JP5063670B2 - AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER - Google Patents
AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER Download PDFInfo
- Publication number
- JP5063670B2 JP5063670B2 JP2009275596A JP2009275596A JP5063670B2 JP 5063670 B2 JP5063670 B2 JP 5063670B2 JP 2009275596 A JP2009275596 A JP 2009275596A JP 2009275596 A JP2009275596 A JP 2009275596A JP 5063670 B2 JP5063670 B2 JP 5063670B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pipe
- heat exchanger
- side heat
- new
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004140 cleaning Methods 0.000 title claims description 150
- 238000000034 method Methods 0.000 title claims description 24
- 239000003507 refrigerant Substances 0.000 claims description 371
- 230000004907 flux Effects 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 48
- 239000010721 machine oil Substances 0.000 claims description 43
- 239000003921 oil Substances 0.000 claims description 37
- 238000005057 refrigeration Methods 0.000 claims description 27
- 238000005406 washing Methods 0.000 claims description 23
- 238000004378 air conditioning Methods 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 12
- 238000007664 blowing Methods 0.000 claims description 6
- 239000002480 mineral oil Substances 0.000 description 43
- 235000010446 mineral oil Nutrition 0.000 description 43
- 239000012071 phase Substances 0.000 description 35
- 239000007789 gas Substances 0.000 description 29
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 21
- 238000001816 cooling Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 10
- 239000002826 coolant Substances 0.000 description 9
- 238000009434 installation Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000003595 mist Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
本発明は、冷媒回路を循環する旧冷媒が新冷媒に置換された後、冷媒配管内の洗浄運転を行う空気調和装置、および空気調和装置の洗浄運転方法に関するものである。 The present invention relates to an air conditioner that performs a cleaning operation in a refrigerant pipe after an old refrigerant that circulates in a refrigerant circuit is replaced with a new refrigerant, and a cleaning operation method of the air conditioner.
従来から一般に用いられているセパレート形の空気調和装置(冷凍サイクル装置)では、冷媒として、CFC(クロロフルオロカーボン)やHCFC(ハイドロクロロフルオロカーボン)が用いられてきたが、これらの分子に含まれる塩素が成層圏でオゾン層を破壊するため、CFCは既に全廃され、HCFCでも生産規制が開始されている。 In separate air conditioners (refrigeration cycle devices) that have been generally used in the past, CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon) have been used as refrigerants. Chlorine contained in these molecules In order to destroy the ozone layer in the stratosphere, CFCs have already been completely abolished, and HCFC production regulations have begun.
これらに替わって、分子に塩素を含まないHFC(ハイドロフルオロカーボン)を使用する空気調和装置が実用化されている。CFC・HCFCを用いた空気調和装置が老朽化した場合、これらの冷媒は全廃・生産規制されているため、HFC(R407C、R410A等の冷媒)を用いた空気調和装置に入れ替える必要がある。また、熱源機は、HFCで使用する冷凍機油・有機材料・熱交換器がCFC、HCFCとは異なるため、HFC専用のものと交換する必要があり、かつ元々CFC・HCFC用の熱源機は老朽化しているため交換する必要があるものであり、交換も比較的容易である。 Instead of these, an air conditioner using HFC (hydrofluorocarbon) that does not contain chlorine in the molecule has been put into practical use. When an air conditioner using CFC / HCFC is aged, these refrigerants are completely abolished and production regulated, so it is necessary to replace them with air conditioners using HFC (refrigerants such as R407C and R410A). In addition, because the refrigeration oil, organic material, and heat exchanger used in the HFC are different from those of the CFC and HCFC, it is necessary to replace the heat source with a dedicated one for the HFC, and the heat source equipment for the CFC / HCFC was originally aging Therefore, it is necessary to replace it, and replacement is relatively easy.
一方、熱源機と室内機を接続する第1の接続配管と第2の接続配管(冷媒配管)は、配管長が長い場合や、パイプシャフトや天井裏などの建物に埋設されている場合には、新規配管に交換することは困難で、しかも老朽化もしないため、CFC・HCFCを用いた空気調和装置で使用していた第1の接続配管と第2の接続配管をそのまま使用できれば、配管工事が簡略化できる。さらに、室内機についても建物の中に数多く設置されている場合には新規に交換することは困難なため、CFC・HCFCを用いた空気調和装置で使用していた室内機を使用することで、室内機の交換工事を省略できる。 On the other hand, when the first connection pipe and the second connection pipe (refrigerant pipe) connecting the heat source unit and the indoor unit are long, or when they are embedded in a building such as a pipe shaft or a ceiling, Since it is difficult to replace with new pipes and it will not be aged, if the first and second connection pipes used in the air conditioner using CFC / HCFC can be used as they are, piping work Can be simplified. Furthermore, since it is difficult to replace the indoor unit when it is installed in the building, it is difficult to replace it. By using the indoor unit that was used in the air conditioner using CFC / HCFC, Replacement of indoor units can be omitted.
しかし、CFC・HCFCを用いた空気調和装置で使用していた室内機、第1の接続配管と第2の接続配管には、CFC・HCFCを用いた空気調和装置の冷凍機油である鉱油やCFC・HCFCや冷凍機油の劣化物がスラッジとなったものが残留している。 However, the indoor unit used in the air conditioner using CFC / HCFC, the first connection pipe and the second connection pipe include mineral oil or CFC, which is a refrigerating machine oil of the air conditioner using CFC / HCFC. -HCFC and refrigeration oil degradation products that have become sludge remain.
HFCを用いた空気調和装置の冷凍機油(エステル油やエーテル油などの合成油)に鉱油が一定以上混入すると、HFC冷媒との相溶性が失われ、アキュムレータに液冷媒が溜まっている場合にHFC用冷凍機油が液冷媒の上に分離・浮遊するため、アキュムレータの下部にある返油穴から圧縮機へ冷凍機油が戻らず圧縮機の摺動部が焼き付く。また、鉱油が混入するとHFC用冷凍機油が劣化する。また、CFC・HCFCが混入するとこれらに含まれる塩素成分によりHFC用冷凍機油が劣化する。また、CFC・HCFC用冷凍機油の劣化物がスラッジとなったものに含まれる塩素成分によりHFC用冷凍機油が劣化する。 When mineral oil is mixed in a refrigerator oil (synthetic oil such as ester oil or ether oil) in an air conditioner using HFC, the compatibility with the HFC refrigerant is lost and the liquid refrigerant accumulates in the accumulator. Since the refrigerating machine oil separates and floats on the liquid refrigerant, the refrigerating machine oil does not return to the compressor from the oil return hole at the bottom of the accumulator, and the sliding portion of the compressor is seized. Moreover, when mineral oil is mixed, the refrigeration oil for HFC deteriorates. Moreover, when CFC and HCFC are mixed, the refrigeration oil for HFC deteriorates due to the chlorine component contained therein. Moreover, the HFC refrigerating machine oil deteriorates due to the chlorine component contained in the sludge resulting from the deterioration of the CFC / HCFC refrigerating machine oil.
このため、従来はCFCやHCFCを用いた空気調和装置で使用していた第1の接続配管と第2の接続配管を、既設の空気調和装置について、熱源機を新規に交換し、あるいは熱源機と室内機を新規に交換し、室内機と熱源機とを接続する接続配管を交換しないで、熱源機側の冷媒配管に接続配管に流通する冷媒から異物を捕捉する手段を設ける。あるいは、他のバイパス路を設けて冷媒中の冷凍機油を分離するなどして、また、複数台の室内機が並列に接続されている場合、洗浄に必要な十分な液量を確保するために接続配管径もしくは接続配管長が実質的に同じものを組とし、組ごとに配管洗浄を行う配管洗浄運転をした後に、通常運転をすることが提案されている(例えば特許文献1参照)。 For this reason, the first connection pipe and the second connection pipe, which have been conventionally used in an air conditioner using a CFC or HCFC, are replaced with a new heat source machine for the existing air conditioner, or the heat source machine The indoor unit is newly replaced, and a means for capturing foreign matter from the refrigerant flowing in the connection pipe is provided in the refrigerant pipe on the heat source unit side without replacing the connection pipe connecting the indoor unit and the heat source unit. Or, in order to secure a sufficient amount of liquid necessary for cleaning when other bypass units are provided to separate the refrigerating machine oil in the refrigerant or when a plurality of indoor units are connected in parallel It has been proposed to perform a normal operation after performing a pipe cleaning operation in which pipes having the same connection pipe diameter or connection pipe length are substantially the same, and performing pipe cleaning for each group (see, for example, Patent Document 1).
しかし、従来の洗浄運転の洗浄時間に関しては設置条件や室内、室外の空気温度などの環境条件等は考慮されていない。このため、室内機が複数台並列接続された場合や各室内機の接続配管の長さが長い場合、あるいは冬期に洗浄を行うなどの熱源機の周囲温度が低い場合はHFC冷媒が熱源機側熱交換器で凝縮してしまうため、洗浄に必要な流量が出せなくなり、その結果、洗浄性能が悪化し、洗浄時間が多大に要する。そこで、従来の洗浄運転においては、確実に洗浄するため、最も洗浄性能が低くなる運転条件での必要最大洗浄時間をもって洗浄運転時間を規定していた。したがって、接続配管長が短い場合は殆ど鉱油(冷凍機油等)が残留していないにもかかわらず、必要以上の洗浄を行うことで、洗浄工程の時間に多大な時間を要し、空気調和装置の冷媒更新に時間がかかる、という問題点があった。 However, regarding the cleaning time of the conventional cleaning operation, installation conditions and environmental conditions such as indoor and outdoor air temperatures are not considered. For this reason, when multiple indoor units are connected in parallel, when the length of the connecting pipe of each indoor unit is long, or when the ambient temperature of the heat source unit is low, such as when washing is performed in winter, the HFC refrigerant is on the heat source unit side. Since it is condensed in the heat exchanger, the flow rate necessary for cleaning cannot be obtained. As a result, the cleaning performance is deteriorated, and the cleaning time is very long. Therefore, in the conventional cleaning operation, the cleaning operation time is defined by the required maximum cleaning time under the operating conditions where the cleaning performance is the lowest in order to ensure the cleaning. Therefore, when the length of the connecting pipe is short, even though there is almost no mineral oil (refrigerating machine oil, etc.), the cleaning process takes a long time by performing cleaning more than necessary, and the air conditioner There was a problem that it took time to renew the refrigerant.
この発明は、上記のような課題を解決するためになされたもので、冷媒回路を循環する旧冷媒が新冷媒に置換された後の洗浄運転において、空気調和装置の設置条件や運転状態に応じて、洗浄時間を決定することができる空気調和装置、および空気調和装置の洗浄運転方法を得るものである。 The present invention has been made to solve the above-described problems, and according to the installation conditions and operating conditions of the air conditioner in the cleaning operation after the old refrigerant circulating in the refrigerant circuit is replaced with the new refrigerant. Thus, it is possible to obtain an air conditioner capable of determining a cleaning time and a cleaning operation method of the air conditioner.
本発明に係る空気調和装置は、圧縮機、熱源機側熱交換器、絞り手段、および利用側熱交換器を冷媒配管で接続した冷媒回路を備え、該冷媒回路を循環する旧冷媒が新冷媒に置換された後、前記圧縮機を駆動源として、前記冷媒配管および前記利用側熱交換器に新冷媒を流して前記冷媒配管内の洗浄運転を行う空気調和装置において、前記洗浄運転による洗浄時間を決定する制御手段と、記憶手段とを備え、前記記憶手段は、前記旧冷媒に含まれる冷凍機油の動粘性係数と温度との関係の情報と、前記冷凍機油の動粘性係数に応じた、所定の配管長の配管内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報が、冷媒状態ごとに記憶され、前記制御手段は、前記新冷媒の冷媒温度および冷媒圧力に基づいて当該新冷媒の冷媒状態を推測し、単位時間当たりの冷媒循環量および前記冷媒配管の配管径に基づいて、前記新冷媒の質量流束を求め、前記新冷媒の温度に基づいて前記冷凍機油の動粘性係数を求め、該冷凍機油の動粘性係数、前記冷媒配管の配管長、前記新冷媒の質量流束および冷媒状態をパラメータとし、前記記憶手段に記憶された情報に基づいて、前記洗浄運転による洗浄時間を決定するものである。 An air conditioner according to the present invention includes a refrigerant circuit in which a compressor, a heat source unit side heat exchanger, a throttle unit, and a use side heat exchanger are connected by a refrigerant pipe, and an old refrigerant circulating through the refrigerant circuit is a new refrigerant. after being substituted, the compressor as a drive source, the air conditioner for cleaning operation in the refrigerant pipe by passing a new refrigerant to the refrigerant pipe and the utilization-side heat exchanger, washing with pre SL washing operation Control means for determining time, and storage means, the storage means according to the information on the relationship between the kinematic viscosity coefficient and temperature of the refrigerating machine oil contained in the old refrigerant and the kinematic viscosity coefficient of the refrigerating machine oil The information on the relationship between the cleaning time required for cleaning the inside of a pipe having a predetermined pipe length and the mass flux of the refrigerant is stored for each refrigerant state, and the control means includes the refrigerant temperature of the new refrigerant and the refrigerant Refrigerant status of the new refrigerant based on pressure Estimating, determining the mass flux of the new refrigerant based on the refrigerant circulation amount per unit time and the pipe diameter of the refrigerant pipe, determining the kinematic viscosity coefficient of the refrigerating machine oil based on the temperature of the new refrigerant, Using the kinematic viscosity coefficient of the refrigerating machine oil, the pipe length of the refrigerant pipe, the mass flux of the new refrigerant and the refrigerant state as parameters, the washing time for the washing operation is determined based on the information stored in the storage means It is.
本発明に係る空気調和装置の洗浄運転方法は、圧縮機、熱源機側熱交換器、絞り手段、および利用側熱交換器を冷媒配管で接続した冷媒回路を備え、該冷媒回路を循環する旧冷媒が新冷媒に置換された後、前記圧縮機を駆動源として、前記冷媒配管および前記利用側熱交換器に新冷媒を流して前記冷媒配管内の洗浄運転を行う空気調和装置の洗浄運転方法において、前記旧冷媒に含まれる冷凍機油の動粘性係数と温度との関係の情報と、前記冷凍機油の動粘性係数に応じた、所定の配管長の配管内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報が、冷媒状態ごとに記憶手段に記憶され、前記新冷媒の冷媒温度および冷媒圧力に基づいて当該新冷媒の冷媒状態を推測し、単位時間当たりの冷媒循環量および前記冷媒配管の配管径に基づいて、前記新冷媒の質量流束を求め、前記新冷媒の温度に基づいて前記冷凍機油の動粘性係数を求め、該冷凍機油の動粘性係数、前記冷媒配管の配管長、前記新冷媒の質量流束および冷媒状態をパラメータとし、前記記憶手段に記憶された情報に基づいて、前記洗浄運転による洗浄時間を決定するものである。 An air conditioning apparatus cleaning operation method according to the present invention includes a refrigerant circuit in which a compressor, a heat source unit side heat exchanger, a throttling unit, and a use side heat exchanger are connected by a refrigerant pipe, and circulates through the refrigerant circuit. After the refrigerant is replaced with a new refrigerant, a cleaning operation method for an air conditioner that performs a cleaning operation in the refrigerant pipe by flowing the new refrigerant through the refrigerant pipe and the use side heat exchanger using the compressor as a drive source The cleaning time required for cleaning the inside of a pipe having a predetermined pipe length according to the information on the relationship between the kinematic viscosity coefficient and temperature of the refrigerating machine oil contained in the old refrigerant and the kinematic viscosity coefficient of the refrigerating machine oil Is stored in the storage means for each refrigerant state, and the refrigerant state of the new refrigerant is estimated based on the refrigerant temperature and the refrigerant pressure of the new refrigerant, and the refrigerant per unit time Circulation amount and piping of the refrigerant piping Based on the above, the mass flux of the new refrigerant is obtained, the kinematic viscosity coefficient of the refrigerating machine oil is obtained based on the temperature of the new refrigerant, the kinematic viscosity coefficient of the refrigerating machine oil, the pipe length of the refrigerant pipe, the new refrigerant The cleaning time for the cleaning operation is determined based on the information stored in the storage means using the mass flux and the refrigerant state as parameters .
本発明は、冷媒配管の配管径、冷媒配管の配管長、新冷媒の質量流束、新冷媒の冷媒温度、新冷媒の冷媒圧力のうち少なくとも1つを含む特徴量に基づいて、洗浄運転による洗浄時間を決定する。このため、空気調和装置の設置条件や運転状態に応じて、洗浄時間を決定することができる。よって、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。 The present invention is based on a cleaning operation based on a feature quantity including at least one of the pipe diameter of the refrigerant pipe, the pipe length of the refrigerant pipe, the mass flux of the new refrigerant, the refrigerant temperature of the new refrigerant, and the refrigerant pressure of the new refrigerant. Determine the wash time. For this reason, cleaning time can be determined according to the installation conditions and operation state of an air conditioning apparatus. Therefore, it is not necessary to perform an excessive cleaning operation, the cleaning operation can be completed in a short time, and the air conditioner can be updated quickly.
実施の形態1.
以下、図面を参照してこの発明の実施の形態について説明する。なお、各図中、同一または相当する部分については、同一符号を付してその説明を適宜省略または簡略化する。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate.
図1は、この発明の実施の形態1に係る空気調和装置の冷媒回路を示す図である。図1において、Aは熱源機であり、圧縮機1、四方弁2、熱源機側熱交換器3、第1の操作弁4、第2の操作弁7、アキュムレータ8、油分離器9、および異物捕捉手段13を内蔵している。また、31は圧縮機1の吐出冷媒の圧力を検出する高圧圧力センサであり、32は圧縮機1の吸入冷媒の圧力を検出する低圧圧力センサである。
なお、「低圧圧力センサ32」は、本発明における「圧力センサ」に相当する。
1 is a diagram showing a refrigerant circuit of an air-conditioning apparatus according to
The “
油分離器9は、圧縮機1の吐出配管に設けられ、圧縮機1から冷媒とともに吐出される冷凍機油を分離する。異物捕捉手段13は、四方弁2とアキュムレータ8の間に設けられている。9aは油分離器9の底部より端を発し、異物捕捉手段13の出口下流の冷媒配管に至るバイパス路である。また、アキュムレータ8のU字管状の流出配管の下部には返油穴8aが設けられている。
The oil separator 9 is provided in the discharge pipe of the
Biはi番目の室内機であり、絞り手段5i、利用側熱交換器6i、および利用側熱交換器6iを流れる冷媒の飽和温度を検出する温度センサ21iを備えている。
Bi is the i-th indoor unit, and includes a throttle means 5i, a use-side heat exchanger 6i, and a
Cは、第1の接続配管であり、その一端は第1の操作弁4を介して熱源機側熱交換器3と接続され、他の一端は、第1の接続配管の分岐配管Ciを介してi番目の絞り手段5iと接続されている。Dは、第2の接続配管であり、その一端は第2の操作弁7を介して四方弁2と接続され、他の一端は第2の接続配管の分岐配管Diを介して利用側熱交換器6iと接続されている。
なお、「第1の接続配管C」および「第2の接続配管D」は、本発明における「冷媒配管」に相当する。
C is a first connection pipe, one end of which is connected to the heat source apparatus side heat exchanger 3 via the first operation valve 4, and the other end is connected to the branch pipe Ci of the first connection pipe. Connected to the i-th aperture means 5i. D is a second connection pipe, one end of which is connected to the four-
The “first connection pipe C” and the “second connection pipe D” correspond to the “refrigerant pipe” in the present invention.
熱源機Aと室内機Bは離れた場所に設置され、第1の接続配管C、第2の接続配管Dにより接続されて、冷凍サイクルを形成する。なお、この空気調和装置は冷媒としてHFC(以下適宜、新冷媒と称する)を使うものである。 The heat source unit A and the indoor unit B are installed at separate locations and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle. This air conditioner uses HFC (hereinafter referred to as a new refrigerant as appropriate) as a refrigerant.
図1に示す冷媒回路は、室内機Biを複数台並列に備えている。第1の接続配管Cは、それぞれの室内機Biに冷媒を流通させるための分岐配管Ciを部分として有している。第2の接続配管Dも同様である。第1の接続配管Cの所定部分(分岐配管Ci)と利用側熱交換器6と第2の接続配管Dの所定部分(分岐配管Di)との接続を利用側冷媒回路部分と称することにすると、図1に示す冷媒回路は、この利用側冷媒回路部分を並列に複数備えている。表現を変えれば、利用側熱交換器6とこの利用側熱交換器6に接続された第1および第2の接続配管の所定部分(分岐配管Ci、Di)を含む利用側冷媒回路部分を複数並列に備えている。なお、この明細書において、複数の利用側冷媒回路部分を構成する各要素(例えば室内機)を総称して符号で示すときは添字なしで(例えば室内機B)、任意のものあるいは特定のものを指すときはiを添字にして(例えば室内機Bi)表すこととする。
The refrigerant circuit shown in FIG. 1 includes a plurality of indoor units Bi in parallel. The first connection pipe C has, as a part, a branch pipe Ci for allowing the refrigerant to flow through each indoor unit Bi. The same applies to the second connection pipe D. The connection between the predetermined part of the first connection pipe C (branch pipe Ci), the use
また、制御手段100は、空気調和装置の動作を統括制御する。制御手段100は、マイコン等で構成されており、各種検出手段での検出情報およびリモコン等からの指示に基づいて、圧縮機1の駆動周波数、送風手段の回転数(ON/OFF含む)、四方弁2の切り替え、絞り手段5iの開度等を制御し、空気調和を行う通常運転や、後述する洗浄運転を実行する。また、制御手段100は、第1の接続配管Cおよび第2の接続配管Dの配管径、第1の接続配管Cおよび第2の接続配管Dの配管長、新冷媒の質量流束、新冷媒の冷媒温度、新冷媒の冷媒圧力のうち少なくとも1つを含む特徴量に基づいて、洗浄運転による洗浄時間を決定する。詳細は後述する。
Moreover, the control means 100 performs overall control of the operation of the air conditioner. The control means 100 is composed of a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller or the like, the drive frequency of the
さらに、制御手段110には、所定の配管長の冷媒配管(接続配管)内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報が、冷媒状態(気相冷媒、液または気液二相冷媒)ごとに記憶されている。 Further, the control means 110 stores information on the relationship between the cleaning time required for cleaning the inside of the refrigerant pipe (connection pipe) having a predetermined pipe length and the mass flux of the refrigerant (gas phase refrigerant, liquid Alternatively, it is stored for each gas-liquid two-phase refrigerant).
《熱源機Aおよび室内機B交換の手順》
次に、CFC、HCFC(旧冷媒)を使った空気調和装置が老朽化した場合の熱源機Aおよび室内機B交換の手順を示す。既存の空気調和装置からCFCまたはHCFCを回収し、熱源機Aと室内機Bを図1に示すHFC(新冷媒)を用いるものに交換する。第1の接続配管Cと第2の接続配管Dは、HCFCを使った空気調和装置のものを再利用する。そして、図1に示す冷媒回路を形成する。
<< Procedure for Replacing Heat Source Unit A and Indoor Unit B >>
Next, a procedure for exchanging the heat source unit A and the indoor unit B when an air conditioner using CFC and HCFC (old refrigerant) has deteriorated will be described. CFC or HCFC is recovered from the existing air conditioner, and the heat source unit A and the indoor unit B are replaced with those using the HFC (new refrigerant) shown in FIG. As the first connection pipe C and the second connection pipe D, those of the air conditioner using HCFC are reused. And the refrigerant circuit shown in FIG. 1 is formed.
熱源機Aには予めHFC(新冷媒)が充填されているので、第1の操作弁4と第2の操作弁7は閉じたまま、室内機B、第1の接続配管C、第2の接続配管Dを接続状態で真空引きをし、その後第1の操作弁4と第2の操作弁7の開弁とHFCの追加充填を実施する。その後、まず洗浄運転を実施し、その後通常の空調運転を実施する。 Since the heat source machine A is pre-filled with HFC (new refrigerant), the indoor unit B, the first connection pipe C, the second operation valve 4 and the second operation valve 7 remain closed. The connection pipe D is evacuated in the connected state, and then the first operation valve 4 and the second operation valve 7 are opened and HFC is additionally charged. Thereafter, a cleaning operation is first performed, and then a normal air conditioning operation is performed.
《洗浄運転方法》
次に、洗浄運転の内容を図1に添って説明する。図中、実線矢印が冷房運転の流れを、破線矢印が暖房運転の流れを示す。
《Cleaning operation method》
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of cooling operation, and broken arrows indicate the flow of heating operation.
≪冷房洗浄運転≫
まず、冷房時の洗浄運転の流れを説明する。洗浄運転開始前に、各室内機Biに設けられた制御基板上のマイコンにより各室内機Biの容量が分かり、その容量で各利用側冷媒回路部分の接続配管径がおおよそ予想でき、それぞれi番目の利用側冷媒回路部分に接続された配管径が一意的に求められる。ここで、求められた各室内機Biの利用側冷媒回路部分の配管径により配管断面積の合計が所定の値以下のものを組として一纏めにして、その中の1組を選択する。選択された組以外の室内機Biの絞り手段5iを閉止して洗浄運転を開始する。
≪Cooling washing operation≫
First, the flow of the cleaning operation during cooling will be described. Before the start of the cleaning operation, the capacity of each indoor unit Bi can be known by the microcomputer on the control board provided in each indoor unit Bi, and the connection pipe diameter of each use side refrigerant circuit part can be roughly estimated by that capacity. The pipe diameter connected to the use side refrigerant circuit portion is uniquely determined. Here, according to the obtained pipe diameter of the use-side refrigerant circuit portion of each indoor unit Bi, the total of the cross-sectional areas of the pipes is grouped as a set, and one set is selected. The throttle means 5i of the indoor unit Bi other than the selected set is closed, and the cleaning operation is started.
上記のように、各室内機Biに接続された複数の利用側冷媒回路部分の接続配管の合計断面積が所定の値以下となるように、複数の利用側冷媒回路部分を1または複数の組に分ける。そして組ごとに冷媒を流通させて洗浄運転をする。このようにすれば、同時に冷媒を流通させている複数の利用側冷媒回路部分の冷媒の質量流束を所定の値以上に維持することができる。 As described above, the plurality of usage-side refrigerant circuit portions are arranged in one or more groups so that the total cross-sectional area of the connection pipes of the plurality of usage-side refrigerant circuit portions connected to each indoor unit Bi is equal to or less than a predetermined value. Divide into Then, a cleaning operation is performed by circulating a refrigerant for each set. If it does in this way, the mass flux of the refrigerant | coolant of the some use side refrigerant circuit part which is distribute | circulating the refrigerant | coolant simultaneously can be maintained more than predetermined value.
さて、圧縮機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用冷凍機油は完全に分離され、ガス冷媒のみが四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、第1の操作弁4を経て、第1の接続配管Cに流入する。
The high-temperature and high-pressure gas refrigerant compressed by the
HFCの液冷媒が第1の接続配管Cを流れるときに、第1の接続配管Cに残留しているCFC・HCFC・鉱油・鉱油劣化物(以下残留異物と称する)を少しずつ洗浄してHFCの液冷媒と共に流れ、選択された各室内機Biの絞り手段5iへ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6iでファンなどの利用側送風手段(図示せず)によって送出される空気などの利用媒体と熱交換して蒸発・ガス化する。 When the HFC liquid refrigerant flows through the first connection pipe C, the HFC is washed little by little to remove CFC / HCFC / mineral oil / degraded mineral oil (hereinafter referred to as residual foreign matter) remaining in the first connection pipe C. And flows into the throttle means 5i of each selected indoor unit Bi, where the pressure is reduced to a low pressure to form a low-pressure two-phase state, and the use-side heat exchanger 6i uses the use-side blowing means such as a fan (see FIG. It evaporates and gasifies by exchanging heat with a utilization medium such as air sent out by not shown).
蒸発・ガス化した冷媒は、第1の接続配管Cおよびその分岐配管Ciの残留異物とともに第2の接続配管D、分岐配管Diに流入する。第2の接続配管D、分岐配管Diに残留している残留異物は、ここを流れる冷媒がガス状のため、配管内面に付着した残留異物の一部は、ガス冷媒中にミスト状になって流れるが、大半の液状残留異物はガス・液境界面に発生するせん断力によりガス冷媒に引きずられる形で、配管内面を環状に流れるため、洗浄時間は第1の接続配管C、分岐配管Ciよりは遅いが、確実に洗浄される。 The evaporated and gasified refrigerant flows into the second connection pipe D and the branch pipe Di together with the remaining foreign matter in the first connection pipe C and the branch pipe Ci. Since the remaining foreign matter remaining in the second connection pipe D and the branch pipe Di is gaseous in the refrigerant flowing there, a part of the residual foreign matter adhering to the inner surface of the pipe becomes mist in the gas refrigerant. Although most of the liquid residual foreign matter flows in the form of a gas refrigerant dragged by the shearing force generated at the gas / liquid interface and flows in an annular shape on the inner surface of the pipe, the cleaning time is from the first connection pipe C and the branch pipe Ci. Is slow, but clean.
その後、蒸発・ガス化した気液二相状態の冷媒は、第1の接続配管C、その分岐配管Ciの残留異物と第2の接続配管D、分岐配管Diの残留異物と共に、第2の操作弁7、四方弁2を経て異物捕捉手段13へ流入する。残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。
Thereafter, the vaporized and gasified refrigerant in the gas-liquid two-phase state is subjected to the second operation together with the remaining foreign matter in the first connection pipe C and the branch pipe Ci and the remaining foreign matter in the second connection pipe D and the branch pipe Di. It flows into the foreign matter catching means 13 through the valve 7 and the four-
異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離され捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後、ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共にアキュムレータ8を経て圧縮機1に戻る。このような洗浄運転を他の組についても行い、室内機Biすべてについて同様の操作を行う。
In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant returns to the
なお、冷房運転時の冷媒回路、すなわち、圧縮機1から熱源機側熱交換器3と絞り手段5iと利用側熱交換器6iとアキュムレータ8とを順次に経て再び圧縮機に戻る冷媒回路を、本明細書では、第1の冷媒回路とする。
In addition, a refrigerant circuit at the time of cooling operation, that is, a refrigerant circuit that returns from the
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1に戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 is joined to the main stream downstream of the foreign matter catching means 13 through the
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油を劣化しない。また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。 In addition, solid foreign matters are not mixed with the refrigeration oil for HFC, and the refrigeration oil for HFC is not deteriorated. Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly.
その劣化の一例を図2に示す。図2は、HFC用冷凍機油に塩素が混入している場合(175℃)の劣化の時間変化を示す図である。図2において、横軸は時間(hr)、縦軸は全酸化(mgKOH/g)を示す。異物捕捉手段を1回通る間に捕捉されなかった気体異物は、HFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油が劣化するよりも遅く、異物捕捉手段13で捕捉すれば良い。 An example of the deterioration is shown in FIG. FIG. 2 is a diagram showing a change with time of deterioration when chlorine is mixed in the refrigeration oil for HFC (175 ° C.). In FIG. 2, the horizontal axis represents time (hr), and the vertical axis represents total oxidation (mgKOH / g). Since the gas foreign matter that has not been captured during one pass through the foreign matter catching means passes through the foreign matter catching means 13 several times with the circulation of the HFC refrigerant, the foreign matter catching means 13 catches it later than the deterioration of the HFC refrigeration oil. Just do it.
《暖房洗浄運転》
次に暖房時の洗浄運転の流れを説明する。各室内機Biの配管径により接続配管の合計断面積が所定の値以下となるような組を一纏めにして、その中の1組を選択する。選択された組以外の室内機Biの絞り手段を閉止して洗浄運転を開始する。
《Heating cleaning operation》
Next, the flow of the cleaning operation during heating will be described. One set is selected from a set of groups in which the total cross-sectional area of the connection pipes is equal to or less than a predetermined value depending on the pipe diameter of each indoor unit Bi. The throttle means of the indoor unit Bi other than the selected set is closed, and the cleaning operation is started.
さて、圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用冷凍機油は完全に分離され、ガス冷媒のみが四方弁2、第2の操作弁7を経て第2の接続配管Dへ流入する。
The high-temperature and high-pressure gas refrigerant compressed by the
第2の接続配管Dに残留している残留異物は、ここを流れる冷媒がガス状のため、配管内面に付着した残留異物の一部は、ガス冷媒中にミスト状になって流れるが、大半の液状残留異物はガス・液境界面に発生するせん断力によりガス冷媒に引きずられる形で、配管内面を環状に流れるため、洗浄時間は第1の接続配管Cよりは遅いが、確実に洗浄される。 The remaining foreign matter remaining in the second connection pipe D is in the form of mist in the gas refrigerant because a part of the residual foreign matter adhering to the inner surface of the pipe flows in the form of mist because the refrigerant flowing therethrough is gaseous. The liquid residual foreign matter flows in an annular shape on the inner surface of the pipe in such a way that it is dragged by the gas refrigerant due to the shearing force generated at the gas / liquid interface, so the cleaning time is slower than the first connection pipe C, but it is reliably cleaned. The
その後、ガス冷媒は、第2の接続配管Dの残留異物と共に、選択された各室内機Biの利用側熱交換器6iへと流入し、ここで空気など利用側媒体と熱交換して完全に凝縮液化する。凝縮液化した冷媒は絞り手段5iへ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管Cに流入する。流入した冷媒は気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、冷房運転時の第1の接続配管Cより速い速度で洗浄される。 Thereafter, the gas refrigerant flows into the use side heat exchanger 6i of each selected indoor unit Bi together with the remaining foreign matter in the second connection pipe D, where it completely exchanges heat with the use side medium such as air. Condensed liquid. The condensed and liquefied refrigerant flows into the throttle means 5i, where the refrigerant is depressurized to a low pressure to be in a low pressure two-phase state, and flows into the first connection pipe C. Since the inflowing refrigerant is in a gas-liquid two-phase state, the flow rate is high, and the remaining foreign matter is washed together with the liquid refrigerant, and is washed at a faster speed than the first connection pipe C during the cooling operation.
