JP4872519B2 - Internal abnormality diagnosis method for oil-filled electrical equipment - Google Patents

Internal abnormality diagnosis method for oil-filled electrical equipment Download PDF

Info

Publication number
JP4872519B2
JP4872519B2 JP2006218304A JP2006218304A JP4872519B2 JP 4872519 B2 JP4872519 B2 JP 4872519B2 JP 2006218304 A JP2006218304 A JP 2006218304A JP 2006218304 A JP2006218304 A JP 2006218304A JP 4872519 B2 JP4872519 B2 JP 4872519B2
Authority
JP
Japan
Prior art keywords
oil
gas
acetylene
filled electrical
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006218304A
Other languages
Japanese (ja)
Other versions
JP2008042130A (en
Inventor
正 石井
貴之 平野
茂之 塚尾
博明 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006218304A priority Critical patent/JP4872519B2/en
Publication of JP2008042130A publication Critical patent/JP2008042130A/en
Application granted granted Critical
Publication of JP4872519B2 publication Critical patent/JP4872519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

本発明は、油入電気機器の内部、特にコンサベータを使用している変圧器本体内の異常診断方法に関するものである。   The present invention relates to a method for diagnosing an abnormality inside an oil-filled electrical device, particularly in a transformer body using a conservator.

油入電気機器に使用されているコンサベータは、図1に示すように、変圧器本体上部に設置され、負荷変動により変圧器内の本体絶縁油11が膨張、収縮する際にコンサベータ10の内部の隔壁ゴム状膜12が応動することにより絶縁油の体積増減を吸収し、かつ外気と本体絶縁油11の接触による劣化を防止する。また、隔壁ゴム状膜12は、変圧器本体絶縁油11と切換開閉器室油13とを区画する隔壁の役割を果たしている。このため、隔壁ゴム状膜12には、膨張収縮に応動する伸縮性、切換開閉器室油13からガスの透過を防止して本体絶縁油11の清浄性を保つガス不透過性及び耐油性に優れる材料のものが使用されている。切換開閉器室油13はタップ切換時に発生するアーク放電のため、使用中に徐々に汚損して絶縁性が低下すると共に、アセチレンやメチルビニルアセチレンなどのガス成分が増加してくる。一方、変圧器本体絶縁油は、変圧器本体内部において放電又は過熱等の異常が起きた場合、アセチレンやメチルビニルアセチレンなどのガス成分が増加してくる。   As shown in FIG. 1, the conservator used in the oil-filled electrical device is installed on the upper part of the transformer main body. When the main body insulating oil 11 in the transformer expands and contracts due to a load change, the conservator 10 The internal partition rubber-like film 12 responds to absorb the volume increase / decrease of the insulating oil and prevent deterioration due to contact between the outside air and the main body insulating oil 11. The partition rubber-like film 12 serves as a partition that partitions the transformer body insulating oil 11 and the switching switch chamber oil 13. For this reason, the partition rubber-like film 12 has stretchability that responds to expansion and contraction, gas impermeability and oil resistance that prevents gas permeation from the switching switch chamber oil 13 and maintains the cleanliness of the main body insulating oil 11. Excellent material is used. Since the switchgear chamber oil 13 is arc discharge generated when the tap is switched, the switch switch chamber oil 13 is gradually fouled during use to deteriorate the insulation, and gas components such as acetylene and methylvinylacetylene increase. On the other hand, in the transformer body insulating oil, when an abnormality such as discharge or overheating occurs inside the transformer body, gas components such as acetylene and methylvinylacetylene increase.

油入電気機器の保守管理に関する効果的な一手法として、油中ガス分析による保守管理が電力会社他多数のユーザーで採用され、事故防止に役立っている(例えば、非特許文献1)。油中ガス分析による異常診断は、機器を停止することなく絶縁油を採取し、油中に溶存しているガス成分を抽出、分析してガスの量及び種類から放電や過熱などの異常を早期に発見する技術である。   As an effective method for maintenance management of oil-filled electrical equipment, maintenance management based on oil-in-gas analysis has been adopted by many electric power companies and other users and is useful for preventing accidents (for example, Non-Patent Document 1). Abnormality diagnosis by gas analysis in oil collects insulating oil without stopping the equipment, extracts and analyzes the gas components dissolved in the oil, and early detects abnormalities such as discharge and overheating from the amount and type of gas It is a technology to discover.

油入電気機器の内部異常診断は、当初、絶縁油中に溶存しているエチレンガス、アセチレンガスなど数種類の低沸点ガスを、電気協同研究、第54巻、第5号(1999)に報告されている分析方法(以下、電協研法と称する)を用いて行なっていた。近年では、分析技術の進歩に伴い、メチルビニルアセチレン、2−メチル−1,3ブタジエン等多種類の高沸点微量ガスを高感度で分析する新しい油中分析方法(以下、「第2の油中ガス分析方法」と言う。)が提案されている(特許文献1)。この第2の油中ガス分析方法により油入電気機器の内部異常診断を行なえば、各種絶縁材料の損傷に伴い特徴的に検出される成分及び本体絶縁油の放電、過熱分解時に検出される成分を同定し、損傷材料、損傷部位、異常様相の的確な識別、更には運転継続可否の的確な判定をすることができる(例えば、特許文献2)。
電気協同研究、第54巻、第5号(1999) 特開平9−72892号公報 特開2002−350426号公報
Internal abnormality diagnosis of oil-filled electrical equipment was initially reported in Electrical Cooperative Research, Vol. 54, No. 5 (1999) on several types of low-boiling gases such as ethylene gas and acetylene gas dissolved in insulating oil. Analysis method (hereinafter referred to as “Denki Kyoken method”). In recent years, with the advancement of analytical technology, a new analysis method in oil (hereinafter referred to as “second oil in a second oil”) analyzes high-boiling trace gases such as methylvinylacetylene and 2-methyl-1,3-butadiene with high sensitivity. "Gas analysis method" is proposed (Patent Document 1). If the internal abnormality diagnosis of oil-filled electrical equipment is performed by this second oil-in-gas analysis method, components that are characteristically detected along with damage to various insulating materials and components that are detected during the discharge of body insulating oil and overheat decomposition Can be identified, and it is possible to accurately identify the damaged material, the damaged site, and the abnormal aspect, and further accurately determine whether or not the operation can be continued (for example, Patent Document 2).
Electric Cooperative Research, Vol. 54, No. 5 (1999) JP-A-9-72892 JP 2002-350426 A

しかしながら、電協研法による油中ガス分析によりアセチレンガスなどの低沸点ガスを検出し、内部異常の疑いがある場合でも、多面的な追跡調査の結果、機器内部には異常が確認されない場合があった。   However, even if low boiling point gases such as acetylene gas are detected by gas analysis in oil by the electric cooperative research method, and there is a suspicion of internal abnormality, abnormalities may not be confirmed inside the equipment as a result of multifaceted follow-up investigation. there were.

従って、本発明の目的は、変圧器本体絶縁油と切換開閉器室油が隔壁ゴム状膜で区画される油入電気機器の本体内部の異常を簡易な方法で診断することができ、且つアセチレンガスなどの低沸点ガスの発生源を判定することができる油入電気機器の内部異常診断方法を提供することにある。   Therefore, an object of the present invention is to diagnose an abnormality inside the main body of an oil-filled electrical device in which the transformer main body insulating oil and the switching switch chamber oil are partitioned by the partition rubber-like film, and acetylene An object of the present invention is to provide a method for diagnosing an internal abnormality of an oil-filled electrical device capable of determining a source of low-boiling gas such as gas.

かかる実情において、本発明者等は鋭意検討を行った結果、(1)変圧器本体絶縁油と切換開閉器室油とを区画する隔壁ゴム状膜は、ガス不透過性であるにも拘わらず、アセチレンガスを透過すること、しかしメチルビニルアセチレンガスは透過しないこと、(2)電協研法による油中ガス分析から本体絶縁油中にアセチレンガスが検出された場合、変圧器本体内部から発生した場合と切換開閉器室油からゴム状膜を透過してくる場合の2通りがあり、一概にその発生源が決定できないものの、これに第2の油中ガス分析方法を適用し、メチルビニルアセチレンガスが未検出であれば、ガス透過性の結果から該アセチレンガスはゴム状膜を透過して混入したものと判定でき、メチルビニルアセチレンガスが検出されれば、該アセチレンガスは変圧器本体内部から発生したものと判定できること、(3)従って、予めゴム膜に対するアセチレンガスとメチルビニルアセチレンガスのガス透過の有無を調べ、更に本体絶縁油のガス分析を電協研法と第2の油中ガス分析法を併用して行なえば、簡易な方法で油入電気機器の本体内部の異常を診断することができ、且つアセチレンガスなどの低沸点ガスの発生源を判定することができるなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, (1) the partition rubber-like film that partitions the transformer main body insulating oil and the switching switch chamber oil is gas-impermeable. Permeates acetylene gas, but does not permeate methyl vinyl acetylene gas. (2) When acetylene gas is detected in the main body insulating oil from the gas analysis in oil by the electric cooperative research method, it is generated inside the transformer body. There are two cases: the case where the oil is passed through the rubber film from the switching switch chamber oil, and the source of the oil cannot be determined generally. If acetylene gas has not been detected, it can be determined from the gas permeability results that the acetylene gas has permeated through the rubber-like film, and if methylvinylacetylene gas is detected, the acetylene gas is (3) Therefore, the presence or absence of gas permeation of acetylene gas and methylvinylacetylene gas to the rubber membrane is examined in advance, and the gas analysis of the main body insulating oil is further analyzed by If the gas analysis method in oil is used in combination, it is possible to diagnose an abnormality inside the main body of the oil-filled electrical device by a simple method and to determine the source of low boiling point gas such as acetylene gas. As a result, the present invention has been completed.

すなわち、本発明は、変圧器本体絶縁油と切換開閉器室油とを区画する隔壁ゴム状膜に対するアセチレンガス及びメチルビニルアセチレンガスの透過の有無を判定する工程と、油入電気機器から変圧器本体絶縁油の試料を採取し、該試料油中に溶解した少なくとも炭素数2〜5の炭化水素ガス成分を検出する工程と、該アセチレンガス及びメチルビニルアセチレンガスの透過の有無の判定結果と、該炭化水素ガス成分検出工程におけるアセチレンガス及びメチルビニルアセチレンガスの検出の有無とにより、油入電気機器の本体内部の異常又はアセチレンガスの発生源を判定することを特徴とする油入電気機器の内部異常診断方法を提供するものである。 That is, the present invention includes a step of determining whether or not acetylene gas and methyl vinyl acetylene gas permeate through a partition rubber-like film partitioning the transformer main body insulating oil and the switching switch chamber oil; Collecting a sample of the main body insulating oil, detecting a hydrocarbon gas component having at least 2 to 5 carbon atoms dissolved in the sample oil, and a determination result of the presence or absence of permeation of the acetylene gas and methylvinylacetylene gas; An oil-filled electrical device characterized in that an abnormality in the body of the oil-filled electrical device or a generation source of acetylene gas is determined based on whether or not acetylene gas and methylvinylacetylene gas are detected in the hydrocarbon gas component detection step. An internal abnormality diagnosis method is provided.

本発明によれば、アセチレンガス及びメチルビニルアセチレンガスの隔壁ゴム状膜に対する透過性の有無を判断し、変圧器本体絶縁油のガス分析を電協研法と第2の油中ガス分析法を併用して行なうため、機器の解体調査を行なうことなく、簡易な方法で変圧器本体絶縁油と切換開閉器室油が隔壁ゴム状膜で区画される油入電気機器の本体内部の異常を診断することができ、且つアセチレンガスなどの低沸点ガスの発生源を判定することができる。   According to the present invention, the presence or absence of permeability of the acetylene gas and methylvinylacetylene gas to the partition rubber-like film is judged, and the gas analysis of the transformer body insulating oil is performed by the electric cooperative research method and the second gas analysis method in oil. Diagnosing abnormalities inside the body of oil-filled electrical equipment in which transformer body insulating oil and switching switch chamber oil are partitioned by partition rubber-like film by a simple method without conducting disassembly investigation of equipment because it is used together And the source of the low boiling point gas such as acetylene gas can be determined.

本発明の油入電気機器の内部異常診断方法(以下、単に「異常診断方法」とも言う。)において、油入電気機器とは変圧器本体絶縁油と切換開閉器室油が隔壁ゴム状膜で区画された構造のコンサベータを有するものである。本発明における油入電気機器の一例を図1を参照して説明する。図1は油入電気機器のコンサベータの構造を示す簡略図である。図1中、コンサベータ10は、変圧器本体上部に設置され、外箱14内には、変圧器本体絶縁油11が充填されたゴムセル22と、負荷時タップ切換器を収容する切換開閉器室油13が充填された切換開閉器室23とを有する。変圧器本体絶縁油11と切換開閉器室油13は隔壁ゴム状膜(以下、単に「ゴム膜」とも言う。)12で区画され、変圧器本体とゴムセル22は連結管15で連結されている。なお外箱内であって、ゴムセル22外には、水溜め部18に溜まった水を抜く水抜き弁17と、フロート20の位置から液面を表示するダイヤル油面計19とを有している。なお、符号21はブリーザ連結管、16は仕切り板、22は空気抜栓である。このようなコンサベータ10の切換開閉器室油13は、タップ切換時に発生するアーク放電のため、使用中に徐々に汚損して絶縁性が低下すると共に、アセチレンやメチルビニルアセチレンなどのガス成分が増加してくる。このため、後述するように、切換開閉器室油13中のガス成分のゴム膜に対するガス透過現象が生じるか否かが問題となる。一方、コンサベータの中でも変圧器本体絶縁油と切換開閉器室油がゴム膜12で区画されていない構造、すなわち、切換開閉器室と変圧器本体のコンサベータが分離された構造のものは、ガス透過現象が生じないため、本発明の異常診断方法の対象外となる。   In the method for diagnosing internal abnormality of oil-filled electrical equipment of the present invention (hereinafter also simply referred to as “abnormality diagnostic method”), the oil-filled electrical equipment is a transformer body insulating oil and switching switch chamber oil composed of a partition rubber-like film. It has a conservator with a partitioned structure. An example of the oil-filled electrical device according to the present invention will be described with reference to FIG. FIG. 1 is a simplified diagram showing the structure of a conservator for oil-filled electrical equipment. In FIG. 1, the conservator 10 is installed on the upper part of the transformer body, and the outer box 14 is provided with a rubber cell 22 filled with the transformer body insulating oil 11 and a switching switch room for accommodating a tap switch at the time of loading. And a switching switch chamber 23 filled with oil 13. The transformer body insulating oil 11 and the switching switch chamber oil 13 are partitioned by a partition rubber film (hereinafter also simply referred to as “rubber film”) 12, and the transformer body and the rubber cell 22 are connected by a connecting pipe 15. . In the outer box, outside the rubber cell 22, a drain valve 17 for draining water accumulated in the water reservoir 18 and a dial oil level gauge 19 for displaying the liquid level from the position of the float 20 are provided. Yes. Reference numeral 21 denotes a breather connecting pipe, 16 denotes a partition plate, and 22 denotes an air vent. The switchgear chamber oil 13 of such a conservator 10 is gradually fouled during use due to arc discharge generated at the time of tap switching, resulting in a decrease in insulation and a gas component such as acetylene or methylvinylacetylene. Will increase. For this reason, as will be described later, it becomes a problem whether a gas permeation phenomenon of the gas component in the switching switch chamber oil 13 with respect to the rubber film occurs. On the other hand, among the conservators, the structure in which the transformer body insulating oil and the switching switch chamber oil are not partitioned by the rubber film 12, that is, the structure in which the switching switch chamber and the transformer body conservator are separated, Since the gas permeation phenomenon does not occur, it is excluded from the object of the abnormality diagnosis method of the present invention.

本発明のガス透過の有無を判定する工程(以下、「ガス透過判定工程」とも言う。)において用いる隔壁ゴム状膜としては、例えば図1のコンサベータ10において変圧器本体絶縁油11と切換開閉器室油13とを区画するゴム膜12である。すなわち、本発明で使用するゴム膜は、本発明の異常診断方法が適用されるコンサベータで使用するゴム膜であれば、特に制限されず、例えば、図2に示すように、ポリビニルアルコール(PVA)フィルム34を芯材とし、該芯材から両外側に向けて、接着層33、ポリアミド繊維32及びニトリルゴム31をそれぞれ積層した7層構造の膜が使用できる。また、上記7層構造の膜に対して、芯材と接着層部分をニトリルゴム(NBR)で置き換えた5層構造の膜も使用できる。接着層を形成する接着剤としては、エポキシ樹脂系接着剤やフェノール系接着剤が挙げられる。通常、この種のゴム膜12は、数種類のものが存在するが、何れも図2のような多層構造を有しており、後述するガス透過の有無を判定する方法の結果についても同様の傾向を示す。   As the partition rubber-like film used in the step of determining the presence / absence of gas permeation (hereinafter also referred to as “gas permeation judgment step”) of the present invention, for example, in the conservator 10 of FIG. It is a rubber film 12 that partitions the chamber oil 13. That is, the rubber film used in the present invention is not particularly limited as long as it is a rubber film used in a conservator to which the abnormality diagnosis method of the present invention is applied. For example, as shown in FIG. 7) A film having a seven-layer structure in which the film 34 is a core material and the adhesive layer 33, the polyamide fiber 32, and the nitrile rubber 31 are laminated from the core material toward both outer sides can be used. In addition to the seven-layer film, a five-layer film in which the core material and the adhesive layer portion are replaced with nitrile rubber (NBR) can also be used. Examples of the adhesive that forms the adhesive layer include an epoxy resin adhesive and a phenol adhesive. Usually, there are several types of rubber membranes 12 of this type, but all have a multilayer structure as shown in FIG. 2, and the same tendency applies to the results of the method for determining the presence or absence of gas permeation described later. Indicates.

本発明のガス透過判定方法としては、図3に示すように、高濃度ガス含有絶縁油421が充填される上部タンク42と新油の絶縁油431が充填される下部タンク43を、前述のゴム膜44で区画する気密構造の容器41を使用する。上部タンク42には開閉弁45を有する試料油導入兼採取管46が、下部タンク43には開閉弁47を有する試料油導入兼採取管48をそれぞれ備える。   As shown in FIG. 3, the gas permeation determination method of the present invention includes the upper tank 42 filled with the high-concentration gas-containing insulating oil 421 and the lower tank 43 filled with the new insulating oil 431 with the rubber described above. An airtight container 41 partitioned by a membrane 44 is used. The upper tank 42 is provided with a sample oil introduction / collection tube 46 having an on-off valve 45, and the lower tank 43 is provided with a sample oil introduction / collection tube 48 having an on-off valve 47.

高濃度ガス含有絶縁油としては、少なくともアセチレン及びメチルビニルアセチレンを含有する絶縁油であれば特に制限されず、例えばJIS C2101の絶縁破壊電圧試験法に準じて絶縁破壊させた絶縁油を用いることができる。これにより、アセチレン及びメチルビニルアセチレン等の可燃性ガスを絶縁油に飽和近傍まで溶存させることができる。このような気密構造の密閉容器や高濃度ガス含有絶縁油を用いることにより、上部タンク42は切換開閉器室を模擬でき、また短時間でゴム膜に対するガス透過の有無を判定できる。   The insulating oil containing high-concentration gas is not particularly limited as long as it is an insulating oil containing at least acetylene and methylvinylacetylene. For example, an insulating oil that has undergone dielectric breakdown according to the dielectric breakdown voltage test method of JIS C2101 is used. it can. Thereby, combustible gas, such as acetylene and methyl vinyl acetylene, can be dissolved in the insulating oil to near saturation. By using such a hermetically sealed container or an insulating oil containing a high concentration gas, the upper tank 42 can simulate the switching switch chamber and can determine the presence or absence of gas permeation to the rubber film in a short time.

ゴム膜に対するガス透過の温度条件としては、常温〜105℃の範囲で適宜決定すればよいが、温度50℃以上で行なうことが、試験時間も短く効率的である。常温未満では試験時間が長くなり過ぎ、105℃を越える温度では絶縁油の許容最高温度以上となり実際的ではない。試験時間は10〜50日が適当であり、この間、例えば10日間隔で下部タンク43から試料油を採取して、ゴム膜透過ガス成分を分析するのが好適である。圧力は常圧でよい。なお、上記ゴム膜に対するガス透過判定工程で用いる密閉容器を備える装置は、異常診断方法の対象となる油入電気機器とは別に、実験室的に製作された装置である。このような実験室的に製作された装置を用いた加速されたガス透過の判定結果は、実機のガス透過の結果と一致しており、実機を模擬している。   The temperature condition for gas permeation with respect to the rubber film may be appropriately determined in the range of room temperature to 105 ° C. However, it is efficient to perform the test at a temperature of 50 ° C. or more because the test time is short. If it is less than room temperature, the test time becomes too long, and if it exceeds 105 ° C, it exceeds the allowable maximum temperature of the insulating oil, which is not practical. The test time is suitably 10 to 50 days, and during this time, for example, it is preferable to collect the sample oil from the lower tank 43 at intervals of 10 days and analyze the rubber membrane permeating gas component. The pressure may be normal pressure. In addition, the apparatus provided with the airtight container used by the gas permeation determination process with respect to the said rubber film is an apparatus manufactured in the laboratory separately from the oil-filled electrical equipment used as the object of the abnormality diagnosis method. The determination result of the accelerated gas permeation using such a device manufactured in the laboratory coincides with the gas permeation result of the actual machine and simulates the actual machine.

下部タンク43から採取された試料油中のガス成分の分析は、アセチレンガスについては電協研法、メチルビニルアセチレンガスについては第2の油中ガス分析方法にそれぞれ準拠して行なえばよい。電協研法は、電気協同研究、第54巻、第5号(1999)に、第2の分析方法は特開平9−72892号公報に、それぞれ詳細に報告されている。電協研法は当業者の周知の分析方法であるため、その詳細な説明は省略し、公知ではあっても周知とまでは言わない第2の油中ガス分析法について以下に説明する。   The analysis of the gas components in the sample oil collected from the lower tank 43 may be performed in accordance with the electric cooperative research method for acetylene gas and the second gas-in-oil analysis method for methylvinylacetylene gas, respectively. The electric cooperative research method is reported in detail in the electric cooperative research, Vol. 54, No. 5 (1999), and the second analysis method is reported in JP-A-9-72892. Since the electric cooperative research method is a well-known analysis method for those skilled in the art, a detailed description thereof will be omitted, and a second, but not well-known, well-known well-known gas analysis method for oil will be described below.

第2の油中ガス分析方法で用いる装置の構成を図4に示す。図4において、51は試料油を収納する試料油容器、52は試料油容器51の注入口、53は試料油容器51の排出口、54は排出バルブ、55は試料油、56は不活性ガスをキャリアガスとしてバブリングするキャリアガス給気管、57は試料油を加熱するためのヒータ、58はキャリアガスを注入するキャリアガス注入管、59はキャリアガスの流量調節弁、60は二方コック、61はキャリアガス送気管、62はバブリングにより抽出された抽出ガスを取出すガス抽出管、63は抽出ガスをキャリアガスとともに通気する抽出ガス通気管、64は三方コック、65はコールドトラップ容器、65a、65bはコールドトラップ容器65の液体窒素等の冷却媒体の供給口および排出口、66は−130℃程度に冷却することにより分解成分を凝縮捕獲するコールドトラップ、67はコールドトラップ66を加熱するヒータ、68は三方コック、69はキャリアガスを供給するガス給気管、70はヘリウムガス等のキャリアガスが充填されたガスボンベ、71は流量調節弁、72は三方コック、73はガスクロマトグラフ分析器であり、カラム73aと検出器73bとで構成されている。27は冷却媒体容器、75は冷却媒体、76は冷却媒体75を供給するために冷却媒体容器74に圧力を加える加圧管、77は冷却媒体供給管、78は流量調節弁である。   The configuration of the apparatus used in the second oil-in-gas analysis method is shown in FIG. In FIG. 4, 51 is a sample oil container for storing sample oil, 52 is an inlet of the sample oil container 51, 53 is an outlet of the sample oil container 51, 54 is a discharge valve, 55 is sample oil, and 56 is an inert gas. Is a carrier gas supply pipe for bubbling as a carrier gas, 57 is a heater for heating sample oil, 58 is a carrier gas injection pipe for injecting carrier gas, 59 is a carrier gas flow control valve, 60 is a two-way cock, 61 Is a carrier gas supply pipe, 62 is a gas extraction pipe for extracting the extraction gas extracted by bubbling, 63 is an extraction gas ventilation pipe for ventilating the extraction gas together with the carrier gas, 64 is a three-way cock, 65 is a cold trap container, 65a, 65b Is a supply port and a discharge port of a cooling medium such as liquid nitrogen in the cold trap container 65, and 66 is decomposed by cooling to about -130 ° C. A cold trap for condensing and trapping 67, a heater for heating the cold trap 66, 68 for a three-way cock, 69 for a gas supply pipe for supplying a carrier gas, 70 for a gas cylinder filled with a carrier gas such as helium gas, and 71 for a flow rate A control valve, 72 is a three-way cock, 73 is a gas chromatograph analyzer, and is composed of a column 73a and a detector 73b. Reference numeral 27 denotes a cooling medium container, 75 denotes a cooling medium, 76 denotes a pressurizing pipe for applying pressure to the cooling medium container 74 to supply the cooling medium 75, 77 denotes a cooling medium supply pipe, and 78 denotes a flow rate adjusting valve.

次ぎに、この分析装置50を用いた油中ガス分析方法ついて説明する。先ず、二方コック60及び排出バルブ54を開き、キャリアガス送気管61からキャリアガスを流量調節弁59により流量調節して試料油容器51側の流路に流して当該流路の空気をブローアウトする。次ぎに三方コック64及び72をガスクロマトグラフ分析器73側に開いてコールドトラップ66及びガスクロマトグラフ分析器73の部分の空気をブローアウトする。冷却媒体容器74の加圧管76から圧力を加えて冷却媒体(液体窒素)75をコールドトラップ容器65に導き約−130℃に冷却する。注射器等により試料油を数ミリリットル採取し、試料油容器51の注入口52より試料油容器51内に注入する。三方コック64を試料油容器51側に切換え、試料油容器51をヒータ57により、蒸気圧が53Paになる温度で加熱し、二方コック60を開いて圧力調節弁59により流量調節し、バブリング管56にキャリアガスを供給し、数分間バブリングして試料油中に溶解しているガス成分を抽出する。抽出されたガス成分をキャリアガスとともにコールドトラップ容器65内のコールドトラップ66の内径部に導入し、ガス成分をコールドトラップ66に凝縮捕獲する。コールドトラップ66をヒータ67により200℃以上に急速加熱し、凝縮捕獲したガス成分を気化させてキャリアガスを流しながらガスクロマトグラフ分析器73bに導入して分析する。   Next, a method for analyzing gas in oil using the analyzer 50 will be described. First, the two-way cock 60 and the discharge valve 54 are opened, the carrier gas is adjusted from the carrier gas supply pipe 61 by the flow rate adjusting valve 59, and the flow is made to flow through the flow channel on the sample oil container 51 side, and the air in the flow channel is blown out. To do. Next, the three-way cocks 64 and 72 are opened to the gas chromatograph analyzer 73 side, and the air in the cold trap 66 and the gas chromatograph analyzer 73 is blown out. Pressure is applied from the pressurizing pipe 76 of the cooling medium container 74 to guide the cooling medium (liquid nitrogen) 75 to the cold trap container 65 and cool to about −130 ° C. Several milliliters of sample oil is collected with a syringe or the like and injected into the sample oil container 51 from the injection port 52 of the sample oil container 51. The three-way cock 64 is switched to the sample oil container 51 side, the sample oil container 51 is heated by the heater 57 at a temperature at which the vapor pressure becomes 53 Pa, the two-way cock 60 is opened, the flow rate is adjusted by the pressure control valve 59, and the bubbling pipe A carrier gas is supplied to 56, and a gas component dissolved in the sample oil is extracted by bubbling for several minutes. The extracted gas component is introduced into the inner diameter portion of the cold trap 66 in the cold trap container 65 together with the carrier gas, and the gas component is condensed and captured in the cold trap 66. The cold trap 66 is rapidly heated to 200 ° C. or more by the heater 67, the condensed and trapped gas component is vaporized, and the carrier gas is introduced into the gas chromatograph analyzer 73b for analysis.

油入電気機器から採取した試料油を上記の分析法で分析すると、抽出されたガス成分はコールドトラップ66で凝縮して捕獲され、200℃以上に急速加熱することにより、蒸発して瞬時にガスクロマトグラフ分析器73に導入されるため、精度よく分析できる。   When the sample oil collected from the oil-filled electrical equipment is analyzed by the above analysis method, the extracted gas component is condensed and captured by the cold trap 66 and rapidly heated to 200 ° C. or more to evaporate and instantly gas chroma. Since it is introduced into the graph analyzer 73, it can be analyzed with high accuracy.

上記ゴム膜に対するガス透過判定方法の一例を示す。50℃×50日間、10日間隔での試料油採取の試験条件においては、試験後30日でアセチレンが電協研法で要注意と判定される濃度が検出された。一方、試験後50日で、メチルビニルアセチレンは第2の油中ガス分析方法において検出されなかった。また、70℃×50日間、10日間隔での試料油採取の試験条件においては、試験後10日で、アセチレンが電協研法で要注意と判定される濃度が検出され、試験後50日で、異常と判定される濃度が検出された。一方、試験後50日で、メチルビニルアセチレンは第2の油中ガス分析方法において検出されなかった。   An example of the gas permeation determination method with respect to the said rubber film is shown. Under the test conditions of sampling oil samples at 50 ° C. × 50 days at 10-day intervals, a concentration at which acetylene was determined to be sensitive by the electric cooperative research method was detected 30 days after the test. On the other hand, 50 days after the test, methyl vinyl acetylene was not detected by the second gas-in-oil analysis method. In addition, under the test conditions of sampling oil sampling at 70 ° C. × 50 days and 10-day intervals, 10 days after the test, the concentration at which acetylene was determined to be sensitive by the electric cooperative research method was detected, and 50 days after the test. The concentration determined to be abnormal was detected. On the other hand, 50 days after the test, methyl vinyl acetylene was not detected by the second gas-in-oil analysis method.

上記ガス透過判定方法の結果から、変圧器本体絶縁油と切換開閉器室油とを区画するゴム膜は、一般的にはガス不透過性であることが知られているが、実際にはアセチレンガスを透過すること、しかしメチルビニルアセチレンは透過しないことが判明した。すなわち、油入電気機器において、切換開閉器室油に溶存するアセチレンは、使用期間中、ゴム膜を透過して変圧器本体絶縁油側へ移動すると思われる。従来、アセチレンガスのゴム膜透過現象については明確になっておらずこのため、変圧器本体絶縁油中にアセチレンが検出された場合、要注意あるいは異常と診断され、更に多面的な追跡調査を行う必要があった。本発明によれば、このガス透過の判定結果と後述する診断の対象となる油入電気機器の変圧器本体絶縁油のガス分析結果とで、容易に機器内部の異常の有無が診断できる。   From the result of the gas permeation judgment method, it is known that the rubber film that partitions the transformer body insulating oil and the switching switch chamber oil is generally gas-impermeable, but in practice, acetylene It has been found that it is permeable to gas, but not methyl vinyl acetylene. That is, in oil-filled electrical equipment, it is considered that acetylene dissolved in the switching switch chamber oil passes through the rubber film and moves to the transformer body insulating oil side during the period of use. Conventionally, the acetylene gas permeation through the rubber membrane has not been clarified. Therefore, if acetylene is detected in the insulation oil of the transformer body, it is diagnosed as caution or abnormality, and a multifaceted follow-up survey is conducted. There was a need. According to the present invention, it is possible to easily diagnose the presence or absence of an abnormality inside the apparatus from the gas permeation determination result and the gas analysis result of the transformer body insulating oil of the oil-filled electric apparatus to be described later.

次ぎに、油入電気機器から変圧器本体絶縁油の試料を採取し、該試料油中に溶解した少なくとも炭素数2〜5の炭化水素ガス成分を検出する工程(以下、「ガス成分検出工程」と言う。)を行なう。   Next, a step of collecting a sample of the transformer body insulating oil from the oil-filled electrical equipment and detecting a hydrocarbon gas component having at least 2 to 5 carbon atoms dissolved in the sample oil (hereinafter, “gas component detection step”) Say).

油入電気機器から変圧器本体絶縁油の試料を採取する方法は、従来と同様の方法で行えばよい。試料油中に溶解した少なくとも炭素数2〜5の炭化水素ガス成分の検出は、アセチレンの検出が可能なガス分析方法とメチルビニルアセチレンの検出が可能なガス分析方法を併用して行う。アセチレンの検出が可能なガス分析方法は、電協研法であり、メチルビニルアセチレンの検出が可能なガス分析方法は、前述の第2の油中ガス分析方法である。電協研法と第2の油中ガス分析方法を併用すれば、炭素数2〜5の炭化水素ガス成分の検出が可能であり、炭素数2〜5の炭化水素ガス成分のうち、アセチレンとメチルビニルアセチレンの検出を行えばよい。アセチレンは油中でのアーク放電により、あるいは絶縁油の500℃以上の過熱により油中に検出されるガス成分であること、メチルビニルアセチレンはアーク放電により、あるいは絶縁油中の700℃以上の過熱により油中に検出されるガス成分であることは公知であり、共に変圧器内部の異常を診断する上で有効な指標となるものである。   A method for collecting a sample of the transformer body insulating oil from the oil-filled electrical device may be performed in the same manner as in the past. The detection of the hydrocarbon gas component having at least 2 to 5 carbon atoms dissolved in the sample oil is performed by using a gas analysis method capable of detecting acetylene and a gas analysis method capable of detecting methylvinylacetylene in combination. The gas analysis method capable of detecting acetylene is the electric cooperative research method, and the gas analysis method capable of detecting methylvinylacetylene is the second gas-in-oil analysis method described above. If the electric cooperative research method and the second gas analysis method in oil are used in combination, it is possible to detect a hydrocarbon gas component having 2 to 5 carbon atoms. Among the hydrocarbon gas components having 2 to 5 carbon atoms, acetylene and Methyl vinyl acetylene may be detected. Acetylene is a gas component detected in oil by arc discharge in oil or by overheating of insulating oil at 500 ° C or higher, and methylvinylacetylene is heated by arc discharge or in 700 ° C or higher in insulating oil. It is known that it is a gas component detected in oil, and both are effective indices for diagnosing abnormalities inside the transformer.

ガス成分検出工程において、アセチレン及びメチルビニルアセチレンが共に未検出の場合、油入電気機器の本体内部は正常と判定される。   If neither acetylene nor methylvinylacetylene is detected in the gas component detection step, the inside of the main body of the oil-filled electrical device is determined to be normal.

ガス成分検出工程において、アセチレンが検出され、メチルビニルアセチレンが未検出の場合、アセチレンは切換開閉器室油から隔壁を透過して混入したものであり、油入電気機器の本体内部に異常はないと判定される。電協研法のみによる油中ガス分析では、本体絶縁油中にアセチレンが検出された場合、変圧器本体内部から発生した場合と切換開閉器室油からゴム膜を透過してくる場合の2通りがあると判断され、一概にその発生源が決定できない。しかし、第2の油中ガス分析方法からメチルビニルアセチレンが検出されない場合、変圧器本体内部に放電や過熱などの異常が起きていないと判断でき、更に上記ガス透過性の結果から該アセチレンはゴム膜を透過して混入したものと判断できる。   In the gas component detection process, when acetylene is detected and methyl vinyl acetylene is not detected, the acetylene has been mixed through the partition wall from the switchgear switch chamber oil, and there is no abnormality inside the body of the oil-filled electrical equipment. It is determined. In the gas analysis in oil only by the electric cooperative research method, when acetylene is detected in the main body insulating oil, it is generated from inside the transformer main body and when the rubber is permeated through the switching switch chamber oil. It is judged that there is, and it is not possible to determine its source. However, if methyl vinyl acetylene is not detected from the second gas-in-oil analysis method, it can be determined that there is no abnormality such as discharge or overheating inside the transformer body, and the acetylene is rubber from the gas permeability result. It can be judged that it has permeated through the membrane.

ガス成分検出工程において、アセチレン及びメチルビニルアセチレンが共に検出された場合、油入電気機器の本体内部に異常があると判定される。すなわち、メチルビニルアセチレンが検出された場合、変圧器本体内部に放電や過熱などの異常が起きていると判断でき、アセチレンも変圧器本体内部から発生したものと判定できる。なお、この場合、アセチレンは切換開閉器室油から隔壁を透過して混入したものも含まれる可能が大であるが、本発明においては、「油入電気機器の本体内部に異常がある」と判断されれば、本工程における判定としては十分である。   If both acetylene and methylvinylacetylene are detected in the gas component detection step, it is determined that there is an abnormality in the body of the oil-filled electrical device. That is, when methyl vinyl acetylene is detected, it can be determined that an abnormality such as discharge or overheating has occurred in the transformer body, and it can be determined that acetylene has also been generated from within the transformer body. In this case, the acetylene is likely to include those that permeate through the partition wall from the switching switch chamber oil, but in the present invention, “there is an abnormality in the body of the oil-filled electrical device”. If determined, the determination in this step is sufficient.

次ぎに、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

(ガス透過判定工程)
図3に示す気密構造の容器を作製し、下記試験条件下でアセチレンとメチルビニルアセチレンのゴム膜透過の有無を調べた。
(Gas permeation judgment process)
A container having an airtight structure shown in FIG. 3 was produced, and the presence or absence of acetylene and methylvinylacetylene permeating through a rubber film was examined under the following test conditions.

<試験油;上部タンクに充填される高濃度ガス含有絶縁油>
750mlの高濃度ガス含有試験油を得るために、JIS C2101の絶縁破壊電圧試験法に準じて絶縁破壊させた絶縁油を用いた。この試験油中のアセチレン濃度を電協研法で、メチルビニルアセチレン濃度を第2の油中ガス分析方法で測定した。その結果、アセチレン濃度は8,989ppm、メチルビニルアセチレン濃度は177,012カウント(ピーク面積値)であった。
<Test oil; insulating oil containing high concentration gas filled in the upper tank>
In order to obtain 750 ml of high-concentration gas-containing test oil, insulating oil that had been subjected to dielectric breakdown according to the dielectric breakdown voltage test method of JIS C2101 was used. The acetylene concentration in this test oil was measured by the electric cooperative research method, and the methyl vinyl acetylene concentration was measured by the second gas-in-oil analysis method. As a result, the acetylene concentration was 8,989 ppm, and the methylvinylacetylene concentration was 177,012 count (peak area value).

<試験条件>
・ 試験温度;50℃、試験日数;50日
・ 試料採取間隔;10日毎
・ 最小検出感度;アセチレン0.1ppm、メチルビニルアセチレン100カウント
・ ゴム膜;図2に示すPVAフィルムを芯材とする7層構造のゴム膜(実際に変圧器に使用されているゴム膜)
<Test conditions>
Test temperature: 50 ° C, number of test days: 50 days Sampling interval: Every 10 days Minimum detection sensitivity: 0.1 ppm of acetylene, 100 counts of methyl vinyl acetylene Rubber film: PVA film shown in Fig. 2 is used as the core 7 Layered rubber film (rubber film actually used in transformers)

<試験結果>
試験後50日で電協研法で要注意と判定されるアセチレン濃度が検出された。一方、試験後50日でメチルビニルアセチレンは第2の油中ガス分析方法において検出されなかった。
<Test results>
On the 50th day after the test, an acetylene concentration that was determined to be sensitive by the electric cooperative research method was detected. On the other hand, methyl vinyl acetylene was not detected in the second gas-in-oil analysis method 50 days after the test.

(ガス成分検出工程)
変圧器本体絶縁油と切換開閉器室油がゴム膜で区画された構造のコンサベータを有する稼動中の変圧器700台以上について、変圧器本体絶縁油の試料を採取した。次いで、電協研法により試料油中のアセチレンの溶存の有無を調べた。その結果、上記診断の対象となった変圧器の中、アセチレンが検出され、且つ電気的試験を実施した上で「変圧器内部異常なし」と判定された変圧器14台について、第2の油中ガス分析方法を実施した。その結果、全ての変圧器において、メチルビニルアセチレンが検出されなかった。以上のことから、本体絶縁油中のアセチレンはゴム膜を透過して混入したものであることが判明した。
(Gas component detection process)
Samples of the transformer body insulation oil were collected from more than 700 transformers in operation having a conservator with a structure in which the transformer body insulation oil and the switching switch chamber oil were partitioned by a rubber film. Next, the presence or absence of acetylene in the sample oil was examined by the electric cooperative research method. As a result, among the transformers subject to the diagnosis, acetylene was detected, and after conducting an electrical test, 14 transformers that were determined to be “no abnormality inside the transformer” A medium gas analysis method was carried out. As a result, methyl vinyl acetylene was not detected in all the transformers. From the above, it was found that acetylene in the main body insulating oil was mixed through the rubber film.

参考例
(ガス透過判定工程)
アセチレン濃度8,989ppm、メチルビニルアセチレン濃度177,012カウント(ピーク面積値)に代えて、アセチレン濃度13,883ppm、メチルビニルアセチレン濃度32,885,572カウント(ピーク面積値)の試験油を使用したこと、及び試験温度50℃に代えて70℃としたこと以外は、実施例1と同様の方法で行った。その結果、試験後10日で、アセチレンが電協研法で要注意と判定される濃度が検出され、試験後50日で、異常と判定される濃度が検出された。一方、試験後50日で、メチルビニルアセチレンは第2の油中ガス分析方法において検出されなかった。
Reference example (gas permeation judgment process)
A test oil having an acetylene concentration of 13,883 ppm and a methylvinylacetylene concentration of 32,885,572 (peak area value) was used in place of the acetylene concentration of 8,989 ppm and the methyl vinyl acetylene concentration of 177,012 count (peak area value). This was carried out in the same manner as in Example 1 except that the test temperature was changed to 70 ° C. instead of 50 ° C. As a result, on the 10th day after the test, a concentration at which acetylene was determined to be sensitive by the electric cooperative research method was detected, and on the 50th day after the test, a concentration determined to be abnormal was detected. On the other hand, 50 days after the test, methyl vinyl acetylene was not detected by the second gas-in-oil analysis method.

油入電気機器のコンサベータの構造を示す簡略図である。It is a simplified diagram showing the structure of a conservator for oil-filled electrical equipment. 変圧器本体絶縁油と切換開閉器室油を区画する隔壁ゴム状膜の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the partition rubber-like film | membrane which divides transformer main body insulating oil and switching switch chamber oil. ガス透過判定工程で使用する気密構造の試験容器の模式図である。It is a schematic diagram of the test container of the airtight structure used at a gas permeation | transmission determination process. 第2のガス分析方法で使用する分析装置のフロー図である。It is a flowchart of the analyzer used with the 2nd gas analysis method.

符号の説明Explanation of symbols

10 コンサベータ
11 変圧器本体絶縁油
12 隔壁ゴム状膜
13 切換開閉器室油
14 外箱
15 連結管
16 仕切り板
17 水抜き弁
18 水溜め部
19 ダイヤル油面計
20 フロート
21 ブリーザ連結管
22 空気抜栓
31 ニトリルゴム
32 ポリアミド繊維
33 接着層
34 ポリビニルアルコール(PVA)フィルム
DESCRIPTION OF SYMBOLS 10 Conservator 11 Transformer main body insulating oil 12 Bulkhead rubber-like film 13 Switchgear switch room oil 14 Outer box 15 Connection pipe 16 Partition plate 17 Drain valve 18 Reservoir part 19 Dial oil level gauge 20 Float 21 Breather connection pipe 22 Air Unplugging 31 Nitrile rubber 32 Polyamide fiber 33 Adhesive layer 34 Polyvinyl alcohol (PVA) film

Claims (5)

変圧器本体絶縁油と切換開閉器室油とを区画する隔壁ゴム状膜に対するアセチレンガス及びメチルビニルアセチレンガスの透過の有無を判定する工程と、
油入電気機器から変圧器本体絶縁油の試料を採取し、該試料油中に溶解した少なくとも炭素数2〜5の炭化水素ガス成分を検出する工程と、
該アセチレンガス及びメチルビニルアセチレンガスの透過の有無の判定結果と、該炭化水素ガス成分検出工程におけるアセチレンガス及びメチルビニルアセチレンガスの検出の有無とにより、油入電気機器の本体内部の異常又はアセチレンガスの発生源を判定することを特徴とする油入電気機器の内部異常診断方法
A step of determining the presence or absence of permeation of acetylene gas and methylvinylacetylene gas to the partition rubber-like film partitioning the transformer body insulating oil and the switching switch chamber oil;
Collecting a sample of the transformer body insulating oil from the oil-filled electrical device, and detecting a hydrocarbon gas component having at least 2 to 5 carbon atoms dissolved in the sample oil;
Depending on the determination result of the presence or absence of permeation of the acetylene gas and methyl vinyl acetylene gas and the presence or absence of detection of the acetylene gas and methyl vinyl acetylene gas in the hydrocarbon gas component detection step, an abnormality in the main body of the oil-filled electrical device or acetylene Method for diagnosing internal abnormality of oil-filled electrical equipment, characterized by determining gas generation source
試料油中に溶解した少なくとも炭素数2〜5の炭化水素ガス成分の検出は、アセチレンガスの検出が可能なガス分析方法とメチルビニルアセチレンガスの検出が可能なガス分析方法を併用して行うことを特徴とする請求項1記載の油入電気機器の内部異常診断方法。   The detection of the hydrocarbon gas component having at least 2 to 5 carbon atoms dissolved in the sample oil should be performed by using a gas analysis method capable of detecting acetylene gas and a gas analysis method capable of detecting methylvinylacetylene gas. The internal abnormality diagnosis method for oil-filled electrical equipment according to claim 1. アセチレンガス及びメチルビニルアセチレンガスが共に未検出の場合、油入電気機器の本体内部は正常と判定されることを特徴とする請求項1又は2記載の油入電気機器の内部異常診断方法。   3. The method for diagnosing an internal abnormality of an oil-filled electrical device according to claim 1 or 2, wherein if neither acetylene gas nor methylvinylacetylene gas is detected, the inside of the body of the oil-filled electrical device is determined to be normal. アセチレンガスが検出され、メチルビニルアセチレンガスが未検出の場合、アセチレンガスは切換開閉器室油から隔壁を透過して混入したものであり、油入電気機器の本体内部に異常はないと判定されることを特徴とする請求項1又は2記載の油入電気機器の内部異常診断方法。   When acetylene gas is detected and methyl vinyl acetylene gas is not detected, it is determined that there is no abnormality inside the body of the oil-filled electrical equipment because the acetylene gas is mixed through the partition wall oil from the switching switch chamber oil. The method for diagnosing internal abnormality of oil-filled electrical equipment according to claim 1 or 2. アセチレンガス及びメチルビニルアセチレンガスが共に検出された場合、油入電気機器の本体内部に異常があると判定されることを特徴とする請求項1又は2記載の油入電気機器の内部異常診断方法。   The method for diagnosing an internal abnormality of an oil-filled electrical device according to claim 1 or 2, wherein when both acetylene gas and methylvinylacetylene gas are detected, it is determined that there is an abnormality in the body of the oil-filled electrical device. .
JP2006218304A 2006-08-10 2006-08-10 Internal abnormality diagnosis method for oil-filled electrical equipment Active JP4872519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218304A JP4872519B2 (en) 2006-08-10 2006-08-10 Internal abnormality diagnosis method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218304A JP4872519B2 (en) 2006-08-10 2006-08-10 Internal abnormality diagnosis method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2008042130A JP2008042130A (en) 2008-02-21
JP4872519B2 true JP4872519B2 (en) 2012-02-08

Family

ID=39176759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218304A Active JP4872519B2 (en) 2006-08-10 2006-08-10 Internal abnormality diagnosis method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP4872519B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239193B2 (en) * 2007-03-30 2013-07-17 東京電力株式会社 Abnormality diagnosis method for oil-filled electrical equipment
JP5341376B2 (en) * 2008-03-17 2013-11-13 株式会社東芝 Degradation diagnosis method for oil-filled electrical equipment
JP6440501B2 (en) * 2014-02-06 2018-12-19 三菱電機株式会社 Oil-filled electrical device diagnostic method, oil-filled electrical device diagnostic device, and oil-filled electrical device including the same
JP5705388B1 (en) * 2014-08-27 2015-04-22 三菱電機株式会社 Diagnostic method for oil-filled electrical equipment
CN104764869B (en) * 2014-12-11 2017-04-12 国家电网公司 Transformer gas fault diagnosis and alarm method based on multidimensional characteristics
CN105223293B (en) * 2015-11-09 2017-05-17 江苏省电力公司电力科学研究院 Transformer state early warning method based on online monitoring of oil chromatography
JP7479328B2 (en) 2021-04-26 2024-05-08 三菱電機株式会社 Gas in oil analyzers and electrical equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123408A (en) * 1990-09-14 1992-04-23 Mitsubishi Electric Corp Oil deterioration preventing device for oil immersed electric apparatus
JPH07235436A (en) * 1994-02-25 1995-09-05 Hitachi Ltd Loaded tap changeover switch and abnormality diagnostic device thereof and abnormality diagnostic method thereof
JP3171225B2 (en) * 1995-09-07 2001-05-28 三菱電機株式会社 Diagnosis method for abnormalities inside oil-filled electrical equipment
JP3652792B2 (en) * 1996-06-28 2005-05-25 ユカインダストリーズ株式会社 Oil-filled electrical device diagnostic method and portable diagnostic device thereof
JP2002350426A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Internal abnormality diagnostic method of oil-filled electric apparatus
JP4358586B2 (en) * 2003-09-26 2009-11-04 中部電力株式会社 Diagnosis method for diaphragmatic abnormality of conservator
JP2006147656A (en) * 2004-11-16 2006-06-08 Mitsubishi Electric Corp Gas-in-oil diagnostic equipment
JP2007234687A (en) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The Method of detecting crack and pinhole of rubber cell in transformer using b-type conservator

Also Published As

Publication number Publication date
JP2008042130A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4872519B2 (en) Internal abnormality diagnosis method for oil-filled electrical equipment
JP5239193B2 (en) Abnormality diagnosis method for oil-filled electrical equipment
US8075675B2 (en) Apparatus and method for extracting gas from liquid
EP0988543B1 (en) Method for monitoring gas(es) in a dielectric fluid
JP2008249617A (en) Abnormality diagnostic method for oil-immersed electric equipment
KR102056235B1 (en) Apparatus for measuring dissolved gas and oil immersed transformer having the same
CN104236985A (en) Oil-gas separator for monitoring gas dissolved in transformer oil on line
US20050005674A1 (en) Test tap adapter for extracting dissolved gases from insulating oil and measuring electrical parameters of a transformer bushing
KR100811684B1 (en) Integral device for detecting hydrogen gas and moisture concentrations
KR20110072561A (en) Gas detection apparatus, gas detection processing system and method for processing gas detection
JP2007234687A (en) Method of detecting crack and pinhole of rubber cell in transformer using b-type conservator
JP6440501B2 (en) Oil-filled electrical device diagnostic method, oil-filled electrical device diagnostic device, and oil-filled electrical device including the same
CN102928326B (en) Device and method for testing permeability of organic gases to films
JP4941681B2 (en) Oil dissolved gas analyzer
JP4602454B2 (en) Radioiodine sampler and radioiodine monitor having the same
KR20180123850A (en) Apparatus for measuring dissolved gas
KR20010039446A (en) Apparatus for detecting abnormality in transformer
JP3663079B2 (en) Cellulose-based material degradation detection method and oil-filled electrical equipment life diagnosis method
KR100342421B1 (en) Device for monitoring fault of transformer
JP2011038994A (en) Gas analyzer
JP2017204512A (en) Abnormality diagnosis auxiliary apparatus of oil-filled electrical apparatus
RU2393455C1 (en) Facility for analysis of gases in transformer oil
JP4488195B2 (en) Radioiodine sampler and radioiodine monitor having the same
JPS59111044A (en) Apparatus for measuring gas in oil of oil contained insulating electric device
Abu Bakar et al. High Voltage Power Transformer Dissolved Gas Analysis, Measurement and Interpretation Techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4872519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350