JP5180211B2 - Silicon / carbon composite cathode material for lithium ion battery and method for producing the same - Google Patents

Silicon / carbon composite cathode material for lithium ion battery and method for producing the same Download PDF

Info

Publication number
JP5180211B2
JP5180211B2 JP2009524864A JP2009524864A JP5180211B2 JP 5180211 B2 JP5180211 B2 JP 5180211B2 JP 2009524864 A JP2009524864 A JP 2009524864A JP 2009524864 A JP2009524864 A JP 2009524864A JP 5180211 B2 JP5180211 B2 JP 5180211B2
Authority
JP
Japan
Prior art keywords
silicon
carbon
cathode material
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009524864A
Other languages
Japanese (ja)
Other versions
JP2010501970A (en
Inventor
ユエ、ミン
ジャン、ワンホン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTR New Material Group Co Ltd
Original Assignee
BTR New Material Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTR New Material Group Co Ltd filed Critical BTR New Material Group Co Ltd
Publication of JP2010501970A publication Critical patent/JP2010501970A/en
Application granted granted Critical
Publication of JP5180211B2 publication Critical patent/JP5180211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池陰極材料及びその製造方法に関する。とくに、リチウムイオン電池の珪素・炭素複合陰極材料及びその製造方法に関する。   The present invention relates to a battery cathode material and a method for producing the same. In particular, the present invention relates to a silicon / carbon composite cathode material for a lithium ion battery and a method for producing the same.

1990年日本Sony会社が最初にリチウムイオン電池を開発し、それを商品化して以降、リチウムイオン電池は迅速な発展を遂げてきた。現在では、リチウムイオン電池はすでに民間用及び軍事用などの広範囲に応用されてきた。科学技術の絶えざる進歩につれて、消費者の電池の性能に対する要求はより多く、より高くなる。例えば、電子製品の小型化と個性化の発展趨勢は、より小型化、より効率の高い電池を必要とする。宇宙航空の電源は、サイクル寿命、よりよい低温充放電の性能、より高い安全性を有するものを必要とする。また、電力駆動の車は容量が大きく、コストが低く、安定性と安全性能が高い電池を必要とする。リチウムイオン電池開発の成功は、まず電極材料、特に炭素陰極材料の研究の進展によるものである。数多くの炭素材料の中、黒鉛化の炭素材料は良好な層状構造を有するため、リチウムイオンの挿入・脱離非常に適し、形成された黒鉛・リチウムの層間化合物Li−GICが高い比容量を有しており、すでにLiC6の理論の比容量372mAh/gに接近している。そのほか、黒鉛化の炭素材料は、良い充放電の電圧基盤、比較的に低い挿入・脱離リチウム電位を有するため、リチウム電池の陽極材料としてのLiCoO2、LiNiO2及LiMn2O4などとの整合性が良好である。これにより構成された電池は、その平均電圧が高く、放電が平穏である。そのため、現段階で商品化されたリチウムイオン電池の陰極材料として、黒鉛類炭素材料が大量に採用されている。 1990 Japan Sony company first developed a lithium-ion battery, and later to commercialize it, lithium-ion battery has undergone rapid development. At present, lithium ion batteries have already been applied in a wide range of civilian and military applications. As science and technology continue to advance, consumer demands for battery performance are higher and higher. For example, the development trend of downsizing and individualization of electronic products requires batteries that are smaller and more efficient. Aerospace power supplies need to have cycle life, better low-temperature charge / discharge performance, and higher safety. Power-driven vehicles also require batteries with high capacity, low cost, and high stability and safety performance. The success of lithium-ion battery development is first due to research progress on electrode materials, especially carbon cathode materials. Among the numerous carbon material, since the carbon material graphitized in with good layered structure, very suitable for insertion and extraction of lithium ions, formed intercalation compound of graphite Li Li-GIC high specific capacity It has already approached the specific capacity of 372 mAh / g of LiC 6 theory. In addition, graphitized carbon materials have a good charging / discharging voltage base and relatively low insertion / desorption lithium potential, so LiCoO 2 , LiNiO 2 and LiMn 2 O 4 as anode materials for lithium batteries Good consistency. The battery thus configured has a high average voltage and discharge is calm. Therefore, a large amount of graphitic carbon materials has been adopted as a cathode material for lithium ion batteries that have been commercialized at this stage.

しかし、現在の黒鉛類材料は、すでに理論容量に接近している。大電流密度のもとで安全操作を実現し、初回の不可逆的容量の損失を減少して、未来市場におけるリチウムイオン電池に対する高い容量、高い充電効率の要求を満足させるために、新型リチウムイオン電池の電極材料の開発は極めて緊急性がある。いま、学界では、この種類の電極材料に関する研究は大変盛んに行なわれている。こうした陰極材料の研究において、Al、Sn、Sb、Siなどリチウムと合金を形成することのできる金属、またはそれらの合金をリチウムイオン電池の陰極材料として、つまり、Al、Sn、Sb、Siまたはそれらの合金を陰極材料とするときは、そのリチウムの可逆的貯蔵容量が黒鉛類陰極材料のそれよりはるかに超えていることを発見した。しかし、この種類の陰極材料の高い体積効果が、サイクル安定性を悪化させるので、上記を実用化するまで時間がかかる。そのため、これらのリチウムの貯蔵容量の高い材料をいかにして実用化するのかについて、リチウムイオン電池研究において、現在注目されるところである。   However, current graphite materials are already close to the theoretical capacity. New lithium-ion battery to achieve safe operation under high current density, reduce initial irreversible capacity loss, and meet the demand for high capacity and high charging efficiency for lithium-ion battery in future market The development of electrode materials is extremely urgent. Currently, research on this type of electrode material is very active in the academic world. In the study of these cathode materials, metals that can form alloys with lithium, such as Al, Sn, Sb, and Si, or alloys thereof are used as cathode materials for lithium ion batteries, that is, Al, Sn, Sb, Si, or those It was discovered that the reversible storage capacity of lithium is far greater than that of graphite cathode materials. However, since the high volume effect of this type of cathode material deteriorates cycle stability, it takes time to put the above into practical use. For this reason, attention is currently being paid to research on how to put these materials with high lithium storage capacity into practical use in lithium ion battery research.

炭素基でない材料の研究において、珪素材料が理論的にリチウムの高い貯蔵容量(たとえば、珪素単体のリチウム貯蔵容量は4200mAh/gである)とリチウムの低い挿入電位を有しており、他の金属基材料と比べて、より高い安定性をもつため、注目されている。従って、珪素基材料をリチウムイオン電池の陰極材料として成功裏に運用することができるならば、リチウムイオン電池の発展に革新的意味をもち、且つ情報業、エネルギ業の発展にも重要な影響を及ぼすことになるに違いない。しかし、金属基材料と同様、高い程度のリチウムの挿入・脱離の場合、珪素基材料は重大な体積効果が生じる。これにより、電極のサイクル安定性が不安になり、かつ、第一回の不可逆的容量が高くなるので、リチウムイオン電池の陰極材料としての応用が制限されることになる。そのため、現在、数多くの研究者は、リチウムの貯蔵容量の高い材料の改質と改善に努力している。たとえば、日立傘下のMaxwell社がCVD製法を用いて製造した、珪素粒子と前記珪素粒子の外部に無定形の炭素粒子を被覆するという複合材料は、珪素材料の構造とその導電性能を改善して、リチウムの挿入・脱離工程における体積効果をある程度に抑えることができるので、こうした材料のサイクル性能を上げることができた。しかし、CVD製法をコントロールすることが難しく、不確定の要素が多いため、大量生産を実現させることが困難である。また、C.S.Wang氏などが、黒鉛と珪素粉末によりボール・ミルで製造した珪素/炭素の二元体の複合材料は、第一回のリチウム挿入容量を高く有している。しかし、その充放電性能安定性、特に最初数回のサイクル容量の減衰速度が速い(J. Electrochem. Soc.,8(1998): 2751-2758)。そのほか、S.B.NG氏などが、コロゾール・ゲル製法を用いて製造した網状近似の黒鉛―珪素/Si(OCH3)4の複合材料は、相対的に安定した機械性能をもち、サイクル性能の向上に役立つ。しかし、その一方、Si-O網状構造は、リチウムの拡散を阻んで、リチウムの挿入量を減少させるため、珪素の高い容量性能を充分に発揮させることができない(J. Power Sources,94(2001): 63-67)。 In the study of non-carbon based materials, silicon materials theoretically have a high lithium storage capacity (for example, the lithium storage capacity of silicon alone is 4200 mAh / g) and a low lithium insertion potential, and other metals It is attracting attention because it has higher stability than the base material. Therefore, if silicon-based materials can be successfully used as cathode materials for lithium-ion batteries, they will have an innovative meaning in the development of lithium-ion batteries and will have an important impact on the development of the information and energy industries. It must be affected. However, like metal-based materials, silicon-based materials have a significant volume effect in the case of a high degree of lithium insertion / extraction. As a result, the cycle stability of the electrode becomes uneasy and the first irreversible capacity becomes high, so that the application as a cathode material of a lithium ion battery is limited. Therefore, many researchers are currently striving to modify and improve materials with high lithium storage capacity. For example, the composite material manufactured by Hitachi's Maxwell company using the CVD method, which covers silicon particles and amorphous carbon particles outside the silicon particles, improves the structure of the silicon material and its conductive performance. Since the volume effect in the lithium insertion / extraction process can be suppressed to some extent, the cycle performance of these materials can be improved. However, it is difficult to control the CVD process and there are many uncertain factors, making it difficult to realize mass production. In addition, the silicon / carbon binary composite material produced by CSWang and others using a ball mill with graphite and silicon powder has a high lithium insertion capacity at the first time. However, the charge-discharge performance lacking only the stability, in particular the damping rate of the cycle capacity of the first few times faster (J. Electrochem Soc, 8 (1998 ):.. 2751-2758). In addition, SBNG, etc., produced by using the corozol-gel process, has a reticulated graphite-silicon / Si (OCH 3 ) 4 composite material that has relatively stable mechanical performance and helps improve cycle performance. . On the other hand, the Si-O network prevents the diffusion of lithium and reduces the amount of lithium inserted, so that the high capacity performance of silicon cannot be fully exhibited (J. Power Sources, 94 (2001 ): 63-67).

電気化学の反応過程における、リチウム挿入・脱離時に生じた重大な体積効果に応対するため、本発明は、体積補償の方法により、珪素を含む複合材料を製造し、これにより、珪素の高い比容量特性を保持しながら、電極整体の体積変化を合理的な範囲内にコントロールし、サイクル安定性を増強させる。これにより、リチウムイオン電池の陰極材料のエネルギ密度を上げ、現段階で商品化されたリチウムイオン電池に常用されている炭素陰極材料よりもっと高い比容積もたせて、各種類の携帯式電気設備の電池に対する高いエネルギ密度の要求を満足させる。 In order to respond to the significant volume effect that occurs during the insertion and desorption of lithium in the electrochemical reaction process, the present invention produces a composite material containing silicon by the method of volume compensation, whereby a high ratio of silicon is achieved. While maintaining the capacity characteristics, the volume change of the electrode assembly is controlled within a reasonable range to enhance cycle stability. As a result, the energy density of the cathode material of the lithium ion battery is increased, and a specific volume higher than that of the carbon cathode material commonly used in the lithium ion battery that has been commercialized at this stage is provided. Satisfy the demand for high energy density.

発明の解決しようとする課題Problems to be Solved by the Invention

本発明の目的は、リチウムイオン電池の珪素・炭素複合陰極材料及びその製造方法を提供する。解決すべき技術的課題は、電池の比容積を高め、かつ、優れたサイクル性能と倍率放電性能を具備させることにある。   An object of the present invention is to provide a silicon / carbon composite cathode material for a lithium ion battery and a method for producing the same. The technical problem to be solved is to increase the specific volume of the battery and to provide excellent cycle performance and magnification discharge performance.

本発明は、以下の技術案を用いる。即ち、   The present invention uses the following technical solution. That is,

本発明は、リチウムイオン電池の珪素・炭素複合陰極材料であって、前記リチウムイオン電池の複合陰極材料は、珪素形粒子と炭素形粒子の複合粒子を基本体とし、前記基本体は球状または球状近似の形をし、基本体外側に炭素被覆層を有する。   The present invention relates to a silicon / carbon composite cathode material of a lithium ion battery, wherein the composite cathode material of the lithium ion battery is based on composite particles of silicon-type particles and carbon-type particles, and the basic body is spherical or spherical. It has an approximate shape and has a carbon coating layer outside the basic body.

前記炭素被覆層は、有機物の熱分解グラファイトの被覆層である。   The carbon coating layer is a coating layer of organic pyrolytic graphite.

前記炭素被覆層には、導電炭素を含む。   The carbon coating layer contains conductive carbon.

前記炭素被覆層の表面には、リチウム化合物を含む。   The surface of the carbon coating layer contains a lithium compound.

前記被覆層の厚さは0.1〜5μmであり、陰極材料において、有機物の熱分解グラファイトはその0.5〜20wt%、導電炭素はその0.5〜5wt%の陰極材料を占める。   The coating layer has a thickness of 0.1 to 5 μm. In the cathode material, organic pyrolytic graphite occupies 0.5 to 20 wt% of the cathode material, and conductive carbon occupies 0.5 to 5 wt% of the cathode material.

前記珪素・炭素複合陰極材料の平均粒径は5〜60μmであり、比表面積は1.0〜4.0m2/gであり、ジョルト密度は0.7〜2.0g/cm3である。 The silicon / carbon composite cathode material has an average particle size of 5 to 60 μm, a specific surface area of 1.0 to 4.0 m 2 / g, and a jolt density of 0.7 to 2.0 g / cm 3 .

前記珪素形粒子は珪素単体、珪素酸化化合物SiOx、珪素を含む固体・液体、或いは珪素を含む金属類化合物の中のいずれでもよく、その量は複合粒子基本体の1〜50wt%を占めており、そのxは0<x≦2である。 The silicon particles may be any of silicon alone, silicon oxide compound SiOx, solid / liquid containing silicon, or metal compounds containing silicon, and the amount thereof occupies 1 to 50 wt% of the composite particle base body. X is 0 <x ≦ 2.

前記複合粒子基本体における珪素粒子の占有比例は、好ましくは、5〜30wt%である。   The occupation proportion of silicon particles in the composite particle basic body is preferably 5 to 30 wt%.

前記複合粒子基本体における珪素粒子の占有比例は、さらに好ましくは、10〜20wt%である。   The proportion of silicon particles occupied in the composite particle basic body is more preferably 10 to 20 wt%.

前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかにより構成する。 The solid / liquid containing silicon or the metal compound containing silicon includes silicon and (1) any one or two elements of group IIA elements in the chemical element table, or (2) transition metal elements. any one or three elements or (3) any one or two of the elements of group IIIA or in (4) either one or two elements of group IVA elements in other than silicon, any of Consists of

前記炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人造黒鉛、中間相炭素の微小球体、またはコークスの中のいずれか一つあるいは二つ以上の混合物である。   The carbon-shaped particles may be any one of natural flaky graphite, microcrystalline graphite, artificial graphite, mesophase carbon microspheres, or a mixture of two or more cokes.

前記有機物の熱分解グラファイトは、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロース、或いは、有機溶剤類のポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、澱粉、あるいはアスファルトなどを前駆物として、高温炭素化を経て形成された熱分解グラファイトである。 Pyrolytic graphite of the organic material is a water-soluble polyethylene styrene-butadiene rubber, carboxymethyl cellulose, or polystyrene organic solvents, poly methyl methacrylate, polyethylene fluoride, polyvinylidene fluoride, polyacrylonitrile, Rejitoru epoxy resin, It is pyrolytic graphite formed through high-temperature carbonization using sucrose, sucrose, fructose, cellulase, starch, asphalt or the like as a precursor.

前記導電炭素は、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、または導電カーボンブラック(Super-P(登録商標))である。 The conductive carbon is acetylene black, carbon nanometer pipe, nanometer carbon microsphere, carbon fiber, or conductive carbon black (Super-P (registered trademark) ).

前記リチウム化合物は、酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、硝酸リチウム、または水素化リチウムである。   The lithium compound is lithium oxide, lithium carbonate, lithium fluoride, lithium chloride, lithium nitrate, or lithium hydride.

本発明におけるリチウムイオン電池の珪素・炭素複合陰極材料の製造方法は、以下の工程を含む。即ち、
(1)珪素形粒子を0.1〜1μmまで破砕して非常に細かい珪素形粒子を製造し、また、粒度75μmより小さく、炭素含有量95%以上の炭素原料を分別、整形及び純化処理することにより、炭素含有量99.9%以上、粒径0.1〜5μmの炭素形粒子を得る工程、
(2)珪素形粒子と炭素形粒子を混合して、複合粒子基本体を製造する工程、
(3)複合粒子基本体と、1〜25wt%の複合粒子基本体を占める有機物の熱分解グラファイトの前駆物とを混合し、或いは1〜12時間湿式法で攪拌して、その後100〜400℃のもとで気相沈積を行い、或いは被覆して、粒子を製造する工程、
(4)被覆後の粒子を炭化処理し、密封雰囲気中において450〜1500℃まで加熱し、1〜10時間温度を維持した後、室温に下げて、炭素被覆層を形成する工程、及び、
(5)前記炭素被覆層を有する粒子を5〜40μmまで破砕することによって、リチウムイオン電池の珪素・炭素複合陰極材料を製造する工程。
The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to the present invention includes the following steps. That is,
(1) By crushing silicon-type particles to 0.1-1 μm to produce very fine silicon -type particles, and by separating, shaping and purifying carbon raw materials with a particle size of less than 75 μm and a carbon content of 95% or more A step of obtaining carbon-shaped particles having a carbon content of 99.9% or more and a particle size of 0.1 to 5 μm,
(2) A step of producing a composite particle basic body by mixing silicon-type particles and carbon-type particles,
(3) The composite particle base and the organic pyrolytic graphite precursor occupying 1-25 wt% of the composite particle base are mixed or stirred by a wet method for 1 to 12 hours, and then 100 to 400 ° C. Vapor phase deposition or coating to produce particles,
(4) carbonizing the coated particles, heating to 450-1500 ° C. in a sealed atmosphere, maintaining the temperature for 1-10 hours, and then lowering to room temperature to form a carbon coating layer; and
(5) A step of producing a silicon / carbon composite cathode material for a lithium ion battery by crushing the particles having the carbon coating layer to 5 to 40 μm.

前記5〜40μmまで破砕された粉末と粉末の1〜30wt%を占めるアスファルトを混合被覆した後、炭化処理を行い、密封雰囲気中において450〜1500℃まで加熱し、1〜10時間温度を維持してから、室温に下げて、それによって得た粉末と粉末の0.5〜5wt%を占める導電炭素とを混合被覆し、混合機或いは表面被覆改質機において1〜6時間混合し、かつ、超音波で1〜30分間それを分散し、5〜60μmまで破砕する。   After coating and coating the powder crushed to 5-40 μm and asphalt occupying 1-30 wt% of the powder, it is carbonized, heated to 450-1500 ° C. in a sealed atmosphere, and maintained for 1-10 hours. Then, the temperature is lowered to room temperature, and the resulting powder and conductive carbon occupying 0.5 to 5 wt% of the powder are mixed and coated in a mixer or surface coating reformer for 1 to 6 hours, and ultrasonic Disperse it for 1-30 minutes and crush to 5-60 μm.

前記5〜60μmまで破砕された複合物を、0.2〜10wt%のリチウム化合物溶液を含む溶液(このときの固体と液体の重量比は0.1〜2である)の中に1〜48時間浸漬する。   The composite crushed to 5 to 60 μm is immersed in a solution containing 0.2 to 10 wt% lithium compound solution (the weight ratio of the solid to the liquid is 0.1 to 2 at this time) for 1 to 48 hours.

前記珪素形粒子は、珪素単体、珪素酸化化合物SiOx、珪素を含む固体・液体、或いは珪素を含む金属類化合物であって、かつ、前記珪素形粒子は複合粒子基本体の1〜50wt%を占めており、前記xは0<x≦2であり、前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかから構成する。 The silicon particles are silicon simple substance, silicon oxide compound SiOx, solid / liquid containing silicon, or metal compounds containing silicon, and the silicon particles occupy 1 to 50 wt% of the composite particle base body. X is 0 <x ≦ 2, and the solid / liquid containing silicon or the metal compound containing silicon is silicon and (1) any one of group IIA elements in the chemical element table Or two elements, or (2) any one or three elements in transition metal elements, or (3) any one or two elements in group IIIA elements, or (4) group IVA other than silicon It is composed of either one or two of the elements.

前記炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人工黒鉛、中間相炭素の微小球体、またはコークスの一つあるいは二つ以上の混合であって、かつ、珪素形粒子は前記複合粒子基本体の50〜99wt%を占める。   The carbon particles are natural scaly graphite, microcrystalline graphite, artificial graphite, mesophase carbon microspheres, or a mixture of two or more cokes, and the silicon particles are the composite particle base Occupies 50-99wt% of the body.

前記被覆層は、複合材料中の1〜25wt%を占める。   The coating layer occupies 1 to 25 wt% of the composite material.

前記有機物熱分解グラファイトの前駆物は、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロース、あるいは、有機溶剤類のポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、或いは澱粉である。 The precursors of the organic pyrolytic graphite are water-soluble polyethylene, styrene-butadiene rubber, carboxymethyl cellulose or polystyrene organic solvent, poly methyl methacrylate, polyethylene fluoride, polyvinylidene fluoride, polyacrylonitrile, Rejitoru, epoxy Resin, sucrose, sucrose, fructose, cellulase, or starch.

前記導電炭素は、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、または導電カーボンブラック(Super-P(登録商標))である。 The conductive carbon is acetylene black, carbon nanometer pipe, nanometer carbon microsphere, carbon fiber, or conductive carbon black (Super-P (registered trademark) ).

前記リチウム化合物は、酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、硝酸リチウム、或いは水素化リチウムである。   The lithium compound is lithium oxide, lithium carbonate, lithium fluoride, lithium chloride, lithium nitrate, or lithium hydride.

前記珪素形粒子の球状化過程は密封雰囲気の中に行なわれており、前記密封雰囲気は、アルゴン、水素或いは窒素のいずれか一つまたは二つ以上の混合物である。   The spheroidizing process of the silicon-type particles is performed in a sealed atmosphere, and the sealed atmosphere is any one or a mixture of two or more of argon, hydrogen, and nitrogen.

前記珪素形粒子と炭素形粒子とを混合して粒子を製造するというのは、混合式粒子製造機で1〜6時間混合して粒子を製造することである。 The production of particles by mixing the silicon-type particles and the carbon-type particles is to produce particles by mixing for 1 to 6 hours in a mixed particle production machine.

従来の技術と比べて、本発明は、珪素形粒子と炭素形粒子との複合材料を基本体とし、球形または球形近似の形を呈し、被覆層を有するリチウム電池の珪素・炭素複合陰極材料である。本発明は、とても高い可逆的リチウム挿入・脱離の電気化学容量と優れたサイクル安定性を有する。また、本発明の陰極材料の可逆的比容量は450mAh/gより大きく、第一回のサイクルクーロン効率は85%より大きく、200回サイクルの容量維持率は80%より大きい。かつ、本発明は、リチウム挿入・脱離時における珪素を含む活性物質の体積効果を著しく減少させ、活性物質におけるリチウムの拡散状況を改善して、珪素単体と比べ、第一回の効率とサイクル安定性を上げて、陽極材料の消耗を減少させる。また、本発明は、リチウム挿入・脱離電位が中間層炭素の微小球体などといった、リチウムイオン電池に常用される陰極材料より高くて、陰極表面におけるリチウムの析出を防いで、大電流の優れた放電能力を有する。さらに、本発明は、製造工程と操作が簡単という長所があり、各種類の携帯式器具、電動器具などに使われているリチウムイオン電池の陰極材料に適する。  Compared with the prior art, the present invention is a silicon / carbon composite cathode material for a lithium battery, which is based on a composite material of silicon-type particles and carbon-type particles, has a spherical shape or a spherical approximate shape, and has a coating layer. is there. The present invention has a very high reversible lithium insertion / extraction electrochemical capacity and excellent cycle stability. Further, the reversible specific capacity of the cathode material of the present invention is greater than 450 mAh / g, the first cycle coulomb efficiency is greater than 85%, and the capacity retention rate of 200 cycles is greater than 80%. In addition, the present invention significantly reduces the volume effect of the active material containing silicon at the time of lithium insertion / extraction, improves the diffusion state of lithium in the active material, and improves the efficiency and cycle of the first time compared to silicon alone. Increase stability and reduce anode material wear. In addition, the present invention has a lithium insertion / desorption potential higher than that of a cathode material commonly used for lithium ion batteries, such as a microsphere of intermediate layer carbon, and prevents lithium deposition on the cathode surface and has an excellent large current. Has discharge capability. Furthermore, the present invention has an advantage that the manufacturing process and operation are simple, and is suitable for a cathode material of a lithium ion battery used in various types of portable devices, electric devices and the like.

図1は、本発明の具体的な実施例1のリチウムイオン電池の珪素・炭素複合陰極材料の電子写真(1000倍)である。FIG. 1 is an electrophotograph (1000 times) of a silicon / carbon composite cathode material of a lithium ion battery according to Example 1 of the present invention. 図2は、本発明の具体的な実施例2のリチウムイオン電池の珪素・炭素複合陰極材料の電子写真(5000倍)である。FIG. 2 is an electrophotographic image (5000 times) of the silicon / carbon composite cathode material of the lithium ion battery of Example 2 of the present invention. 図3は、本発明の具体的な実施例1の材料の第一回充放電のグラフ図である。FIG. 3 is a graph of the first charge / discharge of the material of specific Example 1 of the present invention. 図4は、本発明の具体的な実施例1の材料のXRD図である。FIG. 4 is an XRD diagram of the material of specific Example 1 of the present invention.

以下、図面と実施例とにより、本発明のさらに詳細な説明を行う。即ち、  Hereinafter, the present invention will be described in more detail with reference to the drawings and examples. That is,

本発明のリチウムイオン電池の珪素・炭素複合陰極材料は、珪素形粒子と炭素形粒子を基本体とし、外側に複合炭素の被覆層を被覆する。基本体における珪素形粒子は、珪素単体、珪素酸化化合物SiOx(そのxは0<x≦2である)、珪素を含む固体・液体、或いは珪素を含む金属類化合物である。前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかから構成する。珪素形粒子は前記複合粒子基本体の1〜50wt%を占める。前記基本体における炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人造黒鉛、中間相炭素の微小球体、またはコークスの中のいずれか一つあるいは二つ以上の混合物である。その被覆層の厚さは0.1〜5μmであり、有機物の熱分解グラファイトは陰極材料の0.5〜20wt%を占め、導電炭素は陰極材料の0.5〜5wt%を占める。被覆層中の有機物の熱分解グラファイトは、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロースCMC、及びポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリルなる有機溶剤、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、澱粉或いはアスファルトを前駆物として、高温炭素化の過程を経て形成されたものである。被覆層中の導電炭素は、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、または導電カーボンブラック(Super-P(登録商標))である。陰極材料の複合粒子の表面には、酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、硝酸リチウム、或いは水素化リチウムといった、リチウムを含む化合物が含まれる。 The silicon / carbon composite cathode material of the lithium ion battery of the present invention comprises silicon-type particles and carbon-type particles as a basic body, and a composite carbon coating layer is coated on the outside. The silicon particles in the basic body are silicon simple substance, silicon oxide compound SiOx (where x is 0 <x ≦ 2), solid / liquid containing silicon, or metal compound containing silicon. The solid / liquid containing silicon or the metal compound containing silicon includes silicon and (1) any one or two elements of group IIA elements in the chemical element table, or (2) transition metal elements. Any one or three elements, or (3) any one or two elements in group IIIA elements, or (4) any one or two elements in group IVA elements other than silicon. Consists of Silicon-type particles occupy 1 to 50 wt% of the composite particle basic body. The carbon particles in the basic body are any one or a mixture of natural flaky graphite, microcrystalline graphite, artificial graphite, mesophase carbon microspheres, and coke. The thickness of the coating layer is 0.1 to 5 μm, pyrolytic graphite of organic matter accounts for 0.5 to 20 wt% of the cathode material, and conductive carbon accounts for 0.5 to 5 wt% of the cathode material. Pyrolytic graphite of organic matter in the coating layer is water soluble polyethylene, styrene butadiene rubber, carboxymethylcellulose CMC, polystyrene, polymethacrylic acid methyl ester, polyfluorinated ethylene, polyvinylidene fluoride, polyacrylonitrile organic solvent, resistol, epoxy resin , Sucrose, sucrose, fructose, cellulase, starch or asphalt is used as a precursor and formed through a high-temperature carbonization process. The conductive carbon in the coating layer is acetylene black, carbon nanometer pipe, nanometer carbon microspheres, carbon fiber, or conductive carbon black (Super-P (registered trademark) ). The surface of the composite particle of the cathode material contains a compound containing lithium such as lithium oxide, lithium carbonate, lithium fluoride, lithium chloride, lithium nitrate, or lithium hydride.

本発明のリチウムイオン電池の珪素・炭素複合陰極材料は、以下の技術的特徴を有する。即ち、その平均粒径は5〜60μmであり、比表面積は1.0〜4.0m2/gであり、ジョルト密度は0.7〜2.0g/cm3である。前記平均粒径は、Malvernレーザー粒径測定器を用いて測定したもので、比表面積は窒素置換のBET法を用いて測定したもので、ジョルト密度はQuantachrome AutoTapジョルト密度測定器により測定したものである。 The silicon / carbon composite cathode material of the lithium ion battery of the present invention has the following technical features. That is, the average particle diameter is 5 to 60 μm, the specific surface area is 1.0 to 4.0 m 2 / g, and the jolt density is 0.7 to 2.0 g / cm 3 . The average particle size was measured using a Malvern laser particle sizer, the specific surface area was measured using a nitrogen-substituted BET method, and the Jolt density was measured using a Quantachrome AutoTap Jolt density meter. is there.

前記材料と比率をもって、本発明のリチウムイオン電池の珪素・炭素複合陰極材料を製造する。それは、以下の工程を含む。即ち、
1、珪素形粒子を空気または酸素でない気体、たとえば、アルゴン、水素または窒素のいずれか一つまたはそれらの混合気体の中、0.1〜1μmまでに破砕し、非常に細かい珪素形粒子を製造する。
The silicon / carbon composite cathode material of the lithium ion battery of the present invention is produced with the ratio of the material. It includes the following steps. That is,
1, the gas silicon type particles not air or oxygen, for example, argon, in either one or their mixed gas of hydrogen or nitrogen, crushed until 0.1 to 1 [mu] m, to produce a very fine silicon shaped grains .

2、粒度75μmより小さく、炭素含有量95%以上の炭素原料を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径0.1〜5μmの炭素形粒子を製造する。 2. A carbon raw material having a particle size of less than 75 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to produce carbon-shaped particles having a carbon content of 99.9% or more and a particle size of 0.1 to 5 μm.

3、前記珪素形粒子と炭素形粒子を混合式粒子製造機の中1〜6時間混合し、複合粒子の基本体を製造する。 3. The silicon-type particles and carbon-type particles are mixed in a mixed particle manufacturing machine for 1 to 6 hours to manufacture a basic body of composite particles.

4、前記複合粒子基本体と、複合粒子基本体の1〜25wt%を占める有機物の熱分解グラファイトの前駆物とを球状化し、または湿式法で1〜12時間混合、攪拌してから、100〜400℃のもとで気相沈積または被覆して、粒子を製造する。   4. The composite particle basic body and the organic pyrolytic graphite precursor occupying 1 to 25 wt% of the composite particle basic body are spheroidized or mixed and stirred by a wet method for 1 to 12 hours. Particles are produced by vapor deposition or coating at 400 ° C.

5、前記被覆粒子を炭化処理し、密封雰囲気中において450〜1500℃に加熱し、1〜10時間温度を維持した後、室温に下げて、炭素被覆層を形成して、5〜40μmまでに破砕する。   5. Carbonize the coated particles, heat to 450-1500 ° C. in a sealed atmosphere, maintain the temperature for 1-10 hours, lower to room temperature, and form a carbon coating layer to 5-40 μm Crush.

6、前記5〜40μmまでに破砕した粉末と、前記粉末の1〜30wt%を占めるアスファルトとを混合、被覆する。   6. The powder crushed to 5-40 μm and asphalt occupying 1-30 wt% of the powder are mixed and coated.

7、前記被覆したアスファルトを炭化処理し、密封雰囲気中において450〜1500℃に加熱し、1〜10時間温度を維持した後、室温に下げて、5〜60μmに破砕する。   7. Carbonize the coated asphalt, heat to 450-1500 ° C. in a sealed atmosphere, maintain the temperature for 1-10 hours, then lower to room temperature and crush to 5-60 μm.

8、前記複合物と、粉末の0.5〜5wt%を占める導電炭素とを混合被覆し、混合式粒子製造機または表面被覆改質機械の中に1〜6時間混合して、周波数40kHz〜28kHz、仕事率50W〜3600Wの超音波のもとで1〜30分間破砕する。   8. The composite and conductive carbon occupying 0.5 to 5 wt% of the powder are mixed and coated in a mixed particle manufacturing machine or surface coating reforming machine for 1 to 6 hours, and the frequency is 40 kHz to 28 kHz. Crush for 1-30 minutes under ultrasonic power of 50W-3600W power.

9、次の工程はリチウム化合物を浸漬するものである。つまり、リチウム化合物の1〜30wt%を含む溶液(このときの固体と液体の重量比は0.1〜2である)に複合粉末を投入し、1〜48時間浸漬して、粒度を5〜60μmに調整して、リチウムイオン電池の珪素・炭素複合陰極材料を得る。   9. The next step is to immerse the lithium compound. In other words, the composite powder is put into a solution containing 1 to 30 wt% of the lithium compound (the weight ratio of the solid to the liquid is 0.1 to 2 at this time) and immersed for 1 to 48 hours to make the particle size 5 to 60 μm The silicon-carbon composite cathode material for the lithium ion battery is obtained by adjusting.

珪素は、リチウムと結合して、Li22Si5などの金属間化合物を形成して、リチウムを可逆的に挿入・脱離することができる。珪素を使用しリチウムイオン二次電池の陰極材料にすることは、珪素の充放電の理論容量が4200mAh/g、9783mAh/cm3までに達し(このときの体積と重量の比率は2.33である)、現在使用されている黒鉛類材料をはるかに超えている。因みに、現在、黒鉛類材料の充放電の理論容量は372mAh/g、844mAh/gであって、それの体積と重量の比率は2.27である。しかし、珪素を用いて製造した陰極材料がリチウムの挿入・脱離時に、ときに300%に達するほど著しく体積変化することは、珪素陰極を簡単にひび割れ、粉末化させ、充放電サイクル過程中にその容量を急速に減衰させる。そのため、純粋な純珪素単体をリチウムイオン二次電池の陰極材料として直接的に使用することができない。 Silicon can combine with lithium to form an intermetallic compound such as Li 22 Si 5, and can reversibly insert and desorb lithium. Using silicon as the cathode material for lithium ion secondary batteries, the theoretical capacity of silicon charge and discharge reaches 4200mAh / g, up to 9793mAh / cm 3 (the ratio of volume to weight at this time is 2.33) It is far beyond the currently used graphite materials. Incidentally, at present, the theoretical capacity of charge and discharge of graphite materials is 372 mAh / g, 844 mAh / g, and the ratio of volume to weight is 2.27. However, silicon when the cathode material is insertion and extraction of lithium were produced using, will significantly change volume as reaching 300% when easily crack the silicon cathode, it is powdered, during the charge-discharge cycle process The capacity is rapidly attenuated. Therefore, pure pure silicon alone cannot be directly used as a cathode material for a lithium ion secondary battery.

本発明の製品及びその製造方法の研究において、以下のことを究明した。即ち、
珪素を含む粒子が炭素材料基本体に分散するとき、或いは珪素形粒子の表面が珪素を含む固体・液体または金属間化合物被覆されるとき、リチウムの挿入・脱離に伴う体積変化は、緩衝または制約される。これによって、電極の粉末化を防ぎ、サイクル寿命をあげることになる。また、粒径のより小さい珪素形粒子を選択することは、こうした効果をよりよく発揮させることができる。そのため、本発明は、粒子1〜40μmの珪素形粒子を密封雰囲気0.1〜1μmまでに球状化し、非常に細かい珪素形粒子を製造して、これを複合材料の陰極活性物質として使う。それに対して、珪素形粒子の平均粒径が1μmより大きい場合、基本体の体積吸収効果が弱まるので、複合材料のサイクル性能の向上に影響することになる。逆に、珪素形粒子の平均粒径が0.1μmより小さい場合、製造工程の困難さが増し、かつ、活性粒子の表面に酸化が生じやすく、粒子間のお互いに集結の機会を増加させるので、陰極材料の比容量にも影響することになる。因みに、珪素形粒子の粒径は、電子走査顕微鏡SEMを用いて測定することもできるし、その他の方法を用いて測定することもできる。例えば、レーザー粒度測定器により、体積粒度グラフにおける中位の半径を平均粒径とすることができる。実施例においては、イギリスMalvern Mastersizer 2000のレーザー粒度測定器を用いて、粒子の平均粒径を測定する。
In the research of the product of the present invention and the manufacturing method thereof, the following has been investigated. That is,
When particles containing silicon are dispersed in the carbon material basic body, or when the surface of the silicon type particles are coated with a solid, liquid or intermetallic compound containing silicon, the volume change due to insertion and elimination of lithium, buffer Or be constrained. This prevents electrode powdering and increases cycle life. In addition, selecting such silicon-type particles having a smaller particle diameter can better exhibit such effects. Therefore, the present invention spheroidizes silicon particles having a particle size of 1 to 40 μm to 0.1 to 1 μm in a sealed atmosphere to produce very fine silicon particles, which are used as the cathode active material of the composite material. On the other hand, when the average particle diameter of the silicon-type particles is larger than 1 μm, the volume absorption effect of the basic body is weakened, which affects the improvement of the cycle performance of the composite material. Conversely, if the average particle size of the silicon-type particles is smaller than 0.1 μm, the difficulty of the manufacturing process increases , and the surface of the active particles is likely to be oxidized, increasing the chance of aggregation between the particles, This also affects the specific capacity of the cathode material. Incidentally, the particle size of the silicon-type particles can be measured using an electron scanning microscope SEM, or can be measured using other methods. For example, with a laser particle size measuring device, the median radius in the volume particle size graph can be made the average particle size. In the examples, the average particle size of the particles is measured using a laser particle sizer from Malvern Mastersizer 2000, UK.

また、本発明の珪素・炭素複合陰極材料における珪素形粒子は、複合粒子基本体の1〜50 wt%を占める。それに対して、珪素形粒子の比例が50wt%を超える場合、基本体は、珪素の体積効果を有効に緩衝または吸収することができない。逆に、珪素形粒子の比例が1wt%より少ない場合、陰極材料の容量は、有効にあげることができない。そのため、珪素形粒子の比例は5〜30wt%であるときに適当であるが、それは10〜20wtであるときに最適である。   Further, the silicon-type particles in the silicon / carbon composite cathode material of the present invention occupy 1 to 50 wt% of the composite particle base body. On the other hand, when the proportion of the silicon-type particles exceeds 50 wt%, the basic body cannot effectively buffer or absorb the volume effect of silicon. On the contrary, when the proportion of the silicon-type particles is less than 1 wt%, the capacity of the cathode material cannot be increased effectively. Therefore, the proportion of silicon particles is appropriate when it is 5-30 wt%, but it is optimal when it is 10-20 wt%.

前記珪素形粒子は、珪素単体、珪素酸化化合物SiOx(xは0<x≦2である)、珪素を含む固体・液体、或いは珪素を含む金属類化合物である。前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかから構成する。これらの元素の一部は、リチウムの可逆的活性貯蔵物質として使われ、陰極材料の比容量を増大させることができる。その他の元素は、非活性元素としてリチウムの貯蔵ができなくでも、リチウムの挿入・脱離時に生じた体積効果を緩和、吸収、または複合材料の導電性を改善、サイクル安定性を改良するものとして使うことができる。リチウムの挿入・脱離容量、珪素体積効果の緩和、複合材料導電効果の改善及びその資源の多少を考慮して、これらの元素を優先的に、IIA族元素のMg、CaとBaを、遷移金属元素中のTi、Cr、Mn、Fe、Co、Ni、Cu、Mo、Ag、CeとNdを、IIIA族元素のAl、GaとInを、及びIVA族元素のGe、SnとSbを選ぶべきである。また、これらの元素の中でも、Mg、Ca、Fe、Co、NiとCuをさらに優先的に選ぶべきである。 The silicon particles are silicon simple substance, silicon oxide compound SiOx ( x is 0 <x ≦ 2), solid / liquid containing silicon, or metal compound containing silicon. The solid / liquid containing silicon or the metal compound containing silicon includes silicon and (1) any one or two elements of group IIA elements in the chemical element table, or (2) transition metal elements. Any one or three elements, or (3) any one or two elements in group IIIA elements, or (4) any one or two elements in group IVA elements other than silicon. Consists of Some of these elements can be used as reversible active storage materials for lithium, increasing the specific capacity of the cathode material. Other elements can be stored as inactive elements, even if lithium cannot be stored. The effects of volume created during lithium insertion / extraction are alleviated, absorbed, or improved in conductivity of composite materials and improved in cycle stability. Can be used. Considering the insertion / extraction capacity of lithium, the volumetric effect of silicon, the improvement of the conductive effect of the composite material, and some of its resources, these elements are preferentially transitioned to Mg, Ca and Ba of group IIA elements. Select Ti, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ag, Ce and Nd in the metal elements, Group IIIA elements Al, Ga and In, and Group IVA elements Ge, Sn and Sb. Should. Further, among these elements, it should be chosen Mg, Ca, Fe, Co, more preferentially of Ni and Cu.

本発明のリチウムイオン電池の珪素・炭素複合陰極材料を製造し、陰極材料の電気化学性能を改善するために、本発明では、黒鉛と珪素形粒子との混合製造、複合被覆及び表面改質処理を行なった。 To produce a silicon-carbon composite cathode material for lithium ion batteries of the present invention, in order to improve the electrochemical performance of the cathode material, in the present invention, a mixed preparation of graphite and silicon type particles, the composite coating and surface modification treatment Was done.

図1図2に示しているのは、走査電子顕微鏡により観測した複合材料の微視的特性である。本発明のリチウムイオン電池の珪素・炭素複合陰極材料は、珪素形粒子と炭素形粒子を複合材料の基本体とし、被覆層に複合の炭素被覆層を有し、球形または球形近似の微視な特徴を有する。また、被覆層は、一層の有機物の熱分解グラファイトと導電炭素からなる。これにより、黒鉛材料と電解液の相溶性を改善することになる。また、被覆層は、珪素形粒子の体積効果を制約し、導電性能を上げ、かつ、リチウムの挿入・脱離を可逆的にさせて、陰極材料の容量及び大電流下の放電能力を増大させる。さらに、被覆層におけるやや大きい結晶体の層間距離は、繰り返しの充放電により生じた膨張収縮量を減少させて、陰極材料構造の破壊と剥離を防ぎ、サイクル性能を改善する。 FIG. 1 and FIG. 2 show the microscopic characteristics of the composite material observed with a scanning electron microscope. The silicon-carbon composite cathode material of the lithium ion battery of the present invention has silicon-type particles and carbon-type particles as the basic body of the composite material, and has a composite carbon coating layer in the coating layer. Has characteristics. The coating layer is composed of one layer of organic pyrolytic graphite and conductive carbon. This improves the compatibility between the graphite material and the electrolyte. In addition, the coating layer restricts the volume effect of the silicon-type particles, improves the conductive performance, and reversibly inserts and detaches lithium, thereby increasing the capacity of the cathode material and the discharge capacity under a large current. . Furthermore, the slightly larger crystal interlayer distance in the coating layer reduces the amount of expansion and contraction caused by repeated charging and discharging, prevents the cathode material structure from being broken and peeled off, and improves the cycle performance.

図3は、本発明の実施例1に基づき、製造した珪素・炭素複合陰極材料の第一回の充放電グラフ図である。これを黒鉛類材料と比べると、充放電グラフ図は、珪素の高電位を増大させた、約0.5V vs. Li/Li+のリチウム貯蔵基盤を示し、複合材料におけるリチウムの挿入・脱離容量を大幅に上げることができる。 FIG. 3 is a first charge / discharge graph of the silicon / carbon composite cathode material produced according to Example 1 of the present invention. Compared with graphite materials, the charge / discharge graph shows a lithium storage base of approximately 0.5 V vs. Li / Li + , which increased the high potential of silicon, and the lithium insertion / extraction capacity in the composite material. Can be greatly increased.

図4は、本発明の実施例1に基づき、製造した珪素・炭素複合陰極材料のX線回折図XRDである。国際X線粉末回折委員会の標準粉末回折資料カードPDFに基づき、本発明の複合材料の回折図炭素PDFカード番号41-1487、珪素PDFカード番号27-1402の回折数値照らしてみると、本発明の珪素・炭素複合材料が炭素と珪素により構成されていることがわかる。 Figure 4 is based on Example 1 of the present invention, an X-ray diffraction diagram X RD of the produced silicon-carbon composite cathode material. Based on the standard powder diffraction article card PDF international X-ray powder diffraction Committee, composite carbon PDF card number diffractogram of material 41-1487 of the present invention, In light to the diffraction figures silicon PDF card number 27-1402, It can be seen that the silicon / carbon composite material of the present invention is composed of carbon and silicon.

前記基本体における炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人造黒鉛又は中間相炭素の微小球体とコークスの中のいずれか一つあるいは二つ以上の混合であり、複合粒子基本体の99〜50 wt%を占める。炭素形粒子は、リチウムの挿入能力をある程度に高めるほか、おもに、リチウムの挿入・脱離時に生じた珪素形粒子の体積効果を吸収、緩和する。前記材料は、全部軟性の炭素材料であり、良好な弾性をもち、かつ、より高いリチウムを挿入する能力をもっている。これに対して、炭素形粒子の比例が50wt%より少ない場合、珪素形粒子が有効に分散することができないため、炭素形粒子は、リチウムの挿入・脱離時に生じた活性珪素形粒子の体積効果を緩和する能力が悪いため、材料のサイクル利用に悪影響を与える。逆に、炭素形粒子の比例が99%より大きい場合には、活性珪素の比例が減少するので、材料の比容量の引き上げに影響を及ぼすことになる。   The carbon particles in the basic body are natural scaly graphite, microcrystalline graphite, artificial graphite, or a mixture of two or more of microspheres of intermediate phase carbon and coke, It occupies 99-50 wt%. In addition to increasing the lithium insertion capability to some extent, the carbon-type particles mainly absorb and mitigate the volume effect of the silicon-type particles generated during lithium insertion / extraction. The materials are all soft carbon materials, have good elasticity and have the ability to insert higher lithium. On the other hand, when the proportion of the carbon-type particles is less than 50 wt%, the silicon-type particles cannot effectively disperse, so the carbon-type particles have a volume of active silicon-type particles generated during lithium insertion / extraction. Since the ability to mitigate the effect is poor, the cycle utilization of the material is adversely affected. On the contrary, when the proportion of the carbon-type particles is larger than 99%, the proportion of the active silicon is decreased, which affects the increase in the specific capacity of the material.

前記複合炭素被覆層の厚さは0.1〜5μmであり、当該数値はMalvernレーザー粒度測定器を用いて、被覆する前後の粒子の平均粒径を基準に算出したものである。複合炭素被覆層は、有機物の熱分解グラファイト、導電炭素を有し、陰極材料の全体の1〜25wt%を占め、また、前記有機物の熱分解グラファイトは被覆層の0.5〜20wt%を占め、前記導電炭素は被覆層の0.5〜5wt%を占める。これに対して、複合炭素被覆層の厚さが0.1μmより薄く、または陰極材料における被覆層の比率が1wt%より少ない場合は、完全な被覆層を形成することができないため、陰極材料のサイクル安定性に影響を及ぼすことになる。逆に、被覆層が厚すぎる(例えば、5μmより厚い)、或いは陰極材料における被覆層の比率が25wt%より大きい場合は、陰極材料の比容量と第一回の効率に影響を及ぼすので、陰極材料の電気化学性能の引き上げに同様に不利を与える。 The composite carbon coating layer has a thickness of 0.1 to 5 μm, and the numerical value is calculated on the basis of the average particle size of the particles before and after coating using a Malvern laser particle size measuring device. The composite carbon coating layer has organic pyrolytic graphite and conductive carbon, and occupies 1 to 25 wt% of the entire cathode material, and the organic pyrolytic graphite accounts for 0.5 to 20 wt% of the coating layer, Conductive carbon accounts for 0.5 to 5 wt% of the coating layer. On the other hand, when the composite carbon coating layer is thinner than 0.1 μm or the ratio of the coating layer in the cathode material is less than 1 wt%, a complete coating layer cannot be formed. Will affect stability. Conversely, if the coating layer is too thick (for example, thicker than 5 μm) or if the ratio of the coating layer in the cathode material is greater than 25 wt%, it will affect the specific capacity of the cathode material and the efficiency at the first time. There is a similar disadvantage in raising the electrochemical performance of the material.

前記被覆層の有機物熱分解グラファイトは、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロース、或いは有機溶剤類のポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、澱粉、またはアスファルトなどを前駆物として、高温炭素化工程を経て形成された熱分解グラファイトである。こうした有機物は、複合粒子の基本体と混合するとき、後記の熱分解グラファイトの前駆物として、或いは、溶液体系の粘着剤、分散剤または懸垂剤として、複合粒子基本体の表面に均一的に被覆して、かつ、後記の熱分解グラファイトの過程に熱分解反応と熱重合反応が発生する。高温熱分解過程において、有機物化合物中のH、O、Nなどを含む化合物が分解され、炭素原子が絶えず環化、芳香族化する。それによって、H、O、Nなどの原子は絶えず減少して、炭素が絶えず濃縮する。前記有機物は、液相炭化の過程を経て黒鉛化しやすい炭素、即ち軟性炭素を形成し、または単に固相炭化の過程を経て黒鉛化しにくい炭素、即ち硬性炭素を形成する。この種類の熱分解グラファイトはすべて非黒鉛化炭素であり、その材料にある数多くの小分子化合物が熱分解により逸脱したときに形成した微小な穴は、充放電時に生じた活性物質の体積効果をよりよく吸収または緩和することができ、かつ、熱分解グラファイトのやや大きい層間距離はリチウムイオンの挿入・脱離に役立つ。また、熱分解グラファイトの乱層構造も、溶媒化リチウムイオンの共挿入により生じた黒鉛層の剥離を防ぎ、サイクル安定性を引き上げることができる。また、被覆層にある導電炭素は、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、または導電カーボンブラック(Super-P(登録商標))である。 The organic pyrolytic graphite of the coating layer is water-soluble polyethylene, styrene butadiene rubber, carboxymethyl cellulose, or organic solvents such as polystyrene, polymethacrylic acid methyl ester, polyfluorinated ethylene, polyvinylidene fluoride, polyacrylonitrile, resistol, epoxy resin, It is pyrolytic graphite formed through a high-temperature carbonization process using sucrose, sucrose, fructose, cellulase, starch, asphalt or the like as a precursor. When these organic substances are mixed with the composite particle base, they are uniformly coated on the surface of the composite particle base as a precursor of pyrolytic graphite, which will be described later, or as a solution-based adhesive, dispersant, or suspension. In addition, a thermal decomposition reaction and a thermal polymerization reaction occur in the process of pyrolytic graphite described later. In the high-temperature pyrolysis process, compounds containing H, O, N, etc. in organic compounds are decomposed, and carbon atoms are continuously cyclized and aromaticized. As a result, atoms such as H, O, and N are constantly reduced, and carbon is constantly enriched. The organic matter forms carbon that is easily graphitized through liquid-phase carbonization, that is, soft carbon, or simply forms carbon that is difficult to graphitize through solid-phase carbonization, that is, hard carbon. This type of pyrolytic graphite is all non-graphitized carbon, and the small holes formed when a large number of small molecule compounds in the material deviate due to pyrolysis are responsible for the volume effect of the active substance generated during charging and discharging. It can be absorbed or relaxed better, and the slightly larger interlayer distance of pyrolytic graphite is useful for lithium ion insertion / extraction. Moreover, the turbulent layer structure of pyrolytic graphite can prevent peeling of the graphite layer caused by co-insertion of solvated lithium ions, and can increase cycle stability. The conductive carbon in the coating layer is acetylene black, carbon nanometer pipe, nanometer carbon microsphere, carbon fiber, or conductive carbon black (Super-P (registered trademark) ).

本発明において、複合粒子基本体と有機物の熱分解グラファイトの前駆物及び導電炭素の混合被覆方法を特別に制限するわけではなく、公知の混合式粒子製造設備のいずれを用いてもよい。混合被覆は混合球状化方法、または湿式攪拌方法を使って1〜12時間処理した後、気相沈積と被覆粒子の製造を行う。気相沈積と被覆の処理温度は100〜400℃である。処理温度が100℃以下である場合には、粉末の乾燥速度が遅く、被覆効果が悪いので、粒子と粒子がお互いに粘着し、生産効率と製品質に影響を与えることになる。逆に、処理温度が400℃以上である場合には、被覆層に炭化または酸化効果が生じるので、同様に被覆効果に影響を与える。そして、前記混合材料を炭素処理し、温度450〜1500℃のもとで1〜10時間温度を維持してから、室温に下げる。また、被覆層を緻密化するため、二次被覆処理をする。二次被覆に使用する材料はアスファルトであり、被覆量は1〜30wt%である。前記炭素化処理は酸素でない気体の中う。前記酸素でない気体は、例えば、窒素、アルゴン、ネオンまたは前記気体の混合物、或いは真空、還元雰囲気である。前記炭素化処理は、450〜1500℃のもとで行なって、1〜10時間温度を維持してから、室温に下げる。 In the present invention, the mixed coating method of the composite particle basic body, the organic pyrolytic graphite precursor and the conductive carbon is not particularly limited, and any known mixed particle manufacturing equipment may be used. The mixed coating is processed for 1 to 12 hours using a mixed spheroidizing method or a wet stirring method, and then vapor phase deposition and coating particles are produced. The processing temperature for vapor deposition and coating is 100-400 ° C. If the treatment temperature is 100 ° C. or less, slow drying rate of the powder, because the coating effect is poor, particles and particles stick to each other, it will influence the quality of the production efficiency and product. On the other hand, when the treatment temperature is 400 ° C. or higher, a carbonization or oxidation effect occurs in the coating layer, which similarly affects the coating effect. Then, the mixed material is treated with carbon, maintained at a temperature of 450 to 1500 ° C. for 1 to 10 hours, and then lowered to room temperature. In addition, a secondary coating process is performed to densify the coating layer. The material used for the secondary coating is asphalt, and the coating amount is 1-30 wt%. The carbonization treatment intends row in the gaseous non-oxygen. The non-oxygen gas is, for example, nitrogen, argon, neon, a mixture of the gases, a vacuum, or a reducing atmosphere. The carbonization treatment is performed at 450 to 1500 ° C., the temperature is maintained for 1 to 10 hours, and the temperature is lowered to room temperature.

複合材料の表面に黒鉛でない有機物の熱分解グラファイトを被覆するので、その導電性能は下がる。そのため、陰極材料の導電性能とそのサイクル安定性を引き上げ、比容量を充分に発揮させるため、本発明は、複合材料の表面には被覆の処理、または導電炭素を混ぜ合わせる処理を行なう。前記導電炭素は陰極材料の0.5〜5wt%を占める。これに対して、導電炭素の量が0.5wt%より少ないとき、継続的な導電線路を形成することができないため、材料の導電性能は、有効に引き上げることができない。逆に、導電炭素の比例が5wt%より大きいとき、材料の比容量及びその充放電効率に不利な影響を与えることになる。そのため、導電炭素の適当な投入量は0.5〜5wt%である。   Since the surface of the composite material is coated with pyrolytic graphite of an organic material that is not graphite, its conductive performance is lowered. Therefore, in order to raise the electroconductive performance of the cathode material and its cycle stability and to fully exhibit the specific capacity, the present invention performs a coating process or a process of mixing conductive carbon on the surface of the composite material. The conductive carbon accounts for 0.5 to 5 wt% of the cathode material. On the other hand, when the amount of conductive carbon is less than 0.5 wt%, a continuous conductive line cannot be formed, so that the conductive performance of the material cannot be effectively increased. On the contrary, when the proportion of the conductive carbon is larger than 5 wt%, it adversely affects the specific capacity of the material and its charge / discharge efficiency. Therefore, an appropriate amount of conductive carbon is 0.5 to 5 wt%.

本発明において、混合被覆処理後の珪素・炭素複合材料と導電炭素の被覆方法について特別に制限するわけではなく、公知の混合設備のいずれを用いてもよい。例えば、高速攪拌機、惑星式攪拌機など混合設備を用いてもよい。また、前記混合処理時間は1〜6時間である。前記導電炭素の分布を均一にするため、超音波を用いて、前記複合材料と導電炭素の懸濁液を処理する。超音波の使用時間は1〜30分間であり、周波数は40kHz〜28kHzであり、仕事率は50W〜3600Wである。 In the present invention, the method for coating the silicon / carbon composite material and the conductive carbon after the mixed coating treatment is not particularly limited, and any known mixing equipment may be used. For example, mixing equipment such as a high-speed stirrer or a planetary stirrer may be used. The mixing treatment time is 1 to 6 hours. In order to make the distribution of the conductive carbon uniform, the suspension of the composite material and the conductive carbon is treated using ultrasonic waves. The usage time of the ultrasonic wave is 1 to 30 minutes, the frequency is 40 kHz to 28 kHz, and the work rate is 50 W to 3600 W.

リチウムイオン電池の第一回の充放電において、溶剤及び塩化電解質は、不可逆的電気化学還元分解反応が生じるので、アルキル基炭酸リチウム、アルコキシル基炭酸リチウムなどの物質を生じる。こうした物質は陰極材料の表面に沈積して、電子に対して絶縁、イオン濾過可能の固体電解質膜SEI膜を形成する。当該鈍化膜は、陰極材料の電気化学性能に強く影響している。つまり、電極の表面にある薄くて、緻密な鈍化膜は、溶媒化リチウムイオンの共挿入を阻止することができて、電池の高い第一回サイクルクーロン効率及び低いサイクル減衰を保障するものである。実際に、陰極材料における微結晶黒鉛の基面、端面の相対量、反応性の差別及び結晶体の大小、電解液の構成、還元分解の動力学上の性質などは、電極表面の鈍化膜の緻密性を決定するものである。   In the first charge / discharge of the lithium ion battery, irreversible electrochemical reduction and decomposition reactions occur in the solvent and the chloride electrolyte, and thus substances such as alkyl group lithium carbonate and alkoxyl group lithium carbonate are generated. These substances are deposited on the surface of the cathode material to form a solid electrolyte membrane SEI film that can be insulated and ion filtered from electrons. The blunt film has a strong influence on the electrochemical performance of the cathode material. In other words, the thin and dense blunt film on the surface of the electrode can prevent co-insertion of solvated lithium ions, ensuring high first cycle Coulomb efficiency and low cycle attenuation of the battery. . Actually, the base surface of microcrystalline graphite, the relative amount of the end face, the difference in reactivity and the size of the crystal, the composition of the electrolyte, the kinetic properties of the reductive decomposition, etc. It determines the denseness.

本発明においては、リチウム化合物の無機溶液または有機溶液を用いて、珪素・炭素複合陰極材料を処理し、陰極材料の表面に緻密、かつ、リチウムイオン濾過可能の固体電解質膜を形成させることによって、陰極材料の第一回の充放電効率及びサイクル安定性を引き上げる。さらに、リチウム化合物を浸漬する方法を用いて、最終的にリチウムイオン電池の珪素・炭素複合陰極材料を得る。   In the present invention, an inorganic solution or an organic solution of a lithium compound is used to treat a silicon / carbon composite cathode material to form a dense and lithium ion filterable solid electrolyte membrane on the surface of the cathode material. The first charge / discharge efficiency and cycle stability of the cathode material are increased. Further, a silicon / carbon composite cathode material for a lithium ion battery is finally obtained by using a method of immersing a lithium compound.

以上の工程で処理し得たリチウムイオン電池の珪素・炭素複合陰極材料の平均粒径は5〜60μmであり、比表面積は1.0〜4.0m2/gであり、ジョルト密度は0.7〜2.0g/cm3である。前記平均粒径はMalvernレーザー粒径測定器を用いて測定したもので、前記比表面積は窒素置換のBET法を用いて測定したもので、ジョルト密度はQuantachrome AutoTap型ジョルト密度測定器を用いて測定したものである。 The average particle size of the silicon / carbon composite cathode material of the lithium ion battery that can be processed in the above steps is 5 to 60 μm, the specific surface area is 1.0 to 4.0 m 2 / g, and the jolt density is 0.7 to 2.0 g / g. cm 3 . The average particle size was measured using a Malvern laser particle size measuring device, the specific surface area was measured using a nitrogen-substituted BET method, and the Jolt density was measured using a Quantachrome AutoTap type Jolt density measuring device. It is a thing.

実施例1(珪素・炭素のSi-G-C- Li2CO3複合陰極材料を製造する):
アルゴンの中、粒度75μmの珪素粉末を高効率のボール・ミルにより0.5μmまでに破砕して、非常に細かい珪素粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径1μmの球形黒鉛を得る。前記工程により取得した20wt%の非常に細かい珪素粉末と80wt%の球形黒鉛を複螺旋攪拌機に投入し、6時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を10wt%のレジトールに入れ、湿式法により10時間攪拌してから、300℃のもとで乾燥し、粒子を製造する。そして、前記レジトールを被覆した後の複合材料を炭素化処理し、アルゴンの中1100℃まで温度を上げ、温度を3時間維持した後、室温に下げ、10μmまでに破砕する。前記破砕した粉末と10wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1200℃までに温度を上げ、温度を2時間維持した後、室温に下げ、20μmまでに破砕する。その後、これ0.5wt%の炭素ナノメーターパイプとともに高速攪拌器に入れ、4時間混合し、周波数28kHz、仕事率3600Wの超音波で5分間処理する。さらに、前記工程により得たものを1%のLi2CO3溶液(このときの固体と液体の重量比は0.1である)の中に1時間浸漬し、最終に珪素・炭素複合陰極材料を得る。前記複合材料の平均粒径は20.1μmであり、比表面積は3.5m2/gであり、ジョルト密度は1.3g/cm3である。
Example 1 (Production of Si-GC-Li 2 CO 3 composite cathode material of silicon and carbon):
In argon, a silicon powder having a particle size of 75 μm is crushed to 0.5 μm by a high-efficiency ball mill to obtain a very fine silicon powder. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, fractionated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 1 μm. 20 wt% of the fine silicon powder obtained by the above process and 80 wt% of spherical graphite are put into a double helix stirrer and mixed for 6 hours to produce a composite particle basic body. Next, the composite particle basic body is put into 10 wt% resistol, stirred for 10 hours by a wet method, and then dried at 300 ° C. to produce particles. Then, the composite material after coating the Rejitoru treated carbonized, in argon raising the temperature to 1100 ° C., after maintaining the temperature for 3 hours, lowered to room temperature, crushed by 10 [mu] m. The crushed powder and mixed coat and 10 wt% of the bitumen, treated carbonized, to 1200 ° C. in argon raising the temperature, after the temperature was maintained for 2 hours, lowered to room temperature, crushed by 20 [mu] m. Then, this is put into a high-speed stirrer together with a 0.5 wt% carbon nanometer pipe, mixed for 4 hours, and treated with ultrasonic waves having a frequency of 28 kHz and a power of 3600 W for 5 minutes. Further, the product obtained by the above step is immersed in a 1% Li 2 CO 3 solution (the weight ratio of the solid to the liquid is 0.1) for 1 hour, and finally a silicon / carbon composite cathode material is obtained. . The composite material has an average particle size of 20.1 μm, a specific surface area of 3.5 m 2 / g, and a jolt density of 1.3 g / cm 3 .

前記複合材料を使用して以下の方法で電極を製造する。即ち、   An electrode is manufactured by the following method using the composite material. That is,

95グラム複合陰極材料、2.5グラムスチレンブタジエンゴムSBR、1.5グラムカルボキシメチルセルロースCMC、1グラム導電剤Super-P(登録商標)を取り、適量の分散剤である蒸留水に入れて均一に混合して電極とする。そして、リチウムを対極とし、1MのLiPF6の混合溶剤EC:DMC:EMC=1:1:1とし、v/v溶液を電解液とし、ポリプロピレン微孔膜を隔膜として、模擬電池を組み立てる。複合炭素材料の可逆的比容量は、充放電電圧を0.02〜1.5ワットとし、0.5mA/cm2の電流密度で、定電流充放電実験を行い、測定する。そして、LiCoO2を陽極とし、1モルのLiPF6の混合溶剤EC:DMC:EMC=1:1:1とし、v/v溶液を電解液とし、ポリプロピレン微孔膜を隔膜として、電池を組み立てる。当該装置を用いて、4.2〜3.0ワットを限度とする充放電電圧のもとで、1Cの速度で充放電試験を行い、リチウムイオン電池の200回のサイクル容量維持率C200/C1を測定する。 Take 95 gram composite cathode material, 2.5 gram styrene butadiene rubber SBR, 1.5 gram carboxymethylcellulose CMC, 1 gram conductive agent Super-P (registered trademark) , put it in distilled water as an appropriate amount of dispersant, and mix it uniformly And Then, a simulated battery is assembled using lithium as a counter electrode, a 1M LiPF 6 mixed solvent EC: DMC: EMC = 1: 1: 1, a v / v solution as an electrolyte, and a polypropylene microporous membrane as a diaphragm. The reversible specific capacity of the composite carbon material is measured by conducting a constant current charge / discharge experiment at a current density of 0.5 mA / cm 2 with a charge / discharge voltage of 0.02 to 1.5 watts. Then, a battery is assembled using LiCoO 2 as the anode, 1 mol of LiPF 6 mixed solvent EC: DMC: EMC = 1: 1: 1, the v / v solution as the electrolyte, and the polypropylene microporous membrane as the diaphragm. Using the equipment, charge / discharge test at a rate of 1C under charge / discharge voltage of 4.2-3.0 watts limit and measuring 200 cycle capacity maintenance ratio C 200 / C 1 of lithium ion battery To do.

実施例2(珪素・炭素のSi-Mg-G-C-LiOH複合陰極材料を製造する):
粒度75μmのSi-Mg粉末(その中珪素は50wt%を占める)をアルゴンの中で高効率のボール・ミルにより0.1μmまでに破砕して、非常に細かいSi-Mg粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により得た30wt%の非常に細かいSi-Mg粉末と70wt%の球形黒鉛を混合式粒子製造機に投入し、1時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のスチレンブタジエンゴムに入れ、湿式法により4時間攪拌してから、200℃のもとで乾燥し、粒子を製造する。そして、前記スチレンブタジエンゴムを被覆した後の複合材料を炭素化処理し、アルゴンの中700℃まで温度を上げ、温度を5時間維持した後、室温に下げ、10μmまでに破砕する。前記破砕した粉末と12wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1200℃までに温度を上げ、温度を8時間維持した後、室温に下げ、15μmまでに破砕する。その後、これ1%のナノメーター炭素の微小球体とともに高速攪拌器に入れ、1時間混合し、周波数40kHz、仕事率50Wの超音波で20分間処理する。さらに、前記工程により取得したものを5%のLiOH溶液(このときの固体と液体の重量比は1である)に12時間浸漬し、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は15.4μmであり、比表面積は2.8m2/gであり、ジョルト密度は1.2g/cm3である。
Example 2 (Production of Si-Mg-GC-LiOH composite cathode material of silicon and carbon):
A very fine Si-Mg powder is obtained by crushing Si-Mg powder with a particle size of 75 μm (of which silicon accounts for 50 wt%) to 0.1 μm in argon with a highly efficient ball mill. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. 30 wt% very fine Si-Mg powder obtained by the above process and 70 wt% spherical graphite are put into a mixed particle production machine and mixed for 1 hour to produce a composite particle basic body. Next, the composite particle basic body is put into 2.5 wt% styrene butadiene rubber, stirred for 4 hours by a wet method, and then dried at 200 ° C. to produce particles. Then, the composite materials after the coated styrene-butadiene rubber was treated carbonized, in the argon temperature was raised to 700 ° C., after maintaining the temperature for 5 hours, lowered to room temperature, crushed by 10 [mu] m. The crushed powder and 12 wt% of the asphalt and the mixture coated, treated carbonized, to 1200 ° C. in argon raising the temperature, after maintaining the temperature for 8 hours, lowered to room temperature, crushed by 15 [mu] m. Then, this is put into a high-speed stirrer together with 1% nanometer carbon microspheres, mixed for 1 hour, and treated with ultrasonic waves having a frequency of 40 kHz and a work power of 50 W for 20 minutes. Further, the material obtained in the above step is immersed in a 5% LiOH solution (the weight ratio of solid to liquid at this time is 12) for 12 hours, and finally a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 15.4 μm, a specific surface area of 2.8 m 2 / g, and a Jolt density of 1.2 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、その電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

実施例3(珪素・炭素のSi-Fe-G-C-LiF複合陰極材料を製造する):
粒度75μmのSi-Fe粉末(その中珪素は75wt%を占める)をアルゴンの中で高効率のボール・ミルにより1μmまでに破砕して、非常に細かいSi-Fe粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径5μmの球形黒鉛を得る。前記工程により取得した2wt%の非常に細かいSi-Fe粉末と98wt%の球形黒鉛を混合式粒子製造機に投入し、6時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を1wt%のポリエチレン溶液に入れ、湿式法により10時間攪拌してから、200℃のもとで乾燥し、粒子を製造する。そして、前記ポリエチレンを被覆した後の複合材料を炭素化処理し、アルゴンの中1500℃まで温度を上げ、温度を1時間維持した後、室温に下げ、5μmまでに破砕する。前記破砕した粉末と10wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1200℃までに温度を上げ、温度を10時間維持した後、室温に下げ、15μmまでに破砕する。その後、これ5%の炭素繊維とともに高速攪拌器に入れ、6時間混合し、周波数40kHz、仕事率50Wの超音波で30分間処理し、100℃のもとで乾燥し粒子を製造する。さらに、前記工程により取得したものを0.2%のLiF溶液(このときの固体と液体の重量比は2である)の中に48時間浸漬し、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は15.6μmであり、比表面積は1.8m2/gであり、ジョルト密度は1.0g/cm3である。
Example 3 (Manufacturing Si-Carbon Si-Fe-GC-LiF Composite Cathode Material):
Si-Fe powder with a particle size of 75 μm (of which silicon accounts for 75 wt%) is crushed to 1 μm with a high-efficiency ball mill in argon to obtain a very fine Si-Fe powder. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 5 μm. 2 wt% of very fine Si-Fe powder obtained by the above process and 98 wt% of spherical graphite are put into a mixed particle production machine and mixed for 6 hours to produce a composite particle basic body. Next, the composite particle basic body is put into a 1 wt% polyethylene solution, stirred by a wet method for 10 hours, and then dried at 200 ° C. to produce particles. Then, the composite material after coating the polyethylene treated carbonized, in argon raising the temperature to 1500 ° C., after maintaining the temperature for 1 hour, down to room temperature, crushed by 5 [mu] m. The crushed powder and mixed coat and 10 wt% of the bitumen, treated carbonized, to 1200 ° C. in argon raising the temperature, after the temperature was maintained for 10 hours, lowered to room temperature, crushed by 15 [mu] m. Then, this is put into a high-speed stirrer together with 5% carbon fiber, mixed for 6 hours, treated with ultrasonic waves having a frequency of 40 kHz and a work power of 50 W for 30 minutes, and dried at 100 ° C. to produce particles. Further, the material obtained by the above step is immersed in a 0.2% LiF solution (the weight ratio of solid to liquid at this time is 48) for 48 hours, and finally a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 15.6 μm, a specific surface area of 1.8 m 2 / g, and a jolt density of 1.0 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

実施例4(珪素・炭素のSi-Ca-G-C-LiCl複合陰極材料を製造する):
粒度75μmのSi-Ca粉末(その中珪素は60wt%を占める)をアルゴンの中で高効率のボール・ミルにより0.6μmまでに破砕して、非常に細かいSi-Ca粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径5μmの球形黒鉛を得る。前記工程により取得した40wt%の非常に細かいSi-Ca粉末と60wt%の球形黒鉛を円錐形混合機に投入し、4時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を10wt%のレジトールに入れ、湿式法により4時間攪拌してから、400℃のもとで乾燥し、粒子を製造する。そして、前記レジトールを被覆した後の複合材料を炭素化処理し、アルゴンの中800℃まで温度を上げ、温度を5時間維持した後、室温に下げ、18μmまでに破砕する。前記破砕した粉末と30wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1200℃までに温度を上げ、温度を1時間維持した後、室温に下げ、15μmまでに破砕する。その後、これ1%のアセチレンブラックとともに高速攪拌器に入れ、2時間混合し、周波数40kHz、仕事率50Wの超音波で20分間処理する。さらに、前記工程により取得したものを10%のLiCl溶液(このときの固体と液体の重量比は0.5である)の中に24時間浸漬し、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は24.8μmであり、比表面積は3.8m2/gであり、ジョルト密度は0.94g/cm3である。
Example 4 (Production of Si-Carbon Si-Ca-GC-LiCl Composite Cathode Material):
A very fine Si-Ca powder is obtained by crushing Si-Ca powder with a particle size of 75 μm (of which silicon accounts for 60 wt%) to 0.6 μm in argon using a highly efficient ball mill. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 5 μm. 40 wt% of the very fine Si-Ca powder obtained by the above process and 60 wt% of spherical graphite are put into a conical mixer and mixed for 4 hours to produce a composite particle basic body. Next, the composite particle basic body is put into 10 wt% resistol, stirred for 4 hours by a wet method, and then dried at 400 ° C. to produce particles. Then, the Rejitoru treated carbonized composite material after the coating, in the argon temperature was raised to 800 ° C., after maintaining the temperature for 5 hours, lowered to room temperature, crushed by 18 [mu] m. The crushed powder and mixed coat and 30 wt% of the bitumen, treated carbonized, to 1200 ° C. in argon raising the temperature, after maintaining the temperature for 1 hour, down to room temperature, crushed by 15 [mu] m. Then, this is put into a high-speed stirrer together with 1% acetylene black, mixed for 2 hours, and treated with ultrasonic waves having a frequency of 40 kHz and a power of 50 W for 20 minutes. Further, the material obtained in the above step is immersed in a 10% LiCl solution (the weight ratio of solid to liquid at this time is 0.5) for 24 hours, and finally a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 24.8 μm, a specific surface area of 3.8 m 2 / g, and a Jolt density of 0.94 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

実施例5(珪素・炭素のSiO-G-C-Li2O複合陰極材料を製造する):
粒度75μmのSiO粉末をアルゴンの中で高効率のボール・ミルにより0.8μmまでに破砕して、非常に細かいSiO粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した15wt%の非常に細かいSiO粉末と85wt%の球形黒鉛を複螺旋攪拌機に投入し、5時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のポリスチレンに入れ、湿式法により4時間攪拌してから、250℃のもとで乾燥し、粒子を製造する。そして、前記ポリスチレンを被覆した後の複合材料を炭素化処理し、アルゴンの中1300℃まで温度を上げ、温度を2時間維持した後、室温に下げ、5μmまでに破砕する。前記破砕した粉末と8wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1100℃までに温度を上げ、温度を10時間維持した後、室温に下げ、5μmまでに破砕する。その後、これ5%のLi2O溶液(このときの固体と液体の重量比は1である)の中に48時間浸漬し、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は5.8μmであり、比表面積は3.8m2/gであり、ジョルト密度は0.96g/cm3である。
Example 5 (Production of silicon-carbon SiO—GC—Li 2 O composite cathode material):
A very fine SiO powder is obtained by crushing a SiO powder having a particle size of 75 μm to 0.8 μm with a high-efficiency ball mill in argon. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. The 15 wt% very fine SiO powder and 85 wt% spherical graphite obtained by the above process are put into a double helix stirrer and mixed for 5 hours to produce a composite particle basic body. Next, the composite particle basic body is put into 2.5 wt% polystyrene, stirred for 4 hours by a wet method, and then dried at 250 ° C. to produce particles. Then, the composite material after coating the polystyrene treated carbonized, in argon raising the temperature to 1300 ° C., after maintaining the temperature for 2 hours, lowered to room temperature, crushed by 5 [mu] m. The crushed powder and 8 wt% of the asphalt and the mixture coated, treated carbonized, to 1100 ° C. in argon raising the temperature, after the temperature was maintained for 10 hours, lowered to room temperature, crushed by 5 [mu] m. Thereafter, this 5% Li 2 O solution (weight ratio of solid and liquid at this time is 1) was immersed for 48 hours in to obtain a silicon-carbon composite cathode material in the final. The composite material has an average particle size of 5.8 μm, a specific surface area of 3.8 m 2 / g, and a Jolt density of 0.96 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

実施例6(珪素・炭素のSi-G-C- LiNO3複合陰極材料を製造する):
粒度75μmのSi-Ni粉末(その中に珪素は40wt%を占める)をアルゴンの中で高効率のボール・ミルにより0.6μmまでに破砕して、非常に細かいSi-Ni粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した50wt%の非常に細かいSi-Ni粉末と50wt%の球形黒鉛を複螺旋混合機に投入し、6時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のスチレンブラジェンゴムに入れ、湿式法により4時間攪拌し、200℃のもとで乾燥し、粒子を製造する。そして、前記スチレンブラジェンゴムを被覆した後の複合材料を炭素化処理し、アルゴンの中に700℃まで温度を上げ、温度を5時間維持した後、室温に下げ、10μmまでに破砕する。前記破砕した粉末と12wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中に1200℃までに温度を上げ、温度を10時間維持した後、室温に下げ、5μmまでに破砕する。その後、これと1%の導電カーボンブラックSuper-P(登録商標)を高速攪拌器に入れ、2時間混合し、周波数35kHz、仕事率2500Wの超音波で15分間処理する。さらに、前記工程により取得したものを10%のLiNO3溶液(このときの固体と液体の重量比は2である)の中に36時間浸漬し、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は5.2μmであり、比表面積は4.0m2/gであり、ジョルト密度は2.0g/cm3である。
Example 6 (Production of Si-GC-LiNO3 composite cathode material of silicon and carbon):
A very fine Si-Ni powder is obtained by crushing Si-Ni powder with a particle size of 75 µm (in which silicon accounts for 40 wt%) to 0.6 µm in argon with a high-efficiency ball mill. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. 50 wt% very fine Si-Ni powder and 50 wt% spherical graphite obtained by the above process are put into a double helix mixer and mixed for 6 hours to produce a composite particle basic body. Next, the composite particle basic body is put into 2.5 wt% styrene bragen rubber, stirred for 4 hours by a wet method, and dried at 200 ° C. to produce particles. Then, the composite material coated with the styrene bragen rubber is carbonized, the temperature is increased to 700 ° C. in argon, the temperature is maintained for 5 hours, then the temperature is lowered to room temperature, and crushed to 10 μm. The crushed powder and 12 wt% asphalt are mixed and coated, carbonized, the temperature is increased to 1200 ° C. in argon, the temperature is maintained for 10 hours, then the temperature is lowered to room temperature and crushed to 5 μm. Thereafter, this and 1% of conductive carbon black Super-P (registered trademark) are put into a high-speed stirrer, mixed for 2 hours, and treated with ultrasonic waves having a frequency of 35 kHz and a power of 2500 W for 15 minutes. Further, the material obtained in the above step is immersed in a 10% LiNO 3 solution (the weight ratio of solid to liquid at this time is 2) for 36 hours, and finally a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 5.2 μm, a specific surface area of 4.0 m 2 / g, and a Jolt density of 2.0 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

参考例1(珪素・炭素のSi O2-G-C複合陰極材料を製造する):
粒度75μmのSiO2粉末を空気の中で高効率のボール・ミルにより0.8μmまでに破砕して、非常に細かいSiO2粉末を得る。粒度70μm、炭素含有量95%以上の人工の黒鉛を破砕、鈍化処理し、炭素含有量99.9%以上、粒径3μmの黒鉛微小粉末を得る。前記工程により取得した10wt%の非常に細かいSiO2粉末と90wt%の球形黒鉛を複螺旋攪拌機に投入し、5時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を25wt%のレジトールに入れ、湿式法により4時間攪拌し、250℃のもとで乾燥し、粒子を製造する。そして、レジトールを被覆した後の複合材料を炭素化処理し、水素を含む還元雰囲気の中1300℃まで温度を上げ、温度を2時間維持した後、室温に下げ、40μmまでに破砕する。前記破砕した粉末と5wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1100℃までに温度を上げ、温度を10時間維持した後、室温に下げ、60μmまでに破砕して、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は60.4μmであり、比表面積は2.8m2/gであり、ジョルト密度は0.98g/cm3である。
Reference Example 1 (Manufacturing Si / Carbon Si O 2 -GC Composite Cathode Material):
A very fine SiO 2 powder is obtained by crushing a SiO 2 powder having a particle size of 75 μm to 0.8 μm in air using a high-efficiency ball mill. Artificial graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed and blunted to obtain a graphite fine powder having a carbon content of 99.9% and a particle size of 3 μm. 10 wt% very fine SiO 2 powder and 90 wt% spherical graphite obtained by the above process are put into a double helix stirrer and mixed for 5 hours to produce a composite particle basic body. Next, the composite particle basic body is put in 25 wt% resistol, stirred for 4 hours by a wet method, and dried at 250 ° C. to produce particles. Then, the composite material after coating the Rejitoru treated carbonization, the temperature was raised to 1300 ° C. in a reducing atmosphere containing hydrogen, after maintaining the temperature for 2 hours, lowered to room temperature, crushed by 40 [mu] m. The crushed powder and mixing the coating and 5 wt% of the bitumen, treated carbonized, the temperature is raised up to 1100 ° C. in argon, after maintaining the temperature for 10 hours, lowered to room temperature, and crushed by 60 [mu] m, Finally, a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 60.4 μm, a specific surface area of 2.8 m 2 / g, and a Jolt density of 0.98 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

参考例2(珪素・炭素のSi-G-C複合陰極材料を製造する):
粒度75μmの珪素粉末をアルゴンの中で高効率のボール・ミルにより0.5μmまでに破砕して、非常に細かい珪素粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した5wt%の非常に細かい珪素粉末と95wt%の球形黒鉛を複螺旋攪拌機に投入し、5時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のスチレンブタジエンゴムSBR、1.5%のカルボキシメチルセルロースCMCに混合し、湿式法により1時間球状化してから、250℃のもとで乾燥し、粒子を製造する。そして、前記被覆をした後の複合材料を炭素化処理し、アルゴンの中450℃まで温度を上げ、温度を10時間維持した後、室温に下げ、15μmまでに破砕する。前記破砕した粉末と1wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1100℃までに温度を上げ、温度を10時間維持した後、室温に下げ、17μmまでに破砕して、最終に珪素・炭素複合陰極材料を取得する。前記複合材料の平均粒径は17.2μmであり、比表面積は3.3m2/gであり、ジョルト密度は1.05g/cm3である。
Reference Example 2 (Manufacturing Si-GC composite cathode material of silicon and carbon):
A silicon powder having a particle size of 75 μm is crushed to 0.5 μm by a high-efficiency ball mill in argon to obtain a very fine silicon powder. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. 5 wt% very fine silicon powder and 95 wt% spherical graphite obtained by the above process are put into a double helix stirrer and mixed for 5 hours to produce a composite particle basic body. Next, the composite particle the basic body of 2.5 wt% styrene-butadiene rubber SBR, mixed with 1.5% carboxymethyl cellulose CMC, after 1 hour spheroidized by a wet process, and dried under 250 ° C., the particles To manufacture. Then, the composite material after the coating was treated carbonized, in the argon temperature was raised to 450 ° C., after the temperature was maintained for 10 hours, lowered to room temperature, crushed by 15 [mu] m. Wherein the crushed powder and 1 wt% of asphalt mixture coating process carbonization, to 1100 ° C. in argon raising the temperature, after the temperature was maintained for 10 hours, it lowered to room temperature and crushed until 17 .mu.m, Finally, a silicon / carbon composite cathode material is obtained. The composite material has an average particle size of 17.2 μm, a specific surface area of 3.3 m 2 / g, and a Jolt density of 1.05 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

参考例3(珪素・炭素のSi-G-C複合陰極材料を製造する):
粒度75μmの珪素粉末をアルゴンの中で高効率のボール・ミルにより0.5μmまでに破砕して、非常に細かい珪素粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した1wt%の非常に細かい珪素粉末と99wt%の球形黒鉛を複螺旋攪拌機に投入し、5時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のスチレンブタジエンゴムSBR、1.5%のカルボキシメチルセルロースCMCに混合し、湿式法により12時間球状化し、周波数28kHz、仕事率3600Wの超音波で5分間処理し、250℃のもとで乾燥し、粒子を製造する。そして、前記被覆をした後の複合材料を炭素化処理し、アルゴンの中450℃まで温度を上げ、温度を10時間維持した後、室温に下げ、15μmまでに破砕する。前記破砕した粉末と6wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1100℃までに温度を上げ、温度を10時間維持した後、室温に下げ、17μmまでに破砕して、最終に珪素・炭素複合陰極材料を取得する。前記処理を経て得た材料の平均粒径は17.5μmであり、比表面積は3.2m2/gであり、ジョルト密度は1.03g/cm3である。
Reference Example 3 (Manufacturing Si-GC composite cathode material of silicon and carbon):
A silicon powder having a particle size of 75 μm is crushed to 0.5 μm by a high-efficiency ball mill in argon to obtain a very fine silicon powder. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. 1 wt% of very fine silicon powder and 99 wt% of spherical graphite obtained by the above process are put into a double helix stirrer and mixed for 5 hours to produce a composite particle basic body. Next, the composite particle basic body 2.5 wt% of the styrene-butadiene rubber SBR, mixed with 1.5% carboxymethyl cellulose CMC, and 12 hours spheroidized by a wet method, frequency 28 kHz, ultrasonic for 5 minutes processing work rate 3600W And dried at 250 ° C. to produce particles. Then, the composite material after the coating was treated carbonized, in the argon temperature was raised to 450 ° C., after the temperature was maintained for 10 hours, lowered to room temperature, crushed by 15 [mu] m. Wherein the crushed powder and 6 wt% of asphalt mixture coating process carbonization, to 1100 ° C. in argon raising the temperature, after the temperature was maintained for 10 hours, it lowered to room temperature and crushed until 17 .mu.m, Finally, a silicon / carbon composite cathode material is obtained. The average particle size of the material obtained through the above treatment is 17.5 μm, the specific surface area is 3.2 m 2 / g, and the jolt density is 1.03 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

参考例4(珪素・炭素のSi-Sn-Cu-G-C複合陰極材料を製造する):
粒度75μmのSi-Sn-Cu粉末(このときSi:Sn:Cuの重量比は65:30:5である)をアルゴンの中で高効率のボール・ミルにより0.5μmまでに破砕して、非常に細かい珪素合金粉末を得る。粒度70μm、炭素含有量95%以上の天然黒鉛を破砕、分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した40wt%の非常に細かい珪素合金粉末と60wt%の球形黒鉛を複螺旋攪拌機に投入し、5時間混合し、複合粒子基本体を製造する。次に、前記複合粒子基本体を2.5wt%のスチレンブタジエンゴムSBR、1.5%のカルボキシメチルセルロースCMCに混合し、湿式法により12時間球状化し、周波数28kHz、仕事率3600Wの超音波で5分間処理してから、250℃のもとで乾燥し、粒子を製造する。そして、前記被覆をした後の複合材料を炭素化処理し、アルゴンの中450℃まで温度を上げ、温度を10時間維持した後、室温に下げ、15μmまでに破砕する。その後、これと6wt%のアスファルトとを混合被覆、炭素化処理し、アルゴンの中1100℃まで温度を上げ、10時間温度を維持した後、室温に下げ、17.5μmまでに破砕して、最終に珪素・炭素複合陰極材料を取得する。前記処理を経て得た材料の平均粒径は17.5μmであり、比表面積は2.1m2/gであり、ジョルト密度は1.23g/cm3である。
Reference Example 4 (Manufacturing Si-Sn-Cu-GC composite cathode material of silicon and carbon):
Particle size 75μm of Si-Sn-Cu powder (this time Si: Sn: weight ratio of Cu is 65: 30: 5 is) was crushed until 0.5μm by a ball mill for high efficiency in argon, very To obtain fine silicon alloy powder. Natural graphite having a particle size of 70 μm and a carbon content of 95% or more is crushed, separated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% and a particle size of 3 μm. The very fine silicon alloy powder of 40 wt% and 60 wt% of spherical graphite obtained by the above process are put into a double helix stirrer and mixed for 5 hours to produce a composite particle basic body. Next, the composite particle basic body 2.5 wt% of the styrene-butadiene rubber SBR, mixed with 1.5% carboxymethyl cellulose CMC, and 12 hours spheroidized by a wet method, frequency 28 kHz, ultrasonic for 5 minutes processing work rate 3600W Then, it is dried at 250 ° C. to produce particles. Then, the composite material after the coating was treated carbonized, in the argon temperature was raised to 450 ° C., after the temperature was maintained for 10 hours, lowered to room temperature, crushed by 15 [mu] m. Thereafter, mixing covering this with 6 wt% of the bitumen, treated carbonized, in argon raising the temperature to 1100 ° C., was maintained for 10 hours temperature lowered to room temperature and crushed by 17.5 .mu.m, final Obtain a silicon / carbon composite cathode material. The average particle size of the material obtained through the above treatment is 17.5 μm, the specific surface area is 2.1 m 2 / g, and the jolt density is 1.23 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

参考例5(珪素・炭素のSi-Ni-Co-Ag-G-C複合陰極材料を製造する):
粒度75μmのSi-Ni-Mg-Ag粉末(このときのSi:Ni:Co:Agの重量比は55:30:10: 5である)をアルゴン中、高効率のボール・ミルにより0.5μmまでに破砕して、非常に細かい珪素合金粉末を得る。さらに、粒度70μm、炭素含有量95%以上の天然黒鉛粉末を分別、整形及び鈍化処理し、炭素含有量99.9%以上、粒径3μmの球形黒鉛を得る。前記工程により取得した非常に細かい40wt%の珪素合金粉末と60wt%の球形黒鉛を複螺旋攪拌機の中5時間混合し、複合粒子の基本体を製造する。そして、前記複合粒子と2.5wt%のスチレンブタジエンゴムSBR、1.5%のカルボキシメチルセルロースCMCを混合し、12時間湿式法で球状化し、さらに周波数28kHz、仕事率3600Wの超音波で5分間を処理し、250℃のもとで乾燥し、粒子を製造する。そして、被覆した後の複合材料を炭化処理し、アルゴンの中450℃までに加熱し、10時間保温してから、室温に下げ、15μmまでに破砕する。さらに、破砕した粉末と6wt%のアスファルトを混合、被覆及び炭化処理して、アルゴンの中1100℃に加熱し、10時間温度を維持してから、室温に下げ、17μmまでに破砕する。これにより、最終に珪素・炭素の複合陰極材料を得る。こうした複合材料の平均粒径は17.5μmであり、比表面積は1.9m2/gであり、ジョルト密度は1.41g/cm3である。
Reference Example 5 (Manufacturing Si-Ni-Co-Ag-GC composite cathode material of silicon and carbon):
Si-Ni-Mg-Ag powder with a particle size of 75μm (Si: Ni: Co: Ag weight ratio at this time is 55: 30: 10: 5) up to 0.5μm in argon with high-efficiency ball mill To obtain a very fine silicon alloy powder. Further, natural graphite powder having a particle size of 70 μm and a carbon content of 95% or more is fractionated, shaped and blunted to obtain spherical graphite having a carbon content of 99.9% or more and a particle size of 3 μm. A very fine 40 wt% silicon alloy powder obtained by the above process and 60 wt% spherical graphite are mixed in a double helix stirrer for 5 hours to produce a basic body of composite particles. Then, the composite particles and 2.5 wt% of the styrene-butadiene rubber SBR, were mixed with 1.5% of the carboxymethyl cellulose CMC, spheronized in 12 hours wet method further frequency 28 kHz, and treated for 5 minutes in an ultrasonic work rate 3600W Dry at 250 ° C. to produce particles. Then, the composite material after coating and carbonization, is heated up to 450 ° C. in argon, Maho from was raised at 10, down to room temperature, crushed by 15 [mu] m. Furthermore, mixing the crushed powder and 6 wt% of asphalt, coatings and carbonized, then heated to 1100 ° C. in argon, after maintaining 10 hours temperature lowered to room temperature, crushed until 17 .mu.m. Thus, a silicon / carbon composite cathode material is finally obtained. These composite materials have an average particle size of 17.5 μm, a specific surface area of 1.9 m 2 / g, and a Jolt density of 1.41 g / cm 3 .

前記取得した陰極材料により実施例1と同様な方法で電極を製造して、それの電気化学性能を測定する。   An electrode is produced from the obtained cathode material in the same manner as in Example 1, and its electrochemical performance is measured.

比較例:D50=16μmの天然球形黒鉛を処理せず直接に陰極材料に使用して、実施例1と同様な方法により電極と電池を製造して、それの電気化学性能を測定する。 Comparative Example: Using natural spherical graphite with D 50 = 16 μm directly as a cathode material, an electrode and a battery are produced in the same manner as in Example 1, and their electrochemical performance is measured.

前記実施例と前記参考例と比較例について、測定した陰極材料の電気化学性能、表1に示す For the comparative example and the reference example and the embodiment, the electrochemical performance of the measured cathode material, shown in Table 1.

前記実施例から、本発明に基づいて製造した黒鉛の陰極材料の可逆的比容量が450mAh/gより大きく、200回サイクルの容量保持率が80%より大きいであることがわかる。   From the above examples, it can be seen that the reversible specific capacity of the graphite cathode material produced according to the present invention is greater than 450 mAh / g, and the capacity retention of 200 cycles is greater than 80%.

本発明のリチウムイオン電池の珪素・炭素複合陰極材料は、携帯電話、ノートパソコン、ビデオカメラなどの携帯式電気器具、工具用のリチウムイオン電池の陰極材料として広範において使用することができる。本発明は、各種類の電気使用領域に適用し、電池の比容量を著しく引き上げ、電気用電源の軽量化という要求を満足させることができる。

Figure 0005180211

The silicon / carbon composite cathode material of the lithium ion battery of the present invention can be widely used as a cathode material of a lithium ion battery for portable electric appliances and tools such as a mobile phone, a notebook computer, and a video camera. The present invention can be applied to various types of electricity usage areas to significantly increase the specific capacity of the battery and satisfy the requirement of reducing the weight of the electric power source.
Figure 0005180211

Claims (20)

リチウムイオン電池の珪素・炭素複合陰極材料であって、珪素形粒子と炭素形粒子の複合粒子を基本体として、その基本体は球状または球状近似の形で、基本体の外側は炭素被覆層によって被覆され、前記炭素被覆層の表面にはリチウム化合物が含まれることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  A silicon / carbon composite cathode material for lithium ion batteries, which is based on composite particles of silicon-type particles and carbon-type particles, the basic body of which is spherical or spherically approximated, and the outside of the basic body is covered with a carbon coating layer. A silicon / carbon composite cathode material for a lithium ion battery, wherein the surface of the carbon coating layer is covered with a lithium compound. 前記請求項1記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記炭素被覆層は、有機物の熱分解グラファイト被覆層であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  2. The silicon / carbon composite cathode material for a lithium ion battery according to claim 1, wherein the carbon coating layer is an organic pyrolytic graphite coating layer. 前記請求項2記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記炭素被覆層は、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、及び導電カーボンブラックの群から選択される導電炭素を含むことを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。In silicon-carbon composite cathode material of lithium ion battery of claim 2, wherein the carbon coating layer, acetylene black, carbon nanometer pipe, microspheres nanometer carbon, carbon fibers, and from the group of conductive carbon black click A silicon / carbon composite cathode material for a lithium ion battery, comprising selected conductive carbon. 前記請求項3記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記炭素被覆層の厚さは0.1〜5μmであり、陰極材料において、有機物の熱分解グラファイトはその0.5〜20wt%、導電炭素はその0.5〜5wt%を占めることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  4. The silicon / carbon composite cathode material of the lithium ion battery according to claim 3, wherein the carbon coating layer has a thickness of 0.1 to 5 [mu] m, and in the cathode material, organic pyrolytic graphite is 0.5 to 20 wt%, conductive carbon. Is a silicon / carbon composite cathode material for lithium ion batteries, characterized by occupying 0.5 to 5 wt%. 前記請求項1乃至4記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記珪素・炭素複合陰極材料の平均粒径は5〜60μmであり、比表面積は1.0〜4.0m2/gであり、ジョルト密度は0.7〜2.0g/cm3であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。5. The silicon / carbon composite cathode material of the lithium ion battery according to claim 1, wherein the silicon / carbon composite cathode material has an average particle diameter of 5 to 60 μm and a specific surface area of 1.0 to 4.0 m 2 / g. A silicon / carbon composite cathode material for a lithium ion battery, wherein the Jolt density is 0.7 to 2.0 g / cm 3 . 前記請求項5記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記珪素形粒子は珪素単体、珪素酸化化合物SiOx、珪素を含む固体・液体、或いは珪素を含む金属類化合物の中のいずれでもよく、その量は複合粒子基本体の1〜50wt%を占めており、そのxは0<x≦2であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  6. The silicon / carbon composite cathode material for a lithium ion battery according to claim 5, wherein the silicon-type particles are any of silicon simple substance, silicon oxide compound SiOx, solid / liquid containing silicon, or metal compound containing silicon. Well, the amount thereof occupies 1 to 50 wt% of the basic composite particle body, and x is 0 <x ≦ 2, a silicon / carbon composite cathode material for a lithium ion battery. 前記請求項6記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記複合粒子基本体における珪素粒子の占有比率は、5〜30wt%であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  7. The silicon / carbon composite cathode material for a lithium ion battery according to claim 6, wherein the silicon particle occupancy ratio in the composite particle base is 5 to 30 wt%. Cathode material. 前記請求項7記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記複合粒子基本体における珪素粒子の占有比率は、10〜20wt%であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  8. The silicon / carbon composite cathode material for a lithium ion battery according to claim 7, wherein the silicon particle occupancy ratio in the composite particle basic body is 10 to 20 wt%. Cathode material. 前記請求項8記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかを含むことを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  9. The silicon / carbon composite cathode material of a lithium ion battery according to claim 8, wherein the solid / liquid containing silicon or the metal compound containing silicon includes silicon and (1) a group IIA element in the chemical element table. Any one or two elements, or (2) any one or three elements in transition metal elements, or (3) any one or two elements in group IIIA elements, or (4) silicon A silicon / carbon composite cathode material for a lithium ion battery, comprising any one or two of the other IVA group elements. 前記請求項9記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人造黒鉛、中間相炭素の微小球体、またはコークスの中のいずれか一つあるいは二つ以上の混合物であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  10. The silicon-carbon composite cathode material for a lithium ion battery according to claim 9, wherein the carbon-shaped particles are any of natural scale-like graphite, microcrystalline graphite, artificial graphite, mesophase carbon microspheres, and coke. A silicon / carbon composite cathode material for a lithium ion battery, which is one or a mixture of two or more. 前記請求項10記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記有機物の熱分解グラファイトは、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロース、或いは、有機溶剤類のポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、澱粉、あるいはアスファルトを前駆物として、高温炭素化を経て形成された熱分解グラファイトであることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  11. The silicon-carbon composite cathode material of the lithium ion battery according to claim 10, wherein the organic pyrolytic graphite is water-soluble polyethylene, styrene butadiene rubber, carboxymethyl cellulose, or organic solvents such as polystyrene or polymethacrylic acid methyl ester. It is a pyrolytic graphite formed by high-temperature carbonization using polyfluorinated ethylene, polyvinylidene fluoride, polyacrylonitrile, resistol, epoxy resin, sucrose, sucrose, fructose, cellulase, starch, or asphalt as precursors A silicon / carbon composite cathode material for a lithium ion battery. 前記請求項11記載のリチウムイオン電池の珪素・炭素複合陰極材料において、前記リチウム化合物は、酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、硝酸リチウム、または水素化リチウムであることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料。  12. The silicon / carbon composite cathode material of the lithium ion battery according to claim 11, wherein the lithium compound is lithium oxide, lithium carbonate, lithium fluoride, lithium chloride, lithium nitrate, or lithium hydride. Silicon / carbon composite cathode material for lithium-ion batteries. リチウムイオン電池の珪素・炭素複合陰極材料の製造方法であって、以下の工程、即ち、
(1)珪素形粒子を0.1〜1μmまで破砕して非常に細かい珪素形粒子を製造し、また、粒度75μmより小さく、炭素含有量95%以上の炭素原料を分別、整形及び純化処理することにより、炭素含有量99.9%以上、粒径0.1〜5μmの炭素形粒子を得る工程、
(2)珪素形粒子と炭素形粒子を混合して、複合粒子基本体を製造する工程、
(3)複合粒子基本体と、複合粒子基本体の1〜25wt%を占める有機物の熱分解グラファイトの前駆物とを混合し、或いは1〜12時間湿式法で攪拌して、その後100〜400℃のもとで気相沈積を行い、或いは被覆して粒子を製造する工程、
(4)被覆後の粒子を炭化処理し、密封雰囲気中において450〜1500℃まで加熱し、1〜10時間温度を維持した後、室温に下げて、炭素被覆層を形成する工程、
(5)前記炭素被覆層を有する粒子を5〜40μmまで破砕する工程、
(6)5〜40μmまで破砕された前記粉末と、粉末の1〜30wt%を占めるアスファルトを混合被覆した後、炭化処理を行なって、密封雰囲気中において450〜1500℃まで加熱し、1〜10時間温度を維持してから、室温に下げて、それによって得た粉末と粉末の0.5〜5wt%を占める導電炭素であって、アセチレンブラック、炭素ナノメーターパイプ、ナノメーター炭素の微小球体、炭素繊維、及び導電カーボンブラックの群から選択される導電炭素とを混合被覆し、混合機あるいは表面被覆改質機において1〜6時間混合し、かつ、超音波で1〜30分間それを分散し、5〜60μmまで破砕する工程、並びに、
(7)5〜60μmまで破砕された前記複合物を、0.2〜10wt%のリチウム化合物溶液を含む溶液(このときの固体と液体の重量比は0.1〜2である)の中に1〜48時間浸漬する工程
を含むことを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。
A method for producing a silicon / carbon composite cathode material for a lithium ion battery, comprising the following steps:
(1) By crushing silicon-type particles to 0.1-1 μm to produce very fine silicon-type particles, and by separating, shaping and purifying carbon raw materials with a particle size of less than 75 μm and a carbon content of 95% or more A step of obtaining carbon-shaped particles having a carbon content of 99.9% or more and a particle size of 0.1 to 5 μm,
(2) A step of producing a composite particle basic body by mixing silicon-type particles and carbon-type particles,
(3) A composite particle base and an organic pyrolytic graphite precursor occupying 1 to 25 wt% of the composite particle base are mixed or stirred by a wet method for 1 to 12 hours, and then 100 to 400 ° C. Vapor phase deposition or coating to produce particles under
(4) carbonizing the coated particles, heating to 450-1500 ° C. in a sealed atmosphere, maintaining the temperature for 1-10 hours, and then lowering to room temperature to form a carbon coating layer;
(5) A step of crushing the particles having the carbon coating layer to 5 to 40 μm,
(6) The powder crushed to 5 to 40 μm and asphalt occupying 1 to 30 wt% of the powder were mixed and coated, then carbonized, heated to 450 to 1500 ° C. in a sealed atmosphere, and 1 to 10 Conductive carbon occupying 0.5 to 5 wt% of the powder and powder obtained by maintaining the temperature for a time and then lowering to room temperature, including acetylene black, carbon nanometer pipe, nanometer carbon microsphere, carbon fiber , and a conductive carbon selected from the group of conductive carbon black click mixed coating, and mixed for 1 to 6 hours in a mixing machine or a surface coating reformer, and to distribute it to 30 minutes with an ultrasonic, Crushing to 5-60 μm, and
(7) The composite crushed to 5 to 60 μm is placed in a solution containing 0.2 to 10 wt% lithium compound solution (at this time, the weight ratio of solid to liquid is 0.1 to 2) for 1 to 48 hours. A method for producing a silicon / carbon composite cathode material for a lithium ion battery, comprising a dipping step.
前記請求項13記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記珪素形粒子は、珪素単体、珪素酸化化合物SiOx、珪素を含む固体・液体、或いは珪素を含む金属類化合物であって、かつ、前記珪素形粒子は複合粒子基本体の1〜50wt%を占めており、前記xは0<x≦2であり、前記珪素を含む固体・液体、或いは珪素を含む金属類化合物は、珪素と、(1)化学元素表におけるIIA族元素中のいずれか一つあるいは二つの元素、または(2)遷移金属元素中のいずれか一つあるいは三つの元素、または(3)IIIA族元素中のいずれか一つあるいは二つの元素、または(4)珪素以外のIVA族元素中のいずれか一つあるいは二つの元素、のいずれかを含むことを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  14. The method of manufacturing a silicon / carbon composite cathode material for a lithium ion battery according to claim 13, wherein the silicon-type particles are silicon alone, a silicon oxide compound SiOx, a solid / liquid containing silicon, or a metal compound containing silicon. In addition, the silicon-type particles occupy 1 to 50 wt% of the composite particle basic body, the x is 0 <x ≦ 2, and the silicon-containing solid / liquid or silicon-containing metal compound Is silicon and (1) any one or two elements in group IIA elements in the chemical element table, or (2) any one or three elements in transition metal elements, or (3) group IIIA Silicon or carbon of a lithium ion battery comprising any one or two elements in the element, or (4) any one or two elements in the IVA group elements other than silicon A method for producing a composite cathode material. 前記請求項14記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記炭素形粒子は、天然鱗片状黒鉛、微結晶黒鉛、人工黒鉛、中間相炭素の微小球体、またはコークスの中のいずれか一つあるいは二つ以上の混合であって、かつ、珪素形粒子は前記複合粒子基本体の50〜99wt%を占めることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  15. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 14, wherein the carbon particles are natural scaly graphite, microcrystalline graphite, artificial graphite, mesophase carbon microspheres, or coke. Or a mixture of two or more of the above, and the silicon-type particles occupy 50 to 99 wt% of the composite particle basic body, Method. 前記請求項15記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記被覆層は、複合材料中の1〜25wt%を占めることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  16. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 15, wherein the coating layer occupies 1 to 25 wt% of the composite material. Material manufacturing method. 前記請求項16記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記有機物熱分解グラファイトの前駆物は、水溶性ポリエチレン、スチレンブタジエンゴム、カルボキシメチルセルロース、あるいは、有機溶剤類のポリスチレン、ポリメタクリル酸メチルエステル、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、レジトール、エポキシ樹脂、葡萄糖、蔗糖、果糖、セルラーゼ、或いは澱粉であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  17. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 16, wherein the precursor of the organic pyrolytic graphite is water-soluble polyethylene, styrene butadiene rubber, carboxymethyl cellulose, or polystyrene of an organic solvent, A silicon / carbon composite cathode material for a lithium ion battery characterized by being polymethacrylic acid methyl ester, polyfluorinated ethylene, polyvinylidene fluoride, polyacrylonitrile, resistol, epoxy resin, sucrose, sucrose, fructose, cellulase, or starch Production method. 前記請求項17記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記リチウム化合物は、酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、硝酸リチウム、或いは水素化リチウムであることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  18. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 17, wherein the lithium compound is lithium oxide, lithium carbonate, lithium fluoride, lithium chloride, lithium nitrate, or lithium hydride. A method for producing a silicon / carbon composite cathode material for a lithium ion battery. 前記請求項18記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記珪素形粒子の球状化過程は密封雰囲気の中で行なわれ、前記密封雰囲気は、アルゴン、水素或いは窒素のいずれか一つまたは二つ以上の混合物であることを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  19. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 18, wherein the spheroidizing process of the silicon particles is performed in a sealed atmosphere, and the sealed atmosphere is any one of argon, hydrogen, and nitrogen. A method for producing a silicon / carbon composite cathode material for a lithium ion battery, wherein the material is a mixture of one or two or more. 前記請求項19記載のリチウムイオン電池の珪素・炭素複合陰極材料の製造方法において、前記珪素形粒子と炭素形粒子とを混合して粒子を製造するとき、混合式粒子製造機で混合して1〜6時間粒子を製造することを特徴とするリチウムイオン電池の珪素・炭素複合陰極材料の製造方法。  20. The method for producing a silicon / carbon composite cathode material for a lithium ion battery according to claim 19, wherein the silicon-type particles and the carbon-type particles are mixed to produce particles. A method for producing a silicon / carbon composite cathode material for a lithium ion battery, wherein the particles are produced for up to 6 hours.
JP2009524864A 2006-08-22 2007-01-12 Silicon / carbon composite cathode material for lithium ion battery and method for producing the same Active JP5180211B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200610062255A CN1913200B (en) 2006-08-22 2006-08-22 Silicon carbone compound negative polar material of lithium ion battery and its preparation method
CN200610062255.6 2006-08-22
PCT/CN2007/000130 WO2008025188A1 (en) 2006-08-22 2007-01-12 A silicon-carbon composite negative material for lithium ion battery and the preparation method of the same

Publications (2)

Publication Number Publication Date
JP2010501970A JP2010501970A (en) 2010-01-21
JP5180211B2 true JP5180211B2 (en) 2013-04-10

Family

ID=37722051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524864A Active JP5180211B2 (en) 2006-08-22 2007-01-12 Silicon / carbon composite cathode material for lithium ion battery and method for producing the same

Country Status (4)

Country Link
JP (1) JP5180211B2 (en)
KR (1) KR101085611B1 (en)
CN (1) CN1913200B (en)
WO (1) WO2008025188A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128432A (en) * 2014-05-09 2015-11-18 주식회사 엘지화학 Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
US10388950B2 (en) * 2014-02-07 2019-08-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436657B (en) * 2007-11-13 2011-01-26 比亚迪股份有限公司 Composite material for lithium ion battery cathode and preparation method thereof, cathode and battery
CN101439972B (en) * 2007-11-21 2013-01-09 比亚迪股份有限公司 Silicon-carbon composite material, preparation thereof, battery cathode and lithium ionic cell
CN100565980C (en) * 2008-05-30 2009-12-02 成都中科来方能源科技有限公司 A kind of composite cathode material for lithium ion cell and preparation method thereof
CN101339987A (en) * 2008-07-21 2009-01-07 长沙市海容电子材料有限公司 Silicon-carbon composite cathode material of lithium ion battery and preparation thereof
CN101323447B (en) * 2008-07-21 2012-02-22 深圳市贝特瑞新能源材料股份有限公司 Graphite powder of lithium ionic cell cathode and preparation thereof
FR2936102B1 (en) * 2008-09-12 2010-10-29 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A COMPOSITE MATERIAL SILICON / CARBON, MATERIAL THUS PREPARED AND ELECTRODE IN PARTICULAR NEGATIVE ELECTRODE, COMPRISING THIS MATERIAL.
KR101607232B1 (en) * 2009-04-09 2016-03-29 삼성전자주식회사 Process for preparing anode active composite material
CN101710617B (en) * 2009-05-12 2011-10-26 大连丽昌新材料有限公司 High-energy silicon-carbon composite negative electrode material for lithium ion battery and manufacturing process thereof
US8585935B2 (en) 2009-06-03 2013-11-19 Farasis Energy, Inc. Composite for Li-ion cells and the preparation process thereof
CN102005569A (en) * 2009-08-28 2011-04-06 上海宝钢化工有限公司 Composite cathode material for lithium ion battery and preparation method thereof
TW201133983A (en) 2009-11-03 2011-10-01 Envia Systems Inc High capacity anode materials for lithium ion batteries
CN101841035B (en) * 2009-12-07 2013-02-13 大连丽昌新材料有限公司 High-energy compound material used for cathode of lithium ion battery and process for preparing same
US10461366B1 (en) * 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
KR101137374B1 (en) 2010-01-28 2012-04-20 삼성에스디아이 주식회사 Negative active material containing super-conductive nanoparticle coated with high capacity negative material and lithium battery comprising same
CN102195038B (en) * 2010-03-05 2015-04-15 宁波杉杉新材料科技有限公司 Lithium ion battery as well as negative material and preparation method thereof
JP5712439B2 (en) 2010-03-11 2015-05-07 エルジー ケム. エルティーディ. Organic polymer-silicon composite particles, method for producing the same, negative electrode including the same, and lithium secondary battery
CN101859886A (en) * 2010-05-27 2010-10-13 深圳市德兴富电池材料有限公司 Lithium ion battery anode material and preparation method thereof
WO2011157013A1 (en) * 2010-06-18 2011-12-22 深圳市贝特瑞新能源材料股份有限公司 Composite hard carbon material of negative electrode for lithium ion battery and method for preparing the same
JP5177183B2 (en) * 2010-07-29 2013-04-03 株式会社豊田自動織機 Method for producing negative electrode active material for non-aqueous secondary battery
CN101931076B (en) * 2010-07-30 2014-01-29 中国科学院化学研究所 Method for preparing silicon carbide composite particles and application thereof as cathode material of lithium ion battery
CN101944596A (en) * 2010-07-30 2011-01-12 中国科学院化学研究所 Preparation method of silicon and carbon composite microspheres and application thereof
CN101916847A (en) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 Anode material for lithium ion power battery and preparation method thereof
KR101036288B1 (en) * 2010-09-13 2011-05-23 주식회사 예일전자 Sio-c composite powder for lithium secondary battery and method for manufacturing the same
CN103118976B (en) 2010-09-17 2016-07-06 古河电气工业株式会社 Porous silicon particle and Porous silicon complex particles and their manufacture method
WO2012036265A1 (en) * 2010-09-17 2012-03-22 古河電気工業株式会社 Porous silicon particles and complex porous silicon particles, and method for producing both
CN102479939B (en) * 2010-11-25 2016-08-03 上海交通大学 Electrode and manufacture method thereof for lithium ion battery
JP5648070B2 (en) * 2010-12-07 2015-01-07 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP5881943B2 (en) * 2010-12-10 2016-03-09 日立化成株式会社 Lithium secondary battery
FR2970245B1 (en) 2011-01-07 2013-01-25 Commissariat Energie Atomique SILICON / CARBON COMPOSITE MATERIAL, PROCESS FOR THE SYNTHESIS AND USE OF SUCH A MATERIAL
JPWO2012132387A1 (en) * 2011-03-28 2014-07-24 株式会社豊田自動織機 ELECTRODE MATERIAL AND ITS MANUFACTURING METHOD, AND ELECTRODE, SECONDARY BATTERY AND VEHICLE
CN102593426A (en) * 2011-05-07 2012-07-18 天津锦美碳材科技发展有限公司 Method for preparing silicon oxide (SiOx) / carbon (C) composite materials and prepared silicon carbon cathode materials for lithium ion battery
KR101342601B1 (en) 2011-06-30 2013-12-19 삼성에스디아이 주식회사 Negative active material, manufacturing method thereof, and lithium battery containing the material
CN102916167B (en) * 2011-08-04 2016-08-03 上海交通大学 Mesoporous silicon compound as lithium ion battery negative material and preparation method thereof
CN102299307B (en) 2011-09-03 2014-01-01 深圳市贝特瑞新能源材料股份有限公司 Electrode anode material and preparation method thereof
JP2013058452A (en) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery
EP2573845B1 (en) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Structural active material for battery electrodes
CN103137952A (en) * 2011-11-22 2013-06-05 宁波杉杉新材料科技有限公司 Lithium ion battery silicon-based composite anode material and preparation method thereof
CN102637872A (en) * 2012-01-07 2012-08-15 天津市贝特瑞新能源材料有限责任公司 High-capacity silicon-carbon composited anode material, preparation method and application thereof
JP5830419B2 (en) * 2012-03-21 2015-12-09 古河電気工業株式会社 Porous silicon particles, porous silicon composite particles, and production methods thereof
CN103378368B (en) * 2012-04-17 2016-06-15 万向电动汽车有限公司 A kind of silicon cathode lithium ion battery and manufacture method
CN102709532B (en) * 2012-06-01 2015-06-03 中国东方电气集团有限公司 Carbon-silicon composite anode material for preparing lithium ion battery and preparation method for carbon-silicon composite anode material
JP5941437B2 (en) * 2012-06-29 2016-06-29 Jfeケミカル株式会社 Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9580322B2 (en) * 2012-08-28 2017-02-28 Knu-Industry Cooperation Foundation Method of preparing negative active material for rechargeable lithium battery, and negative active material and rechargeable lithium battery prepared from the same
US9368792B2 (en) 2012-08-28 2016-06-14 Kangwon National University University-Industry Cooperation Foundation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN102903898B (en) * 2012-10-19 2015-10-28 山东大学 A kind of graphite and transition metal oxide composite cathode material and preparation method thereof
CN103208615B (en) * 2012-10-25 2014-06-04 郴州杉杉新材料有限公司 Silicon-carbon composite material, and preparation method and application thereof
KR101610995B1 (en) 2012-11-30 2016-04-08 주식회사 엘지화학 Silicon based composite and manufacturing method thereof
CN103050666B (en) * 2012-12-12 2015-04-22 中南大学 Preparation method of silicon and carbon-coated graphene composite cathode material
CN103035919A (en) * 2012-12-14 2013-04-10 深圳市斯诺实业发展有限公司永丰县分公司 Method for preparing modified graphite negative electrode material of lithium ion power battery
KR101460774B1 (en) * 2013-01-15 2014-11-17 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR101630008B1 (en) * 2013-02-19 2016-06-13 주식회사 엘지화학 Si/C COMPOSITE, PREPARATION METHOD OF THEREOF, AND ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY COMPRISING THE SAME
US9831491B2 (en) 2013-02-19 2017-11-28 Lg Chem, Ltd. Si/C composite, method of preparing the same, and anode active material for lithium secondary battery including the Si/C composite
CN103199252B (en) * 2013-03-08 2015-10-28 深圳市贝特瑞新能源材料股份有限公司 Lithium-ion battery silicon-carbon anode material and preparation method thereof
CN104282881B (en) * 2013-07-11 2017-03-08 万向一二三股份公司 A kind of soft bag lithium ionic cell silicium cathode and its manufacture method
KR102202366B1 (en) * 2013-08-20 2021-01-13 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN105474438B (en) 2013-08-21 2018-07-31 信越化学工业株式会社 The manufacturing method of negative electrode active material, negative electrode active material material, negative electrode, lithium rechargeable battery, the manufacturing method of negative electrode active material and lithium rechargeable battery
JP2015084320A (en) * 2013-09-17 2015-04-30 株式会社東芝 Active material for batteries, electrode, nonaqueous electrolyte battery and battery pack
CN103779536B (en) * 2013-11-06 2017-01-04 南京安普瑞斯有限公司 Silicon-containing cathode of lithium ion battery and preparation method thereof
CN103647056B (en) * 2013-11-29 2017-02-08 深圳市贝特瑞新能源材料股份有限公司 SiOx based composite negative electrode material, preparation method and battery
CN103682286B (en) * 2013-12-18 2015-09-02 南京毕汉特威高分子材料有限公司 Silicon/high molecular composite microsphere and silicon-carbon composite anode material for lithium ion battery and preparation method thereof
CN103779601B (en) * 2013-12-19 2016-08-31 宁波维科电池股份有限公司 A kind of silicon cathode lithium ion battery and manufacture method
CN103769592B (en) * 2014-01-15 2016-02-03 北京科技大学 A kind of preparation method of spherical TiC/Fe cermet composite particles
CN104332608B (en) * 2014-08-19 2017-06-06 新乡市远东电子科技股份有限公司 A kind of lithium ion battery silicon composite cathode material and preparation method thereof
CN104332616B (en) * 2014-09-09 2017-01-25 深圳市本征方程石墨烯技术股份有限公司 Graphene coated graphite composite lithium ion battery negative material and its preparation method
JP6020533B2 (en) * 2014-10-29 2016-11-02 日立化成株式会社 Lithium ion secondary battery
WO2016085282A1 (en) * 2014-11-27 2016-06-02 주식회사 엘지화학 Silicon-based negative electrode active material and method for manufacturing same
US10873071B2 (en) 2014-11-27 2020-12-22 Lg Chem, Ltd. Silicon-based negative electrode active material and method for preparing the same
CN104577084A (en) * 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 Nano silicon composite negative electrode material for lithium ion battery, preparation method and lithium ion battery
CN104953100A (en) * 2015-06-17 2015-09-30 田东 Preparation method of carbon/graphite/tin composite anode material
KR102479726B1 (en) 2015-10-22 2022-12-21 삼성전자주식회사 Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
JP6975435B2 (en) * 2015-11-06 2021-12-01 国立大学法人 新潟大学 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
CN108475761B (en) 2015-12-28 2023-10-27 庄信万丰股份有限公司 Silicon-based materials and methods of making and using the same
CN105655555B (en) * 2016-01-13 2018-07-06 浙江天能能源科技股份有限公司 A kind of Si-C composite material, preparation method and applications
CN105576209B (en) * 2016-02-04 2017-11-24 中南大学 A kind of high-capacity lithium ion cell silicon based anode material and preparation method thereof, lithium ion battery
WO2017149977A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN105958072B (en) * 2016-06-20 2019-02-05 傅云峰 A kind of preparation method of natural flake graphite base negative electrode material
CN109562949B (en) * 2016-08-11 2022-09-20 瓦克化学股份公司 Preparation of Si/C composite particles
DE102016221782A1 (en) * 2016-11-07 2018-05-09 Wacker Chemie Ag Carbon coated silicon particles for lithium ion batteries
CN106784741B (en) * 2017-02-17 2021-01-08 贝特瑞新材料集团股份有限公司 Carbon-silicon composite material, preparation method thereof and lithium ion battery containing composite material
CN108511740A (en) * 2017-03-13 2018-09-07 万向二三股份公司 A kind of high-specific-capacity silicon carbon electrode coating preparation method
CN108807861B (en) * 2017-05-03 2021-11-30 安普瑞斯(南京)有限公司 Silicon-carbon composite material for lithium ion battery and preparation method thereof
CN106898762B (en) * 2017-05-05 2019-03-26 天津师范大学 A kind of preparation method of lithium ion battery high-capacity cathode material
CN107093529B (en) * 2017-05-08 2019-04-30 华东理工大学 A method of transition metal oxide/carbon composite is prepared using solar energy
KR102285979B1 (en) * 2017-09-11 2021-08-04 주식회사 엘지에너지솔루션 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials
KR102285980B1 (en) * 2017-11-09 2021-08-04 주식회사 엘지에너지솔루션 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
CN108054366B (en) * 2017-12-12 2021-07-23 贝特瑞新材料集团股份有限公司 Lithium ion battery cathode material and preparation method thereof
JP6467031B2 (en) * 2017-12-27 2019-02-06 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN108598430B (en) * 2018-04-27 2021-03-09 北方奥钛纳米技术有限公司 Preparation method of silicon-carbon negative electrode material and porous silicon-carbon microsphere negative electrode material
CN110838574A (en) * 2018-08-16 2020-02-25 深圳市贝特瑞新能源材料股份有限公司 High-capacity composite negative electrode material for lithium ion battery, preparation method of high-capacity composite negative electrode material and lithium ion battery comprising composite material
CN109411714B (en) * 2018-09-12 2022-12-09 西安交通大学 High-capacity high-stability silicon-carbon negative electrode material and preparation method thereof
KR102243610B1 (en) * 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
CN109713265B (en) * 2018-12-21 2021-01-12 桑德新能源技术开发有限公司 Silicon-carbon negative electrode material and preparation method thereof
CN109970052B (en) * 2019-02-27 2022-10-25 福建翔丰华新能源材料有限公司 Method for granulating and secondary coating modification of natural graphite
CN111834615B (en) * 2019-04-23 2021-11-16 四川佰思格新能源有限公司 Composite negative electrode material, preparation method and lithium ion battery
CN110391406A (en) * 2019-07-01 2019-10-29 深圳市比克动力电池有限公司 A kind of lithium ion battery silicon oxygen negative electrode material and preparation method thereof, lithium ion battery
CN114530604A (en) * 2019-08-07 2022-05-24 宁德新能源科技有限公司 Anode material, and electrochemical device and electronic device including same
US11316142B2 (en) * 2019-09-17 2022-04-26 GM Global Technology Operations LLC Methods for fabricating silicon-based electrodes comprising naturally occurring carbonaceous filaments and battery cells utilizing the same
US11094996B2 (en) * 2019-09-18 2021-08-17 GM Global Technology Operations LLC Additive to ceramic ion conducting material to mitigate the resistive effect of surface carbonates and hydroxides
CN110642247B (en) * 2019-09-30 2021-05-25 广东凯金新能源科技股份有限公司 Artificial graphite negative electrode material, preparation method thereof and lithium ion battery
CN112661131B (en) * 2019-10-16 2022-12-06 中国科学院福建物质结构研究所 Preparation method and application of carbon-coated silicon composite material
CN110854367B (en) * 2019-11-21 2022-05-03 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
CN112909224A (en) * 2019-12-04 2021-06-04 华为技术有限公司 Lithium ion battery electrode material and preparation method thereof
CN112670489A (en) * 2019-12-16 2021-04-16 宁波杉杉新材料科技有限公司 Silicon-carbon composite material, electrode, lithium ion battery and preparation method and application thereof
CN111153394B (en) * 2020-01-16 2023-01-20 昆明理工大学 Preparation method of carbon-silicon negative electrode material of lithium ion battery
CN111244417B (en) * 2020-01-17 2022-04-15 天津大学 Preparation method of micron silicon-carbon composite negative electrode material with long cycle life
CN111517317B (en) * 2020-01-21 2023-02-17 西安隆基锂电新材料有限公司 Silicon-carbon composite negative electrode material and preparation method thereof
JP2023524933A (en) * 2020-03-18 2023-06-14 ワッカー ケミー アクチエンゲゼルシャフト Method for producing carbon-coated silicon particles
CN111740111B (en) * 2020-06-24 2022-09-27 东莞东阳光科研发有限公司 Lithium-sulfur battery positive electrode material and preparation method and application thereof
CN112028078B (en) * 2020-08-19 2023-02-14 上海纳米技术及应用国家工程研究中心有限公司 Method for improving stability of lithium battery silicon negative electrode material
CN111960421B (en) * 2020-08-27 2021-11-05 北京理工大学 Preparation method of coated carbon-silicon negative electrode material
CN112374482B (en) * 2020-10-08 2023-06-20 常州硅润新材料科技有限公司 Silicon-oxygen-fluorine-carbon negative electrode material of lithium ion battery prepared by mechanochemical method
CN112310368B (en) * 2020-10-16 2023-09-12 欣旺达电动汽车电池有限公司 Negative electrode active material, preparation method and application thereof, and lithium ion battery
CN114497469B (en) * 2020-11-11 2023-12-22 成都爱敏特新能源技术有限公司 Silicon monoxide-cobalt fluoride-graphene composite negative electrode material and preparation method thereof
CN112938959B (en) * 2021-01-29 2023-11-07 乌海宝杰新能源材料有限公司 Preparation method of power battery negative electrode material
CN113003559A (en) * 2021-02-06 2021-06-22 常德速碳新能源科技有限公司 Preparation method of carbon negative electrode material for lithium ion battery
CN113013390B (en) * 2021-02-20 2022-07-22 珠海冠宇电池股份有限公司 Negative plate and lithium ion battery
CN113161521B (en) * 2021-03-10 2022-11-01 广东海洋大学 Natural graphite-based silicon-carbon composite negative electrode material and preparation method and application thereof
CN113044828A (en) * 2021-03-17 2021-06-29 昆山宝创新能源科技有限公司 Porous conductive silica material, preparation method thereof and lithium ion battery
CN113675405B (en) * 2021-08-18 2022-08-05 合肥工业大学 Fluffy carbon-coated silicon composite material and preparation method and application thereof
CN113745483B (en) * 2021-09-07 2023-04-07 宁波特粒科技有限公司 Hollow silicon-carbon-based composite material, preparation method thereof and negative electrode energy storage material for non-aqueous electrolyte secondary battery
CN114105133B (en) * 2021-10-19 2023-09-05 湖南金硅科技有限公司 Graphite-silicon/silicon oxide-carbon composite material and preparation method and application thereof
CN114141993A (en) * 2021-11-25 2022-03-04 广东凯金新能源科技股份有限公司 Processing technology of composite modified graphite negative electrode with good cycling stability
CN114275785A (en) * 2021-12-24 2022-04-05 安徽科达新材料有限公司 High-first-efficiency silicon monoxide negative electrode and preparation method thereof
CN114497481B (en) * 2021-12-31 2024-02-20 长沙矿冶研究院有限责任公司 Conductive polymer coated nano silicon powder, preparation method and application thereof, and silicon-carbon negative electrode material
CN114464804A (en) * 2022-02-10 2022-05-10 珠海冠宇电池股份有限公司 Cathode material and lithium ion battery containing same
CN114559033B (en) * 2022-03-04 2023-03-10 厦门大学 Carbon-coated copper nanoparticles and preparation method thereof
CN115050925B (en) * 2022-07-01 2023-09-01 山东仁丰特种材料股份有限公司 Electrode material, preparation method, electrode plate and battery
WO2024040605A1 (en) * 2022-08-26 2024-02-29 宁德时代新能源科技股份有限公司 Silicon-carbon composite material and preparation method therefor, secondary battery and electric device
CN115621534B (en) * 2022-12-16 2023-04-07 宁德新能源科技有限公司 Electrochemical device and electronic device
CN116022783B (en) * 2023-01-09 2023-08-08 南阳天成新能源科技有限公司 Modified graphite negative electrode material and preparation method and application thereof
CN116253558B (en) * 2023-03-20 2024-02-13 深圳市诺安智能股份有限公司 Preparation method of graphene-coated electronic compound and preparation method of film

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104830B2 (en) * 2001-03-02 2008-06-18 三星エスディアイ株式会社 Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
KR100595896B1 (en) * 2003-07-29 2006-07-03 주식회사 엘지화학 A negative active material for lithium secondary battery and a method for preparing same
JP4530647B2 (en) * 2003-11-17 2010-08-25 日本コークス工業株式会社 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US7432015B2 (en) * 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2005243431A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4401984B2 (en) * 2004-03-08 2010-01-20 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, negative electrode active material for lithium secondary battery, and lithium secondary battery
CN1328805C (en) * 2004-04-05 2007-07-25 中国科学院物理研究所 Negative electrode active material and use of secondary lithium battery
JP4519592B2 (en) * 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
KR100784996B1 (en) * 2005-01-28 2007-12-11 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP4740753B2 (en) * 2005-01-28 2011-08-03 三星エスディアイ株式会社 Lithium battery for charging / discharging, and method for producing negative electrode active material contained in negative electrode of lithium battery for charging / discharging
CN1326267C (en) * 2005-05-27 2007-07-11 深圳市贝特瑞电子材料有限公司 Cathode material of composite carbon in use for lithium ion battery and preparation method
CN1315207C (en) * 2005-06-22 2007-05-09 浙江大学 Composite negative pole material of Li-ion battery and its preparing process
CN1710734A (en) * 2005-06-30 2005-12-21 复旦大学 Method for modifying carbon negative polar material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388950B2 (en) * 2014-02-07 2019-08-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20150128432A (en) * 2014-05-09 2015-11-18 주식회사 엘지화학 Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
KR101924035B1 (en) * 2014-05-09 2018-11-30 주식회사 엘지화학 Silicon-carbon composite, preparation method thereof, and anode active material comprising the same

Also Published As

Publication number Publication date
CN1913200B (en) 2010-05-26
WO2008025188A1 (en) 2008-03-06
KR101085611B1 (en) 2011-11-22
JP2010501970A (en) 2010-01-21
KR20090058505A (en) 2009-06-09
CN1913200A (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP5180211B2 (en) Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
Li et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications
JP4450192B2 (en) Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
WO2021128603A1 (en) Modified silicon monoxide material for use in negative electrode of lithium-ion battery and preparation method therefor
JP2020113547A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020128495A1 (en) Electroactive materials for metal-ion batteries
CN112467108B (en) Porous silica composite material and preparation method and application thereof
JP2022518585A (en) Silicon composite negative electrode material, its preparation method and lithium ion battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN105226249A (en) A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap
JPWO2006068066A1 (en) Composite electrode active material for non-aqueous electrolyte secondary battery or non-aqueous electrolyte electrochemical capacitor and its production method
US20120025147A1 (en) Method for preparing unique composition high performance anode materials for lithium ion batteries
JPWO2014065417A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN104716307A (en) Negative electrode active material, method for manufacturing the same, and lithium rechargable battery including the same
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
KR102022891B1 (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
CN115863600A (en) Silicon-carbon negative electrode material and preparation method and application thereof
Dong et al. Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries
JP6617312B2 (en) Electrode for lithium ion secondary battery, lithium ion secondary battery
JP2009149462A (en) Composite material and production method thereof, electrode structure and power storage device
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
JP6296188B1 (en) Electrode active material for lithium ion secondary battery, electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
TW202103359A (en) Composite material for negative electrode of lithium ion battery and manufacturing method thereof capable of combining graphene, silicon, amorphous carbon and linearly conductive carbon to fabricate negative electrode sheet of high-quality lithium battery
KR102388470B1 (en) Silicon-based nano plate manufacturing method, and negative electrode material including silicon-based nano plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250