JP5159440B2 - Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor - Google Patents

Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor Download PDF

Info

Publication number
JP5159440B2
JP5159440B2 JP2008145487A JP2008145487A JP5159440B2 JP 5159440 B2 JP5159440 B2 JP 5159440B2 JP 2008145487 A JP2008145487 A JP 2008145487A JP 2008145487 A JP2008145487 A JP 2008145487A JP 5159440 B2 JP5159440 B2 JP 5159440B2
Authority
JP
Japan
Prior art keywords
wedge
shaped member
natural frequency
rotor
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008145487A
Other languages
Japanese (ja)
Other versions
JP2009296715A (en
Inventor
大二郎 福田
明 田中
仁 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008145487A priority Critical patent/JP5159440B2/en
Publication of JP2009296715A publication Critical patent/JP2009296715A/en
Application granted granted Critical
Publication of JP5159440B2 publication Critical patent/JP5159440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、発電機ロータのねじり固有振動数評価方法、およびそのねじり固有振動数評価装置、並びに、発電機ロータの設計方法に関する。   The present invention relates to a torsional natural frequency evaluation method for a generator rotor, a torsional natural frequency evaluation apparatus, and a method for designing a generator rotor.

一般的なタービン発電機ロータは、回転軸のねじり固有振動数、特にロータコア部の両端が逆位相でねじれる1次ねじりモードが構造強度上の問題となっている。   In general turbine generator rotors, the torsional natural frequency of the rotating shaft, particularly the primary torsion mode in which both ends of the rotor core portion are twisted in opposite phases, is a problem in structural strength.

発電機に逆位相電流が流れた場合、発電機のロータに系統周波数の2倍の周波数で電気トルクが作用する。このとき、ねじり固有振動数がこの周波数の近傍に存在すると、ロータはタービン翼とともに連成振動を発生させる。これは翼の高サイクル疲労破壊の原因となる場合がある。この現象を抑制するためには、ロータを設計する段階でロータが停止しているときおよび回転しているときにおける、ねじり固有振動数を高精度に推定しておくことが必要となる。   When antiphase current flows through the generator, electric torque acts on the rotor of the generator at a frequency twice the system frequency. At this time, if the torsional natural frequency exists in the vicinity of this frequency, the rotor generates coupled vibration together with the turbine blade. This can cause high cycle fatigue failure of the blade. In order to suppress this phenomenon, it is necessary to accurately estimate the torsional natural frequency when the rotor is stopped and rotating at the stage of designing the rotor.

ねじり特性の評価方法は、例えば特許文献1に開示されているように、測定されたねじり振動に基づいて算出された振動周波数、および減衰係数等のねじり振動パラメータを用いて車輪の周方向ねじり特性などを評価する方法が知られている。   For example, as disclosed in Patent Document 1, the torsional characteristic evaluation method uses the vibration frequency calculated based on the measured torsional vibration, and the torsional vibration parameter such as the damping coefficient in the circumferential direction of the wheel. A method for evaluating the above is known.

また、特許文献2に開示されているように、トルク変動周波数と誘導電動機の軸に発生した振動レベルとの関係を、誘導電動機のロータバーのねじり振動特性として表示する表示器等から構成されるねじり固有振動数検出装置により、共振による振動および騒音の増大を未然に防止する方法が知られている。
特開2004−340688号公報 特開2002−257622号公報
Further, as disclosed in Patent Document 2, a torsion composed of an indicator or the like that displays the relationship between the torque fluctuation frequency and the vibration level generated in the shaft of the induction motor as the torsional vibration characteristics of the rotor bar of the induction motor. A method for preventing an increase in vibration and noise due to resonance by a natural frequency detection device is known.
JP 2004-340688 A JP 2002-257622 A

上記の特許文献1に開示されたねじり特性の評価方法は、ねじり振動パラメータを得るために実験を行う必要がある。さらにこの実験に伴い関連する試料および装置などを準備する必要がある。さらに、対象物の形状、寸法などの諸条件が異なる場合には、これらの諸条件の全てについて実験を行うことになる。このため、評価のために多大な時間とコストが必要になる。また、対象物が軸方向に短い車輪としているため、発電機のロータのように軸方向に長い部品への対応は困難になる場合がある。   The method for evaluating torsional characteristics disclosed in the above-mentioned Patent Document 1 requires an experiment to obtain torsional vibration parameters. In addition, it is necessary to prepare related samples and devices for this experiment. Furthermore, when various conditions such as the shape and dimensions of the object are different, an experiment is performed for all of these various conditions. For this reason, much time and cost are needed for evaluation. In addition, since the object is a short wheel in the axial direction, it may be difficult to deal with parts that are long in the axial direction, such as a rotor of a generator.

また、特許文献2に開示されたねじり固有振動数の検出方法では、振動計測によってねじり固有振動数を評価する方法であるため、計測および評価に多大な時間とコストが必要になる。   In addition, since the torsional natural frequency detection method disclosed in Patent Document 2 is a method for evaluating the torsional natural frequency by vibration measurement, much time and cost are required for measurement and evaluation.

本発明は上述した課題を解決するものであり、その目的は、発電機ロータを設計する段階で回転しているときの当該発電機ロータのねじり固有振動数を簡易的かつ高精度に評価することにある。   The present invention solves the above-mentioned problems, and its object is to simply and accurately evaluate the torsional natural frequency of the generator rotor when it is rotating at the stage of designing the generator rotor. It is in.

上記目的を達成するための本発明に係る発電機ロータの固有振動数評価方法は、回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置され、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータのねじり固有振動数を評価する方法において、前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出工程と、前記楔状部材横弾性係数算出工程の後に、算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出工程と、前記ばね定数算出工程の後に、算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出工程と、前記角振動数算出工程の後に、算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出工程と、前記増分ねじり固有振動数算出工程の後に、算出された前記増分ねじり固有振動数に停止時ロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出工程と、を有することを特徴とする。   In order to achieve the above object, a method for evaluating the natural frequency of a generator rotor according to the present invention includes a plurality of slot portions and a plurality of core teeth portions alternately arranged along the circumferential direction on the outer peripheral portion of a rotor core having a rotating shaft. In the method for evaluating the torsional natural frequency of a generator rotor arranged and fixed from the outer peripheral side by an wedge-shaped member to an insulator and a coil inserted into the slot portion, the torsional rigidity of the rotor core and the wedge-shaped member A wedge-shaped member transverse elastic coefficient calculating step for calculating a transverse elastic coefficient of the wedge-shaped member based on the ratio; and a wedge-shaped member transverse elastic coefficient calculating step, and then, based on the calculated lateral elastic modulus of the rotor core and the wedge-shaped member, The spring constant calculating step for calculating the spring constant of the rotor core teeth portion and the wedge-shaped member, and the calculated spring constant after the spring constant calculating step An angular frequency calculating step of calculating an angular frequency of the rotor core teeth portion and the wedge-shaped member based on a spring constant of the rotor core teeth portion and the wedge-shaped member, and the calculated rotor core teeth portion and the wedge shape after the angular frequency calculating step. Incremental torsional natural frequency calculation step of calculating an incremental torsional natural frequency based on a composite angular frequency obtained by synthesizing the angular frequency of the member, and after the incremental torsional natural frequency calculation step, the calculated incremental torsional natural frequency And a rotor torsional natural frequency calculation step during rotation for calculating a rotor torsional natural frequency during rotation by adding the rotor torsional natural frequency during stoppage to the vibration frequency.

また、本発明に係る発電機ロータのねじり固有振動数評価装置は、回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置され、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータのねじり固有振動数を評価するねじり固有振動数評価装置において、入力手段と、前記入力手段により入力された情報に基づいてねじり固有振動数を計算する計算手段と、前記計算手段により計算した結果を出力する出力手段と、を有し、前記計算手段は、前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出手段と、前記楔状部材横弾性係数算出手段によって算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出手段と、前記ばね定数算出手段によって算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出手段と、前記角振動数算出手段によって算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出手段と、前記増分ねじり固有振動数算出手段によって算出された前記増分ねじり固有振動数に停止時のロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出手段と、を有することを特徴とする。   Further, in the generator rotor torsional natural frequency evaluation device according to the present invention, a plurality of slot portions and a plurality of core teeth portions are alternately arranged along the circumferential direction on the outer peripheral portion of the rotor core having the rotating shaft, In a torsional natural frequency evaluation apparatus for evaluating a torsional natural frequency of a generator rotor configured to fix an insulator and a coil inserted in a slot portion from the outer peripheral side by a wedge-shaped member, input means, and the input means Calculation means for calculating the torsional natural frequency based on the information input by the output means, and output means for outputting the result calculated by the calculation means, wherein the calculation means comprises the torsional rigidity of the rotor core and the wedge-shaped member. Calculated by a wedge-shaped member transverse elastic coefficient calculating means for calculating a transverse elastic coefficient of the wedge-shaped member based on the ratio, and the wedge-shaped member transverse elastic coefficient calculating means A spring constant calculating means for calculating a spring constant of the rotor core teeth portion and the wedge-shaped member based on the transverse elastic modulus of the rotor core and wedge-shaped member, and the rotor core teeth portion and the wedge-shaped member calculated by the spring constant calculating means. Based on the spring constant, the angular frequency calculation means for calculating the angular frequency of the rotor core teeth portion and the wedge-shaped member, and the angular frequency of the rotor core teeth portion and the wedge-shaped member calculated by the angular frequency calculation means are synthesized. Incremental torsional natural frequency calculating means for calculating an incremental torsional natural frequency based on the composite angular frequency, and the rotor torsional natural vibration at the time of stopping to the incremental torsional natural frequency calculating means calculated by the incremental torsion natural frequency calculating means Calculate the rotor torsional natural frequency during rotation by adding the numbers. And having a kinematic number calculating means.

また、本発明に係る発電機ロータの設計方法は、回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置されて、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータの回転時ねじり固有振動数に基づいて、共振防止措置および構造変更を行う発電機ロータ設計方法において、前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出工程と、前記楔状部材横弾性係数算出工程の後に、算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出工程と、前記ばね定数算出工程の後に、算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出工程と、前記角振動数算出工程の後に、算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出工程と、前記増分ねじり固有振動数算出工程の後に、算出された前記増分ねじり固有振動数に停止時ロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出工程と、を有することを特徴とする。   Further, in the generator rotor design method according to the present invention, a plurality of slot portions and a plurality of core teeth portions are alternately arranged along the circumferential direction on the outer peripheral portion of the rotor core having the rotation shaft, In the generator rotor design method for performing resonance prevention measures and structural changes based on the torsional natural frequency during rotation of the generator rotor configured to fix the inserted insulator and coil from the outer peripheral side by a wedge-shaped member, A wedge-shaped member transverse elastic coefficient calculating step for calculating a transverse elastic coefficient of the wedge-shaped member based on a torsional rigidity ratio of the rotor core and the wedge-shaped member; and the calculated rotor core and wedge-shaped member after the wedge-shaped member transverse elastic coefficient calculating step A spring constant calculating step of calculating a spring constant of the rotor core teeth portion and the wedge-shaped member based on a transverse elastic coefficient of the spring constant, and the spring constant After the exiting step, after calculating the angular frequency of the rotor core teeth portion and the wedge-shaped member based on the calculated spring constant of the rotor core teeth portion and the wedge-shaped member, and after the angular frequency calculating step An incremental torsional natural frequency calculating step for calculating an incremental torsional natural frequency based on a combined angular frequency obtained by synthesizing the calculated angular frequencies of the rotor core teeth portion and the wedge-shaped member, and the incremental torsional natural frequency calculating step. After that, the rotor torsional natural frequency calculation at the time of rotation to calculate the rotor torsional natural frequency at the time of rotation by adding the rotor torsional natural frequency at the time of stop to the calculated incremental torsional natural frequency, Features.

本発明によれば、発電機ロータを設計する段階で回転しているときの当該発電機ロータのねじり固有振動数を簡易的かつ高精度に評価することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to evaluate the torsional natural frequency of the said generator rotor when it rotates in the step which designs a generator rotor simply and with high precision.

以下、本発明に係る発電機ロータのねじり固有振動数評価方法の一実施形態について、図面を参照して説明する。図1は本実施形態における発電機ロータのねじり固有振動数評価方法であって、諸条件の入力から回転時のねじり固有振動数を算出するまでのフロー図である。図2は、図1のねじり剛性比とロータ回転数との関係を示したグラフである。図3は、本実施形態でねじり固有振動数を解析する発電機ロータのロータ断面ばねモデルを示す断面モデル図である。図4は、図3のIV-IV線矢視側面図である。図5は、本実施形態でねじり固有振動数を解析するロータにおいて1つのスロット部2内に複数の楔状部材4が配置されたロータ軸方向ばねモデルを示す側面モデル図である。図6は、図1のフローで算出された楔状部材4の横弾性係数と、ねじり固有振動数の関係を示したグラフである。図7は、図1の発電機ロータのねじり固有振動数評価方法に用いる装置の一例を示す構成図である。   Hereinafter, an embodiment of a torsional natural frequency evaluation method for a generator rotor according to the present invention will be described with reference to the drawings. FIG. 1 shows a method for evaluating the torsional natural frequency of the generator rotor in the present embodiment, and is a flow chart from the input of various conditions to the calculation of the torsional natural frequency during rotation. FIG. 2 is a graph showing the relationship between the torsional rigidity ratio of FIG. 1 and the rotor rotational speed. FIG. 3 is a cross-sectional model diagram showing a rotor cross-section spring model of the generator rotor that analyzes the torsional natural frequency in this embodiment. 4 is a side view taken along line IV-IV in FIG. FIG. 5 is a side model diagram showing a rotor axial spring model in which a plurality of wedge-like members 4 are arranged in one slot portion 2 in the rotor that analyzes the torsional natural frequency in the present embodiment. FIG. 6 is a graph showing the relationship between the transverse elastic coefficient of the wedge-shaped member 4 calculated in the flow of FIG. 1 and the torsional natural frequency. FIG. 7 is a block diagram showing an example of an apparatus used in the method for evaluating the torsional natural frequency of the generator rotor of FIG.

先ず、図1に示すように、ロータ回転数とねじり剛性比の関係に基づいて、評価するロータ回転数におけるねじり剛性比を求める(ステップS1)。ねじり剛性比は図3に示すロータコア1のねじり剛性を分子として楔状部材4のねじり剛性を分母にしたときの、これらの比率であって、図2に示すように、ロータ回転数に対して負の相関を有する。   First, as shown in FIG. 1, the torsional rigidity ratio at the rotor rotational speed to be evaluated is determined based on the relationship between the rotor rotational speed and the torsional rigidity ratio (step S1). The torsional rigidity ratio is the ratio of the torsional rigidity of the wedge-shaped member 4 with the torsional rigidity of the rotor core 1 shown in FIG. 3 as a numerator, and is negative with respect to the rotor rotational speed as shown in FIG. It has a correlation.

次に、算出したねじり剛性比を定数として、ロータコア1の横弾性係数、断面2次極モーメント、および楔状部材4の断面2次極モーメントを入力して、式(1)および式(2)により、楔状部材4の横弾性係数を算出する(ステップS2)。   Next, using the calculated torsional rigidity ratio as a constant, the transverse elastic modulus of the rotor core 1, the cross-sectional secondary pole moment, and the cross-sectional secondary pole moment of the wedge-shaped member 4 are input, and the formulas (1) and (2) Then, the lateral elastic modulus of the wedge-shaped member 4 is calculated (step S2).

楔状部材4の横弾性係数は、既知の材料力学の式(1)を応用して式(2)により算出する。   The lateral elastic modulus of the wedge-shaped member 4 is calculated by the formula (2) by applying the formula (1) of the known material mechanics.

K=G・Ip …(1)
このとき、Kはねじり剛性、Gは横弾性係数、Ipは断面2次極モーメントである。
K = G · Ip (1)
At this time, K is a torsional rigidity, G is a transverse elastic modulus, and Ip is a cross-sectional secondary pole moment.

K(r)/K(k)=[G(r)・Ip(r)]/[G(k)・Ip(k)]…(2)
このとき、K(r)/K(k)はねじり剛性比、G(r)はねじり剛性比、Ip(r)はロータコア1の断面2次極モーメント、G(k)は楔状部材4の横弾性係数、Ip(k)は楔状部材4の断面2次極モーメントである。
K (r) / K (k) = [G (r) · Ip (r)] / [G (k) · Ip (k)] (2)
At this time, K (r) / K (k) is the torsional rigidity ratio, G (r) is the torsional rigidity ratio, Ip (r) is the cross-sectional secondary pole moment of the rotor core 1, and G (k) is the lateral width of the wedge-shaped member 4. The elastic modulus, Ip (k), is the cross-sectional secondary pole moment of the wedge-shaped member 4.

次に、ロータコアティース部3のばね定数および楔状部材4のばね定数を以下の手順で算出する(ステップS3)。   Next, the spring constant of the rotor core teeth portion 3 and the spring constant of the wedge-shaped member 4 are calculated according to the following procedure (step S3).

楔状部材4および隣接するロータコアティース部ばねをモデル化する。図3および図4に示すように、ロータコアティース部ばねモデルは、回転軸(図示せず)を有する円筒形のロータコア1の外周部に周方向に沿って等間隔に複数のスロット部2が設けられている。これらのスロット部2の外周側は開放された状態になっている。互いに隣接する2つのスロット部2に挟まれてロータコアティース部3が形成される。すなわち、スロット部2とロータコアティース部3は交互に配置されている。スロット部2の内部には、絶縁体(図示せず)およびコイル(図示せず)が挿入されている。これらの絶縁体およびコイルを外周側から固定するように楔状部材4が配置されている。すなわち、楔状部材4によってスロット部2の開放された部位を閉止している。   The wedge-shaped member 4 and the adjacent rotor core teeth spring are modeled. As shown in FIGS. 3 and 4, the rotor core teeth portion spring model is provided with a plurality of slot portions 2 at equal intervals along the circumferential direction on the outer peripheral portion of a cylindrical rotor core 1 having a rotating shaft (not shown). It has been. The outer peripheral sides of these slot portions 2 are open. A rotor core teeth portion 3 is formed between two slot portions 2 adjacent to each other. That is, the slot portions 2 and the rotor core teeth portions 3 are alternately arranged. An insulator (not shown) and a coil (not shown) are inserted into the slot portion 2. A wedge-shaped member 4 is arranged so as to fix these insulators and coils from the outer peripheral side. That is, the opened portion of the slot portion 2 is closed by the wedge-shaped member 4.

図5は、1つのスロット部2に複数本の楔状部材4が配置された例を示している。この例では、1つのロータコアティース部3に隣接する2つのスロット部2それぞれに、6本の楔状部材4が配置されている。   FIG. 5 shows an example in which a plurality of wedge-shaped members 4 are arranged in one slot portion 2. In this example, six wedge-shaped members 4 are arranged in each of two slot portions 2 adjacent to one rotor core teeth portion 3.

楔状部材4がロータ軸方向に対して1本で構成されている場合は、図3および図4に示すロータ断面ばねモデルを使用してばね定数を算出する。楔状部材4がロータ軸方向に対して複数本で構成されている場合は、図3および図4に示すロータ断面ばねモデルと、図5に示すロータ軸方向ばねモデルとを併用してばね定数を算出する。   When the wedge-shaped member 4 is composed of one piece in the rotor axial direction, the spring constant is calculated using the rotor section spring model shown in FIGS. When the wedge-shaped member 4 is composed of a plurality of pieces in the rotor axial direction, the spring constant is obtained by using both the rotor cross-section spring model shown in FIGS. 3 and 4 and the rotor axial spring model shown in FIG. calculate.

これらのモデルを用いて、ロータコアティース部3の横弾性係数、ロータコアティース部3の回転軸に垂直な断面積、ロータコアティース部3の長さ寸法(ロータコア1の半径方向の長さおよび幅の寸法等)、楔状部材4の横弾性係数、楔状部材4の回転軸に垂直な断面積、楔状部材4の寸法(ロータコア1の半径方向の長さ、幅、軸方向長さの寸法等)を入力する。   Using these models, the transverse elastic modulus of the rotor core teeth portion 3, the cross-sectional area perpendicular to the rotation axis of the rotor core teeth portion 3, the length dimension of the rotor core teeth portion 3 (the radial length and width dimensions of the rotor core 1). Etc.), the transverse elastic modulus of the wedge-shaped member 4, the cross-sectional area perpendicular to the rotation axis of the wedge-shaped member 4, and the dimensions of the wedge-shaped member 4 (the radial length, width, axial length dimensions, etc. of the rotor core 1). To do.

これらの入力された条件値と、既知の材料力学の式(3)に基づいて、ロータコアティース部3のばね定数および楔状部材4のばね定数を算出する。   The spring constant of the rotor core teeth portion 3 and the spring constant of the wedge-shaped member 4 are calculated on the basis of these input condition values and the known material dynamic equation (3).

k=G・A/L …(3)
このとき、kはロータティース部3または楔状部材4のばね定数、Gはロータティース部3または楔状部材4の横弾性係数、Aはロータティース部3または楔状部材4の回転軸に垂直な断面積、Lはロータティース部3または楔状部材4の上述の長さ寸法である。
k = G · A / L (3)
In this case, k is a spring constant of the rotor tooth portion 3 or the wedge-shaped member 4, G is a transverse elastic coefficient of the rotor tooth portion 3 or the wedge-shaped member 4, and A is a cross-sectional area perpendicular to the rotation axis of the rotor tooth portion 3 or the wedge-shaped member 4 , L is the above-described length dimension of the rotor teeth portion 3 or the wedge-shaped member 4.

次に、ロータコアティース部3および楔状部材4の角振動数を以下の手順で算出する(ステップS4)。   Next, the angular frequencies of the rotor core teeth portion 3 and the wedge-shaped member 4 are calculated by the following procedure (step S4).

ロータコアティース部3のばね定数および質量を入力値として、既知の材料力学の式(4)に基づいて、ロータコアティース部3の角振動数を算出する。同様に、楔状部材4のばね定数および質量を入力値として式(4)に基づいて、楔状部材4の角振動数を算出する。   The angular frequency of the rotor core teeth portion 3 is calculated based on the known material mechanics equation (4) using the spring constant and mass of the rotor core teeth portion 3 as input values. Similarly, the angular frequency of the wedge-shaped member 4 is calculated based on the equation (4) using the spring constant and mass of the wedge-shaped member 4 as input values.

ω2=k/m …(4)
このとき、ωはロータティース部3または楔状部材4の角振動数、kはロータティース部または楔状部材4のばね定数、mはロータティース部または楔状部材4の質量である。
ω 2 = k / m (4)
In this case, ω is the angular frequency of the rotor tooth portion 3 or the wedge-shaped member 4, k is the spring constant of the rotor tooth portion or the wedge-shaped member 4, and m is the mass of the rotor tooth portion or the wedge-shaped member 4.

次に、ロータコアティース部3の角振動数と楔状部材4の角振動数とを合成する(ステップS5)。   Next, the angular frequency of the rotor core teeth portion 3 and the angular frequency of the wedge-shaped member 4 are synthesized (step S5).

楔状部材4がロータ軸方向に対して1本で構成されている場合は、既知の直列結合形合成法の式(5)を用いて合成する。   When the wedge-shaped member 4 is composed of one piece with respect to the rotor axial direction, the wedge-shaped member 4 is synthesized using Formula (5) of a known serially coupled synthesis method.

1/Σω=(1/ω12)+(1/ω22)+・・・+(1/ωn2) …(5)
このとき、Σωは合成角振動数、ω1、ω2、…、ωnは個々の部品の角振動数である。
1 / Σω 2 = (1 / ω1 2 ) + (1 / ω2 2 ) +... + (1 / ωn 2 ) (5)
At this time, Σω is a composite angular frequency, and ω1, ω2,..., Ωn are angular frequencies of individual components.

楔状部材4がロータ軸方向に対して複数本で構成されている場合は、既知の直列結合形合成法の式(5)と、既知のポテンシャルエネルギの合成法の式(6)を併用して角振動数を合成する。   When the wedge-shaped member 4 is composed of a plurality of pieces in the rotor axial direction, the formula (5) of the known series coupled synthesis method and the formula (6) of the known potential energy synthesis method are used in combination. Synthesize angular frequency.

Σω=ω12+ω22+・・・+ωn2 …(6)
このとき、Σωは合成角振動数、ω1、ω2、…、ωnは個々の部品の角振動数である。
Σω 2 = ω1 2 + ω2 2 + ... + ωn 2 (6)
At this time, Σω is a composite angular frequency, and ω1, ω2,..., Ωn are angular frequencies of individual components.

次に、合成した角振動数から既知の振動工学の式(7)を用いて、増分ねじり固有振動数を算出する(ステップS6)。   Next, an incremental torsion natural frequency is calculated from the synthesized angular frequency by using a known vibration engineering equation (7) (step S6).

ω=2πf …(7)
このとき、ωは合成された角振動数、fは固有振動数である。
ω = 2πf (7)
At this time, ω is the synthesized angular frequency, and f is the natural frequency.

次に、停止時のロータねじり固有振動数を以下の手順で算出する(ステップS7)。   Next, the rotor torsional natural frequency at the time of stop is calculated according to the following procedure (step S7).

スロット部2内に絶縁体およびコイルが配置されて、スロット部2の外周部を楔状部材4で固定したロータコア1の有限要素解析モデルを作成する。このモデルを用いて固有振動解析を行い、停止時のロータねじり固有振動数を算出する。   An insulator and a coil are arranged in the slot portion 2, and a finite element analysis model of the rotor core 1 in which the outer peripheral portion of the slot portion 2 is fixed by the wedge-shaped member 4 is created. The natural vibration analysis is performed using this model, and the rotor torsional natural frequency at the time of stop is calculated.

停止時のロータ固有振動数は、有限要素法により解析結果の他に、ロータねじり固有振動数の実測結果、または既知の材料力学式を応用した理論解析によって算出された結果を用いてもよい。   As the rotor natural frequency at the time of stop, in addition to the analysis result by the finite element method, the actual measurement result of the torsional natural frequency of the rotor or the result calculated by the theoretical analysis applying a known material dynamic equation may be used.

最後に、図6に示すように、算出した停止時ロータねじり固有振動数fに、増分ねじり固有振動数Δfを加算して回転時ロータねじり固有振動数を算出する(ステップS8)。 Finally, as shown in FIG. 6, the rotor torsional natural frequency at rotation is calculated by adding the incremental torsional natural frequency Δf to the calculated rotor torsional natural frequency f 0 at the time of stop (step S8).

以上により、発電機ロータの回転時ねじり固有振動数を算出することが可能となる。また、この方法により算出されたねじり固有振動数に基づいて、発電機ロータを設計する段階において、共振防止措置および構造変更等を行うことが可能となる。   As described above, the torsional natural frequency during rotation of the generator rotor can be calculated. In addition, based on the torsional natural frequency calculated by this method, it is possible to perform a resonance prevention measure, a structure change, and the like at the stage of designing the generator rotor.

続いて、本実施形態の発電機ロータのねじり固有振動数評価方法に用いる装置について、図7を用いて説明する。本実施形態の発電機ロータのねじり固有振動数評価装置は、入力手段21、計算手段22、および出力手段23を有する。   Next, an apparatus used in the method for evaluating the torsional natural frequency of the generator rotor according to the present embodiment will be described with reference to FIG. The generator rotor torsional natural frequency evaluation apparatus of the present embodiment includes an input means 21, a calculation means 22, and an output means 23.

入力手段21では、ロータコア1および楔状部材4等に関する諸条件値(パラメータ)を入力する。例えば、ロータコア1の断面2次極モーメント、ロータコア1の横弾性係数、ロータコア1の寸法、ロータコア1の質量密度または質量、楔状部材4の断面2次極モーメント、楔状部材4の寸法、楔状部材4の質量密度または質量、楔状部材4の数量、ロータの回転数、ロータ停止時のねじり固有振動数などを入力する。   The input means 21 inputs various condition values (parameters) regarding the rotor core 1 and the wedge-shaped member 4. For example, the cross-sectional secondary pole moment of the rotor core 1, the transverse elastic modulus of the rotor core 1, the dimensions of the rotor core 1, the mass density or mass of the rotor core 1, the cross-sectional secondary pole moment of the wedge-shaped member 4, the dimensions of the wedge-shaped member 4, the wedge-shaped member 4 Mass density or mass, the number of wedge-shaped members 4, the number of rotations of the rotor, the torsional natural frequency when the rotor is stopped, and the like are input.

ロータコア1の寸法については、ロータコア1の直径、ロータコア1の軸方向長さ、楔状部材4と隣接するロータコアティース部3のロータ半径方向長さおよび幅などの寸法を入力する。楔状部材4の寸法については、楔状部材4の幅、ロータ半径方向の長さ、および軸方向長さなどを入力する。   Regarding the dimensions of the rotor core 1, dimensions such as the diameter of the rotor core 1, the axial length of the rotor core 1, and the length and width of the rotor core teeth portion 3 adjacent to the wedge-shaped member 4 are input. About the dimension of the wedge-shaped member 4, the width | variety of the wedge-shaped member 4, the length of a rotor radial direction, an axial direction length, etc. are input.

計算手段22は、入力手段21で入力した値に基づいて、例えば、ねじり剛性比、楔状部材4の横弾性係数、ロータコアティース部3のばね定数、楔状部材4のばね定数、ロータコアティース部3の角振動数、楔状部材4の角振動数、ロータコアティース部3と楔状部材4の合成角振動数、増分ねじり固有振動数、および、回転時のロータねじり固有振動数などについて、計算を行う。   Based on the value input by the input means 21, the calculation means 22, for example, the torsional rigidity ratio, the lateral elastic modulus of the wedge-shaped member 4, the spring constant of the rotor core teeth part 3, the spring constant of the wedge-shaped member 4, and the rotor core teeth part 3 Calculation is performed for the angular frequency, the angular frequency of the wedge-shaped member 4, the combined angular frequency of the rotor core teeth portion 3 and the wedge-shaped member 4, the incremental torsional natural frequency, the rotor torsional natural frequency during rotation, and the like.

入力手段21でロータコア1の質量密度および楔状部材4の質量密度を入力した場合には、計算手段22でロータコア1の寸法および楔状部材4の寸法に基づいて、ロータコア1の質量および楔状部材4の質量を計算して、角振動数の計算に用いる。   When the input unit 21 inputs the mass density of the rotor core 1 and the mass density of the wedge-shaped member 4, the calculation unit 22 calculates the mass of the rotor core 1 and the wedge-shaped member 4 based on the dimensions of the rotor core 1 and the wedge-shaped member 4. The mass is calculated and used to calculate the angular frequency.

また、計算手段22で行う計算方法は、図1〜図6を用いて説明した上述の算出方法に沿って計算する。   Moreover, the calculation method performed by the calculation means 22 is calculated along the above-described calculation method described with reference to FIGS.

出力手段23では、計算手段22で計算された回転時のロータねじり固有振動数の算出結果を出力する。   The output unit 23 outputs the calculation result of the rotor torsional natural frequency during rotation calculated by the calculation unit 22.

本実施形態によれば、昇速過程におけるねじり固有振動数の増加を、発電機ロータを設計する段階で、簡易的かつ高精度に評価できる。したがって、回転しているときの発電機ロータの安定運用が可能となり、かつ高品質、高信頼性の発電機を提供することが可能となる。   According to the present embodiment, an increase in the torsional natural frequency in the speed-up process can be easily and accurately evaluated at the stage of designing the generator rotor. Therefore, the generator rotor can be stably operated when rotating, and a high-quality and highly reliable generator can be provided.

本発明に係る発電機ロータのねじり固有振動数評価方法のフロー図である。It is a flowchart of the torsional natural frequency evaluation method of the generator rotor which concerns on this invention. 図1のねじり剛性比とロータ回転数との関係を示したグラフである。2 is a graph showing the relationship between the torsional rigidity ratio and the rotor rotational speed in FIG. 1. 図1の実施形態でねじり固有振動数を解析する発電機ロータのロータ断面ばねモデルを示す断面モデル図である。It is a cross-sectional model figure which shows the rotor cross-section spring model of the generator rotor which analyzes a torsion natural frequency in embodiment of FIG. 図3のIV-IV線矢視側面図である。FIG. 4 is a side view taken along line IV-IV in FIG. 3. 図1の実施形態でねじり固有振動数を解析するロータにおいて1つのスロット部内に複数の楔状部材が配置されたロータ軸方向ばねモデルを示す側面モデル図である。FIG. 2 is a side model diagram showing a rotor axial spring model in which a plurality of wedge-shaped members are arranged in one slot portion in the rotor that analyzes the torsional natural frequency in the embodiment of FIG. 1. 図1の実施形態で算出された楔状部材の横弾性係数とねじり固有振動数の関係を示したグラフである。It is the graph which showed the relationship between the transverse elastic coefficient of the wedge-shaped member calculated by embodiment of FIG. 1, and a torsional natural frequency. 図1の発電機ロータのねじり固有振動数評価方法に用いる装置の一例を示す構成図である。It is a block diagram which shows an example of the apparatus used for the torsional natural frequency evaluation method of the generator rotor of FIG.

符号の説明Explanation of symbols

1…ロータコア、2…スロット部、3…ロータコアティース部、4…楔状部材、21…入力手段、22…計算手段、23…出力手段 DESCRIPTION OF SYMBOLS 1 ... Rotor core, 2 ... Slot part, 3 ... Rotor core teeth part, 4 ... Wedge-shaped member, 21 ... Input means, 22 ... Calculation means, 23 ... Output means

Claims (8)

回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置され、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータのねじり固有振動数を評価する方法において、
前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出工程と、
前記楔状部材横弾性係数算出工程の後に、算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出工程と、
前記ばね定数算出工程の後に、算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出工程と、
前記角振動数算出工程の後に、算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出工程と、
前記増分ねじり固有振動数算出工程の後に、算出された前記増分ねじり固有振動数に停止時ロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出工程と、
を有することを特徴とする発電機ロータのねじりの固有振動数評価方法。
A plurality of slot portions and a plurality of core teeth portions are alternately arranged along the circumferential direction on the outer peripheral portion of the rotor core having the rotating shaft, and the insulator and the coil inserted into the slot portion are fixed from the outer peripheral side by a wedge-shaped member. In a method for evaluating a torsional natural frequency of a generator rotor configured to:
A wedge-shaped member transverse elastic coefficient calculating step of calculating a transverse elastic coefficient of the wedge-shaped member based on a torsional rigidity ratio of the rotor core and the wedge-shaped member;
A spring constant calculating step of calculating a spring constant of the rotor core teeth portion and the wedge-shaped member based on the calculated lateral elastic modulus of the rotor core and the wedge-shaped member after the wedge-shaped member lateral elastic coefficient calculating step;
After the spring constant calculating step, an angular frequency calculating step of calculating an angular frequency of the rotor core teeth portion and the wedge-shaped member based on the calculated spring constant of the rotor core tooth portion and the wedge-shaped member;
After the angular frequency calculation step, an incremental torsional natural frequency calculation step for calculating an incremental torsional natural frequency based on a combined angular frequency obtained by combining the calculated angular frequencies of the rotor core teeth portion and the wedge-shaped member;
After the incremental torsion natural frequency calculation step, the rotor torsion natural frequency at rotation is calculated by adding the rotor torsion natural frequency at stop to the calculated incremental torsion natural frequency and calculating the rotor torsion natural frequency at rotation. A calculation process;
A method for evaluating the natural frequency of torsion of a generator rotor.
前記ねじり剛性比は、前記ロータコアの回転数によって変化する値であって、
前記楔状部材横弾性係数算出工程は、評価する回転数における前記ねじり剛性比、前記ロータコアの横弾性係数、前記ロータコアの断面2次極モーメント、前記楔状部材の断面2次極モーメントに基づいて、前記楔状部材の横弾性係数を算出することを特徴とする請求項1に記載の発電機ロータのねじり固有振動数評価方法。
The torsional rigidity ratio is a value that varies depending on the number of rotations of the rotor core,
The wedge-shaped member transverse elastic coefficient calculating step is based on the torsional rigidity ratio at the rotational speed to be evaluated, the transverse elastic coefficient of the rotor core, the cross-sectional secondary pole moment of the rotor core, and the cross-sectional secondary pole moment of the wedge-shaped member. 2. The method for evaluating a torsional natural frequency of a generator rotor according to claim 1, wherein the transverse elastic coefficient of the wedge-shaped member is calculated.
前記ばね定数算出工程は、前記ロータコアティース部の横弾性係数、前記ロータコアティース部の前記回転軸方向に垂直な断面積、および前記ロータコアティース部の長さ寸法に基づいて前記ロータコアティース部のばね定数を算出して、前記楔状部材の横弾性係数、前記楔状部材の前記回転軸方向に垂直な断面積、および前記楔状部材の長さ寸法に基づいて前記楔状部材のばね定数を算出すること、を特徴とする請求項1または請求項2に記載の発電機ロータのねじり固有振動数評価方法。   The spring constant calculating step includes a spring constant of the rotor core teeth portion based on a transverse elastic coefficient of the rotor core teeth portion, a cross-sectional area perpendicular to the rotation axis direction of the rotor core teeth portion, and a length dimension of the rotor core teeth portion. And calculating a spring constant of the wedge-shaped member based on a lateral elastic modulus of the wedge-shaped member, a cross-sectional area perpendicular to the rotation axis direction of the wedge-shaped member, and a length dimension of the wedge-shaped member. The method for evaluating a torsional natural frequency of a generator rotor according to claim 1 or 2, characterized by the above-mentioned. 前記角振動数算出工程は、前記ロータコアティース部のばね定数および質量に基づいて前記ロータコアティース部の角振動数を算出して、前記楔状部材のばね定数および質量に基づいて前記楔状部材の角振動数を算出すること、を特徴とする請求項1ないし請求項3のいずれか一項に記載の発電機ロータのねじり固有振動数評価方法。   In the angular frequency calculating step, the angular frequency of the rotor core teeth portion is calculated based on the spring constant and mass of the rotor core teeth portion, and the angular vibration of the wedge member is determined based on the spring constant and mass of the wedge member. The torsional natural frequency evaluation method for a generator rotor according to any one of claims 1 to 3, wherein a number is calculated. 前記合成角振動数は、前記ロータコアティース部の角振動数および楔状部材の角振動数を、直列結合形合成法およびポテンシャルエネルギの合成法の少なくとも一方に基づいて算出されること、を特徴とする請求項1ないし請求項4のいずれか一項に記載の発電機ロータのねじり固有振動数評価方法。   The composite angular frequency is calculated based on at least one of a series coupled synthesis method and a potential energy synthesis method of the angular frequency of the rotor core teeth portion and the angular frequency of the wedge-shaped member. The torsional natural frequency evaluation method of the generator rotor as described in any one of Claims 1 thru | or 4. 前記停止時のロータねじり固有振動数は、理論解析により算出する方法、有限要素解析により算出する方法、および静止した状態の前記ロータコアのねじり固有振動数を測定して得る方法のいずれか1つの方法により得られること、を特徴とする請求項1ないし請求項5のいずれか一項に記載の発電機ロータのねじり固有振動数評価方法。   The rotor torsional natural frequency at the time of stopping is any one of a method of calculating by theoretical analysis, a method of calculating by finite element analysis, and a method of obtaining by measuring the torsional natural frequency of the rotor core in a stationary state The torsional natural frequency evaluation method for a generator rotor according to any one of claims 1 to 5, wherein the torsional natural frequency evaluation method is provided. 回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置され、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータのねじり固有振動数を評価するねじり固有振動数評価装置において、
入力手段と、
前記入力手段により入力された情報に基づいてねじり固有振動数を計算する計算手段と、
前記計算手段により計算した結果を出力する出力手段と、
を有し、
前記計算手段は、
前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出手段と、
前記楔状部材横弾性係数算出手段によって算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出手段と、
前記ばね定数算出手段によって算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出手段と、
前記角振動数算出手段によって算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出手段と、
前記増分ねじり固有振動数算出手段によって算出された前記増分ねじり固有振動数に停止時のロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出手段と、
を有することを特徴とする発電機ロータのねじり固有振動数評価装置。
A plurality of slot portions and a plurality of core teeth portions are alternately arranged along the circumferential direction on the outer peripheral portion of the rotor core having the rotating shaft, and the insulator and the coil inserted into the slot portion are fixed from the outer peripheral side by a wedge-shaped member. In the torsional natural frequency evaluation apparatus for evaluating the torsional natural frequency of the generator rotor configured to:
Input means;
Calculation means for calculating a torsional natural frequency based on information input by the input means;
Output means for outputting a result calculated by the calculation means;
Have
The calculating means includes
A wedge-shaped member transverse elastic coefficient calculating means for calculating a transverse elastic coefficient of the wedge-shaped member based on a torsional rigidity ratio of the rotor core and the wedge-shaped member;
A spring constant calculating means for calculating a spring constant of the rotor core teeth portion and the wedge-shaped member based on a lateral elastic coefficient of the rotor core and the wedge-shaped member calculated by the wedge-shaped member lateral elastic coefficient calculating means;
Angular frequency calculating means for calculating the angular frequency of the rotor core teeth portion and wedge-shaped member based on the spring constant of the rotor core teeth portion and wedge-shaped member calculated by the spring constant calculating means;
An incremental torsion natural frequency calculating means for calculating an incremental torsion natural frequency based on a combined angular frequency obtained by synthesizing the angular frequencies of the rotor core teeth portion and the wedge-shaped member calculated by the angular frequency calculating means;
Calculation of rotor torsional natural frequency during rotation by adding the rotor torsional natural frequency at stop to the incremental torsional natural frequency calculated by the incremental torsional natural frequency calculating means Means,
A torsional natural frequency evaluation apparatus for a generator rotor, characterized by comprising:
回転軸を具備するロータコアの外周部に周方向に沿って複数のスロット部および複数のコアティース部が交互に配置されて、前記スロット部内に挿入された絶縁体およびコイルを楔状部材により外周側から固定するように構成された発電機ロータの回転時ねじり固有振動数に基づいて、共振防止措置および構造変更を行う発電機ロータ設計方法において、
前記ロータコアおよび楔状部材のねじり剛性比に基づいて前記楔状部材の横弾性係数を算出する楔状部材横弾性係数算出工程と、
前記楔状部材横弾性係数算出工程の後に、算出された前記ロータコアおよび楔状部材の横弾性係数に基づいて前記ロータコアティース部および楔状部材のばね定数を算出するばね定数算出工程と、
前記ばね定数算出工程の後に、算出された前記ロータコアティース部および楔状部材のばね定数に基づいて前記ロータコアティース部および楔状部材の角振動数を算出する角振動数算出工程と、
前記角振動数算出工程の後に、算出された前記ロータコアティース部および楔状部材の角振動数を合成した合成角振動数に基づいて増分ねじり固有振動数を算出する増分ねじり固有振動数算出工程と、
前記増分ねじり固有振動数算出工程の後に、算出された前記増分ねじり固有振動数に停止時ロータねじり固有振動数を加算して回転時のロータねじり固有振動数を算出する回転時ロータねじり固有振動数算出工程と、
を有することを特徴とする発電機ロータの設計方法。
A plurality of slot portions and a plurality of core teeth portions are alternately arranged along the circumferential direction on the outer peripheral portion of the rotor core having the rotation shaft, and the insulator and the coil inserted into the slot portion are inserted from the outer peripheral side by the wedge-shaped member. In the generator rotor design method for performing resonance prevention measures and structural changes based on the torsional natural frequency of rotation of the generator rotor configured to be fixed,
A wedge-shaped member transverse elastic coefficient calculating step of calculating a transverse elastic coefficient of the wedge-shaped member based on a torsional rigidity ratio of the rotor core and the wedge-shaped member;
A spring constant calculating step of calculating a spring constant of the rotor core teeth portion and the wedge-shaped member based on the calculated lateral elastic modulus of the rotor core and the wedge-shaped member after the wedge-shaped member lateral elastic coefficient calculating step;
After the spring constant calculating step, an angular frequency calculating step of calculating an angular frequency of the rotor core teeth portion and the wedge-shaped member based on the calculated spring constant of the rotor core tooth portion and the wedge-shaped member;
After the angular frequency calculation step, an incremental torsional natural frequency calculation step for calculating an incremental torsional natural frequency based on a combined angular frequency obtained by combining the calculated angular frequencies of the rotor core teeth portion and the wedge-shaped member;
After the incremental torsion natural frequency calculation step, the rotor torsion natural frequency at rotation is calculated by adding the rotor torsion natural frequency at stop to the calculated incremental torsion natural frequency and calculating the rotor torsion natural frequency at rotation. A calculation process;
A method for designing a generator rotor, comprising:
JP2008145487A 2008-06-03 2008-06-03 Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor Expired - Fee Related JP5159440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145487A JP5159440B2 (en) 2008-06-03 2008-06-03 Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145487A JP5159440B2 (en) 2008-06-03 2008-06-03 Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor

Publications (2)

Publication Number Publication Date
JP2009296715A JP2009296715A (en) 2009-12-17
JP5159440B2 true JP5159440B2 (en) 2013-03-06

Family

ID=41544320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145487A Expired - Fee Related JP5159440B2 (en) 2008-06-03 2008-06-03 Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor

Country Status (1)

Country Link
JP (1) JP5159440B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341893A (en) * 1999-05-26 2000-12-08 Hitachi Ltd Generator rotor insulating board and generator using the board
JP3949634B2 (en) * 2003-09-30 2007-07-25 財団法人鉄道総合技術研究所 Method and apparatus for measuring rotational vibration of rotating body
JP4520718B2 (en) * 2003-10-02 2010-08-11 本田技研工業株式会社 Torsional vibration analysis method and program thereof

Also Published As

Publication number Publication date
JP2009296715A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
Han et al. Magnetic equivalent modeling of stator currents for localized fault detection of planetary gearboxes coupled to electric motors
Kia et al. Gear tooth surface damage fault detection using induction machine stator current space vector analysis
KR101766919B1 (en) Lateral, angular and torsional vibration monitoring of rotordynamic systems
Ottewill et al. Condition monitoring of gearboxes using synchronously averaged electric motor signals
Féki et al. Gear and motor fault modeling and detection based on motor current analysis
El Yousfi et al. Electromechanical modeling of a motor–gearbox system for local gear tooth faults detection
Ceban et al. Eccentricity and broken rotor bars faults-Effects on the external axial field
JP2021508059A (en) Test benches and methods for performing a dynamic test course for test structures
Barański New vibration diagnostic method of PM generators and traction motors-detecting of vibrations caused by unbalance
JP5159440B2 (en) Method for evaluating natural frequency of generator rotor torsion, apparatus for evaluating torsional natural frequency, and method for designing generator rotor
Sobra et al. Impact of electrical machine structural parts on its modal and vibration behavior
Chai et al. Misalignment detection of rotor system based on adaptive input-output model identification of motor speed
Bruzzese et al. Failure root-cause analysis of end-ring torsional resonances and bar breakages in fabricated-cage induction motors
Szolc et al. Dynamic investigations of electromechanical coupling effects in the mechanism driven by the stepping motor
de Morais Sousa et al. Vibration measurement of induction motor under dynamic eccentricity using optical fiber Bragg grating sensors
Hwang et al. Analysis of a three phase induction motor under eccentricity condition
Rodríguez Current-, force-, and vibration-based techniques for induction motor condition monitoring
Hedayati Kia et al. Electrical signatures analysis for condition monitoring of gears
Gabsi et al. Computation and measurement of magnetically induced vibrations of a switched reluctance machine
JP4780321B2 (en) Gear vibration forcing evaluation system
JP2005098258A (en) Method for detecting axial torsional vibration of turbogenerator
Posa Vibration behavior of a centrifugal pump with integrated permanent magnet motor
Barański Permanent magnet machine can be a vibration sensor for itself
Kiani et al. Detection of faults in PMSM using field reconstruction method and mechanical impulse response
JP2928284B2 (en) Turbine rotor life consumption rate calculation method and turbine rotor life consumption rate calculation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees