JP5038008B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP5038008B2
JP5038008B2 JP2007108130A JP2007108130A JP5038008B2 JP 5038008 B2 JP5038008 B2 JP 5038008B2 JP 2007108130 A JP2007108130 A JP 2007108130A JP 2007108130 A JP2007108130 A JP 2007108130A JP 5038008 B2 JP5038008 B2 JP 5038008B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
phases
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007108130A
Other languages
English (en)
Other versions
JP2008271643A (ja
Inventor
信幸 今井
芳也 村山
順二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007108130A priority Critical patent/JP5038008B2/ja
Publication of JP2008271643A publication Critical patent/JP2008271643A/ja
Application granted granted Critical
Publication of JP5038008B2 publication Critical patent/JP5038008B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、モータ制御装置に関する。
従来、例えばモータの構造に起因して各相のインダクタンス不整合が存在する場合に、d軸電圧指令値およびq軸電圧指令値を相電圧指令値に変換する際に、各相のインダクタンス不整合に係る補正を各相毎に個別に行う制御装置が知られている(例えば、特許文献1参照)。
また、従来、例えばロータの中心方向に対して非対称に配置されたティースに起因する誘起電圧の位相ずれを検出し、この検出結果に応じて誘起電圧の位相ずれを補正する制御装置が知られている(例えば、特許文献2参照)。
特開2005−312178号公報 特開平9−261987号公報
ところで、上記特許文献1に係る制御装置においては、ティースの配置に起因する誘起電圧の位相差の影響により、各相のインダクタンスの不整合に係る補正を適切に行うことができないという問題が生じる。
また、上記特許文献2に係る制御装置においては、各相電圧の位相差を検出して誘起電圧のずれを推定しており、各相のインダクタンスの不整合に係る補正により相電圧の位相差自体が変化する場合には、誘起電圧の位相差を検出することができなくなるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、複数相の各相の相互間での誘起電圧位相差が異なるようにしてティースが配置されたステータを備えるモータを適切に制御することが可能なモータ制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のモータ制御装置は、複数相の各相の相互間での線間誘起電圧同士の位相差が互いに異なるようにしてティース(例えば、実施の形態での各ティース22,24,26)が配置されたステータ(例えば、実施の形態でのステータ10)を備えるモータを制御するモータ制御装置であって、前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正する電圧位相補正手段(例えば、実施の形態での電圧位相補正部66)を備える。
さらに、請求項2に記載の本発明のモータ制御装置では、前記複数相のティースは、隣り合う前記ティース同士の間隔が不均等になるように配置され、前記電圧位相補正手段は、隣り合う前記ティース同士の間隔が不均等であることに起因する前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正する。
さらに、請求項3に記載の本発明のモータ制御装置では、前記複数相のティースは、各相の相互間での軸方向位置に偏差を有するように配置され、前記電圧位相補正手段は、前記複数相のティースが各相の相互間での軸方向位置に偏差を有することに起因する前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正する。
さらに、請求項4に記載の本発明のモータ制御装置は、各相のインダクタンス不整合に基づく各相電流の位相ずれを算出する電流位相ずれ算出手段(例えば、実施の形態での電流位相ずれ演算部68)と、前記電流位相ずれ算出手段にて算出された前記位相ずれに基づき、各相毎のd軸電圧指令値およびq軸電圧指令値の位相および振幅を補正する電圧指令補正値を、d軸電流指令値およびq軸電流指令値から算出する電流位相補正手段(例えば、実施の形態での電流位相補正部70)とを備え、前記電流位相補正手段は、前記電圧位相補正手段により補正された電圧が前記複数相の各相に印加された以後に、前記電圧指令補正値を算出する。
さらに、請求項5に記載の本発明のモータ制御装置では、前記電圧位相補正手段は、前記複数相の各相に電圧の印加を開始する時点から前記電圧の位相を補正する。
本発明のモータ制御装置によれば、複数相の各相の相互間での線間誘起電圧同士の位相差が互いに異なるようにしてティースが配置されたステータを備えるモータに対し、予め設定された線間誘起電圧同士の位相差に基づき複数相の各相に印加する電圧の位相を補正することから、インダクタンスの不整合の係る補正に起因する相電圧の位相差の変化の影響を受けること無しに、モータを適切に制御することができる。
さらに、請求項2に記載の本発明のモータ制御装置によれば、例えばステータでの巻線占積率を向上させる場合等において、複数相のティースの隣り合うティース同士の間隔が不均等になるように配置された場合であっても、この不均等配置に起因する線間誘起電圧同士の位相差に基づき、複数相の各相に印加する電圧の位相を補正することから、モータを適切に制御することができる。
さらに、請求項3に記載の本発明のモータ制御装置によれば、例えばステータでのコイルエンドの高さおよびステータの軸方向の寸法が増大してしまうことを防止する場合等において、複数相のティースが各相の相互間での軸方向位置に偏差を有するように配置された場合であっても、この軸方向位置偏差に起因する線間誘起電圧同士の位相差に基づき、複数相の各相に印加する電圧の位相を補正することから、モータを適切に制御することができる。
さらに、請求項4に記載の本発明のモータ制御装置によれば、電流位相補正手段は、各相のインダクタンス不整合に係る各相電流の位相ずれを補正するために必要とされる電圧補正値、つまり各相毎にd軸電圧指令値およびq軸電圧指令値の位相および振幅を補正する電圧補正値を算出することから、例えばモータの構造に起因して各相のインダクタンス不整合が存在する場合であっても、各相電流の振幅および位相を整合させることができ、モータを適切に駆動制御することができる。
しかも、電流位相補正手段は、電圧位相補正手段により補正された電圧が複数相の各相に印加された以後に、電圧指令補正値を算出することから、電流のフィードバック制御を適切に行うことができる。
さらに、請求項5に記載の本発明のモータ制御装置によれば、電圧位相補正手段は、複数相の各相に電圧の印加を開始する時点から、例えば予めモータの構造に応じて設定された補正量等によって、電圧の位相を補正することから、より一層、モータを適切に制御することができる。
以下、本発明のモータ制御装置の一実施形態について添付図面を参照しながら説明する。
本実施の形態に係るモータ1は、例えばハイブリッド車両や燃料電池車両や電動車両等の車両に搭載され、例えば内燃機関Eと共に車両の駆動源としてモータ1を備えるハイブリッド車両において、内燃機関Eとモータ1とトランスミッションT/Mとを直列に直結した構造のパラレルハイブリッド車両では、少なくとも内燃機関Eまたはモータ1の何れか一方の駆動力はトランスミッションT/Mを介して車両の駆動輪W,Wに伝達されるようになっている。
また、車両の減速時に駆動輪W,W側からモータ1に駆動力が伝達されると、モータ1は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。さらに、内燃機関Eの出力がモータ1に伝達された場合にもモータ1は発電機として機能して発電エネルギーを発生する。
このモータ1は、例えば図1から図3に示すように3相のクローポール型モータであって、複数の永久磁石5a,…,5aを有するロータ5と、このロータ5を回転させる回転磁界を発生する複数相(例えば、U相,V相,W相の3相)のステータ10とを備え、ロータ5の回転軸の一端は内燃機関のクランクシャフトに連結され、他端はトランスミッションの入力軸に連結されている。
このロータ5において、複数の略長方形板状の永久磁石5a,…,5aは、例えばロータ5の外周部に周方向に所定間隔をおいて配置され、各永久磁石5aは厚さ方向(つまりロータ5の径方向)に磁化され、周方向で隣り合う永久磁石5a,5aは互いに磁化方向が異方向となるように、すなわち外周側がN極とされた永久磁石5aには、外周側がS極とされた永久磁石5aが周方向で隣接するように配置されている。
また、各永久磁石5aの外周面は、ロータ5の外周部に対向配置される略円筒状のステータ10の内周面に向かい露出している。
ロータ5を回転させる回転磁界を発生するステータ10は、U相およびV相およびW相からなる3相の各相毎のU相ステータリング11と、V相ステータリング12と、W相ステータリング13と、U相およびW相からなる2相のU相環状巻線14およびW相環状巻線15とを備えて構成されている。
U相ステータリング11は、例えば図3に示すように、略円環状のU相ヨーク21と、このU相ヨーク21の内周部の周方向Cに所定間隔を置いた位置から径方向R内方および軸線方向Pの他方に向かい突出し、径方向Rに対する断面形状が略長方形状に形成されたU相ティース22とを備えて構成され、U相ヨーク21およびU相ティース22からなるU相ステータリング11の周方向Cに対する断面形状が略L字状となるように構成されている。
V相ステータリング12は、例えば図3に示すように、略円環状のV相ヨーク23と、このV相ヨーク23の内周部の周方向Cに所定間隔を置いた位置から径方向R内方および軸線方向Pの一方および他方に向かい突出し、径方向Rに対する断面形状が略長方形状に形成されたV相ティース24とを備えて構成され、V相ヨーク23およびV相ティース24からなるV相ステータリング12の周方向Cに対する断面形状が略T字状となるように構成されている。
W相ステータリング13は、例えば図3に示すように、略円環状のW相ヨーク25と、このW相ヨーク25の内周部の周方向Cに所定間隔を置いた位置から径方向R内方および軸線方向Pの一方に向かい突出し、径方向Rに対する断面形状が略長方形状に形成されたW相ティース26とを備えて構成され、W相ヨーク25およびW相ティース26からなるW相ステータリング13の周方向Cに対する断面形状が略L字状となるように構成されている。
そして、各ステータリング11,12,13は、各ヨーク21,23,25が軸線方向Pに沿って積み重ねられるようにして接続されている。そして、例えば図2に示すように、複数の各ティース22,…,22および24,…,24および26,…,26が所定順序(例えば、順次、U相ティース22,V相ティース24,W相ティース26等)で周方向Cに沿って配列され、周方向Cで隣り合う各ティース22,24間には1相のU相環状巻線14が配置されるスロットが形成され、周方向Cで隣り合う各ティース24,26間には1相のW相環状巻線15が配置されるスロットが形成され、周方向Cで隣り合う各ティース22,26間には2相のU相環状巻線14およびW相環状巻線15が配置されるスロットが形成されている。
そして、各ステータリング11,12,13の各ティース22,24、26は、例えば互いに同等の軸方向幅および周方向幅を有し、周方向Cで隣り合う各ティース22,24,26間の間隔(つまり、各スロットの周方向幅)は、各スロットに配置される各環状巻線14,15の本数に応じた値(例えば、本数に比例した値等)に設定されている。つまり、単一の各環状巻線14,15が配置される各ティース22,24間および各ティース24,26間の間隔C1は、2相の各環状巻線14,15が配置される各ティース22,26間の間隔C2よりも小さな値(例えば、各ティース22,26間の間隔C2の1/2の値等)に設定されている。
各環状巻線14,15は、例えば軸線周りの周面内でクランク状に蛇行しつつ周回するようにして、複数の各U相蛇行部31,…,31およびW相蛇行部32,…,32を備えて構成されている。
各蛇行部31,32の周方向Cの幅つまりコイルピッチは、例えば図2に示すように、電気角で120°に設定され、各蛇行部31,32は互いに異なる方向(つまり互いの対向方向であって軸線方向Pの一方および他方)に向かい突出するように設けられ、U相環状巻線14とW相環状巻線15とは、電気角で240°(edeg)の位相差を有するようにして周方向Cに沿って相対的にずれた位置に配置されている。これにより、例えばU相蛇行部31に対して、周方向Cの一方側で隣り合うW相蛇行部32は電気角で240°(edeg)の位相差を有し、周方向Cの他方側で隣り合うW相蛇行部32は電気角で120°(edeg)の位相差を有することになる。そして、2相の各環状巻線14,15は、互いの対向方向に突出する互いの各蛇行部31,32が周方向Cに沿って交互に配列され、互いに交差しないように配置されている。
そして、U相環状巻線14のU相蛇行部31にはU相ステータリング11の1つのU相ティース22が配置され、W相環状巻線15のW相蛇行部32にはW相ステータリング13の1つのW相ティース26が配置され、周方向Cで隣り合うU相蛇行部31とW相蛇行部32との間にはV相ステータリング12の1つのV相ティース24が配置されている。
これにより、周方向Cで隣り合う各ティース22,24または24,26または22,26間を縫うようにして配置された2相の各環状巻線14,15は所謂電気角で120°(edeg)の短節波巻きをなすように形成されている。
そして、互いに電気角で240°(edeg)の位相差(コイル位相差)を有する2相の各環状巻線14,15は、例えば図4(a)に示すように、V字状に結線され、互いに120°の位相差の正弦波で通電されることにより、例えば漏れ磁束が無視できる場合には、図4(c)に示すように、U相,V相,W相の3相巻線がY字状に結線され、互いに120°の位相差の正弦波で通電される3相のステータと同等の回転磁界を発生するように構成されている。
なお、例えば図4(b)に示すように、各蛇行部31,32が同等の方向(つまり軸線方向Pの一方または他方)に向かい突出する状態で互いに電気角で60°(edeg)の位相差を有する2相の各環状巻線14,15をV字状に結線する状態は、図4(a)に示すように、各蛇行部31,32が互いに異なる方向(つまり軸線方向Pの一方および他方)に向かい突出する状態で互いに電気角で240°(edeg)の位相差を有する2相の各環状巻線14,15をV字状に結線する状態と同様に、互いに120°の位相差の正弦波で通電された際に、例えば漏れ磁束が無視できる場合には、図4(c)に示すように、U相,V相,W相の3相巻線がY字状に結線され、互いに120°の位相差の正弦波で通電される3相のステータと同等の回転磁界を発生可能である。
つまり、3相(U相、V相、W相)のモータの電圧方程式は、例えば相抵抗を無視すると、各電圧指令値Vu,Vv,Vwと、各相電流Iu,Iv,Iwと、各相の自己インダクタンスLと、相互インダクタンスMと、ロータの回転角速度ωと、誘起電圧定数Keとにより、下記数式(1)に示すように記述される。
なお、下記数式(1)において、L=−2Mとし、漏れ磁束を無視した。
Figure 0005038008
上記数式(1)において、各相電流Iu,Iv,Iwは何れか2相の電流により記述できるため、例えばV相電流IvをU相電流IuおよびW相電流Iwにより記述して消去すると、各電圧指令値Vu,Vv,Vwによる線間電圧(例えば、U相−V相間の線間電圧Vuv(=Vu−Vv)とW相−V相間の線間電圧Vwv(=Vw−Vv))は下記数式(2)に示すように記述される。
Figure 0005038008
ところで、上記数式(1)に示す3相(U相、V相、W相)のモータの電圧方程式において、例えばV相の成分を除去したモデルは、下記数式(3)に示すように記述される。
Figure 0005038008
先ず、上記数式(3)に示すモデルは、W相の巻線の向きを反転させる(つまり、ロータ5の回転方向を反転させる)と、下記数式(4)に示すように記述される。
Figure 0005038008
次に、上記数式(4)に示すモデルは、各巻線のターン数nを(√3)倍に変更すると、下記数式(5)に示すように記述される。
Figure 0005038008
次に、上記数式(5)に示すモデルは、誘起電圧の位相の角度原点を90°(=π/2)だけ移動させ、U相の成分とW相の成分とを入れ替えると、下記数式(6)に示すように記述され、上記数式(2)と同等になる。
Figure 0005038008
なお、後述するように、この実施形態によるモータ1では、3相(U相、V相、W相)のうち2相のU相環状巻線14およびW相環状巻線15のみを備えることから、この2相間(つまり、U相−W相間)の磁気抵抗は、他の2相間(つまり、U相−V相間およびV相−W相間)の磁気抵抗に比べて小さくなることから、各相のインダクタンスに不整合が生じる。そして、このようなインダクタンスの不整合に起因して各相電流Iu,Iv,Iwの位相にずれが生じ、各相電流Iu,Iv,Iw間の電流位相差が2π/3=120°(edeg)からずれている。
さらに、後述するように、この実施形態によるモータ1では、ステータ10の各ティース22,24,26同士の間隔が不均等に配置されていることから、複数相の各相の相互間で誘起電圧位相差が異なっており、2π/3=120°(edeg)からずれた値となっている。
この実施形態によるモータ1を制御するモータ制御装置50は、例えば図5に示すように、パワードライブユニット(PDU)51と、バッテリ52と、制御部53とを備えて構成されている。
このモータ制御装置50において、複数相(例えば、U相、V相、W相の3相)のモータ1の駆動および回生作動は制御部53から出力される制御指令を受けてPDU51により行われる。
PDU51は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備え、モータ1と電気エネルギーの授受を行う高圧系のバッテリ52が接続されている。
PDU51は、例えばモータ1の駆動時に、制御部53から出力される指令値(U相交流電圧指令値Vu,V相交流電圧指令値Vv,W相交流電圧指令値Vw)に基づき、バッテリ52から供給される直流電力を3相交流電力に変換し、3相のモータ1の2相のU相およびW相環状巻線14,15への通電を順次転流させることで各電圧指令値Vu,Vv,Vwに応じたU相電流Iu及びW相電流Iwをモータ1の各相へと出力する。
制御部53は、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、Id指令(Idref)及びIq指令(Iqref)に基づいて各電圧指令値Vu,Vv,Vwを算出してPDU51へ入力すると共に、実際にPDU51からモータ1に供給される各相電流Iu,Iwをdq座標上に変換して得たd軸電流Id及びq軸電流Iqと、Id指令及びIq指令との各偏差がゼロとなるように制御を行う。
この制御部53は、例えば、電流指令入力部61と、減算器62,63と、電流フィードバック制御部64と、dq−3相個別変換部65と、電圧位相補正部66と、3相−dq変換部67と、電流位相ずれ演算部68と、積分補償部69と、電流位相補正部70とを備えて構成されている。
電流指令入力部61は、例えば、運転者によるアクセルペダルの踏み込み操作に関するアクセル操作量やモータ1の回転数等に応じて必要とされるトルク値をモータ1に発生させるためのトルク指令値に基づき、PDU51からモータ1に供給する各相電流Iu,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのId指令及びIq指令として減算器62,63へ出力されている。
この回転直交座標をなすdq座標は、例えばロータ5の永久磁石5aによる界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、モータ1のロータ5と共に同期して電気角速度ω(以下、単に、回転角速度ωと呼ぶ)で回転している。これにより、PDU51からモータ1の各相に供給される交流信号に対する電流指令として、直流的な信号であるId指令及びIq指令を与えるようになっている。
減算器62はId指令とd軸電流Idとの偏差ΔIdを算出し、減算器63はIq指令とq軸電流Iqとの偏差ΔIqを算出する。各減算器62,63から出力された偏差ΔId及び偏差ΔIqは、電流フィードバック制御部64に入力されている。
電流フィードバック制御部64は、例えばPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。電流フィードバック制御部64から出力されるd軸電圧指令値Vd及びq軸電圧指令値Vqはdq−3相個別変換部65に入力されている。
dq−3相個別変換部65は、例えばロータ5の回転角度つまりロータ5の磁極位置を検出する位置検出センサやロータ5の回転角度を推定する推定部等から入力されるロータ5の回転角度を用いて、dq座標上でのd軸電圧指令値Vd及びq軸電圧指令値Vqを、静止座標である3相交流座標上でのU相交流電圧指令値Vu及びV相交流電圧指令値Vv及びW相交流電圧指令値Vwに変換する。
このdq−3相個別変換部65は、例えば図6に示すように、各相毎に個別に変換処理を行い、特に、U相およびW相に対しては、電流位相補正部89から出力される各相毎の電圧補正値kΔVdu,kΔVqu,kΔVdw,kΔVqwに応じて、各相毎にd軸電圧指令値Vd及びq軸電圧指令値Vqを補正し、補正により得たdq座標上での各指令値を各相毎に個別に静止座標である3相交流座標上でのU相交流電圧指令値Vu及びW相交流電圧指令値Vwに変換する。
電圧位相補正部66は、ステータ10の各ティース22,24,26の配置状態に起因して複数相の各相の相互間で異なる誘起電圧位相差に基づき、各電圧指令値Vu,Vv,Vwの位相を補正する。
つまり、この実施の形態でのステータ10では、単一の各環状巻線14,15が配置される各ティース22,24間および各ティース24,26間の間隔C1と、2相の各環状巻線14,15が配置される各ティース22,26間の間隔C2とが異なることで、隣り合う各ティース22,24,26同士の間隔が不均等となっている。そして、この各ティース22,24,26同士の不均等配置に起因して、複数相の各相の相互間で誘起電圧位相差が異なっている。
例えば、U相−V相間の線間電圧Vuvと線間誘起電圧Euvとの差電圧V1と、W相−V相間の線間電圧Vwvと線間誘起電圧Ewvとの差電圧V2とに対して、相抵抗値rによる電圧降下を無視し、2相の各環状巻線14,15にトルク電流(つまりq軸電流)のみを通電した場合には、各差電圧V1,V2はトルク電流よりもほぼπ/2=90°(edeg)だけ位相が進むことから、3相のベクトル図は図7(a),(b)に示すように描画される。
ここで、複数相の各相の相互間の線間誘起電圧Ewu,Euv,Ewv同士に対する位相差は、各ティース22,24,26同士の不均等配置に起因して、例えば図8に示すように、互いに異なる値となっている。これに対して、各相電流間の電流位相差が2π/3=120°(edeg)であることを前提とする通常のベクトル制御によれば、複数相の各相の相互間の線間電圧Vwu,Vuv,Vwv同士に対する位相差は、例えば図7(a)に示すように、互いに同等の値(つまり、120°(edeg))とされている。
そして、このように、誘起電圧に対する線間電圧位相差と、各電圧指令値Vu,Vv,Vwに対する線間電圧位相差とが異なる状態では、各相電流Iu,Iwの位相変化が所望の値からずれてしまうという問題が生じる。
このため、電圧位相補正部66は、複数相の各相の相互間で異なる誘起電圧位相差に基づき、各電圧指令値Vu,Vv,Vwの位相を補正しており、例えば図7(b)に示すように、線間電圧Vuv,Vwv同士間の位相差が、線間誘起電圧Ewu,Ewv同士間の位相差(例えば、112°(edeg))と同等の位相差となるように、各電圧指令値Vu,Vv,Vwの位相を補正する。
なお、電圧位相補正部66は、この電圧位相補正処理を、例えばモータ1の運転開始時等のように、複数相のモータ1の各相に電圧の印加を開始する時点の直前の無通電時において、予めモータ1の構造(例えば、ステータ10の各ティース22,24,26の配置状態等)に応じて設定された補正量等に基づき実行する。つまり、この電圧位相補正処理は、モータ1に対する通電が開始されると共に、後述する電流位相補正処理を含む電流のフィードバック制御の一連の処理が開始される状態に先立って、無通電時に少なくとも一度だけ実行されるように設定されている。
そして、電圧位相補正部66から出力される正弦波状の各電圧指令値Vu,Vv,VwはPDU51に入力され、PDU51において、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、PDU51のPWMインバータの各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、パルス幅変調信号)が生成される。
3相−dq変換部67は、例えばロータ5の回転角度つまりロータ5の磁極位置を検出する位置検出センサやロータ5の回転角度を推定する推定部等から入力されるロータ5の回転角度を用いて、静止座標上における電流である各相電流Iu,Iwを、モータ1の回転位相による回転座標すなわちdq座標上でのd軸電流Id及びq軸電流Iqに変換する。このため、3相−dq変換部67には、モータ1の各環状巻線14,15に供給される各相電流Iu,Iwを検出する2つの相電流検出器71,71から出力される検出値(つまり、U相電流Iu,W相電流Iw)が入力されている。そして、3相−dq変換部67から出力されるd軸電流Id及びq軸電流Iqは減算器62,63に出力されている。
また、電流位相ずれ演算部68は、後述する各相のインダクタンス不整合に基づく各相電流Iu,Iwの位相ずれβを、例えば図6に示すように、ロータ5の異なる回転角度θ,θでの各相の瞬時電流値Iu1,Iw1,Iu2,Iw2に基づき算出し、積分補償部69へ出力する。なお、各回転角度θ,θは、例えばロータ5の磁極位置を検出する位置検出センサやロータ5の回転角度を推定する推定部等から入力される。
積分補償部69は、電流位相ずれ演算部68にて算出される各相電流Iu,Iwの位相ずれβを積分動作により制御増幅して積分ゲインkを算出し、電流位相補正部70へ出力する。
電流位相補正部70は、積分補償部69にて算出される積分ゲインkに基づき、各相毎の電圧補正値kΔVdu,kΔVqu,kΔVdw,kΔVqwを算出し、dq−3相個別変換部65へ出力する。
本実施の形態によるモータ制御装置50は上記構成を備えており、次に、このモータ制御装置50の動作、特に、複数相の各相の相互間で異なる誘起電圧位相差に基づき各電圧指令値Vu,Vv,Vwの位相を補正する処理(電圧位相補正処理)と、各相のインダクタンス不整合に基づく各相電流の位相ずれβを制御する処理(電流位相補正処理)について添付図面を参照しながら説明する。
以下に、制御部53による電流のフィードバック制御の一連の処理について説明する。
先ず、図9に示すステップS01においては、通電開始に先立って、例えばモータ1の構造(つまり、ステータ10の各ティース22,24,26の配置状態等)に応じて予め設定された各電圧指令値Vu,Vv,Vwに対する位相補正量等により、各電圧指令値Vu,Vv,Vwに対する各相間の電圧位相差が、各ティース22,24,26の配置状態に起因して各相間で異なる誘起電圧位相差に等しくなるようにして、各電圧指令値Vu,Vv,Vwの位相を補正する。
次に、ステップS02においては、モータ1への通電を開始する。
次に、ステップS03においては、各相のインダクタンス不整合に基づく各相電流Iu,Iwの位相ずれβを検出する。
次に、ステップS04においては、位相ずれβに対するPI(比例積分)動作により、各相毎の電圧補正値kΔVdu,kΔVquおよび電圧補正値kΔVdw,kΔVqwを算出する。
次に、ステップS05においては、dq座標上でのd軸電圧指令値Vd及びq軸電圧指令値Vqを、各相毎の電圧補正値kΔVdu,kΔVquおよび電圧補正値kΔVdw,kΔVqwにより補正し、補正により得たdq座標上での各指令値を各相毎に個別に3相交流座標上でのU相交流電圧指令値Vu及びW相交流電圧指令値Vwに変換する。
そして、ステップS06においては、通電終了指示が有るか否かを判定する。
この判定結果が「YES」の場合には、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、上述したステップS03に戻る。
以下に、各相のインダクタンス不整合に基づく各相電流Iu,Iwの位相ずれβについて説明する。
この実施の形態でのモータ1によれば、3相(U相、V相、W相)のステータ10に対し、2相のU相環状巻線14およびW相環状巻線15が備えられているだけであるから、U相−W相間の磁気抵抗は、他の2相間(つまり、U相−V相間およびV相−W相間)の磁気抵抗に比べて小さくなり、V相に係るインダクタンスがU相およびV相に係る各インダクタンスとは異なる値となり、例えばV相の自己インダクタンスおよび相互インダクタンスに比べて、U相およびW相の自己インダクタンスおよび相互インダクタンスが大きくなっている。
先ず、以下においては、各相のインダクタンス不整合に応じた各相電流Iu,Iv,Iwの変化について説明する。
3相(U相、V相、W相)のモータの電圧方程式は、例えば相抵抗(相抵抗値r)と誘起電圧を無視すると、各相電圧指令値Vu,Vv,Vwと、各相電流Iu,Iv,Iwと、各相の自己インダクタンスLu,Lv,Lwと、各相互インダクタンスMuv,Muw,Mvu,Mvw,Mwu,Mwvとにより、下記数式(7)に示すように記述される。
Figure 0005038008
上記数式(7)において、各相電流Iu,Iv,Iwは何れか2つの相電流により記述できるため、例えばV相電流IvをU相電流IuおよびW相電流Iwにより記述して消去すると、各相電圧指令値Vu,Vv,Vwによる線間電圧(例えば、U相−V相間の線間電圧Vuv(=Vu−Vv)とW相−V相間の線間電圧Vwv(=Vw−Vv))は下記数式(8)に示すように記述される。
Figure 0005038008
ここで、各環状巻線14,15に対するロータ5の回転位置に応じてインダクタンス成分値が変化するようなモータの突極性を無視した場合のインダクタンス行列は、自己インダクタンスLと相互インダクタンスmとに基づき、下記数式(9)に示すように記述されることから、上記数式(8)からモータの突極性を無視した線間電圧方程式は下記数式(10)に示すように記述される。
Figure 0005038008
Figure 0005038008
ここで、各相電圧指令値Vu,Vv,Vwを、例えば下記数式(11)に示すように正弦波状とすれば、U相−V相間の線間電圧Vuv(=Vu−Vv)とW相−V相間の線間電圧Vwv(=Vw−Vv))は下記数式(12)に示すように記述される。なお、ωはロータ5の回転角速度である。
Figure 0005038008
Figure 0005038008
上記数式(10)および数式(12)により、U相電流IuおよびW相電流Iwの各時間微分値(dIu/dtおよびdIw/dt)は、例えば下記数式(13)に示すように記述され、これらの電流微分ベクトルは図10に示すように(2π/3)=120°(edeg)の電流位相差を有し、この数式(13)からU相電流IuおよびW相電流Iwは下記数式(14)に示すように記述される。なお、Kは任意の定数である。
Figure 0005038008
Figure 0005038008
ここで、3相の各インダクタンスが対称ではなく、例えば下記数式(15)に示すように、U相およびV相に係る自己インダクタンスおよび相互インダクタンスがV相に係る自己インダクタンスおよび相互インダクタンスに比べて大きい場合(例えばL>LかつM>m)には、モータの突極性を無視した線間電圧方程式は下記数式(16)に示すように記述される。
Figure 0005038008
Figure 0005038008
ここで、U相−V相間の線間インダクタンスLuvとW相−V相間の線間インダクタンスLwv線間とU相−W相間の線間インダクタンスLuwとは、下記数式(17)に示すように記述されることから、上記数式(16)に示す線間電圧方程式は下記数式(18)に示すように記述される。
Figure 0005038008
Figure 0005038008
これにより、U相電流IuおよびW相電流Iwの各時間微分値(dIu/dtおよびdIw/dt)に係る電流微分ベクトルは、例えば図11に示すように、3相の各インダクタンスが整合している場合に比べて、角度δだけ電流位相差がずれる。
つまり、例えば図12に示すように、U相電流Iuの電流位相が遅角状態となり、W相電流Iwの電流位相が進角状態となって、U相電流IuおよびW相電流Iw間の電流位相差が2π/3=120°(edeg)よりも減少することによって、V相電流Ivの電流値が増大することになる。そして、これに伴い、各相電流間の電流位相差が2π/3=120°(edeg)であることを前提とする通常のベクトル制御によれば、モータの力率およびトルク定数が低下することになる。
次に、以下においては、各相のインダクタンス不整合に基づく各相電流Iu,Iwの位相ずれβを補正する方法について説明する。
各相電流Iu,Iwの電流位相に生じるずれを解消するためには、例えば図13に示すように、先ず、U相−V相間の線間電圧VuvとW相−V相間の線間電圧Vwvとの間の位相差φをπ/3=60°(edeg)よりも大きな値に設定する。ただし、上記数式(7)〜数式(18)においては、誘起電圧を無視していることから、実際には各相電圧指令値Vu,Vv,Vwと誘起電圧との差電圧の位相を変化させることになる。
ここで、U相電流IuおよびW相電流Iw間の電流位相差が2π/3=120°(edeg)よりも小さい場合にはU相電流Iuの電流位相が遅角状態となり、W相電流Iwの電流位相が進角状態となることから、これに対応して、各電圧差V1,V2の電圧値(つまり、ベクトルの大きさ)を変化させずに電圧差V1を遅角状態かつ電圧差V2を進角状態に設定することになる。
しかしながら、単に、U相電圧指令値Vuを遅角状態に設定し、V相電圧指令値Vvを進角状態に設定するだけでは、例えば図14に示すように、各電圧差V1,V2の位相はほとんど変化せず、しかも、電圧差V1の大きさが減少し、電圧差V2の大きさが増大してしまう。このため、U相電流IuおよびW相電流Iwを所望の各位相状態(つまり、U相電流Iuは遅角状態、W相電流Iwは進角状態)に変化させることができず、しかも、U相電流IuおよびW相電流Iwの各電流値が不必要に変化してしまう。
このため、U相電流IuおよびW相電流Iwを所望の各位相状態(つまり、U相電流Iuは遅角状態、W相電流Iwは進角状態)に変化させるための各電圧差V1,V2(つまり電圧差V1を遅角状態かつ電圧差V2を進角状態)を得るためには、例えば図15に示すように、各線間電圧Vuv,Vwvの位相および振幅を変化させる必要がある。
ところで、通常のベクトル制御においては、3相の各相電圧指令値Vu,Vv,Vwの大きさは同等であり、各相電圧指令値Vu,Vv,Vw間の位相差は2π/3=120°(edeg)に固定されていることから、各線間電圧Vuv,Vwvの位相および振幅を変化させるための補正が必要となる。
例えばV相電圧指令値Vvの電圧値および位相を固定した場合には、U相電圧指令値VuをU相電流Iuが遅角する方向に変化させ、W相電圧指令値VwをW相電流Iwが進角する方向に変化させればよい。
ここで、モータの突極性を無視した場合におけるdq座標上での回路方程式に基づき、各相電圧指令値Vu,Vv,Vwおよび各相電流Iu,Iv,Iwの所定定常値からの変化に応じたd軸電圧指令値Vdおよびq軸電圧指令値Vqとd軸電流Idおよびq軸電流Iqとの各変化ΔVd,ΔVq,ΔId,ΔIqを、例えば下記数式(19)に示すように近似すれば、この数式(19)に基づき、d軸電流指令Idrefおよびq軸電流指令Iqrefを進角または遅角させる場合の電圧変化を算出することができる。そして、算出した電圧変化によって各電圧指令値Vd,Vqを補正して得た値から変換処理によって各相電圧指令値Vu,Vwを算出することで、これらの各相電圧指令値Vu,Vwに応じた各相電流Iu,Iwを進角または遅角させることができる。
Figure 0005038008
例えばU相電圧Iuを遅角させる際に、d軸電流指令Idrefおよびq軸電流指令Iqrefをπ/2=90°(edeg)だけ位相を遅らせる電圧変化ΔVdu,ΔVquは、例えば下記数式(20)に示すように記述される。
Figure 0005038008
また、例えばW相電流Iwを遅角させる際に、d軸電流指令Idrefおよびq軸電流指令Iqrefをπ/2=90°(edeg)だけ位相を進める電圧変化ΔVdw,ΔVqwは、例えば下記数式(21)に示すように記述される。
Figure 0005038008
そして、例えば下記数式(22)に示すように、上記数式(20)に基づく電圧変化ΔVdu,ΔVquによって各電圧指令値Vd,Vqを補正して得た値(Vd+kΔVdu,Vq+kΔVqu)に対する変換処理によってU相電圧指令値Vuを算出することで、U相電圧指令値Vuに応じたU相電流Iuを遅角させることができる。
Figure 0005038008
このとき、V相電圧指令値Vvは、補正の必要無しに、例えば下記数式(23)に示すように記述される。
Figure 0005038008
また、例えば下記数式(24)に示すように、上記数式(21)に基づく電圧変化ΔVdw,ΔVqwによって各電圧指令値Vd,Vqを補正して得た値(Vd+kΔVdw,Vq+kΔVqw)に対する変換処理によってW相電圧指令値Vwを算出することで、W相電圧指令値Vwに応じたW相電流Iwを進角させることができる。
Figure 0005038008
次に、以下においては、U相電流Iuを遅角させる度合およびW相電流Iwを進角させる度合、つまり各相のインダクタンス不整合に基づく各相電流Iu,Iwの位相ずれβを算出する方法、特に、電流位相ずれ演算部68の動作について説明する。
上記数式(22)〜数式(24)に基づき、各相電流Iu,Iv,Iwの位相ずれβを補正する際には、位相ずれβを検出してフィードバック処理を実行することになる。
ここで、各相のインダクタンスの不整合に起因してU相電流IuとW相電流Iwとには、互いに逆方向の位相ずれβが生じることから、各相電流Iu,Iv,Iwを正弦波状とすれば、U相電流IuおよびW相電流Iwは下記数式(25)に示すように記述される。
Figure 0005038008
そして、同一相で異なる適宜の回転角度θ,θでのU相電流IuおよびW相電流Iwの各瞬時電流値Iu,Iu,Iw,Iwは、例えば下記数式(26)に示すように記述されることから、U相の各瞬時電流値Iu,Iuに対して下記数式(27)が成り立ち、W相の各瞬時電流値Iw,Iwに対して下記数式(28)が成り立つ。
Figure 0005038008
Figure 0005038008
Figure 0005038008
ここで、各電圧Vsu,Vcu,Vsw,Vcwを下記数式(29)に示すようにして定義すると、適宜の回転角度θ,θの差(θ−θ)の正弦値sin(θ−θ)≠0の場合に、これらの各電圧Vsu,Vcu,Vsw,Vcwと、上記数式(27)および数式(28)とに基づき、下記数式(30)に示すようにして、位相ずれβの正弦値を算出することができ、さらに、位相ずれβ≒0において、この位相ずれβの近似値を算出することができる。
Figure 0005038008
Figure 0005038008
以下に、上述した実施の形態のモータ制御装置50によりモータ1の通電電流の電流位相を制御した試験の試験結果について説明する。
なお、比較例においては、3相の各相電圧指令値Vu,Vv,Vwの大きさを同等とし、各相電圧指令値Vu,Vv,Vw間の位相差を2π/3=120°(edeg)に固定した通常のベクトル制御によりモータ1の通電電流の電流位相を制御した。つまり、この比較例においては、上述した電圧位相補正処理および電流位相補正処理を省略した。
この比較例における試験結果として、例えば図16(a)には、所定回転数(1500rpm)および所定電流指令(25Arms)での各相電流Iu,Iv,Iwの時間変化を示した。
そして、実施例においては、モータ制御装置50よりモータ1の通電電流の電流位相を制御した試験結果として、例えば図16(b)には、所定回転数(1500rpm)および所定電流指令(25Arms)での各相電流Iu,Iv,Iwの時間変化を示した。
図16(a)に示す比較例においては、各相のインダクタンスの不整合に応じてU相電流IuおよびW相電流Iwに位相ずれが生じ、U相電流IuおよびW相電流Iwの波高値が低下すると共に、波形に乱れが生じていることがわかる。
これに対し、図16(b)に示す実施例においては、各相電流Iu,Iv,Iwの位相および波高値が適切に制御され、さらに、滑らかな波形を示すように制御されていることがわかる。
上述したように、本実施の形態によるモータ制御装置50によれば、例えばステータ10での巻線占積率を向上させる場合等において、複数相のティース22,24,26の隣り合うティース同士の間隔(例えば、各ティース22,24間および各ティース24,26間の間隔C1と、各ティース22,26間の間隔C2)が不均等になるように配置された場合であっても、この不均等配置に起因する誘起電圧位相差に基づき、各電圧指令値Vu,Vv,Vwの位相を補正することから、モータ1を適切に制御することができる。
さらに、各相のインダクタンス不整合に係る補正を各相毎に個別に行うことで、各相電圧指令値Vu,Vv,Vwを適切に算出することができ、モータ1の構造に起因して各相のインダクタンス不整合が存在する場合であっても、各相電流Iu,Iv,Iwの振幅および位相を整合させることができ、モータ1を適切に駆動制御することができる。
しかも、電圧位相補正部66は、電圧位相補正処理を、電流位相補正処理を含む電流のフィードバック制御の一連の処理が開始される状態に先立って、無通電時に少なくとも一度だけ実行することから、モータ1をより一層、適切に駆動制御することができる。
なお、上述した実施形態においては、ステータ10において周方向Cで隣り合う各ティース22,24,26間の間隔が各スロットに配置される各環状巻線14,15の本数に応じた値に設定されることによって、各ティース22,24,26同士の間隔が不均等となり、この不均等配置に起因して、複数相の各相の相互間で誘起電圧位相差が発生するとしたが、これに限定されず、例えば図17に示す第1変形例のように、周方向Cで隣り合う各ティース22,24,26同士が軸線方向Pに一段ずれた位置に配置されることに起因して、複数相の各相の相互間で誘起電圧位相差が発生してもよい。
この第1変形例に係るステータ10では、各蛇行部31,32の周方向Cの幅つまりコイルピッチは、電気角で120°以下の所定値に設定され、U相環状巻線14とW相環状巻線15とは、電気角で240°の位相差を有するようにして周方向Cに沿って相対的にずれた位置に配置されている。そして、周方向Cで隣り合う各ティース22,24または24,26間を縫うようにして配置される2相の各環状巻線14,15は、所謂電気角で120°以下の短節波巻きをなすように形成され、各ティース22,24間または24,26間には、単一の各環状巻線14,15が配置されている。
そして、この第1変形例において、電圧位相補正部66は、ステータ10の各ティース22,24,26が各相の相互間での軸方向位置に偏差を有するように配置された状態での軸方向位置偏差に起因する誘起電圧位相差に基づき、各電圧指令値Vu,Vv,Vwに対する各相間の電圧位相差が、各ティース22,24,26の配置状態に起因して各相間で異なる誘起電圧位相差に等しくなるようにして、各電圧指令値Vu,Vv,Vwの位相を補正する。
また、上述した実施形態においては、例えば図18に示す第2変形例のように、ステータ10において周方向Cで隣り合う各ティース22,24,26間の間隔が各スロットに配置される各環状巻線14,15の本数に応じた値に設定されることによって、各ティース22,24,26同士の間隔が不均等となり、この不均等配置に起因して、複数相の各相の相互間で誘起電圧位相差が発生すると共に、周方向Cで隣り合う各ティース22,24,26同士が軸線方向Pに一段ずれた位置に配置されることに起因して、複数相の各相の相互間で誘起電圧位相差が発生してもよい。
そして、この第2変形例において、電圧位相補正部66は、ステータ10の各ティース22,24,26の不均等配置および軸方向位置偏差に起因する誘起電圧位相差に基づき、各電圧指令値Vu,Vv,Vwに対する各相間の電圧位相差が、各ティース22,24,26の配置状態に起因して各相間で異なる誘起電圧位相差に等しくなるようにして、各電圧指令値Vu,Vv,Vwの位相を補正する。
また、上述した実施形態において、電圧位相補正部66は、電圧位相補正処理を、電流位相補正処理を含む電流のフィードバック制御の一連の処理が開始される状態に先立って、無通電時に少なくとも一度だけ実行するとしたが、これに限定されず、例えば電流のフィードバック制御において繰り返し実行される一連の処理毎に実行してもよい。
なお、上述した実施形態においては、電流位相ずれ演算部68は、瞬時電流値Iu1,Iw1,Iu2,Iw2に基づき、各相電流Iu,Iwの位相ずれβを算出するとしたが、これに限定されず、例えば所定周期(半周期等)に亘る積分電流値や平均電流値に基づき、各相電流Iu,Iwの位相ずれβを算出してもよい。
例えば、上記数式(25)に基づき、U相電流Iuの自乗Iu・Iuは下記数式(31)に示すように記述され、W相電流Iwの自乗Iw・Iwは下記数式(32)に示すように記述され、U相電流IuとW相電流Iwとの積は下記数式(33)に示すように記述され、U相電流IuとV相電流Ivとの積は下記数式(34)に示すように記述される。
Figure 0005038008
Figure 0005038008
Figure 0005038008
Figure 0005038008
上記数式(31)〜(34)に基づき、U相電流IuとW相電流Iwとの内積と、U相電流IuとV相電流Ivとの内積との差は、下記数式(35)に示すように記述され、位相ずれβ≒0において、この位相ずれβの近似値を、U相電流IuとW相電流Iwとの内積と、U相電流IuとV相電流Ivとの内積とにより算出することができる。
Figure 0005038008
また、W相電流IwとV相電流Ivとの各実効値Iw,Ivの差は、下記数式(36)に示すように記述されることから、位相ずれβの近似値をW相電流IwとV相電流Ivとの実効値の差により算出することができる。
Figure 0005038008
なお、上記数式(35)あるいは数式(36)に基づき位相ずれβの近似値を算出する際には、各相電流Iu,Iv,Iwの電流値として、電流値の1周期分あるいは1/2周期分の時間積分値または時間平均値を用いることになる。
本発明の実施形態に係るモータの分解斜視図である。 本発明の実施形態に係るモータのステータの要部の径方向断面図である。 本発明の実施形態に係るステータの要部分解斜視図である。 図4(a)は図1に示すステータの各環状巻線の結線状態を示す図であり、図4(b)は本発明の実施形態に係るステータの各環状巻線の結線状態を示す図であり、図4(c)は3相(U相、V相、W相)のステータの各巻線の結線状態を示す図である。 本発明の実施形態に係るモータ制御装置の構成図である。 図5に示すdq−3相個別変換部および電流位相補正部および積分補償部および電流位相ずれ演算部の構成図である。 本発明の実施形態に係るモータの誘起電圧と線間電圧との関係を示す図である。 本発明の実施形態に係るモータの各相間の誘起電圧の波形の一例を示す図である。 本発明の実施形態に係るモータ制御装置の動作を示すフローチャートである。 3相の各インダクタンスが対称である通常のモータに対し、U相電流IuおよびW相電流Iwの各時間微分値(dIu/dtおよびdIw/dt)に対する電流微分ベクトルと線間電圧と電流ベクトルを示す図である。 3相の各インダクタンスが対称ではなく、U相およびV相自己インダクタンスおよび相互インダクタンスがV相に係る自己インダクタンスおよび相互インダクタンスに比べて大きい場合でのU相電流IuおよびW相電流Iwの各時間微分値(dIu/dtおよびdIw/dt)に対する電流微分ベクトルと線間電圧と電流ベクトルを示す図である。 本実施形態に係るモータに対し、各相の電流ベクトルを示す図である。 本実施形態に係るモータに対し、線間電圧の位相に対する補正値の一例を示す図である。 本実施形態に係るモータに対し、U相電圧およびW相電圧の位相を変化させた場合における誘起電圧と線間電圧との関係を示す図である。 本実施形態に係るモータに対し、U相電流を遅角させ、W相電流を進角させた場合における誘起電圧と線間電圧との関係を示す図である。 図16(a)は本実施形態の比較例に係るモータにおいて各相電流Iu,Iv,Iwの波高値の時間変化の一例を示す図であり、図16(b)は本実施形態の実施例において各相電流Iu,Iv,Iwの波高値の時間変化の一例を示す図である。 本発明の実施形態の第1変形例に係るモータのステータの要部の径方向断面図である。 本発明の実施形態の第2変形例に係るモータのステータの要部の径方向断面図である。
符号の説明
1 モータ
10 ステータ
22 U相ティース(ティース)
24 V相ティース(ティース)
26 W相ティース(ティース)
66 電圧位相補正部(電圧位相補正手段)
68 電流位相ずれ演算部(電流位相ずれ算出手段)
70 電流位相補正部(電流位相補正手段)

Claims (5)

  1. 複数相の各相の相互間での線間誘起電圧同士の位相差が互いに異なるようにしてティースが配置されたステータを備えるモータを制御するモータ制御装置であって、
    前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正する電圧位相補正手段を備えることを特徴とするモータ制御装置。
  2. 前記複数相のティースは、隣り合う前記ティース同士の間隔が不均等になるように配置され、
    前記電圧位相補正手段は、隣り合う前記ティース同士の間隔が不均等であることに起因する前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記複数相のティースは、各相の相互間での軸方向位置に偏差を有するように配置され、
    前記電圧位相補正手段は、前記複数相のティースが各相の相互間での軸方向位置に偏差を有することに起因する前記線間誘起電圧同士の位相差に基づき前記複数相の各相に印加する電圧の位相を補正することを特徴とする請求項1または請求項2に記載のモータ制御装置。
  4. 各相のインダクタンス不整合に基づく各相電流の位相ずれを算出する電流位相ずれ算出手段と、
    前記電流位相ずれ算出手段にて算出された前記位相ずれに基づき、各相毎のd軸電圧指令値およびq軸電圧指令値の位相および振幅を補正する電圧指令補正値を、d軸電流指令値およびq軸電流指令値から算出する電流位相補正手段とを備え、
    前記電流位相補正手段は、前記電圧位相補正手段により補正された電圧が前記複数相の各相に印加された以後に、前記電圧指令補正値を算出することを特徴とする請求項1から請求項3の何れか1つに記載のモータ制御装置。
  5. 前記電圧位相補正手段は、前記複数相の各相に電圧の印加を開始する時点から前記電圧の位相を補正することを特徴とする請求項4に記載のモータ制御装置。
JP2007108130A 2007-04-17 2007-04-17 モータ制御装置 Expired - Fee Related JP5038008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108130A JP5038008B2 (ja) 2007-04-17 2007-04-17 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108130A JP5038008B2 (ja) 2007-04-17 2007-04-17 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2008271643A JP2008271643A (ja) 2008-11-06
JP5038008B2 true JP5038008B2 (ja) 2012-10-03

Family

ID=40050450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108130A Expired - Fee Related JP5038008B2 (ja) 2007-04-17 2007-04-17 モータ制御装置

Country Status (1)

Country Link
JP (1) JP5038008B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068570A (ja) * 2018-10-23 2020-04-30 株式会社マキタ 電動作業機

Also Published As

Publication number Publication date
JP2008271643A (ja) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4909797B2 (ja) モータ制御装置
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
JP3661642B2 (ja) モータの制御装置及びその制御方法
US9112436B2 (en) System for controlling controlled variable of rotary machine
US8653771B2 (en) Controller for motor
US20130334937A1 (en) Rotary electric machine driving system
US20140346983A1 (en) Motor control device and motor control method
JP5109416B2 (ja) 回転機の制御装置
JP2009065758A (ja) 昇圧コンバータの制御装置および制御方法
JP4372775B2 (ja) モータ制御装置
US20120194108A1 (en) Motor system
JP4960748B2 (ja) アキシャルギャップ型モータ
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
US20150155810A1 (en) Rotary electric machine control system and rotary electric machine control method
JP5222630B2 (ja) モータ制御装置
JP2008072858A (ja) 車両用回転電機の制御装置
JP2009240125A (ja) 電動機システムの制御装置
JP4642512B2 (ja) モータ制御装置
JP5038008B2 (ja) モータ制御装置
JP3735836B2 (ja) 永久磁石同期電動機のベクトル制御方法
JP2013233055A (ja) 電動機の制御装置
JP4485840B2 (ja) クローポール型モータの制御装置
JP4526628B2 (ja) 交流モータの制御装置
JP4732273B2 (ja) 車両用モータの制御装置
JP2015073396A (ja) 電動モータの制御装置及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees