JP5039845B1 - Embedded magnet synchronous motor and driving method thereof - Google Patents

Embedded magnet synchronous motor and driving method thereof Download PDF

Info

Publication number
JP5039845B1
JP5039845B1 JP2011175342A JP2011175342A JP5039845B1 JP 5039845 B1 JP5039845 B1 JP 5039845B1 JP 2011175342 A JP2011175342 A JP 2011175342A JP 2011175342 A JP2011175342 A JP 2011175342A JP 5039845 B1 JP5039845 B1 JP 5039845B1
Authority
JP
Japan
Prior art keywords
permanent magnet
coil
power
transmission
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011175342A
Other languages
Japanese (ja)
Other versions
JP2013039005A (en
Inventor
則雄 宮内
Original Assignee
則雄 宮内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 則雄 宮内 filed Critical 則雄 宮内
Priority to JP2011175342A priority Critical patent/JP5039845B1/en
Application granted granted Critical
Publication of JP5039845B1 publication Critical patent/JP5039845B1/en
Publication of JP2013039005A publication Critical patent/JP2013039005A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】ロータに埋込まれた永久磁石が発生する磁束を、該ロータに設けた永久磁石磁束弱めコイルによって弱める埋込磁石同期モータを提供することにある。
【解決手段】ステータと、該ステータに巻回された駆動コイルと、該ステータとギャップを介した、永久磁石が埋込まれたロータと、該駆動コイルを含むモータ駆動回路を有する埋込磁石同期モータにおいて、該埋込磁石同期モータは無線で電力と情報を送受信する電力情報送受信回路を有し、前記ロータに、前記永久磁石の磁束を弱めるために、該情報に基づいて励磁される永久磁石磁束弱めコイルが設けられている。
【選択図】 図1
An object of the present invention is to provide an embedded magnet synchronous motor in which a magnetic flux generated by a permanent magnet embedded in a rotor is weakened by a permanent magnet magnetic flux weakening coil provided in the rotor.
A stator, a drive coil wound around the stator, a rotor embedded with a permanent magnet through a gap with the stator, and an embedded magnet synchronization having a motor drive circuit including the drive coil In the motor, the embedded magnet synchronous motor has a power information transmission / reception circuit that wirelessly transmits and receives power and information, and a permanent magnet excited on the rotor based on the information to weaken the magnetic flux of the permanent magnet. A flux weakening coil is provided.
[Selection] Figure 1

Description

本発明は、ロータに永久磁石磁束弱めコイルを設けた埋込磁石同期モータに関する。 The present invention relates to an embedded magnet synchronous motor in which a rotor is provided with a permanent magnet magnetic flux weakening coil.

埋込磁石同期モータは、将来、電気自動車(EV,Electric Vehicle)や、産業機械、民生機器等の幅広い分野で大量に使われることが期待されるが、その時には、地球温暖化対策の一翼を担わなければならない。その実現には、現在よりも高効率の埋込磁石同期モータが開発されていなければならない。 Embedded magnet synchronous motors are expected to be used in large quantities in a wide range of fields such as electric vehicles (EVs), industrial machines, and consumer products in the future. You have to bear. To achieve this, it is necessary to develop an embedded magnet synchronous motor that is more efficient than at present.

まず、従来の埋込磁石同期モータのロータの構造を説明する。 First, the structure of a rotor of a conventional embedded magnet synchronous motor will be described.

図8に、従来の埋込磁石同期モータのロータとステータの平面図を示す。該従来の埋込磁石同期モータ8は、ロータシャフト81aと、鉄心81bと、該鉄心81bに正方形に埋め込まれた永久磁石83a,83b,83c,83dを有するロータ81と、該ロータ81とギャップ88を介した、駆動コイル(図示せず)が巻回されたスロット82aを有するステータ82を有し、該ロータ81には、磁束短絡防止用穴84a,84bが前記永久磁石83aが埋込まれる溝の両端に、同様に、磁束短絡防止用穴85a,85bが前記永久磁石83bが埋込まれる溝の両端に、また、同様に、磁束短絡防止用穴86a,86bが前記永久磁石83cが埋込まれる溝の両端に、さらに、同様に、磁束短絡防止用穴87a,87bが前記永久磁石83dが埋込まれる溝の両端に設けられている(非特許文献1を参照)。 FIG. 8 shows a plan view of a rotor and a stator of a conventional embedded magnet synchronous motor. The conventional embedded magnet synchronous motor 8 includes a rotor shaft 81a, an iron core 81b, a rotor 81 having permanent magnets 83a, 83b, 83c, 83d embedded in the iron core 81b in a square shape, the rotor 81 and a gap 88. And a stator 82 having a slot 82a around which a driving coil (not shown) is wound, and the rotor 81 has grooves 84a and 84b for preventing magnetic short-circuiting in which the permanent magnet 83a is embedded. Similarly, magnetic flux short-circuit prevention holes 85a and 85b are embedded at both ends of the groove in which the permanent magnet 83b is embedded, and similarly, magnetic flux short-circuit prevention holes 86a and 86b are embedded in the permanent magnet 83c. Similarly, magnetic flux short-circuit prevention holes 87a and 87b are provided at both ends of the groove in which the permanent magnet 83d is embedded (see Non-Patent Document 1).

次に、従来の埋込磁石同期モータの駆動回路を説明する。 Next, a drive circuit for a conventional embedded magnet synchronous motor will be described.

図9に、従来の埋込磁石同期モータの駆動コイルを含む駆動回路を示す。該駆動回路9は、外部電源91a,91bとパワーオンリセット回路95に接続されたモータコントローラ92と、該モータコントローラ92に接続するドライバ93と、該ドライバ93に接続する、スター結線された駆動コイル94a,94b,94cからなり、外部電源が投入されると、前記パワーオンリセット回路95により、モータコントローラ92はオンし、前記ドライバ93から前記駆動コイル94a,94b,94cに順次、駆動電流が供給され、図8に示した、従来の埋込磁石同期モータ8が所定の回転数で回転し、前記外部電源91a,91bが遮断されると、前記パワーオンリセット回路95により、前記モータコントローラ92はオフし、前記ドライバ93から前記駆動コイル94a,94b,94cへの駆動電流の供給が止まり、前記従来の埋込磁石同期モータ8は停止する。 FIG. 9 shows a drive circuit including a drive coil of a conventional embedded magnet synchronous motor. The drive circuit 9 includes a motor controller 92 connected to the external power supplies 91a and 91b and the power-on reset circuit 95, a driver 93 connected to the motor controller 92, and a star-connected drive coil connected to the driver 93. When the external power supply is turned on, the motor controller 92 is turned on by the power-on reset circuit 95 and the drive current is sequentially supplied from the driver 93 to the drive coils 94a, 94b, and 94c. When the conventional embedded magnet synchronous motor 8 shown in FIG. 8 rotates at a predetermined rotational speed and the external power sources 91a and 91b are shut off, the power-on reset circuit 95 causes the motor controller 92 to The drive current from the driver 93 to the drive coils 94a, 94b, 94c is turned off. Feeding is stopped, the conventional embedded magnet synchronous motor 8 stops.

図6に、従来の第1の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータのロータの動作説明図を示す。図6(a)は、ロータ6が静止する時のロータ6の平面図であり、該ロータ6は、非磁性材料からなる中空筒状の周壁体62bと、ロータ軸63と、2極(64a,64b)の永久磁石64と、非磁性材料からなる芯体62aと、磁束誘導体61と、コイルスプリング66a,66b,66c,66dと、高透磁率材料からなる可動体65a,65b,65c,65dを有し、該可動体65a,65b,65c,65dは、それぞれ前記コイルスプリング66a,66b,66c,66dから引き込まれ、空隙部68a,68b,68c,68dが生じ、永久磁石64の磁極N,64aから出た磁束67aは、磁束誘導体64cに誘導され周壁体62bを抜け出し、磁束誘導体64dに誘導されて磁極S,64bに戻る。 FIG. 6 is an operation explanatory view of a rotor of an embedded magnet synchronous motor having a rotor provided with a conventional first permanent magnet magnetic flux weakening mechanism. FIG. 6A is a plan view of the rotor 6 when the rotor 6 is stationary. The rotor 6 includes a hollow cylindrical peripheral wall body 62b made of a nonmagnetic material, a rotor shaft 63, and two poles (64a). 64b), permanent magnet 64, core body 62a made of a non-magnetic material, magnetic flux derivative 61, coil springs 66a, 66b, 66c, 66d, and movable bodies 65a, 65b, 65c, 65d made of a high magnetic permeability material. The movable bodies 65a, 65b, 65c, and 65d are drawn from the coil springs 66a, 66b, 66c, and 66d, respectively, and gaps 68a, 68b, 68c, and 68d are generated, and the magnetic poles N and The magnetic flux 67a emitted from 64a is guided to the magnetic flux derivative 64c and escapes from the peripheral wall body 62b, and is guided to the magnetic flux derivative 64d to return to the magnetic poles S and 64b.

図6(b)は、ロータ6が回転する時のロータ6の平面図であり、該ロータ6の前記可動体65a,65b,65c,65dは、それぞれ、それぞれに作用する遠心力によって、前記コイルスプリング66a,66b,66c,66dから引き離され、前記空隙部68a,68b,68c,68dが消失し、永久磁石64の磁極N,64aから出た磁束67bは、磁束誘導体64cに誘導され、前記可動体65bと、磁束誘導体61と、前記可動体65aを経由して、磁束誘導体64dに誘導され、または、磁束誘導体64cに誘導され、前記可動体65cと、磁束誘導体61と、前記可動体65dを経由して、磁束誘導体64dに誘導され、磁極S,64bに戻り、また、永久磁石64の磁極N,64aから出た磁束67cは、磁束誘導体64cに誘導され周壁体62bを抜け出し、磁束誘導体64dに誘導され、磁極S,64bに戻り、ロータ6が回転する時の該磁束67cは、ロータ6の静止する時の前記磁束67aに較べて小さくなる。 FIG. 6B is a plan view of the rotor 6 when the rotor 6 rotates. The movable bodies 65a, 65b, 65c, and 65d of the rotor 6 are each made of the coil by the centrifugal force acting on each of them. The gaps 68a, 68b, 68c, and 68d are removed from the springs 66a, 66b, 66c, and 66d, and the magnetic flux 67b emitted from the magnetic poles N and 64a of the permanent magnet 64 is guided to the magnetic flux derivative 64c and moved. The body 65b, the magnetic flux derivative 61, and the movable body 65a are guided to the magnetic flux derivative 64d, or are guided to the magnetic flux derivative 64c, and the movable body 65c, the magnetic flux derivative 61, and the movable body 65d are The magnetic flux 67c is guided to the magnetic flux derivative 64d and returned to the magnetic poles S and 64b, and the magnetic flux 67c emitted from the magnetic poles N and 64a of the permanent magnet 64 is 4c is guided out of the peripheral wall 62b, guided to the magnetic flux derivative 64d, returned to the magnetic poles S and 64b, and the magnetic flux 67c when the rotor 6 rotates is smaller than the magnetic flux 67a when the rotor 6 is stationary. Become.

また、図7に、従来の第2の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータのロータの動作説明図を示す。図7(a)は、ロータ7が静止する時のロータ7の平面図であり、該ロータ7は、非磁性材料からなる中空筒状の周壁体72と、ロータ軸73と、2極(74a,74b)の永久磁石74と、非磁性材料からなる芯体71と、空隙部76aに封入された磁性流体75aと、空隙部76bに封入された磁性流体75bを有し、永久磁石74の磁極N,74aから出た磁束77aは、磁性流体75aに誘導され周壁体72を抜け出し、磁性流体75bに誘導されて磁極S,74bに戻る。 FIG. 7 shows an operation explanatory diagram of a rotor of an embedded magnet synchronous motor having a rotor provided with a conventional second permanent magnet magnetic flux weakening mechanism. FIG. 7A is a plan view of the rotor 7 when the rotor 7 is stationary. The rotor 7 includes a hollow cylindrical peripheral wall body 72 made of a nonmagnetic material, a rotor shaft 73, and two poles (74a). 74b), a core 71 made of a nonmagnetic material, a magnetic fluid 75a sealed in the gap 76a, and a magnetic fluid 75b sealed in the gap 76b. The magnetic flux 77a emitted from N, 74a is guided by the magnetic fluid 75a and escapes from the peripheral wall 72, and is guided by the magnetic fluid 75b to return to the magnetic poles S and 74b.

図7(b)は、ロータ7が回転する時のロータ7の平面図であり、該ロータ7の前記磁性流体75aと75bはそれぞれ、それぞれに作用する遠心力によって、前記周壁体72側に押し付けられ、永久磁石74のそれぞれの磁極N,74aと磁極S,74bから引き離され、空隙部76c,76dが生じ、永久磁石74の磁極N,74aから出た磁束77bは、空隙部76cと、磁性流体75aとから周壁体72を抜け出し、磁性流体75bと空隙76dを経由して、磁極S,74bに戻るので、該磁束77bは、前記磁束77aに較べて小さくなる。
特願平10−161942 特願2008−057107 埋込磁石同期モータの設計と制御武田洋次・松井信行・森本茂雄・本田幸夫 共著
FIG. 7B is a plan view of the rotor 7 when the rotor 7 rotates. The magnetic fluids 75a and 75b of the rotor 7 are pressed against the peripheral wall body 72 by the centrifugal force acting on each of them. The magnetic poles N and 74a and the magnetic poles S and 74b of the permanent magnet 74 are separated from each other to generate gaps 76c and 76d. The magnetic flux 77b emitted from the magnetic poles N and 74a of the permanent magnet 74 is separated from the gap 76c and the magnetic field. Since the fluid 75a exits the peripheral wall 72 and returns to the magnetic poles S and 74b via the magnetic fluid 75b and the gap 76d, the magnetic flux 77b is smaller than the magnetic flux 77a.
Japanese Patent Application No. 10-161942 Japanese Patent Application No. 2008-057107 Design and control of embedded synchronous motor Yoji Takeda, Nobuyuki Matsui, Shigeo Morimoto, Yukio Honda

従来の埋込磁石同期モータでは、該埋込磁石同期モータの誘起電圧Vには制限値Vomがあった(非特許文献1参照)。それを数1に示す。 In the conventional embedded magnet synchronous motor, the induced voltage V o of the embedded magnet synchronous motor has a limit value V om (see Non-Patent Document 1). This is shown in Equation 1.

数1において、ωは該埋込磁石同期モータの電気角速度、i,iは回転座標軸d,q電流、L,Lは各軸のインダクタンス、Φは電機子鎖交磁束である。 In Equation 1, ω is an electrical angular velocity of the embedded magnet synchronous motor, i d and i q are rotational coordinate axes d and q current, L d and L q are inductances of respective axes, and Φ a is an armature interlinkage magnetic flux. .

電気各速度ωにおいて、制限値Vomを下げるには、負のi電流を流す弱め磁束制御を行う必要があり、i電流による銅損が避けられないものであった。 In electrical each speed omega, the lower the limit value V om, it is necessary to perform the flux-weakening control flow negative i d current was achieved, the copper loss by i d current is unavoidable.

従来の第1の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータでは、ロータ6が回転する時の磁束67cが、ロータ6が静止する時の磁束67aに較べ小さくなり、電機子鎖交磁束Φを小さくできるので、負のi電流を流す弱め磁束制御を行うことなく、制限値Vomを下げることができ、回転速度を高められる効果があった。 In a conventional embedded magnet synchronous motor having a rotor provided with a first permanent magnet magnetic flux weakening mechanism, the magnetic flux 67c when the rotor 6 rotates is smaller than the magnetic flux 67a when the rotor 6 is stationary, and the armature since the flux linkage [Phi a can be reduced, without performing flux-weakening control flow negative i d current, it is possible to lower the limit value V om, it had the effect of increased rotational speed.

同様に、従来の第2の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータでは、ロータ7が回転する時の磁束77bが、ロータ7が静止する時の磁束77aに較べ小さくなり、電機子鎖交磁束Φを小さくできるので、負のi電流を流す弱め磁束制御を行うことなく、制限値Vomを下げることができ、回転速度を高められる効果があった。 Similarly, in an embedded magnet synchronous motor having a rotor provided with a conventional second permanent magnet magnetic flux weakening mechanism, the magnetic flux 77b when the rotor 7 rotates is smaller than the magnetic flux 77a when the rotor 7 is stationary. since the armature flux linkage [Phi a can be reduced, without performing flux-weakening control flow negative i d current, it is possible to lower the limit value V om, had the effect of increased rotational speed.

しかしながら、従来の第1の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータにおいて、該ロータ6が回転すると、前記可動体65a,65b,65c,65dが移動するが、また、同様に、従来の第2の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータにおいては、該ロータ7が回転すると、磁性流体75a,75bが移動するが、前記ロータ6または7に急加速の回転もしくは急減速の回転を要求した場合には、前記可動体65a,65b,65c,65dまたは磁性流体75a,75bは急加速の回転もしくは、急減速の回転の要求に応じてすぐに、移動し、静止することはできないという難点があった、つまり、応答性に難点があった。 However, in the conventional embedded magnet synchronous motor having a rotor provided with the first permanent magnet magnetic flux weakening mechanism, when the rotor 6 rotates, the movable bodies 65a, 65b, 65c, and 65d move. In addition, in a conventional embedded magnet synchronous motor having a rotor provided with a second permanent magnet magnetic flux weakening mechanism, when the rotor 7 rotates, the magnetic fluids 75a and 75b move, but the rotor 6 or 7 suddenly moves. When the rotation of acceleration or the rotation of rapid deceleration is requested, the movable bodies 65a, 65b, 65c, 65d or the magnetic fluids 75a, 75b immediately respond to the request for rotation of rapid acceleration or rotation of rapid deceleration. There was a difficulty that it could not move and stop, that is, there was a difficulty in responsiveness.

ステータと、該ステータに巻回された駆動コイルと、該ステータとギャップを介した、永久磁石が埋込まれたロータと、該駆動コイルを含むモータ駆動回路を有し、該埋込磁石同期モータは無線で電力と情報を送受信する電力情報送受信回路を有し、前記ロータに、前記永久磁石の磁束を弱めるために、該情報に基づいて励磁される永久磁石磁束弱めコイルを設け、前記永久磁石磁束弱めコイルは、前記永久磁石が埋込まれる溝の両端に設けられた磁束短絡防止用穴に巻回され、電力情報送受信回路は、第1電子回路と第2電子回路からなり、ステータは、モータ駆動回路と第1電子回路からなる第1電子基板を有し、ロータは、第2電子回路と、永久磁石磁束弱めコイル励磁コントローラと、前記永久磁石磁束弱めコイルに接続する永久磁石磁束弱めコイルドライバからなる永久磁石磁束弱めコイルドライバ回路と、前記永久磁石磁束弱めコイルからなる第2電子基板を有する埋込磁石同期モータにおいて、第1電子回路は、第1パワーオンリセット回路と、1次コイルと、第1送受信スイッチと、該第1送受信スイッチを介して該1次コイルに接続される、第1送信器と第1受信器と、外部電源用の1次電源端子からなり、第2電子回路は、第2パワーオンリセット回路と、該1次コイルと電磁結合する2次コイルと、第2送受信スイッチと、該第2送受信スイッチを介して該2次コイルに接続される第2送信器と第2受信器と、該2次コイルに接続するダイオード全波整流器と平滑コンデンサと、該平滑コンデンサに接続する充電制御器と2次電源と該2次電源の出力する出力電圧を前記永久磁石磁束弱めコイルの定格電圧へレギュレートするレギュレータとからなる充電回路からなるA stator, a wound drive coil on the stator, through the stator and the gap, possess a rotor in which a permanent magnet is embedded, the motor drive circuit including the drive coil,該埋write magnet synchronous motor has a power information transmission and reception circuit for transmitting and receiving power and data wirelessly to the rotor, in order to weaken the magnetic flux of the permanent magnets, it provided the permanent magnet flux weakening coil is energized on the basis of the information, the permanent magnet The magnetic flux weakening coil is wound around a magnetic flux short-circuit prevention hole provided at both ends of the groove in which the permanent magnet is embedded. The power information transmitting / receiving circuit is composed of a first electronic circuit and a second electronic circuit. The rotor has a first electronic board composed of a motor drive circuit and a first electronic circuit, and the rotor has a second electronic circuit, a permanent magnet magnetic flux weakening coil excitation controller, and a permanent magnet connected to the permanent magnet magnetic flux weakening coil. And the permanent magnet flux weakening coil driver circuit comprising a coil driver flux weakening, in an interior permanent magnet synchronous motor having a second electronic board consisting of the permanent magnet flux weakening coil, the first electronic circuit includes a first power-on reset circuit, A primary coil, a first transmission / reception switch, a first transmitter and a first receiver connected to the primary coil via the first transmission / reception switch, and a primary power supply terminal for an external power source; The second electronic circuit includes a second power-on reset circuit, a secondary coil electromagnetically coupled to the primary coil, a second transmission / reception switch, and a second coil connected to the secondary coil via the second transmission / reception switch. Two transmitters, a second receiver, a diode full-wave rectifier connected to the secondary coil, a smoothing capacitor, a charge controller connected to the smoothing capacitor, a secondary power source, and an output from the secondary power source. Consisting charging circuit comprising a voltage from a regulator that regulates the voltage rating of the permanent magnet flux weakening coil.

1次電源端子に外部電源が印加されると、第1パワーオンリセット回路は、モータ駆動回路をオンし、埋込磁石同期モータを起動し、第1パワーオン信号を第1送受信スイッチと第1送信器と第1受信器に出力し、該第1送受信スイッチは、1次コイルを該第1送信器に接続し、該第1送信器は該1次コイルに電力用高周波電圧の印加を開始し、第2パワーオンリセット回路は、2次コイルに誘起する電力用高周波電圧を検出すると、第2パワーオン信号を第2送受信スイッチと、第2送信器と、第2受信器と、レギュレータと、永久磁石磁束弱めコイル励磁コントローラへ出力し、また、2次電源は充電を開始する When external power is applied to the primary power supply terminal, the first power-on reset circuit turns on the motor drive circuit, activates the embedded magnet synchronous motor, and sends the first power-on signal to the first transmission / reception switch and the first transmission / reception switch. The first transmitter / receiver switch connects the primary coil to the first transmitter, and the first transmitter starts applying a high-frequency voltage for power to the primary coil. The second power-on reset circuit detects the power high-frequency voltage induced in the secondary coil, and sends the second power-on signal to the second transmission / reception switch, the second transmitter, the second receiver, the regulator, The permanent magnet magnetic flux weakening is output to the coil excitation controller, and the secondary power supply starts charging .

その後、第1送信器は1次コイルへの電力用高周波電圧の印加を一時停止し、モータ回転数の情報を含む情報用高周波電圧を送信して、その送信を停止し、その直後に、第2送信器は、2次電源の出力電圧の情報を含む情報用高周波電圧を送信し、その後は、第1送信器による電力用高周波電圧と情報用高周波電圧の送信と、第2送信器による情報用高周波電圧の送信の、一連の送信が繰り返し行われる。 Thereafter, the first transmitter temporarily stops the application of the power high-frequency voltage to the primary coil, transmits the information high-frequency voltage including information on the motor rotation speed, stops the transmission, and immediately after that, The two transmitters transmit an information high-frequency voltage including information on the output voltage of the secondary power supply, and thereafter transmit the power high-frequency voltage and the information high-frequency voltage by the first transmitter, and the information by the second transmitter. A series of transmissions of the high-frequency voltage for use is repeated.

2次電源の出力電圧が第1電圧レベルを超え、また、モータ回転数が所定値を越えると、第2受信器は、永久磁石磁束弱めコイル励磁コントローラをオンし、永久磁石弱めコイルドライバは、永久磁石磁束弱めコイルに永久磁石磁束を弱めるために、励磁電流を供給し、第2送信器は、2次電源の出力電圧が第2電圧レベルを超えると、第1送信器に、その電力用高周波電圧の送信の停止の継続を指示するために、電力送信停止継続高周波電圧を送信し、また、2次電源の出力電圧が第1電圧レベルを切ると、第1送信器にその電力高周波電圧の送信の再開を指示するために、電力送信再開高周波電圧を送信する。 When the output voltage of the secondary power source exceeds the first voltage level and the motor rotation speed exceeds a predetermined value, the second receiver turns on the permanent magnet flux weakening coil excitation controller, and the permanent magnet weakening coil driver In order to weaken the permanent magnet magnetic flux to the permanent magnet magnetic flux weakening coil, an excitation current is supplied, and when the output voltage of the secondary power source exceeds the second voltage level, the second transmitter sends the power to the first transmitter. In order to instruct the continuation of the stop of the transmission of the high-frequency voltage, the power transmission stop-continuation high-frequency voltage is transmitted, and when the output voltage of the secondary power source falls below the first voltage level, the power high-frequency voltage is sent to the first transmitter. In order to instruct the resumption of the transmission, the power transmission resumption high-frequency voltage is transmitted.

外部電源が遮断されると、第1パワーオンリセット回路は、第1送信器に外部電源の遮断情報信号を出力し、該第1送信器はただちに、電力用高周波電圧の送信を停止し、その直後に、外部電源が遮断されたとの情報を含む情報用高周波電圧を送信し、第1パワーオンリセット回路は、モータ駆動回路をオフし、第1パワーオフ信号を第1送受信スイッチと、第1送信器と、第1受信器へ出力し、第2送受信スイッチは第2受信器を接続し、第2受信器は、該情報用高周波電圧を受信し、外部電源が遮断されたとの情報の信号を第2パワーオンリセット回路へ出力し、該第2パワーオンリセット回路は、第2パワーオフ信号を第2送受信スイッチと、第2送信器と、第2受信器と、レギュレータと、永久磁石磁束弱め励磁コントローラへ出力し、永久磁石磁束弱めコイルドライバは、永久磁石磁束弱めコイルへの励磁電流の供給を停止する。 When the external power supply is cut off, the first power-on reset circuit outputs an external power supply cutoff information signal to the first transmitter, and the first transmitter immediately stops the transmission of the high frequency voltage for power, Immediately after, an information high-frequency voltage including information that the external power supply has been shut off is transmitted, the first power-on reset circuit turns off the motor drive circuit, and sends the first power-off signal to the first transmission / reception switch, Output to the transmitter and the first receiver, the second transmission / reception switch connects the second receiver, the second receiver receives the information high-frequency voltage, and the information signal that the external power supply is shut off Is output to the second power-on reset circuit, and the second power-on reset circuit outputs the second power-off signal to the second transmission / reception switch, the second transmitter, the second receiver, the regulator, and the permanent magnet magnetic flux. Output to weak excitation controller , Coil driver weakening permanent magnet flux stops supplying the excitation current to the permanent magnet flux weakening coil.

本発明は、永久磁石磁束弱めコイルに励磁電流を供給することによって、ロータとステータ間のギャップを介さずに、直に、永久磁石磁束を弱めることができるので、負の小さなi電流を流す弱め磁束制御を併用することによって、前記制限値Vomを小さくできる。 The present invention, by supplying an exciting current to the permanent magnet flux weakening coils, not through the gap between the rotor and the stator, directly, it is possible to weaken the permanent magnet flux flows negative small i d current By using the flux weakening control together, the limit value V om can be reduced.

その結果、高速回転領域を広げられる効果がある。 As a result, there is an effect that the high-speed rotation region can be expanded.

以下、本発明の実施の形態を図面に基づいて詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の埋込磁石同期モータのロータとステータの平面図を示す。該本発明の埋込磁石同期モータ1は、ロータシャフト11aと、鉄心11bと、該鉄心11bに正方形に埋め込まれた、全体の極対数が2となる永久磁石13a,13b,13c,13dを有するロータ11と、該ロータ11とギャップ19を介した、駆動コイル(図示せず)が巻回されたスロット12aを有するステータ12を有し、該ロータ11には、前記永久磁石13aのために磁束短絡防止用穴15a,15b、同様に、前記永久磁石13bのために磁束短絡防止用穴16a,16b、また、同様に、前記永久磁石13cのために磁束短絡防止用穴17a,17b、さらに、同様に、前記永久磁石13dのために磁束短絡防止用穴18a,18bが設けられ、永久磁石磁束弱めコイル14aは、磁束短絡防止用穴15a,15bに巻回され、永久磁石磁束弱めコイル14bは、磁束短絡防止用穴16a,16bに巻回され、永久磁石磁束弱めコイル14cは、磁束短絡防止用穴17a,17bに巻回され、永久磁石磁束弱めコイル14dは、磁束短絡防止用穴18a,18bに巻回されている。 FIG. 1 is a plan view of a rotor and a stator of an embedded magnet synchronous motor according to the present invention. The embedded magnet synchronous motor 1 of the present invention has a rotor shaft 11a, an iron core 11b, and permanent magnets 13a, 13b, 13c, 13d embedded in a square in the iron core 11b and having a total number of pole pairs of 2. The rotor 11 has a stator 12 having a slot 12a around which a drive coil (not shown) is wound, and the rotor 11 and a gap 19 are interposed between the rotor 11 and the rotor 11. The rotor 11 has a magnetic flux for the permanent magnet 13a. Short-circuit prevention holes 15a and 15b, similarly, magnetic flux short-circuit prevention holes 16a and 16b for the permanent magnet 13b, and similarly magnetic flux short-circuit prevention holes 17a and 17b for the permanent magnet 13c, Similarly, magnetic flux short-circuit prevention holes 18a and 18b are provided for the permanent magnet 13d, and the permanent magnet magnetic flux weakening coil 14a is wound around the magnetic flux short-circuit prevention holes 15a and 15b. The permanent magnet magnetic flux weakening coil 14b is wound around the magnetic flux short-circuit prevention holes 16a and 16b, and the permanent magnet magnetic flux weakening coil 14c is wound around the magnetic flux short-circuit prevention holes 17a and 17b, and the permanent magnet magnetic flux weakening coil 14d. Are wound around the magnetic flux short-circuit prevention holes 18a and 18b.

次に、図2に、本発明の埋込磁石同期モータの側面透視図を示す。本発明の埋込磁石同期モータ2は、軸受け29a,29bに受けられたロータ軸21aを有するロータ21と、スロット(図示せず)に巻回された駆動コイル28a,28b,28cを有するステータヨーク22aから成るステータ22を有し、該ロータシャフト21aの先端21bに固定され、第2電子回路用IC,26aと、図1に示す、前記永久磁石磁束弱めコイル14a,14b,14c,14dの端子ワイヤー23(該端子ワイヤー23は、軸受29bを避けるために、ロータシャフト21aに空けられた、内面に絶縁コーティングが施されたワイヤー用トンネル21cに通されている)を接続した、永久磁石磁束弱めコイルドライバ回路用IC,26bを実装し、リチウムイオン2次電池27とリング形状でその軸がロータシャフト21aの長さ方向にあり、ロータシャフト21aの先端21bがその内側にかからないようにロータシャフト21aから離して配置された2次コイル26cと該2次コイル26cの発生する磁束の磁路として機能する(磁束がロータシャフト21a,軸受29b,リチウムイオン2次電池27あるいはステータヨーク22aに漏れてうず電流損失を生ずることをさけるため)、特にうず電流損失を抑えるためにNiZnフェライトのバルク材あるいはFe系軟磁性薄板やアモルファス薄板を電気的絶縁膜を介して積層した積層材から成る、該2次コイル26cの2次コイル用コア26dと2次コイル用バックプレート26eを搭載した第2回路基板26と、ステータ22に固定され、前記2次コイル26cと磁気結合する、リング形状でその軸がロータシャフト21a方向にあり、ロータシャフト21aの先端21bがその内側にかからないようにロータシャフト21aから離して配置された1次コイル25bと該1次コイル25bの発生する磁束の磁路として機能する(磁束がロータシャフト21a,軸受29b,リチウムイオン2次電池27あるいはステータヨーク22aに漏れてうず電流損失を生ずることをさけるため)、同様に、特にうず電流損失を抑えるためにNiZnフェライトのバルク材あるいはFe系軟磁性薄板やアモルファス薄板を電気的絶縁膜を介して積層した積層材から成る、該1次コイル25bの1次コイル用コイルコア25cと1次コイル用バックプレート25dと、モータ駆動回路と第1電子回路用IC,25aを実装した第1回路基板25と該第1回路基板25の外部電源用の1次電源端子24a,24bから構成されている。 Next, FIG. 2 shows a side perspective view of the embedded magnet synchronous motor of the present invention. The embedded magnet synchronous motor 2 of the present invention includes a rotor 21 having a rotor shaft 21a received by bearings 29a and 29b, and a stator yoke having drive coils 28a, 28b and 28c wound around slots (not shown). And a second electronic circuit IC 26a, and terminals of the permanent magnet magnetic flux weakening coils 14a, 14b, 14c, 14d shown in FIG. 1 having a stator 22 made of 22a, fixed to the tip 21b of the rotor shaft 21a. Permanent magnet magnetic flux weakening connected to a wire 23 (the terminal wire 23 is passed through a wire tunnel 21c having an inner surface coated with an insulating coating) formed in the rotor shaft 21a to avoid the bearing 29b. IC for coil driver circuit, 26b is mounted, lithium ion secondary battery 27 and ring shape, and its axis is rotary The secondary coil 26c is located in the longitudinal direction of the rotor shaft 21a and is arranged away from the rotor shaft 21a so that the tip 21b of the rotor shaft 21a does not go inside thereof, and functions as a magnetic path of magnetic flux generated by the secondary coil 26c. (In order to prevent the magnetic flux from leaking to the rotor shaft 21a, the bearing 29b, the lithium ion secondary battery 27 or the stator yoke 22a to cause eddy current loss), in order to suppress the eddy current loss, the bulk material of NiZn ferrite or Fe A second circuit board 26 mounted with a secondary coil core 26d and a secondary coil back plate 26e of the secondary coil 26c, which is made of a laminated material obtained by laminating a series soft magnetic thin plate or an amorphous thin plate through an electrical insulating film. And a ring shape fixed to the stator 22 and magnetically coupled to the secondary coil 26c. As a magnetic path of a magnetic flux generated by the primary coil 25b and the primary coil 25b arranged away from the rotor shaft 21a so that the tip 21b of the rotor shaft 21a is not inward of the rotor shaft 21a. Similarly, in order to prevent eddy current loss by preventing the magnetic flux from leaking to the rotor shaft 21a, the bearing 29b, the lithium ion secondary battery 27 or the stator yoke 22a, especially in order to suppress the eddy current loss, A coil core 25c for the primary coil and a back plate 25d for the primary coil of the primary coil 25b, which are made of a laminated material in which a bulk material, an Fe-based soft magnetic thin plate or an amorphous thin plate is laminated via an electrical insulating film, and a motor drive A first circuit board 25 on which the circuit and the first electronic circuit IC 25a are mounted; The circuit board 25 is composed of primary power supply terminals 24a and 24b for external power supply.

次に、第1電子回路と第2電子回路からなる、無線で電力と情報を送受信する電力情報送受信回路と、永久磁石磁束弱めコイルドライバ回路と、永久磁石磁束弱めコイルの第1の実施の形態の動作を、図3に示す、本発明の回路ブロック図と、図4に示す、外部電源用の1次電源端子間電圧の時間変化(a),第1送信器の送信する高周波電圧の時間変化(b),第1受信器の受信する高周波電圧の時間変化(c),2次コイルの誘起電圧の時間変化(d),第2送信器の送信する高周波電圧の時間変化(e),第2受信器の受信する高周波電圧の時間変化(f)と永久磁石磁束弱めコイル励磁コントローラに入力する励磁オンオフ電圧の時間変化(g)の本発明の、第1の埋込磁石同期モータの駆動タイムチャートと、図5に示す、本発明の埋込磁石同期モータの駆動フローチャートを使って説明する。 Next, a first embodiment of a power information transmitting / receiving circuit that wirelessly transmits and receives power and information, a permanent magnet magnetic flux weakening coil driver circuit, and a permanent magnet magnetic flux weakening coil, which includes a first electronic circuit and a second electronic circuit. 3 is the circuit block diagram of the present invention shown in FIG. 3 and the time variation (a) of the voltage between the primary power supply terminals for the external power supply shown in FIG. 4, the time of the high frequency voltage transmitted by the first transmitter. Change (b), time change (c) of the high frequency voltage received by the first receiver, time change (d) of the induced voltage of the secondary coil, time change (e) of the high frequency voltage transmitted by the second transmitter, Driving the first embedded magnet synchronous motor of the present invention of the time change (f) of the high-frequency voltage received by the second receiver and the time change (g) of the excitation on / off voltage input to the permanent magnet flux weakening coil excitation controller. Time chart and the present invention shown in FIG. Use the driving flow of the embedded magnet synchronous motor is described.

図3に示す、本発明の回路ブロック図で、図4に示す、本発明の、第1の埋込磁石同期モータの駆動タイムチャートの図4(a)のように、前記1次電源端子34a(24a)と前記1次電源端子34b(24b)間に外部電源電圧41が印加されると、第1電子回路31を構成する、第1パワーオンリセット回路31aは、第1送信器31bと第1受信器31cと第1送受信スイッチ31dに第1パワーオン信号を出力し(S1)、該第1送受信スイッチ31dは該第1送信器31bと1次コンデンサ35bと直列に接続した1次コイル35aを接続し、該第1送信器31bは、1次コイル35aに、共振周波数f(共振周波数fは、1次コイル35aと2次コイル36a間の伝送効率を考慮して、1次コイル35a及び2次コイル36aに誘起される起電圧は周波数に比例するので、10kHzより低くても、起電圧は小さくなるが、数10kHzより大きくなると、うず電流損失が周波数の2乗に比例して大きくなるので、10kHz〜数10kHzが好ましい)に設定された電力用高周波電圧42の印加を開始し(S2)、第2電子回路32を構成する、2次コンデンサ36bと直列に接続して1次コイル35aと同一の共振周波数fに設定された2次コイル36aには、図4(d)に示す、前記電力用高周波電圧42に対応する電力用高周波電圧44が誘起し、該電力用高周波電圧44はダイオード全波整流器32dで全波整流され、まず、該ダイオード全波整流器32dに接続する平滑コンデンサ32eで平滑され、該平滑コンデンサ32eに接続する、充電回路37の充電制御器37aによって、リチウムイオン2次電池37bに充電される(S3)。 FIG. 4 is a circuit block diagram of the present invention. As shown in FIG. 4A of the drive time chart of the first embedded magnet synchronous motor of the present invention shown in FIG. When an external power supply voltage 41 is applied between (24a) and the primary power supply terminal 34b (24b), the first power-on reset circuit 31a constituting the first electronic circuit 31 is connected to the first transmitter 31b and the first power supply terminal 34b (24b). A first power-on signal is output to the first receiver 31c and the first transmission / reception switch 31d (S1), and the first transmission / reception switch 31d is connected to the first transmitter 31b and the primary capacitor 35b in series with a primary coil 35a. The first transmitter 31b is connected to the primary coil 35a at the resonance frequency f (the resonance frequency f is determined by considering the transmission efficiency between the primary coil 35a and the secondary coil 36a and the primary coil 35a). Secondary coil 36a Since the induced voltage is proportional to the frequency, the voltage is smaller even if the frequency is lower than 10 kHz. However, if the voltage is larger than several tens of kHz, the eddy current loss increases in proportion to the square of the frequency. Application of the high frequency power voltage 42 set to 10 kHz is preferable (S2), and the same resonance frequency as that of the primary coil 35a is connected in series with the secondary capacitor 36b constituting the second electronic circuit 32. The power high-frequency voltage 44 corresponding to the power high-frequency voltage 42 shown in FIG. 4D is induced in the secondary coil 36a set to f, and the power high-frequency voltage 44 is converted into a diode full-wave rectifier 32d. Of the charging circuit 37 which is first smoothed by a smoothing capacitor 32e connected to the diode full-wave rectifier 32d and connected to the smoothing capacitor 32e. The charge control unit 37a, is charged to the lithium ion secondary battery 37b (S3).

一方、第2パワーオンリセット回路32aは、図4(d)に示す、2次コイル36aに誘起する前記電力用高周波電圧44を検出すると、第2パワーオン信号を、第2送受信スイッチ32fと、第2送信器32bと、第2受信器32cと、リチウムイオン2次電池37bの出力を定格電圧にレギュレートするレギュレータ37cと、該レギュレータ37cに接続する永久磁石磁束弱めコイルドライバ回路38の永久磁石磁束弱めコイル励磁コントローラ38aへ出力し、前記送受信スイッチ32fは、リチウムイオン2次電池37bの出力電圧をモニターし、まず、該リチウムイオン2次電池37bの出力電圧が第1電圧レベル(例えば、レギュレータ37cが出力する電圧が並列接続の永久磁石磁束弱めコイル33a,33b,33c、33d(本発明では、同一励磁電流の場合、並列接続では、直列接続に較べ励磁電圧が1/4となるので、並列接続を採用した)を励磁するために必要な定格電圧の最低電圧となる前記リチウムイオン2次電池37bの出力電圧を第1電圧レベルに設定する。)を越えているかを確認する(S4)。 On the other hand, when the second power-on reset circuit 32a detects the power high-frequency voltage 44 induced in the secondary coil 36a shown in FIG. 4D, the second power-on reset circuit 32a sends the second power-on signal to the second transmission / reception switch 32f, The second transmitter 32b, the second receiver 32c, the regulator 37c that regulates the output of the lithium ion secondary battery 37b to the rated voltage, and the permanent magnet of the permanent magnet magnetic flux weakening coil driver circuit 38 connected to the regulator 37c The transmission / reception switch 32f monitors the output voltage of the lithium ion secondary battery 37b. First, the output voltage of the lithium ion secondary battery 37b is set to a first voltage level (for example, a regulator). The voltage output by 37c is a permanent magnet flux weakening coil 33a, 33b, 33c, 3c connected in parallel. In the present invention, in the case of the same excitation current, the parallel voltage is the lowest voltage of the rated voltage required for exciting the parallel connection because the excitation voltage is 1/4 compared to the serial connection. Whether the output voltage of the lithium ion secondary battery 37b is set to the first voltage level is checked (S4).

次に、図4(b)に示す時間t1後に、前記第1送信器31bは、前記1次コイル35aに電力用高周波電圧42を印加する送信を一時停止し(S5)、その後、時間t2の間に、該電力用高周波電圧42に較べ振幅の小さく、前記埋込磁石同期モータ1のモータ回転数の情報を含む情報用高周波電圧42aを送信し(S6)、前記第2送受信スイッチ32fは該電力用高周波電圧42から該情報用高周波電圧42aに変化したことを検出して、前記第2受信器32cを接続し、該第2受信器32cは該情報用高周波電圧42aに対応する、図4(f)に示す、情報用高周波電圧46を受信し(S6)、該情報用高周波電圧46から前記モータ回転数の情報を取得し、モータ回転数が所定値を越えていると、モータ回転数が所定値を越えたとの信号を永久磁石磁束弱めコイル励磁コントローラ38aに出力し、該永久磁石磁束弱めコイル励磁コントローラ38aは前記永久磁石磁束弱めコイルドライバ38bをオンし、その後、前記第1送信器31bは、前記情報用高周波電圧42aの送信を停止し、前記第2送受信スイッチ32fは、前記リチウムイオン2次電池37bの出力が前記第1電圧レベルに達したが、第2電圧レベルには達していないことを確認し、前記第2送信器32cに接続して、該第2送信器32cは、前記リチウムイオン2次電池37bの出力の情報(今のところ、リチウムイオン2次電池37bの出力は、前記第1電圧レベルより大きい第2電圧レベル(図2に示す、埋込磁石同期モータ2に外部電源が繰り返し、印加、切断されても、リチウムイオン2次電池37bが満充電圧を超えることがないように、例えば、該満充電圧より若干少ない電圧を第2電圧レベルに設定する。)に達していない。)を含む情報用高周波電圧45を送信する(S7)。 Next, after time t1 shown in FIG. 4B, the first transmitter 31b temporarily stops transmission of applying the power high-frequency voltage 42 to the primary coil 35a (S5), and then at time t2. In the meantime, an information high-frequency voltage 42a having a smaller amplitude than the power high-frequency voltage 42 and including information on the rotational speed of the embedded magnet synchronous motor 1 is transmitted (S6), and the second transmission / reception switch 32f Detecting a change from the power high-frequency voltage 42 to the information high-frequency voltage 42a, the second receiver 32c is connected, and the second receiver 32c corresponds to the information high-frequency voltage 42a. When the information high-frequency voltage 46 shown in (f) is received (S6), information on the motor rotation speed is obtained from the information high-frequency voltage 46 , and the motor rotation speed exceeds a predetermined value, the motor rotation speed is obtained. When exceeds the predetermined value A signal is output to the permanent magnet flux weakening coil excitation controller 38a, the permanent magnet flux weakening coil excitation controller 38a turns on the permanent magnet flux weakening coil driver 38b, and then the first transmitter 31b The transmission of the voltage 42a is stopped, and the second transmission / reception switch 32f confirms that the output of the lithium ion secondary battery 37b has reached the first voltage level but has not reached the second voltage level, The second transmitter 32c is connected to the second transmitter 32c and outputs information on the output of the lithium ion secondary battery 37b (currently, the output of the lithium ion secondary battery 37b is the first voltage level). Even if the external power supply is repeatedly applied and disconnected from the embedded magnet synchronous motor 2 shown in FIG. For example, a voltage slightly lower than the full charge pressure is set to the second voltage level so that the battery 37b does not exceed the full charge pressure. (S7).

次に、第1受信器31cは、情報用高周波電圧45に対応する情報用高周波電圧43を受信し(S7)、その情報をもつ信号を第1送信器へ出力し、該第1送信器31bは電力用高周波電圧421の1次コイル35aへの印加を再開し(S8)、時間t3後の時間t4の間、再び、第1送信器31bは電力用高周波電圧421の送信を一時停止し(以下、図4において、第1送信器情報送信、第2受信器情報受信と、第2送信器情報送信、第1受信器情報受信の各ステップの表示を省略)、その間、同様に、前記第1送信器31bは、モータ回転数の情報を含む情報用高周波電圧421aを送信し、前記第2送受信スイッチ32fは前記第2受信器32cを接続し、該第2受信器32cは該モータ回転数の情報を取得し、該モータ回転数の情報をもつ信号を永久磁石磁束弱めコイル励磁コントローラ38aへ出力し、該永久磁石磁束弱めコイル励磁コントローラ38aは、該モータ回転数が所定値を超えているので(S9,Yes)、前記永久磁石磁束弱めコイルドライバ38bをオンし、該永久磁石磁束弱めコイルドライバ38bは、前記永久磁石磁束弱めコイル33a,33b,33c,33dに励磁電流を供給し(S10)、その後、前記情報用高周波電圧421aの送信を停止し、前記第2送受信スイッチ32bは前記第2送信器32bに接続し、該第2送信器32bは、前記リチウムイオン2次電池37bの出力の情報を含む情報用高周波電圧451を送信し、前記第1送受信スイッチ31dは前記第1受信器31cに接続を切り換え、該第1受信器31cは、該情報用高周波電圧451に対応する情報用高周波電圧431を受信し、前記リチウムイオン2次電池37bの出力が前記第1電圧レベルに達したが、第2電圧レベルには達していないことを確認する(S11,No)。 Next, the first receiver 31c receives the information high-frequency voltage 43 corresponding to the information high-frequency voltage 45 (S7), outputs a signal having the information to the first transmitter, and the first transmitter 31b. Restarts the application of the power high-frequency voltage 421 to the primary coil 35a (S8), and again during the time t4 after the time t3, the first transmitter 31b once again stops transmission of the power high-frequency voltage 421 ( Hereinafter, in FIG. 4, the display of each step of the first transmitter information transmission, the second receiver information reception, the second transmitter information transmission, and the first receiver information reception is omitted). The first transmitter 31b transmits an information high-frequency voltage 421a including information on the motor speed, the second transmission / reception switch 32f connects the second receiver 32c, and the second receiver 32c is connected to the motor speed. Information about the motor rotation speed. Is output to the permanent magnet flux weakening coil excitation controller 38a, and the permanent magnet flux weakening coil excitation controller 38a has the motor rotational speed exceeding a predetermined value (S9, Yes). The coil driver 38b is turned on, and the permanent magnet magnetic flux weakening coil driver 38b supplies an excitation current to the permanent magnet magnetic flux weakening coils 33a, 33b, 33c, 33d (S10), and then transmits the high frequency voltage for information 421a. The second transmission / reception switch 32b is connected to the second transmitter 32b, and the second transmitter 32b transmits an information high-frequency voltage 451 including information on the output of the lithium ion secondary battery 37b. The first transmission / reception switch 31d switches the connection to the first receiver 31c, and the first receiver 31c The information high-frequency voltage 431 corresponding to the frequency voltage 451 is received, and it is confirmed that the output of the lithium ion secondary battery 37b has reached the first voltage level but has not reached the second voltage level (S11). , No).

次に、前記第1送受信スイッチ31dは第1送信器31bを接続し、該第1送信器31bは電力用高周波電圧422を送信し、時間t5後に送信を停止し、モータ回転数の情報の情報用高周波電圧422aを送信し、前記第2受信器32cは該モータ回転数の情報を取得し、該モータ回転数の情報をもつ信号を前記永久磁石磁束弱めコイル励磁コントローラ38aへ出力し、モータ回転数が所定値を超えているので(S9,Yes)、該永久磁石磁束弱めコイル励磁コントローラ38aは、永久磁石磁束弱めコイルドライバ38bを引き続きオンし、該永久磁石磁束弱めコイルドライバ38bは、永久磁石磁束弱めコイル33a,33b,33c,33dに励磁電流を引き続き供給し(S10)、その後、情報用高周波電圧422aの送信を停止し、前記第2送信器32bは、リチウムイオン2次電池37bの出力の情報を含む情報用高周波電圧452を送信し、前記第1受信器31cは、該情報用高周波電圧452に対応する情報用高周波電圧432を受信し、リチウムイオン2次電池37bの出力が第2電圧レベルに達したことを確認し、前記第1送信器31bに電力用高周波電圧422後の送信を停止させる(S12)。 Next, the first transmission / reception switch 31d connects the first transmitter 31b, the first transmitter 31b transmits the high frequency voltage 422 for power, stops transmission after time t5, and information on the information on the motor rotation speed. The high frequency voltage 422a is transmitted, the second receiver 32c obtains information on the motor rotational speed, outputs a signal having the information on the motor rotational speed to the permanent magnet magnetic flux weakening coil excitation controller 38a, and rotates the motor. Since the number exceeds the predetermined value (S9, Yes), the permanent magnet flux weakening coil excitation controller 38a continues to turn on the permanent magnet flux weakening coil driver 38b, and the permanent magnet flux weakening coil driver 38b The exciting current is continuously supplied to the magnetic flux weakening coils 33a, 33b, 33c, and 33d (S10), and then the information high-frequency voltage 422a is transmitted. The second transmitter 32b transmits an information high-frequency voltage 452 including information on the output of the lithium ion secondary battery 37b, and the first receiver 31c receives information corresponding to the information high-frequency voltage 452. The high frequency voltage 432 is received, it is confirmed that the output of the lithium ion secondary battery 37b has reached the second voltage level, and the first transmitter 31b is stopped from transmitting after the high frequency voltage 422 for power (S12). .

時間が経過して、前記第1送信器31bは情報用高周波電圧423aを送信し、その後、前記第2送受信スイッチ32fは第2送信器32bからリチウムイオン2次電池37bの出力が第2電圧レベルを切った(S11,No)情報を含む情報用高周波電圧453を送信し、その後、前記第1送信器31bは電力用高周波電圧423を送信し、時間t6後に、同様に、情報用高周波電圧423bを送信し、その後、前記第2送信器32bは情報用高周波電圧454を送信し、その後、前記第1送信器31bは電力用高周波電圧424を送信し、時間t8後に、前記外部電源電圧41がオフし、前記第1パワーオンリセット回路31aは、前記第1送信器31bに第1パワーオフの情報を含む情報用高周波電圧424aを送信させ、その後に、該第1送信器31b,第1受信器31c,第1送受信器スイッチ31dへ第1パワーオフ(S13,Yes)信号を出力し、時間t9の間、前記第2受信器32cは、情報用高周波電圧424aに対応する、情報用高周波電圧465から第1パワーオフの情報を取得し、該第1パワーオフの情報をもつ信号を前記第2パワーオンリセット回路32aへ出力し、該第2パワーオンリセット回路32aは、第2送受信スイッチ32fと、第2送信器32bと、第2受信器32cと、レギュレータ37cと,永久磁石磁束弱めコイル励磁コントローラ38aへ第2パワーオフ信号を出力し、前記永久磁石磁束弱めコイルドライバ38bは、前記永久磁石磁束弱めコイル33a,33b,33c,33dへの励磁電流を停止する。 After a lapse of time, the first transmitter 31b transmits the information high-frequency voltage 423a, and then the second transmission / reception switch 32f outputs the output of the lithium ion secondary battery 37b from the second transmitter 32b to the second voltage level. (S11, No) The information high-frequency voltage 453 including the information is transmitted, and then the first transmitter 31b transmits the power high-frequency voltage 423. After time t6, the information high-frequency voltage 423b is also transmitted. Then, the second transmitter 32b transmits the information high-frequency voltage 454, and then the first transmitter 31b transmits the power high-frequency voltage 424. After time t8, the external power supply voltage 41 is The first power-on reset circuit 31a causes the first transmitter 31b to transmit the information high-frequency voltage 424a including the first power-off information, and then The first power-off (S13, Yes) signal is output to the first transmitter 31b, the first receiver 31c, and the first transceiver switch 31d, and during the time t9, the second receiver 32c The first power-off information is obtained from the information high-frequency voltage 465 corresponding to 424a, a signal having the first power-off information is output to the second power-on reset circuit 32a, and the second power-on reset is output. The circuit 32a outputs a second power-off signal to the second transmission / reception switch 32f, the second transmitter 32b, the second receiver 32c, the regulator 37c, and the permanent magnet magnetic flux weakening coil excitation controller 38a. The magnetic flux weakening coil driver 38b stops the excitation current to the permanent magnet magnetic flux weakening coils 33a, 33b, 33c, and 33d.

次に、第1電子回路と第2電子回路からなる、無線で電力と情報を送受信する電力情報送受信回路と、永久磁石磁束弱めコイルドライバ回路と、永久磁石磁束弱めコイルの第2の実施の形態の動作を、図3に示す、本発明の回路ブロック図と、第1送信器が停止状態にある時に、外部電源が遮断された場合の図10に示す、外部電源用の1次電源端子間電圧の時間変化(a),第1送信器の送信する高周波電圧の時間変化(b),第1受信器の受信する高周波電圧の時間変化(c),2次コイルの誘起電圧の時間変化(d),第2送信器の送信する高周波電圧の時間変化(e),第2受信器の受信する高周波電圧の時間変化(f)と永久磁石磁束弱めコイル励磁コントローラに入力する励磁オンオフ電圧の時間変化(g)の本発明の、第2の埋込磁石同期モータの駆動タイムチャートと、図5に示す、本発明の埋込磁石同期モータの駆動フローチャートを使って説明する。 Next, a second embodiment of a power information transmitting / receiving circuit which wirelessly transmits and receives power and information, a permanent magnet magnetic flux weakening coil driver circuit, and a permanent magnet magnetic flux weakening coil, which includes a first electronic circuit and a second electronic circuit. 3 is a circuit block diagram of the present invention shown in FIG. 3 and between the primary power supply terminals for the external power supply shown in FIG. 10 when the external power supply is cut off when the first transmitter is in a stopped state. Time variation of voltage (a), time variation of high-frequency voltage transmitted by first transmitter (b), time variation of high-frequency voltage received by first receiver (c), time variation of induced voltage of secondary coil ( d), time change of the high frequency voltage transmitted by the second transmitter (e), time change of the high frequency voltage received by the second receiver (f), and time of excitation on / off voltage input to the permanent magnet magnetic flux weakening coil excitation controller Change (g) of the present invention, the second And write magnet synchronous motor driving timing chart shown in FIG. 5 will be described with reference to drive flow of the embedded magnet synchronous motor of the present invention.

前記1次電源端子34a(24a),34b(24b)に外部電源電圧101が印加され、時間が経過して、前記第2送受信スイッチ32fがモニターする、前記リチウムイオン2次電池37bの出力電圧が第1電圧レベルを切るまでは、前記第1送信器31bが電力用高周波電圧の送信状態にある時に、外部電源が遮断された場合の図4に示す本発明の、第1の埋込永久磁石同期のモータ駆動タイムチャートと同様であり、説明を省略する。 The external power supply voltage 101 is applied to the primary power supply terminals 34a (24a) and 34b (24b), and the output voltage of the lithium ion secondary battery 37b monitored by the second transmission / reception switch 32f after time has passed. Until the first voltage level is cut off, the first embedded permanent magnet of the present invention shown in FIG. 4 when the external power supply is cut off when the first transmitter 31b is in the transmission state of the high frequency voltage for power. This is the same as the synchronous motor drive time chart, and the description is omitted.

時間が経過して、前記第2送受信スイッチ32fが前記リチウムイオン2次電池37bの出力電圧が第1電圧レベルを切ったことを検知する(S14,Yes)前に、外部電源が遮断されたので、前記第1パワーオンリセット回路31aは第1パワーオフ(S13,Yes)信号を前記第1送信器31bと前記第1受信器31cと第1送受信スイッチ31dへ出力し、前記第1送受信スイッチ31dは1次コイル35aとの接続を該第1受信器31cから該第1送信器31bに切り換え、該第1送信器31bは、電力用高周波電圧送信の停止状態にもかかわらず、前記第1パワーオフ(S13,Yes)信号に対応する第1パワーオフの情報用高周波電圧102を送信し、前記第2受信器32cは、第1パワーオフの情報用高周波電圧102に対応する情報用高周波電圧103を受信し、外部電源が遮断されたと判断し、外部電源が遮断されたとの情報をもつ信号を前記第2パワーオンリセット回路32aへ出力し、前記第2送受信スイッチ32f、第2送信器32b、第2受信器32cと、前記レギュレータ37cと、永久磁石磁束弱めコイル励磁コントローラ38aへ第2パワーオフ信号を出力し、前記永久磁石磁束弱めコイルドライバ38bは永久磁石磁束弱めコイル33a,33b,33c,33dへの励磁電流の供給を停止する。 Since the external power supply is shut off before the second transmission / reception switch 32f detects that the output voltage of the lithium ion secondary battery 37b has cut off the first voltage level after a lapse of time (Yes in S14). The first power-on reset circuit 31a outputs a first power-off (S13, Yes) signal to the first transmitter 31b, the first receiver 31c, and the first transmission / reception switch 31d, and the first transmission / reception switch 31d. Switches the connection with the primary coil 35a from the first receiver 31c to the first transmitter 31b, and the first transmitter 31b is connected to the first power, regardless of the power high-frequency voltage transmission stopped state. The first power-off information high-frequency voltage 102 corresponding to the off (S13, Yes) signal is transmitted, and the second receiver 32c transmits the first power-off information high-frequency voltage 102. The corresponding information high-frequency voltage 103 is received, it is determined that the external power supply is cut off, a signal having information that the external power supply is cut off is output to the second power-on reset circuit 32a, and the second transmission / reception switch 32f The second transmitter 32b, the second receiver 32c, the regulator 37c, and the permanent magnet flux weakening coil excitation controller 38a output a second power-off signal, and the permanent magnet flux weakening coil driver 38b weakens the permanent magnet flux. The supply of excitation current to the coils 33a, 33b, 33c, and 33d is stopped.

図1に示す、本発明の埋込磁石同期モータ1の永久磁石の極対数は2であったが、本発明は、3以上の場合にも適用でき、また、各極の永久磁石は半径方向に1個であったが、2個以上でも、それぞれの永久磁石に永久磁石磁束弱めコイルを設けることが可能である。 Although the number of pole pairs of the permanent magnet of the embedded magnet synchronous motor 1 of the present invention shown in FIG. 1 is 2, the present invention can be applied to the case of 3 or more, and the permanent magnet of each pole is in the radial direction. However, it is possible to provide a permanent magnet flux weakening coil for each permanent magnet even if there are two or more.

本発明の実施の形態の説明において、所定のモータ回転数以上で、永久磁石磁束弱めコイル励磁コントローラをオンし、永久磁石磁束弱めコイルドライバは永久磁石磁束弱めコイルに励磁電流を供給したが、所定のモータ回転数以上で、モータ回転数を何段階に分け、それぞれのモータ回転数に応じて、励磁電流を切り換えることも可能である。 In the description of the embodiment of the present invention, the permanent magnet magnetic flux weakening coil excitation controller is turned on at a predetermined motor rotational speed or more, and the permanent magnet magnetic flux weakening coil driver supplies the exciting current to the permanent magnet magnetic flux weakening coil. It is also possible to divide the motor rotation speed into any number of stages and to switch the excitation current according to each motor rotation speed.

本発明は、前記永久磁石磁束弱めコイルに励磁電流を供給し、負の小さなi電流を流す弱め磁束制御を併用することによって、埋込磁石同期モータの高速回転領域を広げられる効果がある。 The present invention, the supplies an exciting current to the permanent magnet flux weakening coils, by combining a magnetic flux weakening control flow negative small i d current, the effect of spread fast rotation region of the interior permanent magnet synchronous motor.

本発明の埋込磁石同期モータのロータとステータの平面図である。It is a top view of the rotor and stator of an embedded magnet synchronous motor of the present invention. 本発明の埋込磁石同期モータの側面透視図である。It is a side perspective view of the interior permanent magnet synchronous motor of this invention. 本発明の回路ブロック図である。It is a circuit block diagram of the present invention. 外部電源用の1次電源端子間電圧の時間変化(a),第1送信器の送信する高周波電圧の時間変化(b),第1受信器の受信する高周波電圧の時間変化(c),2次コイルの誘起電圧の時間変化(d),第2送信器の送信する高周波電圧の時間変化(e),第2受信器の受信する高周波電圧の時間変化(f)と永久磁石磁束弱めコイル励磁コントローラに入力する励磁オンオフ電圧の時間変化(g)の本発明の、第1の埋込磁石同期モータの駆動タイムチャートである。Temporal change in voltage between primary power supply terminals for external power supply (a), temporal change in high-frequency voltage transmitted by the first transmitter (b), temporal change in high-frequency voltage received by the first receiver (c), 2 Time variation (d) of induced voltage of secondary coil, time variation (e) of high-frequency voltage transmitted by second transmitter, time variation (f) of high-frequency voltage received by second receiver, and permanent magnet magnetic flux weakening coil excitation It is a drive time chart of the 1st interior permanent magnet synchronous motor of this invention of the time change (g) of the excitation on-off voltage input into a controller. 本発明の埋込磁石同期モータの駆動フローチャートである。It is a drive flowchart of the interior magnet synchronous motor of this invention. 従来の第1の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータのロータの動作説明図である。It is operation | movement explanatory drawing of the rotor of the embedded magnet synchronous motor which has the rotor which provided the conventional 1st permanent magnet magnetic flux weakening mechanism. 従来の第2の永久磁石磁束弱め機構を設けたロータを有する埋込磁石同期モータのロータの動作説明図である。It is operation | movement explanatory drawing of the rotor of the embedded magnet synchronous motor which has the rotor which provided the conventional 2nd permanent magnet magnetic flux weakening mechanism. 従来の埋込磁石同期モータのロータとステータの平面図である。It is a top view of the rotor and stator of the conventional interior magnet synchronous motor. 従来の埋込磁石同期モータの駆動コイルを含む駆動回路である。It is a drive circuit containing the drive coil of the conventional interior magnet synchronous motor. 外部電源用の1次電源端子間電圧の時間変化(a),第1送信器の送信する高周波電圧の時間変化(b),第1受信器の受信する高周波電圧の時間変化(c),2次コイルの誘起電圧の時間変化(d),第2送信器の送信する高周波電圧の時間変化(e),第2受信器の受信する高周波電圧の時間変化(f)と永久磁石磁束弱めコイル励磁コントローラに入力する励磁オンオフ電圧の時間変化(g)の本発明の、第2の埋込磁石同期モータの駆動タイムチャートである。Temporal change in voltage between primary power supply terminals for external power supply (a), temporal change in high-frequency voltage transmitted by the first transmitter (b), temporal change in high-frequency voltage received by the first receiver (c), 2 Time variation (d) of induced voltage of secondary coil, time variation (e) of high-frequency voltage transmitted by second transmitter, time variation (f) of high-frequency voltage received by second receiver, and permanent magnet magnetic flux weakening coil excitation It is a drive time chart of the 2nd interior permanent magnet synchronous motor of this invention of the time change (g) of the excitation on-off voltage input into a controller.

1,2
本発明の埋込磁石同期モータ
11,81 ロータ
12,82 ステータ
19,88 ロータとステータ間のギャップ
13a,13b,13c,13d 永久磁石
14a,14b,14c,14d,33a,33b,33c,33d
永久磁石磁束弱めコイル
15a,15b,16a,16b,17,17,18a,18b
84a,84b,85a,85b,86a,86b,87a,87b
磁束短絡防止用穴
25b,35a 1次コイル
26c,36a 2次コイル
35b 1次コンデンサ
36b 2次コンデンサ
31a 第1パワーオンリセット回路
32a 第2パワーオンリセット回路
31b 第1送信器
32b 第2送信器
31c 第1受信器
32c 第2受信器
31d 第1送受信スイッチ
32f 第2送受信スイッチ
38a 永久磁石磁束弱めコイル励磁コントローラ
38b 永久磁石磁束弱めコイルドライバ
32d ダイオード全波整流器
32e 平滑コンデンサ
37b,27 リチウムイオン2次電池
37c レギュレータ
1, 2
Embedded magnet synchronous motor 11, 81 Rotor 12, 82 Stator 19, 88 Gap between rotor and stator 13a, 13b, 13c, 13d Permanent magnets 14a, 14b, 14c, 14d, 33a, 33b, 33c, 33d
Permanent magnet flux weakening coils 15a, 15b, 16a, 16b, 17 a, 17 b, 18a, 18b
84a, 84b, 85a, 85b, 86a, 86b, 87a, 87b
Magnetic flux short-circuit prevention holes 25b, 35a Primary coil 26c, 36a Secondary coil 35b Primary capacitor 36b Secondary capacitor 31a First power-on reset circuit 32a Second power-on reset circuit 31b First transmitter 32b Second transmitter 31c First receiver 32c Second receiver 31d First transmission / reception switch 32f Second transmission / reception switch 38a Permanent magnet flux weakening coil excitation controller 38b Permanent magnet flux weakening coil driver 32d Diode full-wave rectifier 32e Smoothing capacitors 37b, 27 Lithium ion secondary battery 37c regulator

Claims (5)

ステータと、該ステータに巻回された駆動コイルと、該ステータとギャップを介した、永久磁石が埋込まれたロータと、該駆動コイルを含むモータ駆動回路を有し、該埋込磁石同期モータは無線で電力と情報を送受信する電力情報送受信回路を有し、前記ロータに、前記永久磁石の磁束を弱めるために、該情報に基づいて励磁される永久磁石磁束弱めコイルを設け、前記永久磁石磁束弱めコイルは、前記永久磁石が埋込まれる溝の両端に設けられた磁束短絡防止用穴に巻回され、電力情報送受信回路は、第1電子回路と第2電子回路からなり、ステータは、モータ駆動回路と第1電子回路からなる第1電子基板を有し、ロータは、第2電子回路と、永久磁石磁束弱めコイル励磁コントローラと、前記永久磁石磁束弱めコイルに接続する永久磁石磁束弱めコイルドライバからなる永久磁石磁束弱めコイルドライバ回路と、前記永久磁石磁束弱めコイルからなる第2電子基板を有する埋込磁石同期モータにおいて、第1電子回路は、第1パワーオンリセット回路と、1次コイルと、第1送受信スイッチと、該第1送受信スイッチを介して該1次コイルに接続される、第1送信器と第1受信器と、外部電源用の1次電源端子からなり、第2電子回路は、第2パワーオンリセット回路と、該1次コイルと電磁結合する2次コイルと、第2送受信スイッチと、該第2送受信スイッチを介して該2次コイルに接続される第2送信器と第2受信器と、該2次コイルに接続するダイオード全波整流器と平滑コンデンサと、該平滑コンデンサに接続する充電制御器と2次電源と該2次電源の出力する出力電圧を前記永久磁石磁束弱めコイルの定格電圧へレギュレートするレギュレータとからなる充電回路からなることを特徴とする埋込磁石同期モータ。 A stator, a wound drive coil on the stator, through the stator and the gap, possess a rotor in which a permanent magnet is embedded, the motor drive circuit including the drive coil,該埋write magnet synchronous motor has a power information transmission and reception circuit for transmitting and receiving power and data wirelessly to the rotor, in order to weaken the magnetic flux of the permanent magnets, it provided the permanent magnet flux weakening coil is energized on the basis of the information, the permanent magnet The magnetic flux weakening coil is wound around a magnetic flux short-circuit prevention hole provided at both ends of the groove in which the permanent magnet is embedded. The power information transmitting / receiving circuit is composed of a first electronic circuit and a second electronic circuit. The rotor has a first electronic board composed of a motor drive circuit and a first electronic circuit, and the rotor has a second electronic circuit, a permanent magnet magnetic flux weakening coil excitation controller, and a permanent magnet connected to the permanent magnet magnetic flux weakening coil. And the permanent magnet flux weakening coil driver circuit comprising a coil driver flux weakening, in an interior permanent magnet synchronous motor having a second electronic board consisting of the permanent magnet flux weakening coil, the first electronic circuit includes a first power-on reset circuit, A primary coil, a first transmission / reception switch, a first transmitter and a first receiver connected to the primary coil via the first transmission / reception switch, and a primary power supply terminal for an external power source; The second electronic circuit includes a second power-on reset circuit, a secondary coil electromagnetically coupled to the primary coil, a second transmission / reception switch, and a second coil connected to the secondary coil via the second transmission / reception switch. Two transmitters, a second receiver, a diode full-wave rectifier connected to the secondary coil, a smoothing capacitor, a charge controller connected to the smoothing capacitor, a secondary power source, and an output from the secondary power source. Interior permanent magnet synchronous motor characterized by comprising the charging circuit comprising a voltage from a regulator that regulates the voltage rating of the permanent magnet flux weakening coil. 請求項に記載の埋込磁石同期モータにおいて、1次電源端子に外部電源が印加されると、第1パワーオンリセット回路は、モータ駆動回路をオンし、埋込磁石同期モータを起動し、第1パワーオン信号を第1送受信スイッチと第1送信器と第1受信器に出力し、該第1送受信スイッチは、1次コイルを該第1送信器に接続し、該第1送信器は該1次コイルに電力用高周波電圧の印加を開始し、第2パワーオンリセット回路は、2次コイルに誘起する電力用高周波電圧を検出すると、第2パワーオン信号を第2送受信スイッチと、第2送信器と、第2受信器と、レギュレータと、永久磁石磁束弱めコイル励磁コントローラへ出力し、また、2次電源は充電を開始することを特徴とする埋込磁石同期モータの駆動方法。 In the interior permanent magnet synchronous motor according to claim 1 , when an external power supply is applied to the primary power supply terminal, the first power-on reset circuit turns on the motor drive circuit and starts the interior magnet synchronous motor, A first power-on signal is output to a first transmission / reception switch, a first transmitter, and a first receiver, the first transmission / reception switch connects a primary coil to the first transmitter, and the first transmitter When the application of the high-frequency voltage for power to the primary coil is started and the second power-on reset circuit detects the high-frequency voltage for power induced in the secondary coil, the second power-on signal is sent to the second transmission / reception switch, 2. A method for driving an embedded magnet synchronous motor, characterized in that the output is output to a transmitter, a second receiver, a regulator, a permanent magnet magnetic flux weakening coil excitation controller, and the secondary power supply starts charging. 請求項に記載の埋込磁石同期モータにおいて第1送信器は1次コイルへの電力用高周波電圧の印加を一時停止し、モータ回転数の情報を含む情報用高周波電圧を送信して、その送信を停止し、その直後に、第2送信器は、2次電源の出力電圧の情報を含む情報用高周波電圧を送信し、その後は、第1送信器による電力用高周波電圧と情報用高周波電圧の送信と、第2送信器による情報用高周波電圧の送信の、一連の送信が繰り返し行われることを特徴とする請求項に記載の埋込磁石同期モータの駆動方法。 In the embedded magnet synchronous motor according to claim 1, the first transmitter suspends the application of the power frequency voltage to the primary coil, and transmits the information for the high-frequency voltages including the information of the motor speed, Immediately after that, the second transmitter transmits an information high-frequency voltage including information on the output voltage of the secondary power supply, and thereafter, the power high-frequency voltage and the information high-frequency voltage from the first transmitter are transmitted. 3. The method for driving an embedded magnet synchronous motor according to claim 2 , wherein a series of transmission of voltage transmission and transmission of information high-frequency voltage by the second transmitter is repeated. 請求項に記載の埋込磁石同期モータにおいて、2次電源の出力電圧が第1電圧レベルを超え、また、モータ回転数が所定値を越えると、第2受信器は、永久磁石磁束弱めコイル励磁コントローラをオンし、永久磁石弱めコイルドライバは、永久磁石磁束弱めコイルに永久磁石磁束を弱めるために、励磁電流を供給し、第2送信器は、2次電源の出力電圧が第2電圧レベルを超えると、第1送信器に、その電力用高周波電圧の送信の停止の継続を指示するために、電力送信停止継続高周波電圧を送信し、また、2次電源の出力電圧が第1電圧レベルを切ると、第1送信器にその電力高周波電圧の送信の再開を指示するために、電力送信再開高周波電圧を送信することを特徴とする請求項またはに記載の埋込磁石同期モータの駆動方法。 2. The interior permanent magnet synchronous motor according to claim 1 , wherein when the output voltage of the secondary power source exceeds the first voltage level and the motor rotational speed exceeds a predetermined value, the second receiver receives the permanent magnet magnetic flux weakening coil. The excitation controller is turned on, the permanent magnet weakening coil driver supplies an exciting current to weaken the permanent magnet magnetic flux to the permanent magnet magnetic flux weakening coil, and the second transmitter has the output voltage of the secondary power supply at the second voltage level. Is exceeded, in order to instruct the first transmitter to continue the transmission of the power high-frequency voltage, the power transmission stop-continuation high-frequency voltage is transmitted, and the output voltage of the secondary power supply is the first voltage level. Turning off the, to indicate the resumption of transmission of the power frequency voltage to the first transmitter, according to claim 2 or 3, characterized in that transmitting power transmission resumption frequency voltage embedded magnet synchronous motor Driving method. 請求項に記載の埋込磁石同期モータにおいて、外部電源が遮断されると、第1パワーオンリセット回路は、第1送信器に外部電源の遮断情報信号を出力し、該第1送信器はただちに、電力用高周波電圧の送信を停止し、その直後に、外部電源が遮断されたとの情報を含む情報用高周波電圧を送信し、第1パワーオンリセット回路は、モータ駆動回路をオフし、第1パワーオフ信号を、第1送受信スイッチと、第1送信器と、第1受信器に出力し、第2送受信スイッチは第2受信器を接続し、該第2受信器は、該情報用高周波電圧を受信し、外部電源が遮断されたとの情報の信号を第2パワーオンリセット回路に出力し、該第2パワーオンリセット回路は、第2パワーオフ信号を第2送受信スイッチと、第2送信器と、第2受信器と、レギュレータと、永久磁石磁束弱め励磁コントローラに出力し、永久磁石磁束弱めコイルドライバは、永久磁石磁束弱めコイルへの励磁電流の供給を停止することを特徴とする請求項乃至4のいずれかに記載の埋込磁石同期モータの駆動方法。 2. The embedded magnet synchronous motor according to claim 1 , wherein when the external power supply is cut off, the first power-on reset circuit outputs an external power supply cutoff information signal to the first transmitter, Immediately after that, the transmission of the high frequency voltage for power is stopped, and immediately after that, the high frequency voltage for information including the information that the external power supply is shut off is transmitted. The first power-on reset circuit turns off the motor drive circuit, 1 power-off signal is output to the first transmission / reception switch, the first transmitter, and the first receiver, the second transmission / reception switch is connected to the second receiver, and the second receiver is connected to the information high-frequency signal. A voltage is received, and an information signal indicating that the external power supply has been cut off is output to the second power-on reset circuit. The second power-on reset circuit transmits a second power-off signal to the second transmission / reception switch and the second transmission. , Second receiver, regulator And chromatography data, and outputs to the excitation controller weakening permanent magnet flux, the coil driver weakening permanent magnet flux, in any one of claims 2 to 4, characterized in that stops supplying the excitation current to the permanent magnet flux weakening coil A driving method of the embedded magnet synchronous motor described.
JP2011175342A 2011-08-10 2011-08-10 Embedded magnet synchronous motor and driving method thereof Expired - Fee Related JP5039845B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175342A JP5039845B1 (en) 2011-08-10 2011-08-10 Embedded magnet synchronous motor and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175342A JP5039845B1 (en) 2011-08-10 2011-08-10 Embedded magnet synchronous motor and driving method thereof

Publications (2)

Publication Number Publication Date
JP5039845B1 true JP5039845B1 (en) 2012-10-03
JP2013039005A JP2013039005A (en) 2013-02-21

Family

ID=47087562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175342A Expired - Fee Related JP5039845B1 (en) 2011-08-10 2011-08-10 Embedded magnet synchronous motor and driving method thereof

Country Status (1)

Country Link
JP (1) JP5039845B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448546A (en) * 2019-09-04 2021-03-05 Tdk株式会社 Magnet temperature information output device and rotating electrical machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135557A (en) * 1995-11-07 1997-05-20 Toshiba Corp Brushless exciter for variable-speed synchronous motor
JP2001077733A (en) * 1999-09-03 2001-03-23 Japan Science & Technology Corp Transmitter and receiver for ac power and information signal
JP2010022185A (en) * 2008-06-13 2010-01-28 Suri-Ai:Kk Synchronous machine
JP2011193711A (en) * 2010-02-16 2011-09-29 Seiko Epson Corp Motor, electronic apparatus, motor-driven compressor, moving body, power generator, and robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448546A (en) * 2019-09-04 2021-03-05 Tdk株式会社 Magnet temperature information output device and rotating electrical machine

Also Published As

Publication number Publication date
JP2013039005A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4649625B1 (en) Magnetic flux variable rotating electrical machine system
US9543876B2 (en) Three phase flux switching generator in a three stage wound field synchronous machine
CN101834506B (en) Electrical machine with dual radial airgaps
WO2010082438A1 (en) Rotary electric machine system having variable magnetic flux
JPWO2014167645A1 (en) Permanent magnet type motor and electric power steering device
JP2009207333A (en) Motor having lundell-type rotor
CN104578651A (en) System and method for heating ferrite magnet motors for low temperatures
CN105375715A (en) Little rare earth type wide speed regulation hybrid permanent magnetic flux switching double stator motor
CN101615880A (en) Regulated hybrid permanent magnet generator
EP2157681B1 (en) Direct flux regulated permanent magnet brushless motor utilizing sensorless control by dc and ac excitation
JP5877968B2 (en) High power density, high efficiency, non-permanent magnet electric machine
CN105680652A (en) Hybrid magnetic circuit double-stator weak-magnetic speed multiplying solid rotor permanent magnet synchronous motor and method thereof
JP2016214081A (en) Permanent magnet motor and electric power steering device
EP2493055A2 (en) Permanent-magnet type electric rotating machine
CN101432953B (en) Starting control apparatus and method for motor
JP5039845B1 (en) Embedded magnet synchronous motor and driving method thereof
JP5503794B1 (en) Motor drive device and motor drive system
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
CN110994929B (en) Rotary electric machine, drive control system for vehicle, and storage medium
JP3185587U (en) Electric machine
JP2017220958A (en) Power supply device
JP2011182622A (en) Magnetic flux volume variable rotary electric machine system
Sanada et al. Development of high-power PMASynRM using ferrite magnets for reducing rare-earth material use
JP2001095212A (en) Dynamo-electric machine
Firdaus et al. Torque constant density in different type of double stator permanent magnet brushless DC motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees