combustion furnace (5) of a steam generating boiler, preferably downstream of fuel and oxidant stream (11, 12). Matrix means produces a shorter combustion envelope than that of a conventional boiler, allowing for reduced volume steam generating boilers.

Description

本発明は、一般に化石燃料燃焼に関し、詳しくは、蒸気発生用ボイラのガス状燃料燃焼のための新規且つ有益な方法及び装置に関する。   The present invention relates generally to fossil fuel combustion, and more particularly to a new and useful method and apparatus for gaseous fuel combustion in steam generating boilers.

化石燃料バーナは、酸化体の存在下に化石燃料を燃焼させることで、化石燃料に蓄えられた化学的エネルギーを熱に変換する。発電用途ではこの熱を水に移行させて発電用タービン駆動用の蒸気を発生させる。非発電用途では前記熱は考え得る不特定多数の物又はプロセスに移行され得る。
従来の蒸気発生用ボイラには、一般に、一つ以上のバーナと、一つ以上の燃料噴射ポイントと、一つ以上の酸化体噴射ポイントと、噴射された燃料と酸化体とを燃焼炉内に推進させるための手段と、が含まれる。酸化体と燃料との混合物が着火される(図1)と、火炎3と、火炎3とバーナ1との間の酸化体/燃料混合物帯域2とを含む燃焼エンベロープ4が形成される。
A fossil fuel burner burns fossil fuel in the presence of an oxidant to convert chemical energy stored in the fossil fuel into heat. In power generation applications, this heat is transferred to water to generate steam for driving the power generation turbine. In non-power generation applications, the heat can be transferred to an unspecified number of possible objects or processes.
Conventional steam generating boilers generally include one or more burners, one or more fuel injection points, one or more oxidant injection points, and injected fuel and oxidant in a combustion furnace. Means for propulsion. When the mixture of oxidant and fuel is ignited (FIG. 1), a combustion envelope 4 is formed which includes a flame 3 and an oxidant / fuel mixture zone 2 between the flame 3 and the burner 1.

図2及び図3には、夫々単一及び多数のバーナを使用する従来の蒸気発生用ボイラの概略図が示される。ボイラの内壁には、図示しないボイラバンクに流体連結した複数の蒸気発生用チューブ6が含まれる。燃焼エンベロープ4内に生じた熱エネルギーはこれらの蒸気発生用チューブ6を放射加熱し、加熱された蒸気発生用チューブ6が結局、蒸気を発生させるための熱エネルギーをその内部の水に伝達する。
大抵の蒸気発生用ボイラでは、燃焼エンベロープ4の長さと幅とには、燃焼炉5を設計する上で欠かせない役割がある。例えばFMボイラでは、燃焼エンベロープ4と炉壁10との過剰接触を回避するべく、燃焼炉5を十分に大きく設計するのが好ましい。火炎衝突としても知られるが、火炎3が図3に示すように炉壁10と過剰に接触すると、不完全燃焼が生じてCO及びその他の燃焼副産物の放出量が増大し、または早期劣化を生じて費用の掛かる補修やボイラ停止が発生する。従って、一般に燃焼炉5は、所定のバーナ燃焼エンベロープ4を収受する一方で、火炎衝突の生じる可能性を最小化する設計とされる。
2 and 3 show schematic diagrams of conventional steam generating boilers using single and multiple burners, respectively. The inner wall of the boiler includes a plurality of steam generating tubes 6 fluidly connected to a boiler bank (not shown). The heat energy generated in the combustion envelope 4 radiates and heats these steam generating tubes 6, and the heated steam generating tubes 6 eventually transmit the heat energy for generating steam to the water inside thereof.
In most steam generating boilers, the length and width of the combustion envelope 4 play an essential role in designing the combustion furnace 5. For example, in an FM boiler, it is preferable to design the combustion furnace 5 sufficiently large so as to avoid excessive contact between the combustion envelope 4 and the furnace wall 10. Also known as a flame collision, if the flame 3 is in excessive contact with the furnace wall 10 as shown in FIG. Costly repairs and boiler shutdowns. Therefore, the combustion furnace 5 is generally designed to receive a predetermined burner combustion envelope 4 while minimizing the possibility of a flame collision.

従来のバーナでは一般には流れ制御機構を用いて燃焼エンベロープ4が軸方向及び半径方向に拡大するのを制御している。燃焼エンベロープ4の半径方向拡大は一般には、燃料、酸化体、火炎、の旋回及び自然な拡大の関数である。流れ制御機構を使用して燃焼エンベロープ4の半径方向の自然拡大を制限する従来設計型の幾つかのバーナでは、火炎が長く且つ狭幅なものとなっている。流れ制御機構の創出する剪断力が、燃焼に先立つ燃料/酸化体の混合度合いに影響を与え、それによりCOやNOxの如きの放出量に影響を与えるべく使用される。
酸化体や燃料の入手性や燃焼前の混合性は、燃焼炉5内の燃焼エンベロープ4の長さに影響する。火炎は、酸化体の供給が不十分である場合、または酸化体と燃料とが燃焼エンベロープ4内で適正混合されていないと一般に長くなり、酸化体が十分に供給され、燃焼エンベロープ4内で酸化体と燃料とが適正混合されていれば一般に短くなる。火炎長さは、燃焼エンベロープ4に入る燃料及び又は酸化体流れの速度によっても影響される。燃料/酸化体流れの速度が速すぎる場合、または燃料/酸化体の流れが瞬間的に途切れるとバーナの火炎3は失火する。失火は、再着火時に暴発しやすい可燃物堆積を生じることから、特に望ましくない。
米国エネルギー庁は、工業ボイラのような蒸気発生用ボイラの寸法及び重量を低減させることが長年要求されていることを明示した。従来の蒸気発生用ボイラは、発生する燃焼エンベロープ4の大きさを収受するように造られる。
Conventional burners generally use a flow control mechanism to control the expansion of the combustion envelope 4 in the axial and radial directions. The radial expansion of the combustion envelope 4 is generally a function of fuel, oxidant, flame swirl and natural expansion. In some conventional design burners that use flow control mechanisms to limit the natural expansion of the combustion envelope 4 in the radial direction, the flame is long and narrow. The shear force created by the flow control mechanism is used to affect the degree of fuel / oxidant mixing prior to combustion, thereby affecting emissions such as CO and NOx.
The availability of the oxidant and fuel and the mixing property before combustion affect the length of the combustion envelope 4 in the combustion furnace 5. The flame generally becomes longer when the supply of oxidant is insufficient, or when the oxidant and fuel are not properly mixed in the combustion envelope 4, the oxidant is sufficiently supplied and oxidized in the combustion envelope 4. If the body and fuel are properly mixed, it will generally be shorter. The flame length is also affected by the speed of the fuel and / or oxidant flow entering the combustion envelope 4. If the fuel / oxidant flow rate is too fast, or if the fuel / oxidant flow is momentarily interrupted, the burner flame 3 will misfire. Misfire is particularly undesirable because it creates a flammable deposit that tends to explode upon reignition.
The US Energy Agency has stated that it has long been required to reduce the size and weight of steam generating boilers such as industrial boilers. The conventional steam generating boiler is constructed so as to receive the size of the combustion envelope 4 generated.

Babcock & Wilcox 社の2005年のSteam/its Generation and Use, 41th Edition, Kitto and Stultz, EdsBabcock & Wilcox 2005 Steam / its Generation and Use, 41th Edition, Kitto and Stultz, Eds

相当に小さい容積内で蒸気を発生させるための十分な熱エネルギーを発生し、かくして一段と小型軽量で且つコンパクトな設計形状の、長年来要望されている蒸気発生用ボイラの製造を可能とする燃焼エンベロープを提供することである。   Combustion envelope that generates sufficient thermal energy to generate steam in a fairly small volume, thus making it possible to produce a steam generator boiler that has been desired for many years with a much smaller, lighter and more compact design. Is to provide.

本発明によれば、上述した問題を解決する、液体燃料、気体燃料、又はそれらの任意の組み合わせを燃焼させることのできる蒸気発生用ボイラが提供される。
本発明によれば、コンパクトな蒸気発生用ボイラが提供される。
本発明によれば、燃焼エンベロープの半径方向幅と軸方向長さとが、従来の蒸気発生用ボイラのそれよりも幅広で且つ短い蒸気発生用ボイラが提供される。
本発明によれば、NOx及びCO発生量の少ない蒸気発生用ボイラが提供される。
本発明によれば、従来の蒸気発生用ボイラと比較して寸法が小さく且つ重さが軽い蒸気発生用ボイラを設計するための手段が提供される。
本発明によれば、燃焼炉と、酸化体入口と、燃料入口と、マトリクス手段と、蒸気チューブと、を含む蒸気発生用ボイラが提供される。
According to the present invention, there is provided a steam generating boiler capable of burning liquid fuel, gaseous fuel, or any combination thereof that solves the above-described problems.
According to the present invention, a compact steam generating boiler is provided.
According to the present invention, a steam generating boiler is provided in which the radial width and the axial length of the combustion envelope are wider and shorter than those of conventional steam generating boilers.
ADVANTAGE OF THE INVENTION According to this invention, the boiler for steam generation with little NOx and CO generation amount is provided.
The present invention provides means for designing a steam generating boiler that is smaller in size and lighter in weight than conventional steam generating boilers.
According to the present invention, there is provided a steam generating boiler including a combustion furnace, an oxidant inlet, a fuel inlet, matrix means, and a steam tube.

相当に小さい容積内で蒸気を発生させるための十分な熱エネルギーを発生し、かくして一段と小型軽量で且つコンパクトな設計形状の、長年来要望されている蒸気発生用ボイラの製造を可能とする燃焼エンベロープを提供することである。   Combustion envelope that generates sufficient thermal energy to generate steam in a fairly small volume, thus making it possible to produce a steam generator boiler that has been desired for many years with a much smaller, lighter and more compact design. Is to provide.

本発明は、従来のオイル及びガス焚き式の蒸気発生用ボイラを改善する特徴の組み合わせが使用される。従来のオイル及びガス炊き式の蒸気発生用ボイラには、これに限定するものではないが、FM、高キャパシティFM、PFM、PFI、PFT、SPB、RBの各ボイラが含まれる。これら全てのボイラはBabcock & Wilcox 社の2005年のSteam/its Generation and Use, 41th Edition, Kitto and Stultz, Edsに記載されている。
本明細書ではFMボイラの概略図を使用して本発明を説明するが、FMボイラは説明目的においてのみ使用されるものであって、本発明はFMボイラ実施例に限定されるものではない。
The present invention uses a combination of features that improves upon conventional oil and gas fired steam generating boilers. Conventional oil and gas cooking steam generator boilers include, but are not limited to, FM, high capacity FM, PFM, PFI, PFT, SPB, RB boilers. All these boilers are described in Babcock &Wilcox's 2005 Steam / its Generation and Use, 41th Edition, Kitto and Stultz, Eds.
In the present specification, the present invention will be described using a schematic diagram of an FM boiler. However, the FM boiler is used only for the purpose of explanation, and the present invention is not limited to the FM boiler embodiment.

図2及び図3を参照するに、従来のFMボイラの概略図が示され、バッフル壁20が、図示されないボイラバンクから燃焼炉5を分離している。燃焼エンベロープ4が燃焼炉5内に位置付けられ、バーナ1に送られる燃料と酸化体とが着火されると燃焼エンベロープ4が発生する。
燃焼炉の炉壁10には、蒸気ドラム7に流体連結されて発電を目的とするプロセスのために使用する蒸気を発生する一連のチューブ6が含まれる。燃焼エンベロープ4が切頭円錐状に拡散する形状を有することで、燃焼エンベロープ4が拡大するに従い、燃焼エンベロープ4に平行するかなりの燃焼炉容積部分が使われない状況となる。
Referring to FIGS. 2 and 3, a schematic diagram of a conventional FM boiler is shown, in which a baffle wall 20 separates the combustion furnace 5 from a boiler bank not shown. When the combustion envelope 4 is positioned in the combustion furnace 5 and the fuel and oxidant sent to the burner 1 are ignited, the combustion envelope 4 is generated.
The furnace wall 10 of the combustion furnace includes a series of tubes 6 that are fluidly connected to the steam drum 7 to generate steam for use in a process intended for power generation. Since the combustion envelope 4 has a shape that diffuses in a truncated cone shape, as the combustion envelope 4 expands, a considerable combustion furnace volume portion parallel to the combustion envelope 4 is not used.

本発明は、使われない燃焼炉容積部分を低減させることを目的とするものであり、本発明によれば、燃焼エンベロープの火炎の内部か又は火炎よりも前方の何れかにマトリクス8が提供される。図5を参照するに、本発明の後付け型の実施例が示され、マトリクス8がバーナ1よりも下流側で燃焼炉5に配置されている。燃料及び酸化体はマトリクス8に入り、マトリクス8の断面設計形状が、そこを通過するガス状流れを混合させ、生じた燃焼エンベロープ9を半径方向に拡散させる手段を提供する。
マトリクス8には、少なくとも一つのガス状の燃料流れと、少なくとも一つのガス状の酸化体流れとが、またはそれらの組み合わせが提供される。ガス状流れはマトリクス8に任意の側から流入し得る。図6には、燃料流れ12と、燃料流れ12と酸化体流れ11とがマトリクス8よりも上流側から導入される好ましい実施例が示される。あるいはガス状の酸化体流れ11と燃料流れ12とを、図7や図8に示すようにマトリクス8の側方のみから、またはマトリクスの前方及び各側部からの組み合わせ状態下に導入させ得る。
The present invention aims to reduce the volume of the combustion furnace that is not used. According to the present invention, the matrix 8 is provided either inside the flame of the combustion envelope or in front of the flame. The Referring to FIG. 5, a retrofit embodiment of the present invention is shown, in which a matrix 8 is arranged in the combustion furnace 5 downstream of the burner 1. The fuel and oxidant enter the matrix 8, and the cross-sectional design of the matrix 8 provides a means for mixing the gaseous flow passing therethrough and for diffusing the resulting combustion envelope 9 in the radial direction.
The matrix 8 is provided with at least one gaseous fuel stream and at least one gaseous oxidant stream, or a combination thereof. The gaseous stream can enter the matrix 8 from any side. FIG. 6 shows a preferred embodiment in which the fuel stream 12 and the fuel stream 12 and the oxidant stream 11 are introduced from the upstream side of the matrix 8. Alternatively, the gaseous oxidant stream 11 and the fuel stream 12 can be introduced from only the side of the matrix 8 as shown in FIGS. 7 and 8, or in a combined state from the front and each side of the matrix.

図9には本発明に従うマトリクス8の好ましい実施例が示される。本実施例では、燃焼装置は少なくとも一つの球体層を含むマトリクス8である。球体は、マトリクス8内でランダムに又は整然と配列され得、本来、中空、中実又は多孔質又はその任意の組み合わせのものであり得る。球体は寸法が異なる又は実質的に類似のものであり得、化石燃料燃焼中にマトリクス8が露呈される高温に耐え得る高温金属又はセラミックであり得ることが好ましく、使用し得る任意の既知の材料を含み得る。   FIG. 9 shows a preferred embodiment of the matrix 8 according to the invention. In this embodiment, the combustion device is a matrix 8 that includes at least one spherical layer. The spheres can be arranged randomly or orderly within the matrix 8, and can be hollow, solid or porous in nature or any combination thereof. The spheres can be different or substantially similar in size and can be a high temperature metal or ceramic that can withstand the high temperatures to which the matrix 8 is exposed during fossil fuel combustion, and any known material that can be used. Can be included.

図9を参照するに、マトリクス8を横断するガス状流れのための開口部分の変化を表す4つの断面が平面1〜4として示されている。開口率は、断面1ではおよそ46パーセント、断面2では31パーセント、断面3では9パーセント、断面4では約58パーセントである。
本発明はガス状流れの混合を改善することを目的とするものでもある。混合状況は、開口部分の開口率の異なる、例えば、第1断面のガス状流れのための開口率が第2断面のそれよりも大きい、少なくとも2つの断面を含むマトリクス8の存在下に改善される。図9の断面1と断面2とは、ガス状流れに対する開口率が異なっており、ガス状流れはこれら2つの断面間を通過する際に生じる差圧により圧縮又は拡張され、その際生じる剪断力がガス状流れを強制混合させる。マトリクス8の提供する優れた混合性により、CO量と、燃焼完了に要する余分の空気量とが最小化される。
Referring to FIG. 9, four cross sections representing changes in the opening for the gaseous flow across the matrix 8 are shown as planes 1-4. The aperture ratio is approximately 46 percent for Section 1, 31 percent for Section 2, 9 percent for Section 3, and about 58 percent for Section 4.
The present invention also aims to improve the mixing of gaseous streams. The mixing situation is improved in the presence of a matrix 8 comprising at least two cross-sections with different open area ratios, for example an open area for the gaseous flow of the first cross-section is greater than that of the second cross-section. The The cross section 1 and the cross section 2 in FIG. 9 have different opening ratios with respect to the gaseous flow, and the gaseous flow is compressed or expanded by the differential pressure generated when passing between these two cross sections, and the shearing force generated at that time Causes forced mixing of the gaseous stream. The excellent mixability provided by the matrix 8 minimizes the amount of CO and the amount of extra air required to complete the combustion.

本発明は、燃焼エンベロープを半径方向に拡散させることをも目的としている。そうした半径方向拡散は、開口部分の開口率の異なる少なくとも2つの断面を含むマトリクス8の存在下に実現される。2つの断面は軸線が異なり、第1断面のガス状流れに対する開口率は第2断面のそれよりも大きい。図9に示す断面3及び断面4は、ガス状流れに対する開口率の異なる、軸線の異なる各断面であり、ガス状流れは、断面3に接近するとその開口率が比較的小さいことに基づく抵抗を受け、ガスの一部分の、もっと流れ抵抗の小さい断面、例えば断面4に向かうベクトルが変化し、かくして、燃焼エンベロープを軸線方向に抑制し且つ半径方向に拡散させる。   The invention is also aimed at diffusing the combustion envelope in the radial direction. Such radial diffusion is realized in the presence of a matrix 8 that includes at least two cross-sections with different aperture ratios of the aperture portions. The two cross sections have different axes, and the opening ratio of the first cross section for the gaseous flow is larger than that of the second cross section. The cross sections 3 and 4 shown in FIG. 9 are cross sections having different opening ratios and different axes with respect to the gaseous flow. When the gaseous flow approaches the cross section 3, the resistance based on the relatively small opening ratio is obtained. As a result, the vector of a portion of the gas towards the cross-section with a lower flow resistance, for example cross-section 4, changes, thus restraining the combustion envelope axially and diffusing radially.

本発明によれば、熱出力をほぼ同じに維持しつつ、蒸気発生用ボイラの設計形状の改善を可能とする燃焼装置が提供される。図5を参照するに、従来のFMボイラに後付けした本発明の概略図が示される。本発明は、燃焼エンベロープ4を半径方向に拡散させ、かくして、使用されない燃焼容積部分が燃焼エンベロープ9よりも下流側に移動された、ずっと短い燃焼エンベロープ9が発生される。後付け用途の場合、使用されない燃焼容積部分に蒸気発生機器を追加してエネルギー発生ポテンシャルを最大化させることができる。
燃焼炉の深さを減少させる場合、熱出力を犠牲にすることなく、新規且つコンパクトなボイラ設計形状を開発できるようになるという利益がある。蒸気発生用ボイラの燃焼炉5は、一般に、所定の燃焼エンベロープ4を収受しつつ、火炎衝突のリスクを最小化するように設計される。燃焼エンベロープ4が短いと、任意の所定の熱出力での炉の深さを相当に浅くすることが可能である。本発明を使用してボイラ寸法を低減させると、短いボイラはボイラ壁やチューブ6の製造原料もかなり少ないことから、ボイラ重量も低減される。
ADVANTAGE OF THE INVENTION According to this invention, the combustion apparatus which enables the improvement of the design shape of a steam generation boiler is provided, maintaining a heat output substantially the same. Referring to FIG. 5, a schematic diagram of the present invention retrofitted to a conventional FM boiler is shown. The present invention diffuses the combustion envelope 4 radially, thus producing a much shorter combustion envelope 9 in which the unused combustion volume is moved downstream of the combustion envelope 9. For retrofit applications, steam generation equipment can be added to unused combustion volume to maximize energy generation potential.
Reducing the depth of the combustion furnace has the advantage that new and compact boiler design shapes can be developed without sacrificing heat output. The combustion furnace 5 of the steam generating boiler is generally designed to receive a predetermined combustion envelope 4 while minimizing the risk of flame collision. If the combustion envelope 4 is short, the furnace depth at any given heat output can be considerably reduced. When the boiler size is reduced using the present invention, the boiler weight is also reduced because the short boiler has much less raw material for producing the boiler wall and the tube 6.

本発明に従うマトリクス8は燃焼エンベロープ4内のどこかに配置することができる。マトリクス8は、このマトリクス8の内部で燃焼が開始され、燃焼火炎3が、燃料と酸化体とを導入する位置よりも下流側でマトリクス8から出るに十分な深さ位置で、混合帯域2内に配置するのが好ましい。この実施例では、火炎幅は、着火されて拡張力が創出された燃焼性流れが、この拡張力によりマトリクス8の内部を更に半径方向に拡張することにより最大化される。
本発明の更に他の利益は、一定の着火源が受動的に維持されることである。この実施例では、マトリクス8は熱を維持し得る材料から構成される。燃料及び又は酸化体流れが速過ぎて又は変動量が大き過ぎて火炎が消えてしまうような時でも、マトリクス要素内に維持された熱が着火を維持するに十分な熱源を提供するので、再着火が遅れた場合に関連する所望されざる状況が回避される。
The matrix 8 according to the invention can be arranged anywhere in the combustion envelope 4. In the mixing zone 2, the matrix 8 starts to burn inside the matrix 8, and the combustion flame 3 is located at a depth sufficient to exit the matrix 8 downstream from the position where the fuel and oxidant are introduced. It is preferable to arrange in the above. In this embodiment, the flame width is maximized by a flammable flow that has been ignited to create an expansion force and further expands the interior of the matrix 8 further radially by this expansion force.
Yet another benefit of the present invention is that a constant ignition source is maintained passively. In this embodiment, the matrix 8 is composed of a material that can maintain heat. Even when the fuel and / or oxidant flow is too fast or the amount of variation is so great that the flame disappears, the heat maintained in the matrix element provides a sufficient heat source to maintain ignition, so Undesirable situations associated with delayed ignition are avoided.

本発明の他の実施例では蒸気発生用ボイラにおいて一つ以上のマトリクス8(以下、第1マトリクス8とも称する)が使用される。図10には本実施例の概念図が示され、2つのマトリクスがステージ燃焼を容易化するべく用いられている。本実施例では第2マトリクス14が第1マトリクス8よりも下流側に位置付けられる。第1マトリクス8には燃料流れ18と、NOxのような所望されざる燃焼副産物の生成を抑止するための亜化学量論的酸化体17とが提供される。残留燃料を燃焼させるための十分な酸素を提供する第2酸化体流れ13が、第1マトリクス8よりも下流側及び第2マトリクス14よりも上流側に提供される。
図11には本発明に従う、2つのマトリクスを交互させたステージ燃焼実施例が例示される。本実施例では、火炎温度制御及び熱NOx形成を目的とする冷却用チューブ15が2つのマトリクス8及び14の間に配置される。フレームアレスターとして作用し及び又は亜化学量論的酸化体17を予備分与する機能のある穴あきプレート150を第1マトリクス8よりも上流側に配置しても良い。
In another embodiment of the present invention, one or more matrices 8 (hereinafter also referred to as first matrix 8) are used in the steam generating boiler. FIG. 10 shows a conceptual diagram of this embodiment, in which two matrices are used to facilitate stage combustion. In the present embodiment, the second matrix 14 is positioned downstream of the first matrix 8. The first matrix 8 is provided with a fuel stream 18 and a substoichiometric oxidant 17 to suppress the formation of undesired combustion by-products such as NOx. A second oxidant stream 13 that provides sufficient oxygen to burn the residual fuel is provided downstream from the first matrix 8 and upstream from the second matrix 14.
FIG. 11 illustrates a stage combustion embodiment in which two matrices are alternated according to the present invention. In this embodiment, a cooling tube 15 for the purpose of flame temperature control and thermal NOx formation is disposed between the two matrices 8 and 14. A perforated plate 150 acting as a flame arrester and / or having a function of pre-dispersing the substoichiometric oxidant 17 may be arranged upstream of the first matrix 8.

本発明の別の実施例では燃焼炉内に、燃焼炉5内での燃焼プロセスを観察するためのセンサ16が配置される。
本発明の他の実施例では、マトリクス8を予備加熱するため又は燃料及び酸化体を着火するための着火器160が、燃焼炉内に配置される。
図12には、本発明の他の実施例が示される。本実施例ではマトリクス8は繊維又は粒状物組み合わせからなるランダムに又は整然と配置したブロックを含み、繊維及び粒状物の間には一連の内側通路が配置される。内側通路は、ガス状流れのための開口部分が変化された断面を有し、ガス状燃料及び酸化体の各流れをマトリクス8の内部で受動的に混合させ且つ半径方向に分散させるための手段を提供する。本実施例の線A−Aに沿った断面図も示されている。
In another embodiment of the invention, a sensor 16 for observing the combustion process in the combustion furnace 5 is arranged in the combustion furnace.
In another embodiment of the present invention, an igniter 160 for preheating the matrix 8 or for igniting fuel and oxidant is disposed in the combustion furnace.
FIG. 12 shows another embodiment of the present invention. In this embodiment, the matrix 8 includes randomly or orderly arranged blocks of fibers or granule combinations, with a series of inner passages between the fibers and granules. The inner passage has a section in which the opening for the gaseous flow is varied and means for passively mixing and radially distributing the gaseous fuel and oxidant flows within the matrix 8 I will provide a. A cross-sectional view along the line AA of this embodiment is also shown.

図13には本発明の別の実施例が例示され、本実施例ではマトリクス8が、通気口19を有する焼成または嵌め込み(fired-or-fitted)タイルを含んでいる。本実施例の線B−Bに沿った断面図も示され、通気口19の断面がマトリクス8の幅方向に沿って変化する状況が示されている。
本発明の他の実施例では酸化体及び/燃料が多重流れ形態下にマトリクス8に供給され得る。
本発明の他の実施例ではマトリクス8は、非球形要素から、又は球形要素及び非球形要素を整然と配置し又は非整然と配置して組み合わせたものから成り得る。
FIG. 13 illustrates another embodiment of the present invention, where the matrix 8 includes fired-or-fitted tiles with vents 19. A cross-sectional view along the line BB of the present embodiment is also shown, and a situation in which the cross section of the vent hole 19 changes along the width direction of the matrix 8 is shown.
In other embodiments of the present invention, oxidant and / or fuel may be fed to the matrix 8 in multiple flow configurations.
In other embodiments of the invention, the matrix 8 may consist of non-spherical elements, or a combination of orderly or non-ordered arrangements of spherical and non-spherical elements.

本発明の更に他の実施例では、球体又はその他の形状の要素が、燃料の化学的性質の変更、燃焼の助長、汚染物排出量削減、等を目的とする、当業者には既知の任意数の化学物質でコーティングされ得る。
本発明の更に他の実施例では、マトリクス8は矩形、円形、又はその他の幾何学的設計形状のものであり得る。一般に、本発明のマトリクス8は各球体が動かないようにする好適な器具により捕捉状態に保持される。好適な器具の例は、これに限定しないが、ワイヤフレームであり、及び又は、マトリクス8の各要素を相互に化学的又は機械的に接合するものである。
本発明の更に他の実施例では、多数のマトリクスがボイラ内で平行状態に配置され得る。そうした実施例では、多数の燃料が同時に燃焼され、かくしてボイラ設計上の燃焼燃料の融通性が提供される。
本発明の他の実施例では、強制流れ空気又は再循環ファンを使用してマトリクス8を横断する差圧を生じさせ、マトリクス8を通過するガス状流れを促進又は抑制させる。
In still other embodiments of the present invention, spheres or other shaped elements may be any option known to those of ordinary skill in the art for the purpose of altering fuel chemistry, promoting combustion, reducing pollutant emissions, etc. It can be coated with a number of chemicals.
In still other embodiments of the invention, the matrix 8 may be rectangular, circular, or other geometric design shape. In general, the matrix 8 of the present invention is held in a captured state by a suitable device that prevents each sphere from moving. An example of a suitable instrument is, but not limited to, a wire frame and / or one that chemically or mechanically joins the elements of the matrix 8 to each other.
In yet another embodiment of the invention, multiple matrices can be arranged in parallel in the boiler. In such an embodiment, multiple fuels are burned simultaneously, thus providing the flexibility of the combustion fuel on the boiler design.
In other embodiments of the invention, forced flow air or recirculation fans are used to create a differential pressure across the matrix 8 to promote or inhibit gaseous flow through the matrix 8.

燃焼エンベロープの概念図である。It is a conceptual diagram of a combustion envelope. 単一のバーナを使用する従来の工業用ボイラの概念図である。It is a conceptual diagram of the conventional industrial boiler which uses a single burner. 一つ以上のバーナを使用する従来の工業用ボイラの概念図である。It is a conceptual diagram of the conventional industrial boiler which uses one or more burners. 燃焼炉の長さと幅とに沿って過剰の火炎接触が生じる、所望されざる燃焼エンベロープの概念図である。FIG. 3 is a conceptual diagram of an undesired combustion envelope in which excessive flame contact occurs along the length and width of the combustion furnace. マトリクス手段を既存の蒸気発生用ボイラの燃焼炉内に組み込んだ状態を例示する本発明の実施例の概念図である。It is a conceptual diagram of the Example of this invention which illustrates the state which incorporated the matrix means in the combustion furnace of the existing steam generation boiler. マトリクス手段よりも上流側で燃料と酸化体とを導入する本発明の実施例の斜視図である。It is a perspective view of the Example of this invention which introduce | transduces a fuel and an oxidant upstream from a matrix means. マトリクス手段の側部において燃料と酸化体とを導入する本発明の実施例の斜視図である。FIG. 4 is a perspective view of an embodiment of the present invention in which fuel and oxidant are introduced at the side of the matrix means. マトリクス手段の前方及び側部において燃料と酸化体とを導入する本発明の実施例の斜視図である。FIG. 2 is a perspective view of an embodiment of the present invention in which fuel and oxidant are introduced at the front and side of the matrix means. マトリクス手段の線1−4に沿った各断面を例示する本発明のマトリクス手段の好ましい実施例の斜視図である。FIG. 4 is a perspective view of a preferred embodiment of the matrix means of the present invention illustrating each cross-section along line 1-4 of the matrix means. 2つのマトリクス手段を用いてステージ燃焼を容易化する実施例の例示図である。FIG. 4 is an illustration of an embodiment that facilitates stage combustion using two matrix means. 2つのマトリクス手段を用いるステージ燃焼ボイラのステージ間に冷却を介装した実施例の斜視図である。It is a perspective view of the Example which interposed cooling between the stages of the stage combustion boiler using two matrix means. 本発明に従うマトリクス手段の別態様の斜視図である。FIG. 6 is a perspective view of another embodiment of the matrix means according to the present invention. 本発明に従うマトリクス手段の別態様の斜視図である。FIG. 6 is a perspective view of another embodiment of the matrix means according to the present invention.

符号の説明Explanation of symbols

1 バーナ
4、9 燃焼エンベロープ
5 燃焼炉
6 チューブ
7 蒸気ドラム
8 マトリクス
10 炉壁
11 酸化体流れ
12 燃料流れ
14 第2マトリクス
16 センサ
17 亜化学量論的酸化体
19 通気口
20 バッフル壁
150 穴あきプレート
160 着火器
1 Burner 4, 9 Combustion envelope 5 Combustion furnace 6 Tube 7 Steam drum 8 Matrix 10 Furnace wall 11 Oxidant flow 12 Fuel flow 14 Second matrix 16 Sensor 17 Substoichiometric oxidant 19 Vent 20 Baffle wall 150 Hole Plate 160 igniter

Claims (9)

蒸気発生用ボイラであって、
蒸気発生用バンクよりも上流側に位置付けられ、入口端及び出口端を有する燃焼炉にして、バッフル壁及び複数の炉壁により更に画定され、各前記炉壁が、複数の蒸気チューブにして、前記炉壁の垂直長さ方向に整列し且つ前記バッフル壁の反対側で前記燃焼炉の出口端よりも下流側に位置付けた蒸気ドラムに流体連通された複数の蒸気チューブを含む燃焼炉と、
酸化体を提供するための酸化体入口にして、前記燃焼炉の入口端付近に位置決めした酸化体入口と、
燃料を提供するための燃料入口にして、前記燃焼炉の入口付近に位置決めした燃料入口と、
酸化体と燃料とを受動的に混合させるための、金属製球体からなるマトリクス手段にして、前記酸化体入口及び燃料入口よりも下流側に位置付けたマトリクス手段と、
前記マトリクス手段よりも下流側に位置付けた第2酸化体入口と、該第2酸化体入口よりも下流側に位置付けた金属製球体から成る第2マトリクス手段と、
を含み、
前記マトリクス手段が、ガス状流れ用の開口部分を有する少なくとも第1及び第2の軸線の異なる断面を含み、第1断面の前記開口部分の開口率が、第2断面を横断する前記開口部分の開口率よりも大きい蒸気発生用ボイラ。
A steam generating boiler,
A combustion furnace positioned upstream from the steam generating bank and having an inlet end and an outlet end, further defined by a baffle wall and a plurality of furnace walls, each furnace wall being a plurality of steam tubes, A combustion furnace including a plurality of steam tubes in fluid communication with a steam drum aligned in a vertical length direction of the furnace wall and positioned downstream of the baffle wall and downstream of the combustion furnace outlet end;
An oxidant inlet positioned near the inlet end of the combustion furnace as an oxidant inlet for providing oxidant;
A fuel inlet positioned near the inlet of the combustion furnace as a fuel inlet for providing fuel;
Matrix means made of metal spheres for passively mixing oxidant and fuel, matrix means positioned downstream of the oxidant inlet and fuel inlet;
A second oxidant inlet positioned downstream from the matrix means; a second matrix means comprising metal spheres positioned downstream from the second oxidant inlet;
Including
The matrix means includes at least first and second axis different cross-sections having an opening portion for gaseous flow, wherein the opening ratio of the opening portion of the first cross-section is that of the opening portion crossing the second cross-section. Steam generating boiler larger than the opening ratio.
前記第2酸化体入口が、前記第2マトリクス手段の幅方向に沿って水平に伸延する複数のチューブを含み、該複数のチューブの各々が、酸化体を分散させる多数の開口を含む請求項の蒸気発生用ボイラ。 The second oxidant inlet comprises a plurality of tubes which extend horizontally along the width direction of the second matrix means according to claim 1, each of the plurality of tubes, comprising a plurality of apertures to disperse oxidant Steam generating boiler. 前記流体入口よりも上流側に位置付けられた穴あきプレートを更に含む請求項の蒸気発生用ボイラ。 The steam generating boiler according to claim 2 , further comprising a perforated plate positioned upstream of the fluid inlet. 前記燃料入口が、前記第2マトリクス手段の幅方向に沿って水平に伸延する複数の燃料チューブを含み、該複数の燃料チューブの各々が、燃料を分散させる多数の開口を含む請求項の蒸気発生用ボイラ。 It said fuel inlet comprises a plurality of fuel tubes which extend horizontally along the width direction of the second matrix means, each of the plurality of fuel tubes, steam of claim 1 including a plurality of openings to distribute the fuel Generation boiler. 前記燃料を分散させる多数の開口が、1つ以上の軸線上に位置付けられる請求項の蒸気発生用ボイラ。 The steam generating boiler according to claim 4 , wherein the plurality of openings for dispersing the fuel are positioned on one or more axes. マトリクス手段と第2酸化体入口との間に位置付けた冷却用チューブを更に含む請求項の蒸気発生用ボイラ。 6. The steam generating boiler of claim 5 , further comprising a cooling tube positioned between the matrix means and the second oxidant inlet. 蒸気発生用ボイラであって、
蒸気発生用バンクよりも上流側に位置付けられ、入口端及び出口端を有する燃焼炉にして、バッフル壁及び複数の炉壁により更に画定され、各前記炉壁が、複数の蒸気チューブにして、前記炉壁の垂直長さ方向に整列し且つ前記バッフル壁の反対側で前記燃焼炉の出口端よりも下流側に位置付けた蒸気ドラムに流体連通された複数の蒸気チューブを含む燃焼炉と、
酸化体を提供するための第1酸化体入口にして、前記燃焼炉の入口端付近に位置決めした酸化体入口と、
燃料を提供するための燃料入口にして、前記燃焼炉の入口付近に位置決めした燃料入口と、
該燃料入口よりも上流側に位置付けられた穴あきプレートと、
前記燃焼炉の壁に取り付けた複数の蒸気チューブにして、燃焼チャンバよりも下流側に位置付けた蒸気ドラムに流体連結する蒸気チューブと、
前記第1酸化体入口及び燃料入口よりも下流側に位置付けられ、通気孔を有する嵌め込みタイルからなる第1マトリクス手段と、
前記第1マトリクス手段よりも下流側に位置付けられ、第2酸化体を提供する第2酸化体入口と、
該第2酸化体入口よりも下流側に位置付けられ、通気孔を有する、嵌め込みタイルから成る第2マトリクス手段と、
を含む蒸気発生用ボイラ。
A steam generating boiler,
A combustion furnace positioned upstream from the steam generating bank and having an inlet end and an outlet end, further defined by a baffle wall and a plurality of furnace walls, each furnace wall being a plurality of steam tubes, A combustion furnace including a plurality of steam tubes in fluid communication with a steam drum aligned in a vertical length direction of the furnace wall and positioned downstream of the baffle wall and downstream of the combustion furnace outlet end;
An oxidant inlet positioned near the inlet end of the combustion furnace as a first oxidant inlet for providing oxidant;
A fuel inlet positioned near the inlet of the combustion furnace as a fuel inlet for providing fuel;
A perforated plate positioned upstream from the fuel inlet;
A plurality of steam tubes attached to the wall of the combustion furnace, the steam tubes fluidly connected to a steam drum positioned downstream of the combustion chamber;
A first matrix means, which is located downstream of the first oxidant inlet and the fuel inlet, and comprises a fitting tile having a vent;
A second oxidant inlet positioned downstream from the first matrix means and providing a second oxidant;
Second matrix means comprising inlaid tiles positioned downstream from the second oxidant inlet and having vents;
Steam generating boilers.
前記第1マトリクス手段と第2マトリクス手段との間に位置付けた中間ステージ冷却用チューブを更に含む請求項の蒸気発生用ボイラ。 It said first matrix means and the steam generating boiler of claim 7, further comprising between stage cooling tube in which located between the second matrix means. 前記第1マトリクス手段と第2マトリクス手段との間に着火器を位置付けた請求項の蒸気発生用ボイラ。 The steam generating boiler according to claim 8 , wherein an igniter is positioned between the first matrix means and the second matrix means.
JP2007551388A 2005-01-12 2006-01-12 Matrix means for reducing combustion volume Active JP5232474B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64321905P 2005-01-12 2005-01-12
US60/643,219 2005-01-12
PCT/US2006/001185 WO2006076549A1 (en) 2005-01-12 2006-01-12 Matrix means for reducing combustion volume

Publications (2)

Publication Number Publication Date
JP2008527310A JP2008527310A (en) 2008-07-24
JP5232474B2 true JP5232474B2 (en) 2013-07-10

Family

ID=36677968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007551388A Active JP5232474B2 (en) 2005-01-12 2006-01-12 Matrix means for reducing combustion volume

Country Status (17)

Country Link
EP (1) EP1836439B1 (en)
JP (1) JP5232474B2 (en)
KR (1) KR101362671B1 (en)
CN (1) CN101120208B (en)
AU (1) AU2006204840B2 (en)
BR (1) BRPI0606693B1 (en)
CA (1) CA2594739C (en)
DK (1) DK1836439T3 (en)
ES (1) ES2546645T3 (en)
HU (1) HUE027866T2 (en)
MX (1) MX2007008516A (en)
NO (1) NO340477B1 (en)
PL (1) PL1836439T3 (en)
PT (1) PT1836439E (en)
RU (1) RU2410599C2 (en)
WO (1) WO2006076549A1 (en)
ZA (1) ZA200705847B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2747398T3 (en) * 2016-12-16 2020-03-10 Ikerlan S Coop Gas burner

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US65846A (en) * 1867-06-18 van tine
US2362972A (en) 1939-12-26 1944-11-21 Brownback Henry Lowe Gas burner
US3322179A (en) * 1963-04-09 1967-05-30 Paul H Goodell Fuel burner having porous matrix
US4027476A (en) * 1973-10-15 1977-06-07 Rocket Research Corporation Composite catalyst bed and method for making the same
JPS61147010A (en) * 1984-12-19 1986-07-04 Nippon Steel Corp High temperature radiation panel burner
JPS62258917A (en) * 1986-04-18 1987-11-11 Miura Co Ltd Combustion promoting body for surface combustion consisting of ceramic particles
JPH0611102A (en) * 1992-06-30 1994-01-21 Ishikawajima Harima Heavy Ind Co Ltd Combustion device for boiler
US5511974A (en) * 1994-10-21 1996-04-30 Burnham Properties Corporation Ceramic foam low emissions burner for natural gas-fired residential appliances
JP3082826B2 (en) * 1994-10-24 2000-08-28 三菱重工業株式会社 Exhaust heat recovery device
JP2663933B2 (en) * 1995-11-29 1997-10-15 三浦工業株式会社 boiler
DE29816864U1 (en) * 1998-09-19 2000-01-27 Viessmann Werke GmbH & Co., 35108 Allendorf Boiler fan burner
US6289851B1 (en) * 2000-10-18 2001-09-18 Institute Of Gas Technology Compact low-nox high-efficiency heating apparatus
US6921516B2 (en) * 2001-10-15 2005-07-26 General Motors Corporation Reactor system including auto ignition and carbon suppression foam
JP2003262313A (en) * 2002-03-08 2003-09-19 Osaka Gas Co Ltd Combustor
JP3722775B2 (en) * 2002-04-05 2005-11-30 株式会社タクマ Premixed gas combustion device
US6971336B1 (en) * 2005-01-05 2005-12-06 Gas Technology Institute Super low NOx, high efficiency, compact firetube boiler

Also Published As

Publication number Publication date
WO2006076549A1 (en) 2006-07-20
AU2006204840A1 (en) 2006-07-20
CA2594739C (en) 2014-03-25
KR20070101868A (en) 2007-10-17
CN101120208B (en) 2010-05-19
ZA200705847B (en) 2008-07-30
EP1836439A1 (en) 2007-09-26
EP1836439B1 (en) 2015-07-01
DK1836439T3 (en) 2015-09-28
BRPI0606693A2 (en) 2009-07-14
RU2410599C2 (en) 2011-01-27
CA2594739A1 (en) 2006-07-20
HUE027866T2 (en) 2016-11-28
NO340477B1 (en) 2017-05-02
NO20073886L (en) 2007-10-08
PL1836439T3 (en) 2015-12-31
ES2546645T3 (en) 2015-09-25
AU2006204840B2 (en) 2011-09-29
BRPI0606693B1 (en) 2019-05-14
EP1836439A4 (en) 2013-09-04
PT1836439E (en) 2015-10-12
JP2008527310A (en) 2008-07-24
MX2007008516A (en) 2007-09-19
CN101120208A (en) 2008-02-06
KR101362671B1 (en) 2014-02-12
RU2007144255A (en) 2009-06-10

Similar Documents

Publication Publication Date Title
RU2589587C1 (en) Burner for gaseous fuel with high energy saving and combustion efficiency with low emission of pollutants and high heat transfer
JP4309380B2 (en) Multistage combustion system with ignition assisted fuel lance
CN101981374B (en) Burner
CN101981375A (en) Swirler with gas injectors
US20220154926A1 (en) Compact inward-firing premix fuel combustion system, and fluid heating system and packaged burner system including the same
US9562683B2 (en) Aphlogistic burner
JP5232474B2 (en) Matrix means for reducing combustion volume
US20090311641A1 (en) Gas flame stabilization method and apparatus
US7493876B2 (en) Passive mixing device for staged combustion of gaseous boiler fuels
JP2004053144A (en) In-cylinder swirl combustor
RU2249153C1 (en) Multi-jet burner for boiler
CN114110580A (en) Low-nitrogen combustor
JP7262521B2 (en) Gas burner and combustion equipment
KR102229911B1 (en) A Once-through Boiler Equipped with a Porous Medium Burner and its Operation Method
WO2009151420A1 (en) Gas flame stabilization method and apparatus
JPS63217121A (en) Planar burner
JPS63217119A (en) Combustion method for premixture gas
UA47570A (en) Gas diffusive self-adjusting burner for natural gas burning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110810

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250