第2の接続配管D、分岐配管Diおよび第1の接続配管C、分岐配管Ciから洗浄された異物と共に、気液二相状態の冷媒は、第1の操作弁4を経て、熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は、四方弁2を経て異物捕捉手段13へ流入する。
The refrigerant in the gas-liquid two-phase state passes through the first operation valve 4 together with the foreign matter washed from the second connection pipe D, the branch pipe Di, the first connection pipe C, and the branch pipe Ci, and the heat source machine side heat The exchanger 3 evaporates and gasifies by exchanging heat with a heat source medium such as air or water. The evaporated and gasified refrigerant flows into the foreign matter capturing means 13 through the four-
残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離され捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後、ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共にアキュムレータ8を経て圧縮機1へ戻る。
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant returns to the
このような洗浄運転を他の組についても行い、室内機Biすべてについて同様の操作を行う。 Such a cleaning operation is performed for the other groups, and the same operation is performed for all the indoor units Bi.
なお、暖房時の洗浄運転の冷媒回路、すなわち、圧縮機1から利用側熱交換器6iと絞り手段5iと熱源機側熱交換器3とアキュムレータ8とを順次に経て再び圧縮機に戻る冷媒回路を、本明細書では、第2の冷媒回路とする。
In addition, the refrigerant circuit of the washing | cleaning driving | operation at the time of heating, ie, the refrigerant circuit which returns to a compressor again through the utilization side heat exchanger 6i, the expansion means 5i, the heat-source-unit side heat exchanger 3, and the
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1に戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 is joined to the main stream downstream of the foreign matter catching means 13 through the
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油を劣化しない。また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その劣化の一例を図2に示す。異物捕捉手段を1回通る間に捕捉されなかった気体異物は、HFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油が劣化するよりも遅く、異物捕捉手段13で捕捉すれば良い。 In addition, solid foreign matters are not mixed with the refrigeration oil for HFC, and the refrigeration oil for HFC is not deteriorated. Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly. An example of the deterioration is shown in FIG. Since the gas foreign matter that has not been captured during one pass through the foreign matter catching means passes through the foreign matter catching means 13 several times with the circulation of the HFC refrigerant, the foreign matter catching means 13 catches it later than the deterioration of the HFC refrigeration oil. Just do it.
以上のように、油分離器9と異物捕捉手段13を熱源機Aに内蔵し、さらに第1の接続配管Cと各室内機Biの間に絞り手段5iを設け、熱源機Aと室内機Bのみを新規に交換し、第1の接続配管Cと第2の接続配管Dを交換しないで、老朽化したCFC、HCFCを用いた空気調和装置を新しいHFCを用いた空気調和装置に入れ替えることができる。 As described above, the oil separator 9 and the foreign matter catching means 13 are built in the heat source unit A, and the throttle means 5i is provided between the first connection pipe C and each indoor unit Bi, so that the heat source unit A and the indoor unit B are provided. It is possible to replace an air conditioner using an aged CFC or HCFC with an air conditioner using a new HFC without replacing only the first connection pipe C and the second connection pipe D. it can.
この実施の形態では、熱源機側熱交換器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が設置されても同様の効果を奏することは明らかである。また、熱源機Aが複数台並列に接続された空気調和装置においても同様の効果を奏することは明らかである。また、空気調和装置に限らず、蒸気圧縮式の冷凍サイクル応用品で、熱源機側熱交換器3が内蔵されたユニットと利用側熱交換器6が内蔵されたユニットが離れて設置されるものであれば、同様の効果を奏することは明らかである。
In this embodiment, it is obvious that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source device side heat exchanger 3. In addition, it is obvious that the same effect can be obtained in an air conditioner in which a plurality of heat source devices A are connected in parallel. Moreover, it is not limited to an air conditioner, and is a vapor compression refrigeration cycle application product in which a unit having a built-in heat source side heat exchanger 3 and a unit having a built-in
《洗浄運転の制御方法》
次に、この実施の形態1に係る空気調和装置について、冷媒置換後の洗浄運転の制御方法について説明する。
<Control method for cleaning operation>
Next, the control method of the washing operation after refrigerant replacement will be described for the air-conditioning apparatus according to
(1)冷房時の洗浄運転の制御方法
実施の形態1の空気調和装置の冷房時の洗浄運転の洗浄制御方法としては、CFCやHCFC等(旧冷媒)を使った空気調和装置(冷媒回路)の熱源機Aおよび室内機Bを、HFC(新冷媒)を用いたものと置換し、さらにHFCを追加充填した後、冷房運転を実施する。この洗浄運転の制御方法では、選択された室内機Biについて、図1の実線矢印のように、圧縮機1を駆動源として、冷媒を圧縮機1から熱源機側熱交換器3を経て、第1の接続配管C、分岐配管Ciに通し、絞り手段5と利用側熱交換器6を経て、分岐配管Di、第2の接続配管Dへ通し、さらに異物捕捉手段13とアキュムレータ8を経て圧縮機1へと流して洗浄する。さらに、同様の操作を他の組の室内機Biについて行う。
(1) Control method for cleaning operation during cooling As a cleaning control method for the cleaning operation during cooling of the air-conditioning apparatus according to
上記のように、室内機Biが複数台並列接続された場合には、各室内機Biに分岐する分岐配管Ci、Diで、配管の合計断面積が増加するため、1つの室内機Biあたりの質量流束が低下し、洗浄に十分な質量流束が確保されないということが発生し得る。 As described above, when a plurality of indoor units Bi are connected in parallel, the total cross-sectional area of the pipes increases in the branch pipes Ci and Di branched to each indoor unit Bi. It can happen that the mass flux is reduced and a mass flux sufficient for cleaning is not ensured.
そこで、各室内機Biのうち、接続配管径の各組から選択された室内機Bi以外の室内機Biの絞り手段5iを閉止すると、選択された室内機Biの配管に冷媒が流れるので、その室内機Biには十分な質量流束の冷媒が確保される。他の組の絞り手段5iについても同様に室内機Biごとに順次開弁していくことで、すべての室内機Biに洗浄に十分な質量流束の冷媒が確保されることになり、第1の接続配管Cおよび第2の接続配管Dの鉱油は十分に洗浄される。さらに、第1、第2の接続配管のi番目の分岐配管Ci、Diの残留異物のばらつきも無くなり、洗浄時間も短くなる。 Therefore, among the indoor units Bi, when the throttle means 5i of the indoor unit Bi other than the indoor unit Bi selected from each set of connection pipe diameters is closed, the refrigerant flows into the pipe of the selected indoor unit Bi. A sufficient mass flux of refrigerant is secured in the indoor unit Bi. Similarly, the other sets of throttle means 5i are sequentially opened for each indoor unit Bi, so that a refrigerant having a mass flux sufficient for cleaning is secured in all the indoor units Bi. The mineral oil in the connecting pipe C and the second connecting pipe D is sufficiently washed. Further, there is no variation in residual foreign matter in the i-th branch pipes Ci and Di of the first and second connection pipes, and the cleaning time is shortened.
ここで、質量流束と洗浄時間との関係について説明する。図3は、冷媒状態(気相冷媒、液または気液二相冷媒)、鉱油動粘性係数、質量流束の違いによる必要洗浄時間の関係を示す図である。図3においては、HFC冷媒の一種であるR410Aが気相の冷媒状態と液または気液二相の冷媒状態とで、ある所定の長さの配管内の鉱油を洗浄した場合、質量流束と配管内の鉱油残留が無くなるのに必要な洗浄時間(以下、必要洗浄時間と称する)との関係を示している。この図3から分かるように、気相の冷媒状態に比較し、液または気液二相の冷媒状態の方が、洗浄効果が高く、また、質量流束が高いほど洗浄効果が高いことが示されている。なお、当然、必要洗浄時間は配管長が長いほど増加する。 Here, the relationship between the mass flux and the cleaning time will be described. FIG. 3 is a diagram showing the relationship between the necessary cleaning time depending on the refrigerant state (gas phase refrigerant, liquid or gas-liquid two-phase refrigerant), mineral oil kinematic viscosity coefficient, and mass flux. In FIG. 3, when R410A, which is a kind of HFC refrigerant, cleans mineral oil in a pipe having a predetermined length in a gas phase refrigerant state and a liquid or gas-liquid two phase refrigerant state, The relationship with the washing | cleaning time (henceforth required washing | cleaning time) required in order for the mineral oil residue in piping to be lost is shown. As can be seen from FIG. 3, the liquid or gas-liquid two-phase refrigerant state has a higher cleaning effect than the gas-phase refrigerant state, and the higher the mass flux, the higher the cleaning effect. Has been. Of course, the necessary cleaning time increases as the pipe length increases.
また、鉱油の動粘性係数も、洗浄効果へ影響しており、図3に示すように、動粘性係数が低いほど必要洗浄時間が短くなる。図4は、鉱油温度と鉱油の動粘性係数を示す図である。図4に示すように、鉱油の温度が高いほど動粘性係数は低下する。このため、冷媒の温度が高いほど、鉱油の温度が高くなり鉱油の動粘性係数が低下し、冷媒に引きずられ易くなり、洗浄効果が高くなる。 Further, the kinematic viscosity coefficient of the mineral oil also affects the cleaning effect. As shown in FIG. 3, the lower the kinematic viscosity coefficient, the shorter the required cleaning time. FIG. 4 is a diagram showing the mineral oil temperature and the kinematic viscosity coefficient of the mineral oil. As shown in FIG. 4, the kinematic viscosity coefficient decreases as the temperature of the mineral oil increases. For this reason, the higher the temperature of the refrigerant, the higher the temperature of the mineral oil, the lower the kinematic viscosity coefficient of the mineral oil, and the easier it is to be dragged by the refrigerant, the higher the cleaning effect.
したがって、接続配管に、気液二相冷媒を流すことにより、気相の冷媒による洗浄の場合に比べて、洗浄時間を短くすることができる。また、冷媒の温度を上昇させることにより洗浄能力を向上させることができる。 Therefore, by flowing the gas-liquid two-phase refrigerant through the connection pipe, the cleaning time can be shortened compared to the case of cleaning with a gas-phase refrigerant. In addition, the cleaning ability can be improved by increasing the temperature of the refrigerant.
このようなことから洗浄運転においては、通常運転時よりも絞り手段5iの開度を間欠的に通常より大きく設定する。すなわち、室内機Biの膨張率を通常時より低下させると、絞り手段5iを流通して室内機Biに流入する液冷媒の冷媒量が増大する。このため、利用側熱交換器6iを流通した冷媒は、一部に蒸発しなかった液冷媒を含んだ気液二相状態(湿り状態)となり、この気液二相状態の冷媒が第2の接続配管Dを通って異物捕捉手段13に流入する。 For this reason, in the cleaning operation, the opening degree of the throttle means 5i is intermittently set larger than normal than in normal operation. That is, when the expansion rate of the indoor unit Bi is decreased from the normal time, the amount of liquid refrigerant flowing through the throttle means 5i and flowing into the indoor unit Bi increases. For this reason, the refrigerant | coolant which distribute | circulated the utilization side heat exchanger 6i will be in the gas-liquid two-phase state (wet state) containing the liquid refrigerant which was not partially evaporated, and the refrigerant | coolant of this gas-liquid two-phase state is 2nd It flows into the foreign matter catching means 13 through the connection pipe D.
上記冷媒循環により、第2の接続配管には、気液二相冷媒が流れることで洗浄時間を短くすることができる。また、絞り手段5iの開度増加により、蒸発温度が上昇し、鉱油の動粘性係数が低下する効果もある。このため、第2の接続配管および第1の接続配管内に残留する旧冷媒用の冷凍機油が、湿り状態の冷媒によって引きずられ、結果、気相の冷媒による洗浄の場合に比べて、配管洗浄能力を向上させることができる。 By the refrigerant circulation, the gas-liquid two-phase refrigerant flows through the second connection pipe, so that the cleaning time can be shortened. Further, the increase in the opening degree of the throttle means 5i has the effect of increasing the evaporation temperature and decreasing the kinematic viscosity coefficient of the mineral oil. For this reason, the refrigerating machine oil for the old refrigerant remaining in the second connection pipe and the first connection pipe is dragged by the wet refrigerant, and as a result, pipe cleaning is performed as compared with the case of cleaning with a gas-phase refrigerant. Ability can be improved.
なお、第2の接続配管Dを気液二相冷媒にする方法はこれに限らず、利用側熱交換器6iのファンなどの利用側送風手段(図示せず)の風量を、間欠的に通常運転時よりも低下させるようにしても良い。その場合、室内空気が利用側熱交換器6iに送り込まれないので、利用側熱交換器6iでの冷媒の蒸発量が減少し、冷媒を確実に湿り状態にすることができる。 Note that the method of using the second connection pipe D as a gas-liquid two-phase refrigerant is not limited to this, and the air volume of a usage-side air blowing means (not shown) such as a fan of the usage-side heat exchanger 6i is usually intermittently normal. You may make it reduce rather than the time of a driving | operation. In that case, since indoor air is not sent into the utilization side heat exchanger 6i, the evaporation amount of the refrigerant | coolant in the utilization side heat exchanger 6i reduces, and a refrigerant | coolant can be reliably made into a moist state.
また、圧縮機1の運転容量を所定値以下に低下させるようにしても良い。例えば圧縮機1の駆動周波数を通常運転時における周波数より間欠的に低減させるようにする。この場合、圧縮機1に吸入される冷媒量が減少し、見かけ上、利用側熱交換器6iにおける冷媒量が増大するので、絞り手段5iの開度を調節した場合と同様の作用により冷媒を気液二相冷媒にすることができる。
Moreover, you may make it reduce the operating capacity of the
(洗浄運転時間の決定方法)
図3に示したように、必要洗浄運転時間は、質量流束、冷媒の状態(液相または気液二相冷媒あるいは気相冷媒)、鉱油の動粘性係数によって変化する。また、冷媒配管(第1の接続配管Cおよび第2の接続配管D)の配管長が長いほど必要洗浄時間が増加する。本実施の形態における空気調和装置の制御手段100は、これらの特徴量をパラメータとして洗浄運転における洗浄時間を決定する。以下、必要洗浄運転時間の決定方法について説明する。
(How to determine the cleaning operation time)
As shown in FIG. 3, the required cleaning operation time varies depending on the mass flux, the state of the refrigerant (liquid phase or gas-liquid two-phase refrigerant or gas phase refrigerant), and the kinematic viscosity coefficient of mineral oil. Further, the longer the pipe length of the refrigerant pipe (the first connection pipe C and the second connection pipe D), the longer the required cleaning time. The control means 100 of the air conditioning apparatus in the present embodiment determines the cleaning time in the cleaning operation using these feature values as parameters. Hereinafter, a method for determining the required cleaning operation time will be described.
制御手段100は、第1の接続配管Cおよび第2の接続配管Dの配管長、洗浄運転時の新冷媒の質量流束および冷媒状態を求める。そして、これらの特徴量をパラメータとし、制御手段110に予め記憶された、冷媒状態ごとの、質量流束と必要洗浄時間との関係の情報に基づいて、洗浄運転による洗浄時間を決定する。各特徴量は以下により求める。 The control means 100 obtains the pipe lengths of the first connection pipe C and the second connection pipe D, the mass flux of the new refrigerant during the cleaning operation, and the refrigerant state. Then, using these feature values as parameters, the cleaning time for the cleaning operation is determined based on the information on the relationship between the mass flux and the required cleaning time for each refrigerant state stored in advance in the control unit 110. Each feature amount is obtained as follows.
[質量流束]
質量流束[kg/m2s]は、単位時間当たりの冷媒循環量[kg/s]を配管断面積[m2]で除することで、それぞれの接続配管を流れる新冷媒の質量流束を演算できる。なお、冷媒循環量[kg/s]は、圧縮機1の吸入部の低圧圧力センサ32から冷媒密度を推測し、圧縮機の運転周波数[Hz]と圧縮機1の押しのけ量[m3]から推測できる。また、熱源機Aと接続する第1の接続配管Cと第2の接続配管Dは、熱源機Aより一意に決まるため、それぞれの配管仕様から配管断面積が決定される。
[Mass flux]
The mass flux [kg / m 2 s] is obtained by dividing the refrigerant circulation rate [kg / s] per unit time by the pipe cross-sectional area [m 2 ], so that the mass flux of the new refrigerant flowing through each connecting pipe Can be calculated. The refrigerant circulation rate [kg / s] is estimated from the low-
同様に、各室内機Biのそれぞれの分岐配管Ci、分岐配管Diを流れる冷媒の質量流束は、冷媒循環量を各利用側冷媒回路部分の接続配管の断面積で除することで演算できる。なお、各室内機Biに設けられた制御基板上のマイコンにより、各室内機Biの容量が分かり、その容量で各利用側冷媒回路部分の接続配管径が予想でき、この配管径からそれぞれi番目の利用側冷媒回路部分に接続された配管の断面積が求められる。 Similarly, the mass flux of the refrigerant flowing through each branch pipe Ci and branch pipe Di of each indoor unit Bi can be calculated by dividing the refrigerant circulation amount by the cross-sectional area of the connection pipe of each use side refrigerant circuit portion. The capacity of each indoor unit Bi can be determined by the microcomputer on the control board provided in each indoor unit Bi, and the connection pipe diameter of each use side refrigerant circuit part can be predicted by the capacity. The cross-sectional area of the pipe connected to the use side refrigerant circuit portion is obtained.
[冷媒状態]
配管内を流れる冷媒の冷媒状態(気相、液相、気液二相状態)は、それぞれの配管部位での冷媒の圧力と温度を検出することによって推測可能である。例えば、第1の接続配管Cおよび第2の接続配管Dに、それぞれ配管内を流れる冷媒の温度、圧力を検出するセンサを設けて検出する。
[Refrigerant state]
The refrigerant state (gas phase, liquid phase, gas-liquid two-phase state) of the refrigerant flowing in the pipe can be estimated by detecting the pressure and temperature of the refrigerant in each pipe part. For example, the first connection pipe C and the second connection pipe D are each provided with a sensor for detecting the temperature and pressure of the refrigerant flowing in the pipe.
[配管長]
既設の空気調和装置の配管(第1の接続配管Cおよび第2の接続配管D)を再利用する場合、既設の空気調和装置の配管が埋設されている場合には配管長を容易に推測することができない。そこで、制御手段100は、以下の演算により配管長を推測する。まず、利用側熱交換器6iの飽和温度を温度センサ21iにて検出し、圧縮機1吸入の圧力を低圧圧力センサ32で検出する。そして、温度センサ21iの値を飽和圧力に換算し、両方の圧力差から、第2の接続配管Dおよび分岐配管Diを含めた配管部分の圧力損失を求める。そして、圧力損失は質量流束の2乗に比例し、配管長に比例する特徴を利用し、求めた圧力損失と上述した圧縮機1の運転容量から求まる質量流束とから、配管長を推測することができる。
[Piping length]
When the existing air conditioner pipes (first connection pipe C and second connection pipe D) are reused, the pipe length is easily estimated when the existing air conditioner pipes are buried. I can't. Therefore, the control means 100 estimates the pipe length by the following calculation. First, the saturation temperature of the use side heat exchanger 6 i is detected by the
あるいは、空気調和装置の冷媒回路に封入されている冷媒量が分かれば、封入冷媒量の情報から配管長を推測しても良い。ここで、冷媒封入量から接続配管の配管長を求める方法について説明する。まず、熱源機Aの熱源機側熱交換器3に存在する冷媒量は、熱源機側熱交換器3の内容積に冷房運転時の適正冷媒密度(例えば、500kg/m3)を乗ずることで冷媒量が算出できる。そして、冷媒回路に封入されている冷媒量から熱源機側熱交換器3に存在する冷媒量を差し引くことで、液冷媒が存在する第1の接続配管Cおよび分岐配管Ciに存在する冷媒量を求めることができる。 Alternatively, if the amount of refrigerant enclosed in the refrigerant circuit of the air conditioner is known, the pipe length may be estimated from the information on the amount of refrigerant enclosed. Here, a method for obtaining the pipe length of the connection pipe from the refrigerant filling amount will be described. First, the amount of refrigerant present in the heat source unit side heat exchanger 3 of the heat source unit A is obtained by multiplying the internal volume of the heat source unit side heat exchanger 3 by an appropriate refrigerant density (for example, 500 kg / m 3 ) during cooling operation. The amount of refrigerant can be calculated. Then, by subtracting the refrigerant amount existing in the heat source unit side heat exchanger 3 from the refrigerant amount enclosed in the refrigerant circuit, the refrigerant amount existing in the first connection pipe C and the branch pipe Ci where the liquid refrigerant exists is obtained. Can be sought.
次に、第1の接続配管Cの冷媒密度は液冷媒であるため、その温度から冷媒密度を推測でき、先ほど求めた第1の接続配管Cおよび分岐配管Ciに存在する冷媒量をその冷媒密度で除することにより、第1の接続配管Cおよび分岐配管Ciの内容積を求めることができる。次に、算出された内容積を、それぞれの接続配管の断面積にて除することで、おおよその配管長を推測することができる。 Next, since the refrigerant density of the first connection pipe C is a liquid refrigerant, the refrigerant density can be estimated from the temperature, and the refrigerant amount existing in the first connection pipe C and the branch pipe Ci obtained earlier is determined as the refrigerant density. The internal volume of the first connection pipe C and the branch pipe Ci can be obtained by dividing by. Next, an approximate pipe length can be estimated by dividing the calculated internal volume by the cross-sectional area of each connection pipe.
なお、配管長が予め把握されているのであれば、予め配管長の情報を入力するようにし、上記の算出動作を省略しても良い。 If the pipe length is known in advance, pipe length information may be input in advance, and the above calculation operation may be omitted.
[鉱油の動粘性係数]
上記の特徴量に加え、旧冷媒に含まれる冷凍機油などの鉱油の動粘性係数を用いて洗浄時間を決定しても良い。この場合、制御手段110には、予め、旧冷媒に含まれる冷凍機油の動粘性係数と温度との関係の情報(例えば図4)と、冷凍機油の動粘性係数に応じた、所定の配管長の配管内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報(例えば図3)が、冷媒状態ごとに記憶される。制御手段100は、新冷媒の温度に基づいて冷凍機油などの鉱油の動粘性係数を求める。そして、この冷凍機油の動粘性係数、配管長、新冷媒の質量流束および冷媒状態をパラメータとし、制御手段110に記憶された情報に基づいて、洗浄運転による洗浄時間を決定する。
[Kinematic viscosity coefficient of mineral oil]
In addition to the above feature amount, the washing time may be determined using the kinematic viscosity coefficient of mineral oil such as refrigeration oil contained in the old refrigerant. In this case, the control unit 110 previously stores a predetermined pipe length corresponding to the information (for example, FIG. 4) on the relationship between the kinematic viscosity coefficient and the temperature of the refrigerating machine oil included in the old refrigerant and the kinematic viscosity coefficient of the refrigerating machine oil. The information (for example, FIG. 3) on the relationship between the cleaning time required for cleaning the inside of the pipe and the mass flux of the refrigerant is stored for each refrigerant state. The control means 100 determines the kinematic viscosity coefficient of mineral oil such as refrigeration oil based on the temperature of the new refrigerant. Then, based on the information stored in the control means 110, the cleaning time for the cleaning operation is determined based on the kinematic viscosity coefficient of the refrigerating machine oil, the pipe length, the mass flux of the new refrigerant, and the refrigerant state as parameters.
なお、動粘性係数は鉱油の種類によって異なるため、鉱油の種類によって動粘性係数の算出式を変更可能なように、熱源機Aの制御基盤(制御手段100)にディップスイッチなどの選択手段を設けて選択できるようにしても良い。例えば、旧冷媒に含まれる冷凍機油などの鉱油の種類ごとに、動粘性係数と温度との関係の情報を、予め制御手段110に記憶させ、制御手段100は、新冷媒の温度に基づいて、ディップスイッチなどにより選択された鉱油の種類の動粘性係数を求めるようにしても良い。これにより、鉱油の種類に応じた動粘性係数を算出することが可能となる。
Since the kinematic viscosity coefficient varies depending on the type of mineral oil, a selection means such as a dip switch is provided on the control base (control means 100) of the heat source unit A so that the calculation formula of the kinematic viscosity coefficient can be changed depending on the type of mineral oil. May be selected. For example, for each type of mineral oil such as refrigeration oil contained in the old refrigerant, information on the relationship between the kinematic viscosity coefficient and the temperature is stored in the control unit 110 in advance, and the
以上のように、機器の設置条件や、冷凍サイクルの運転状態から必要洗浄時間に影響する特徴量である質量流束、冷媒の状態、鉱油の動粘性係数および配管長を求めることができる。特徴量をパラメータとした、洗浄運転時間を規定しておけば、機器の設置条件、運転状態に応じて、必要洗浄時間が決定されるので、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。 As described above, the mass flux, the refrigerant state, the kinematic viscosity coefficient of the mineral oil, and the pipe length, which are characteristic quantities that affect the required cleaning time, can be obtained from the installation conditions of the equipment and the operating state of the refrigeration cycle. If you specify the cleaning operation time using the feature amount as a parameter, the necessary cleaning time is determined according to the installation conditions and operating conditions of the equipment, so there is no need to perform excessive cleaning operation. The cleaning operation can be terminated, and the air conditioner can be updated quickly.
また、冷媒交換前のCFCやHCFCを使った空気調和装置では、第1の接続配管C、第1の接続配管のi番目の分岐配管Ciは冷房運転でも暖房運転でも液冷媒単相状態もしくは気液二相状態であり、ここには鉱油はあまりたくさん分布していない。一方、第2の接続配管D、分岐配管Diは、冷房運転でも暖房運転でもガス単相状態であり、鉱油は液膜状に管壁内部をガス冷媒に引きずられるように流れるため、ここには鉱油が多く分布する。したがって、前述のように洗浄運転の最初に第1の接続配管Cを上流に、第2の接続配管Dを下流になるようにすることで、第2の接続配管D、分岐配管Diに多く分布している鉱油を第1の接続配管C、分岐配管Ciに混入させることなく、異物捕捉手段13に回収することができる。これにより、洗浄時間が短くできる上に、第1、第2の接続配管C、Dに残留する鉱油の量を低減することができる。 In the air conditioner using CFC or HCFC before refrigerant replacement, the first connection pipe C and the i-th branch pipe Ci of the first connection pipe are in a liquid refrigerant single-phase state or an It is in a liquid two-phase state, and there is not much mineral oil distributed here. On the other hand, the second connection pipe D and the branch pipe Di are in a gas single-phase state in both the cooling operation and the heating operation, and the mineral oil flows in a liquid film form so as to be dragged inside the tube wall by the gas refrigerant. A lot of mineral oil is distributed. Therefore, as described above, by distributing the first connection pipe C upstream and the second connection pipe D downstream at the beginning of the cleaning operation, a large distribution is distributed in the second connection pipe D and the branch pipe Di. The collected mineral oil can be collected in the foreign matter capturing means 13 without being mixed into the first connection pipe C and the branch pipe Ci. As a result, the cleaning time can be shortened and the amount of mineral oil remaining in the first and second connection pipes C and D can be reduced.
(2)暖房時の洗浄運転の制御方法
実施の形態1の空気調和装置の暖房時の洗浄運転の洗浄制御方法としては、CFCやHCFC等(旧冷媒)を使った冷媒回路(空気調和装置)の熱源機Aおよび室内機BをHFC(新冷媒)を用いたものと置換し、さらにHFCを追加充填した後、暖房運転を実施する。この洗浄運転の制御方法では、選択された室内機Biについて、図1の破線矢印のように、圧縮機1を駆動源として、冷媒を圧縮機1から第2の接続配管D、分岐配管Diへ通し、利用側熱交換器6と絞り手段5を経て、分岐配管Ci、第1の接続配管Cに通し、熱源機側熱交換器3を経てさらに異物捕捉手段13とアキュムレータ8を経て圧縮機1へと流して洗浄する。さらに、同様の操作を他の組の室内機Biについて行う。
(2) Control method for cleaning operation during heating As a cleaning control method for cleaning operation during heating of the air-conditioning apparatus according to
上記のように、室内機Biが複数台並列接続された場合には、各室内機Biに分岐する分岐配管Ci、Diで、配管の合計断面積が増加するため、1つの室内機Biあたりの質量流束が低下し、洗浄に十分な質量流束が確保されないということが発生し得る。 As described above, when a plurality of indoor units Bi are connected in parallel, the total cross-sectional area of the pipes increases in the branch pipes Ci and Di branched to each indoor unit Bi. It can happen that the mass flux is reduced and a mass flux sufficient for cleaning is not ensured.
そこで、各室内機Biのうち、接続配管径の各組から選択された室内機Bi以外の室内機Biの絞り手段5iを閉止すると、選択された室内機Biの配管に冷媒が流れるので、その室内機Biには十分な質量流束の冷媒が確保される。他の組の絞り手段5iについても同様に室内機Biごとに順次開弁していくことで、すべての室内機Biに洗浄に十分な質量流束の冷媒が確保されることになり、第1の接続配管Cおよび第2の接続配管Dの鉱油は十分に洗浄される。さらに、第1、第2の接続配管のi番目の分岐配管Ci、Diの残留異物のばらつきも無くなり、洗浄時間も短くなる。 Therefore, among the indoor units Bi, when the throttle means 5i of the indoor unit Bi other than the indoor unit Bi selected from each set of connection pipe diameters is closed, the refrigerant flows into the pipe of the selected indoor unit Bi. A sufficient mass flux of refrigerant is secured in the indoor unit Bi. Similarly, the other sets of throttle means 5i are sequentially opened for each indoor unit Bi, so that a refrigerant having a mass flux sufficient for cleaning is secured in all the indoor units Bi. The mineral oil in the connecting pipe C and the second connecting pipe D is sufficiently washed. Further, there is no variation in residual foreign matter in the i-th branch pipes Ci and Di of the first and second connection pipes, and the cleaning time is shortened.
この洗浄運転の制御方法では、第2の接続配管D、分岐配管Di、分岐配管Ci、第1の接続配管Cの順に冷媒を流して洗浄することになる。一般に、実施の形態1の図1に示す空気調和装置では、第1の接続配管のi番目の分岐配管Ciの方が第2の接続配管のi番目の分岐配管Diより、また第1の接続配管Cの方が第2の接続配管Dよりも配管内径が小さい。これは、冷房運転において第2の接続配管D、分岐配管Diでの摩擦損失の大小は蒸発温度に関係し冷房能力への影響が大きいため可能な限り太くするのに対して、第1の接続配管C、分岐配管Ciでの摩擦損失は蒸発温度や凝縮温度へ直接与える影響はなく、むしろここを流れる冷媒が液単相または気液二相であることから冷媒充填量を増加させない観点から可能な限り細くするためである。 In this cleaning operation control method, cleaning is performed by flowing the refrigerant in the order of the second connection pipe D, the branch pipe Di, the branch pipe Ci, and the first connection pipe C. In general, in the air conditioner shown in FIG. 1 of the first embodiment, the i-th branch pipe Ci of the first connection pipe is more than the i-th branch pipe Di of the second connection pipe, and the first connection. The pipe C has a smaller pipe inner diameter than the second connection pipe D. This is because, in the cooling operation, the magnitude of the friction loss in the second connection pipe D and the branch pipe Di is related to the evaporation temperature and has a large influence on the cooling capacity. Friction loss in pipe C and branch pipe Ci has no direct effect on the evaporation temperature and condensation temperature, but rather it is possible from the viewpoint of not increasing the refrigerant charging amount because the refrigerant flowing here is a liquid single phase or gas-liquid two phase. This is to make it as thin as possible.
既に説明したように、質量流束が高く動粘性係数が高いほど、洗浄効果は高いことが示されている。また、暖房運転をすると、配管内径の細い第1の接続配管C、分岐配管Ciでは冷媒の質量流束が大きく、非常に高い洗浄効果が得られる。一方、第2の接続配管D、分岐配管Diは配管内径が大きいため、冷媒の質量流束が小さいので、この点では洗浄効果が小さい。しかしながら、この流れ方向では第2の接続配管D、分岐配管Diが第1の接続配管C、分岐配管Ciよりも上流にあり、冷媒の温度が高いため、鉱油の動粘性係数が小さくなることで、冷媒に引きずられ易くなり、洗浄効果が高くなる。 As already explained, it is shown that the higher the mass flux and the higher the kinematic viscosity coefficient, the higher the cleaning effect. In addition, when heating operation is performed, the refrigerant mass flux is large in the first connection pipe C and the branch pipe Ci with a narrow pipe inner diameter, and a very high cleaning effect is obtained. On the other hand, since the second connection pipe D and the branch pipe Di have a large pipe inner diameter, the mass flux of the refrigerant is small, so that the cleaning effect is small in this respect. However, in this flow direction, the second connection pipe D and the branch pipe Di are upstream of the first connection pipe C and the branch pipe Ci, and the temperature of the refrigerant is high. It becomes easy to be dragged by the refrigerant, and the cleaning effect is enhanced.
また、冷房時の洗浄運転の制御方法と同様に、機器の設置条件や、冷凍サイクルの運転状態から必要洗浄時間に影響する特徴量である質量流束、冷媒の状態、鉱油の動粘性係数および配管長を求めることができる。また上記冷房時と同様に、特徴量をパラメータとした、洗浄運転時間を規定しておけば、機器の設置条件、運転状態に応じて、必要洗浄時間が決定されるので、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。 Similarly to the control method of the cleaning operation during cooling, the mass flux, the refrigerant state, the mineral oil kinematic viscosity and the characteristic quantities that affect the required cleaning time from the operating conditions of the equipment and the operating state of the refrigeration cycle The pipe length can be obtained. Also, as in the case of the above cooling, if the cleaning operation time is defined by using the feature amount as a parameter, the required cleaning time is determined according to the installation conditions and operating conditions of the equipment. It is not necessary to perform the cleaning operation, and the cleaning operation can be completed in a short time, and the air conditioner can be updated quickly.
以上のように本実施の形態においては、配管径、配管長、新冷媒の質量流束、新冷媒の冷媒温度、新冷媒の冷媒圧力のうち少なくとも1つを含む特徴量に基づいて、洗浄運転による洗浄時間を決定する。このため、空気調和装置の設置条件や運転状態に応じて、必要洗浄時間を決定することができる。よって、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。したがって、接続配管などに残留している旧冷媒、並びに鉱油および鉱油劣化物を短時間で分離・捕獲し、環境上問題のないとされる新冷媒に置換することができる。 As described above, in the present embodiment, the cleaning operation is performed based on the feature amount including at least one of the pipe diameter, the pipe length, the mass flux of the new refrigerant, the refrigerant temperature of the new refrigerant, and the refrigerant pressure of the new refrigerant. Determine the cleaning time. For this reason, a required washing | cleaning time can be determined according to the installation conditions and driving | running state of an air conditioning apparatus. Therefore, it is not necessary to perform an excessive cleaning operation, the cleaning operation can be completed in a short time, and the air conditioner can be updated quickly. Therefore, it is possible to separate and capture the old refrigerant remaining in the connecting pipe and the like, as well as the mineral oil and the deteriorated mineral oil in a short time, and replace it with a new refrigerant that has no environmental problem.
また、制御手段100は、新冷媒の冷媒温度および冷媒圧力に基づいて当該新冷媒の冷媒状態を推測し、単位時間当たりの冷媒循環量および接続配管の配管径に基づいて、新冷媒の質量流束を求め、配管長、新冷媒の質量流束および冷媒状態をパラメータとし、制御手段110に記憶された情報に基づいて、洗浄運転による洗浄時間を決定する。このため、接続配管の配管長、洗浄運転時の質量流束、冷媒状態に応じて、必要洗浄時間を決定することができる。よって、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。 Further, the control means 100 estimates the refrigerant state of the new refrigerant based on the refrigerant temperature and pressure of the new refrigerant, and determines the mass flow rate of the new refrigerant based on the refrigerant circulation amount per unit time and the pipe diameter of the connection pipe. The bundle is obtained, the pipe length, the mass flux of the new refrigerant, and the refrigerant state are used as parameters, and the washing time for the washing operation is determined based on the information stored in the control means 110. For this reason, the required cleaning time can be determined according to the pipe length of the connection pipe, the mass flux during the cleaning operation, and the refrigerant state. Therefore, it is not necessary to perform an excessive cleaning operation, the cleaning operation can be completed in a short time, and the air conditioner can be updated quickly.
また、新冷媒の温度に基づいて冷凍機油の動粘性係数を求め、冷凍機油の動粘性係数を含む特徴量をパラメータとし洗浄運転による洗浄時間を決定する。このため、冷凍機油の動粘性係数に応じて、必要洗浄時間を決定することができる。よって、過度の洗浄運転を行う必要が無くなり、短時間で洗浄運転を終了することができ、空気調和装置の更新を迅速に行うことができる。 Further, the kinematic viscosity coefficient of the refrigerating machine oil is obtained based on the temperature of the new refrigerant, and the washing time for the washing operation is determined using the characteristic amount including the kinematic viscosity coefficient of the refrigerating machine oil as a parameter. For this reason, the required cleaning time can be determined according to the kinematic viscosity coefficient of the refrigerating machine oil. Therefore, it is not necessary to perform an excessive cleaning operation, the cleaning operation can be completed in a short time, and the air conditioner can be updated quickly.
また、制御手段100は、新冷媒の質量流束、冷媒状態、接続配管の配管長を推測する。このため、空気調和装置の更新時にこれらの情報を入力する必要がなく、施工の省力化が図れる。
In addition, the
また、既設の空気調和装置の設置条件を機器の接続情報、および運転状態に応じて自動的に推測することが可能となるため、機器更新時に設定する入力項目が少なくなり、施工の省力化が図れる。 In addition, the installation conditions of the existing air conditioner can be automatically estimated according to the device connection information and the operating state, so the number of input items to be set when updating the device is reduced, and labor savings can be achieved. I can plan.
また、空気調和装置の洗浄運転において、冷房または暖房の何れの運転であっても、適切な洗浄時間により洗浄運転を行うことができる。 In the cleaning operation of the air conditioner, the cleaning operation can be performed with an appropriate cleaning time regardless of whether the operation is cooling or heating.
また、制御手段100は、洗浄運転において、利用側熱交換器6iから流出する新冷媒が気液二相状態となるように、絞り手段5iの開度、利用側送風手段、または圧縮機1の運転容量を制御する。このため、気相の冷媒による洗浄の場合に比べて、洗浄時間を短くすることができる。また、冷媒の温度を上昇させることにより洗浄能力を向上させることができる。
Moreover, the control means 100 is configured so that the opening degree of the throttle means 5i, the use-side air blowing means, or the
A 熱源機、B 室内機、C 第1の接続配管、D 第2の接続配管、Ci 分岐配管、Di 分岐配管、1 圧縮機、2 四方弁、3 熱源機側熱交換器、4 第1の操作弁、5 絞り手段、6 利用側熱交換器、7 第2の操作弁、8 アキュムレータ、8a 返油穴、9 油分離器、9a バイパス路、13 異物捕捉手段、21 温度センサ、31 高圧圧力センサ、32 低圧圧力センサ、100 制御手段、110 記憶手段。 A heat source machine, B indoor unit, C first connection pipe, D second connection pipe, Ci branch pipe, Di branch pipe, 1 compressor, two-way valve, 3 heat source machine side heat exchanger, 4 first Operating valve, 5 throttle means, 6 user side heat exchanger, 7 second operating valve, 8 accumulator, 8a oil return hole, 9 oil separator, 9a bypass, 13 foreign matter capturing means, 21 temperature sensor, 31 high pressure Sensor, 32 low pressure sensor, 100 control means, 110 storage means.
Claims (14)
該冷媒回路を循環する旧冷媒が新冷媒に置換された後、前記圧縮機を駆動源として、前記冷媒配管および前記利用側熱交換器に新冷媒を流して前記冷媒配管内の洗浄運転を行う空気調和装置において、
前記洗浄運転による洗浄時間を決定する制御手段と、
記憶手段と
を備え、
前記記憶手段は、
前記旧冷媒に含まれる冷凍機油の動粘性係数と温度との関係の情報と、
前記冷凍機油の動粘性係数に応じた、所定の配管長の配管内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報が、冷媒状態ごとに記憶され、
前記制御手段は、
前記新冷媒の冷媒温度および冷媒圧力に基づいて当該新冷媒の冷媒状態を推測し、
単位時間当たりの冷媒循環量および前記冷媒配管の配管径に基づいて、前記新冷媒の質量流束を求め、
前記新冷媒の温度に基づいて前記冷凍機油の動粘性係数を求め、
該冷凍機油の動粘性係数、前記冷媒配管の配管長、前記新冷媒の質量流束および冷媒状態をパラメータとし、前記記憶手段に記憶された情報に基づいて、前記洗浄運転による洗浄時間を決定する
ことを特徴とする空気調和装置。 A refrigerant circuit in which a compressor, a heat source machine side heat exchanger, an expansion means, and a use side heat exchanger are connected by a refrigerant pipe;
After the old refrigerant circulating in the refrigerant circuit is replaced with the new refrigerant, the refrigerant is washed in the refrigerant pipe by flowing the new refrigerant through the refrigerant pipe and the use side heat exchanger with the compressor as a drive source. In the air conditioner,
Control means for determining a cleaning time by the cleaning operation;
Storage means
With
The storage means
Information on the relationship between the kinematic viscosity coefficient and temperature of the refrigeration oil contained in the old refrigerant,
Information on the relationship between the cleaning time and the mass flux of the refrigerant required to wash the inside of the pipe having a predetermined pipe length according to the kinematic viscosity coefficient of the refrigerating machine oil is stored for each refrigerant state,
The control means includes
Inferring the refrigerant state of the new refrigerant based on the refrigerant temperature and refrigerant pressure of the new refrigerant,
Based on the refrigerant circulation amount per unit time and the pipe diameter of the refrigerant pipe, obtain the mass flux of the new refrigerant,
Obtain the kinematic viscosity coefficient of the refrigerating machine oil based on the temperature of the new refrigerant,
Using the kinematic viscosity coefficient of the refrigerating machine oil, the pipe length of the refrigerant pipe, the mass flux of the new refrigerant, and the refrigerant state as parameters, the washing time for the washing operation is determined based on the information stored in the storage means. air conditioner you, characterized in that.
前記記憶手段は、
前記旧冷媒に含まれる冷凍機油の種類ごとに、前記冷凍機油の動粘性係数と温度との関係の情報が記憶され、
前記制御手段は、
前記新冷媒の温度に基づいて、前記選択手段により選択された冷凍機油の動粘性係数を求める
ことを特徴とする請求項1記載の空気調和装置。 Comprising selection means for inputting selection information of the type of refrigerating machine oil contained in the old refrigerant,
The storage means
For each type of refrigerating machine oil contained in the old refrigerant, information on the relationship between the kinematic viscosity coefficient and temperature of the refrigerating machine oil is stored,
The control means includes
The new refrigerant based on the temperature of the air conditioning apparatus according to claim 1, wherein the determination of the kinematic viscosity of the refrigerating machine oil which is selected by the selection unit.
前記制御手段は、
前記圧縮機の吸入圧力に基づき前記新冷媒の冷媒密度を推測し、
前記新冷媒の冷媒密度と前記圧縮機の運転容量とに基づき、単位時間当たりの冷媒循環量を推測し、
該冷媒循環量を前記冷媒配管の配管径から求めた断面積で除することで、前記新冷媒の質量流束を求める
ことを特徴とする請求項1又は2記載の空気調和装置。 A pressure sensor for detecting the suction pressure of the compressor;
The control means includes
Estimating the refrigerant density of the new refrigerant based on the suction pressure of the compressor,
Based on the refrigerant density of the new refrigerant and the operating capacity of the compressor, the refrigerant circulation amount per unit time is estimated,
The air conditioner according to claim 1 or 2 , wherein a mass flux of the new refrigerant is obtained by dividing the refrigerant circulation amount by a cross-sectional area obtained from a pipe diameter of the refrigerant pipe.
前記圧縮機の吸入圧力と前記利用側熱交換器の飽和圧力との圧力差から、前記冷媒配管の圧力損失を求め、
該圧力損失と質量流束とに基づき、前記冷媒配管の配管長を推測する
ことを特徴とする請求項1〜3の何れかに記載の空気調和装置。 The control means includes
From the pressure difference between the suction pressure of the compressor and the saturation pressure of the use side heat exchanger, the pressure loss of the refrigerant pipe is obtained,
The air conditioning apparatus according to any one of claims 1 to 3 , wherein a pipe length of the refrigerant pipe is estimated based on the pressure loss and mass flux.
前記制御手段は、
検出された前記新冷媒の飽和温度に基づいて、前記利用側熱交換器の飽和圧力を求める
ことを特徴とする請求項4記載の空気調和装置。 A temperature sensor for detecting the temperature of the refrigerant flowing through the use side heat exchanger;
The control means includes
The air conditioning apparatus according to claim 4 , wherein a saturation pressure of the use side heat exchanger is obtained based on the detected saturation temperature of the new refrigerant.
前記冷媒回路に封入されている前記新冷媒の冷媒量の情報および前記熱源機側熱交換器の内容積の情報に基づき、前記冷媒配管の配管長を推測する
ことを特徴とする請求項1〜5の何れかに記載の空気調和装置。 The control means includes
The pipe length of the refrigerant pipe is estimated based on information on a refrigerant amount of the new refrigerant sealed in the refrigerant circuit and information on an internal volume of the heat source unit side heat exchanger. 6. The air conditioning apparatus according to any one of 5 .
前記熱源機側熱交換器の内容積に洗浄運転時の適正冷媒密度を乗じて、前記熱源機側熱交換器に存在する冷媒量を求め、
前記冷媒回路に封入されている前記新冷媒の冷媒量から、前記熱源機側熱交換器に存在する冷媒量を差し引いて、前記冷媒配管内に存在する冷媒量を求め、
該冷媒配管内に存在する冷媒量を、当該冷媒配管内の冷媒密度で除して前記冷媒配管の内容積を求め、
該冷媒配管の内容積を当該冷媒配管の断面積で除することで、前記冷媒配管の配管長を推測する
ことを特徴とする請求項6記載の空気調和装置。 The control means includes
Multiplying the internal volume of the heat source machine side heat exchanger by the appropriate refrigerant density at the time of washing operation, the amount of refrigerant present in the heat source machine side heat exchanger is obtained,
By subtracting the amount of refrigerant present in the heat source unit side heat exchanger from the amount of refrigerant of the new refrigerant enclosed in the refrigerant circuit, the amount of refrigerant present in the refrigerant pipe is obtained,
Dividing the amount of refrigerant present in the refrigerant pipe by the refrigerant density in the refrigerant pipe to obtain the internal volume of the refrigerant pipe;
The air conditioner according to claim 6 , wherein a pipe length of the refrigerant pipe is estimated by dividing an internal volume of the refrigerant pipe by a cross-sectional area of the refrigerant pipe.
前記利用側熱交換器の熱交換器容量の情報から、前記冷媒配管の配管径または断面積を求める
ことを特徴とする請求項1〜7の何れかに記載の空気調和装置。 The control means includes
The air conditioner according to any one of claims 1 to 7 , wherein a pipe diameter or a cross-sectional area of the refrigerant pipe is obtained from information on a heat exchanger capacity of the use side heat exchanger.
前記熱源機側熱交換器と前記利用側熱交換器との間に設けられた前記絞り手段の開度を、通常運転時の開度より大きくし、前記利用側熱交換器から流出する前記新冷媒を気液二相状態にする
ことを特徴とする請求項1〜8の何れかに記載の空気調和装置。 In the cleaning operation, the control means
The opening of the throttle means provided between the heat source unit side heat exchanger and the use side heat exchanger is made larger than the opening during normal operation, and the new outflow from the use side heat exchanger The air conditioner according to any one of claims 1 to 8 , wherein the refrigerant is in a gas-liquid two-phase state.
前記制御手段は、前記洗浄運転において、
前記利用側送風手段の風量を、通常運転時の風量より低下させ、前記利用側熱交換器から流出する前記新冷媒を気液二相状態にする
ことを特徴とする請求項1〜9の何れかに記載の空気調和装置。 A utilization side air blowing means for blowing air to the utilization side heat exchanger;
In the cleaning operation, the control means
The air volume of the use-side blowing means, is lower than air volume during normal operation, any claim 1-9, characterized by the new refrigerant gas-liquid two-phase state flowing out from the use side heat exchanger An air conditioner according to claim 1.
前記圧縮機の運転容量を所定値以下に低下させ、前記利用側熱交換器から流出する前記新冷媒を気液二相状態にする
ことを特徴とする請求項1〜10の何れかに記載の空気調和装置。 In the cleaning operation, the control means
The operating capacity of the compressor is lowered below a predetermined value, according to any one of claims 1-10, characterized by the new refrigerant gas-liquid two-phase state flowing out from the use side heat exchanger Air conditioner.
前記冷媒回路は、前記冷媒配管の所定部分と前記利用側熱交換器とを接続した利用側冷媒回路部分を並列に複数備え、
前記制御手段は、前記洗浄運転において、
前記複数の利用側冷媒回路部分を、前記冷媒配管の所定部分の合計断面積が所定の値以下となるように、1または複数の組に分け、
前記圧縮機を駆動源とし、前記複数の利用側冷媒回路部分を組ごとに選択して、各々前記冷媒配管および前記利用側熱交換器に新冷媒を流して前記冷媒配管内に存在する冷凍機油を洗浄する
ことを特徴とする請求項1〜11の何れかに記載の空気調和装置。 A plurality of use side heat exchangers;
The refrigerant circuit includes a plurality of use side refrigerant circuit portions connected in parallel to a predetermined portion of the refrigerant pipe and the use side heat exchanger,
In the cleaning operation, the control means
Dividing the plurality of use-side refrigerant circuit portions into one or a plurality of sets such that a total cross-sectional area of a predetermined portion of the refrigerant pipe is a predetermined value or less;
Refrigerating machine oil that exists in the refrigerant pipe by using the compressor as a drive source, selecting the plurality of use side refrigerant circuit portions for each set, and flowing a new refrigerant to the refrigerant pipe and the use side heat exchanger, respectively. The air conditioner according to any one of claims 1 to 11 , wherein the air conditioner is washed.
前記利用側熱交換器の熱交換器容量の情報から、前記冷媒配管の所定部分の合計断面積を推測する
ことを特徴とする請求項12に記載の空気調和装置。 The control means includes
The air conditioning apparatus according to claim 12 , wherein a total cross-sectional area of a predetermined portion of the refrigerant pipe is estimated from information on a heat exchanger capacity of the use side heat exchanger.
前記旧冷媒に含まれる冷凍機油の動粘性係数と温度との関係の情報と、
前記冷凍機油の動粘性係数に応じた、所定の配管長の配管内を洗浄するのに必要な洗浄時間と冷媒の質量流束との関係の情報が、冷媒状態ごとに記憶手段に記憶され、
前記新冷媒の冷媒温度および冷媒圧力に基づいて当該新冷媒の冷媒状態を推測し、
単位時間当たりの冷媒循環量および前記冷媒配管の配管径に基づいて、前記新冷媒の質量流束を求め、
前記新冷媒の温度に基づいて前記冷凍機油の動粘性係数を求め、
該冷凍機油の動粘性係数、前記冷媒配管の配管長、前記新冷媒の質量流束および冷媒状態をパラメータとし、前記記憶手段に記憶された情報に基づいて、前記洗浄運転による洗浄時間を決定する
ことを特徴とする空気調和装置の洗浄運転方法。 A compressor having a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle means, and a use side heat exchanger are connected by a refrigerant pipe, and the old refrigerant circulating in the refrigerant circuit is replaced with a new refrigerant; In a cleaning operation method of an air conditioner that performs a cleaning operation in the refrigerant pipe by flowing a new refrigerant through the refrigerant pipe and the use side heat exchanger,
Information on the relationship between the kinematic viscosity coefficient and temperature of the refrigeration oil contained in the old refrigerant,
Information on the relationship between the cleaning time required for cleaning the inside of the pipe having a predetermined pipe length and the mass flux of the refrigerant according to the kinematic viscosity coefficient of the refrigerating machine oil is stored in the storage unit for each refrigerant state,
Inferring the refrigerant state of the new refrigerant based on the refrigerant temperature and refrigerant pressure of the new refrigerant,
Based on the refrigerant circulation amount per unit time and the pipe diameter of the refrigerant pipe, obtain the mass flux of the new refrigerant,
Obtain the kinematic viscosity coefficient of the refrigerating machine oil based on the temperature of the new refrigerant,
Using the kinematic viscosity coefficient of the refrigerating machine oil, the pipe length of the refrigerant pipe, the mass flux of the new refrigerant, and the refrigerant state as parameters, the washing time for the washing operation is determined based on the information stored in the storage means. A cleaning operation method for an air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009275596A JP5063670B2 (en) | 2009-12-03 | 2009-12-03 | AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009275596A JP5063670B2 (en) | 2009-12-03 | 2009-12-03 | AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011117668A JP2011117668A (en) | 2011-06-16 |
JP5063670B2 true JP5063670B2 (en) | 2012-10-31 |
Family
ID=44283200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009275596A Expired - Fee Related JP5063670B2 (en) | 2009-12-03 | 2009-12-03 | AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5063670B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2537766B (en) * | 2014-02-20 | 2020-02-19 | Mitsubishi Electric Corp | Refrigeration cycle apparatus |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3370959B2 (en) * | 1999-10-25 | 2003-01-27 | 三菱電機株式会社 | Renewal method and operation method of refrigeration cycle device |
JP3799947B2 (en) * | 2000-03-30 | 2006-07-19 | 三菱電機株式会社 | Refrigeration and air conditioning equipment |
JP4409075B2 (en) * | 2000-10-02 | 2010-02-03 | 三菱電機株式会社 | Cleaning operation method of refrigeration cycle apparatus |
JP4376470B2 (en) * | 2001-01-30 | 2009-12-02 | 三菱電機株式会社 | Refrigeration cycle apparatus and operation method thereof |
JP3491629B2 (en) * | 2001-03-28 | 2004-01-26 | 三菱電機株式会社 | Piping cleaning device and piping cleaning method |
JP4067809B2 (en) * | 2001-10-31 | 2008-03-26 | 三菱電機株式会社 | Refrigerant replacement method for air conditioner, cleaning machine, air conditioner |
JP4420871B2 (en) * | 2005-08-31 | 2010-02-24 | 三菱電機株式会社 | Refrigeration air conditioner |
JP4726600B2 (en) * | 2005-10-06 | 2011-07-20 | 三菱電機株式会社 | Refrigeration air conditioner |
-
2009
- 2009-12-03 JP JP2009275596A patent/JP5063670B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011117668A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008215697A (en) | Air conditioning device | |
JP2008249234A (en) | Failure diagnosis device for refrigeration cycle apparatus and refrigeration cycle apparatus equipped with the same | |
JP2009300041A (en) | Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device | |
JP4120221B2 (en) | Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device | |
CN100443833C (en) | freezer | |
JP3361771B2 (en) | Operation method of refrigeration cycle device | |
JP5063670B2 (en) | AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER | |
JP3491629B2 (en) | Piping cleaning device and piping cleaning method | |
JP3521820B2 (en) | Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof | |
JP3799947B2 (en) | Refrigeration and air conditioning equipment | |
JP4409075B2 (en) | Cleaning operation method of refrigeration cycle apparatus | |
JP4186764B2 (en) | Refrigeration equipment | |
JP2000146369A (en) | Air conditioner | |
KR100709595B1 (en) | Refrigerating apparatus | |
JP3370959B2 (en) | Renewal method and operation method of refrigeration cycle device | |
JP2004333121A (en) | Update method of air conditioner and air conditioner | |
JP4141339B2 (en) | Air conditioner and refrigerating machine oil recovery method thereof | |
JP2004333121A5 (en) | ||
JP2004044939A (en) | Existing pipe washing method and system for air conditioner | |
JP2002277114A (en) | Method for installing freezer/air conditioner | |
JP3666343B2 (en) | Cleaning device, refrigeration air conditioner and its replacement method | |
JP4176413B2 (en) | Operation method of refrigeration cycle apparatus | |
JP2003240368A (en) | Refrigerant and oil recovery method, refrigerant and oil recovery control device, and air conditioner | |
JP2004308934A (en) | Refrigeration apparatus and pipe cleaning method thereof | |
JP4067809B2 (en) | Refrigerant replacement method for air conditioner, cleaning machine, air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5063670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |