JP4803658B2 - Intermittent drive type combustible gas detector - Google Patents

Intermittent drive type combustible gas detector Download PDF

Info

Publication number
JP4803658B2
JP4803658B2 JP2006040425A JP2006040425A JP4803658B2 JP 4803658 B2 JP4803658 B2 JP 4803658B2 JP 2006040425 A JP2006040425 A JP 2006040425A JP 2006040425 A JP2006040425 A JP 2006040425A JP 4803658 B2 JP4803658 B2 JP 4803658B2
Authority
JP
Japan
Prior art keywords
detection unit
concentration
region detection
combustible gas
concentration region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006040425A
Other languages
Japanese (ja)
Other versions
JP2007218763A (en
Inventor
昌英 安田
晴一 大谷
昭二 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2006040425A priority Critical patent/JP4803658B2/en
Publication of JP2007218763A publication Critical patent/JP2007218763A/en
Application granted granted Critical
Publication of JP4803658B2 publication Critical patent/JP4803658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、高濃度及び低濃度の可燃性ガスを、それぞれ異なる形式のセンサにより検出して爆発下限界(LEL)に対する比率で表示する間欠駆動型可燃性ガス検出装置に関する。   The present invention relates to an intermittently driven combustible gas detection device that detects high concentration and low concentration combustible gas by different types of sensors and displays them at a ratio to the lower explosion limit (LEL).

爆発下限界以下の低濃度の可燃性ガスの検出には、ヒータに酸化触媒層を形成した接触燃焼型ガスセンサが、また高濃度の可燃性ガスの検出には、表面に非酸化層が形成された熱線からなる熱伝導型ガスセンサが使用され、低濃度領域から高濃度領域にわたる広い領域で可燃性ガスの濃度を検出する可燃性ガス検出装置にあっては、検出すべき可燃性ガスの濃度に応じてユーザがスイッチにより一方のセンサを選択したり、また接触燃焼型ガスセンサの検出信号がスケールオーバとなった時点を検出して熱伝導型ガスセンサに自動的に切り替えるように構成されている。   A catalytic combustion type gas sensor with an oxidation catalyst layer formed on the heater is used to detect low-concentration combustible gases below the lower explosion limit, and a non-oxidized layer is formed on the surface to detect high-concentration combustible gases. In a flammable gas detection device that detects the concentration of flammable gas in a wide range from a low concentration region to a high concentration region, a heat conduction type gas sensor consisting of heated heat rays is used. In response, the user selects one of the sensors with a switch, or detects when the detection signal of the catalytic combustion type gas sensor becomes scale over and automatically switches to the heat conduction type gas sensor.

しかしながら、接触燃焼型ガスセンサは、雰囲気中の酸素と可燃性ガスとの酸化反応による発熱をヒータの抵抗変化として可燃性ガスの濃度を検出するため、可燃性ガス自体が酸素濃度に影響を与える程度の高濃度となったり、またはタンカーなどのように窒素等の不活性ガスによるパージにより非助燃性ガスが高濃度で存在するような場合には、酸化反応による接触燃焼型ガスセンサの温度上昇が可燃性ガス濃度に対応せず誤差が生じるなどの問題がある。
また、このようなガス検出装置は、通常、現場での使用の便を考慮して駆動電力を電池に求めるため、検出部のヒータでの消費電力を節減するべく間欠駆動方式、例えば8秒の周期で2秒間通電することが行われている。
However, the contact combustion type gas sensor detects the concentration of the combustible gas by using the heat generated by the oxidation reaction between the oxygen in the atmosphere and the combustible gas as the resistance change of the heater. Therefore, the combustible gas itself affects the oxygen concentration. If the non-combustible gas is present at a high concentration by purging with an inert gas such as nitrogen such as a tanker, the temperature increase of the catalytic combustion type gas sensor due to the oxidation reaction is combustible. There is a problem that an error occurs without corresponding to the sex gas concentration.
In addition, since such a gas detection device normally obtains drive power from the battery in consideration of convenience of use in the field, an intermittent drive system, for example, 8 seconds is used in order to reduce power consumption in the heater of the detection unit. Energization is performed for 2 seconds in a cycle.

このような間欠駆動方式のガス検出装置にあっては、可燃性ガスの濃度が急激に増大した場合や、パージが行われた場合には、接触燃焼型ガスセンサは上述したようにあたかも可燃性ガスの濃度が低いのと同様の信号を出力するため、高濃度の可燃性ガスを検出するために設けられている熱伝導型ガスセンサに切り換えることできないという問題がある。   In such an intermittent drive type gas detection device, when the concentration of the combustible gas suddenly increases or purge is performed, the contact combustion type gas sensor is as if it is combustible gas as described above. Since the same signal as that of the low concentration is output, there is a problem that it is not possible to switch to the heat conduction type gas sensor provided for detecting the high concentration combustible gas.

このような問題を解消するため、特許文献1に見られるように低濃度領域検出部の検出出力が所定値を超えたこと、または低濃度領域検出部の作動期間内に安定状態に到達することなく変化状態を維持することのいずれかを検出した場合に高濃度領域検出部からの信号を選択することが提案されている。   In order to solve such a problem, as shown in Patent Document 1, the detection output of the low concentration region detection unit exceeds a predetermined value, or a stable state is reached within the operation period of the low concentration region detection unit. It has been proposed to select a signal from the high-concentration region detection unit when any one of maintaining the change state is detected.

これによれば、酸素濃度が燃焼に十分な濃度の環境下で可燃性ガスが高濃度に存在する場合には、接触燃焼型ガスセンサの検出出力が規定値を超えるから、熱伝導型ガスセンサに切り替え、また、酸素濃度が触媒上で可燃性ガスを燃焼させるには不十分な場合には、触媒の表面に吸着されている酸素による極めて短時間の燃焼が生じるだけで安定状態に到達できないから、この状態を検出して熱伝導型ガスセンサに切り替えることができる。
しかしながら、例えばタンカーなど可燃性流体を収容した密閉空間での作業を行う場合には、作業に先立って窒素などの不活性ガスによりパージが行われるため、酸素濃度が不定であり、触媒表面での燃焼熱に基づいて可燃性ガスの濃度を検出する接触燃焼型ガスセンサによる検出信号の信頼性が極めて低下する。
According to this, when the flammable gas is present in a high concentration in an environment where the oxygen concentration is sufficient for combustion, the detection output of the contact combustion type gas sensor exceeds the specified value, so switch to the heat conduction type gas sensor. Also, if the oxygen concentration is insufficient to burn the combustible gas on the catalyst, it will not reach a stable state with only a very short time of combustion due to oxygen adsorbed on the surface of the catalyst, This state can be detected and switched to a heat conduction type gas sensor.
However, for example, when working in a closed space containing a flammable fluid such as a tanker, purging is performed with an inert gas such as nitrogen prior to the work, so the oxygen concentration is indefinite and The reliability of the detection signal by the contact combustion type gas sensor that detects the concentration of the combustible gas based on the combustion heat is extremely lowered.

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、酸素濃度が測定精度に影響を与える場合には、熱伝導型ガスセンサに、また酸素濃度が十分な場合には検出感度が高い接触燃焼型ガスセンサに自動的に切換えることができる間欠駆動型可燃性ガス検出装置を提供することである。
特開2004-61215号公報
The present invention has been made in view of such problems. The object of the present invention is to provide a heat-conducting gas sensor when the oxygen concentration affects measurement accuracy, and when the oxygen concentration is sufficient. An object of the present invention is to provide an intermittent drive type combustible gas detection device capable of automatically switching to a catalytic combustion type gas sensor having high detection sensitivity.
JP 2004-61215 A

このような問題を解消するために請求項1の発明は、接触燃焼型ガスセンサを備えた低濃度領域検出部と、熱伝導型ガスセンサを備えた高濃度領域検出部とを切換手段により切り換えて可燃性ガスの濃度を検出周期の間だけ間欠的に測定する可燃性ガス検出装置において、酸素センサを備え、次の(A)〜(D)の条件
(A)可燃性ガスの濃度が、前記接触燃焼型ガスセンサの正常な動作を保証できる程度に低く、かつ前記低濃度領域検出部の指示値が100%LEL以上、
(B)前記酸素センサの指示値が19.5%以下で、かつ前記接触燃焼型ガスセンサの起動後の最小出力L1と検出周期の最終時の出力L2との比L1/L2が0.96以下、
(C)前記酸素センサの指示値が10%以下、
(D)低濃度領域検出部の指示値が−10%LEL以下、
のいずれかの場合には、前記高濃度領域検出部を前記切換手段により選択するするようにした。
In order to solve such a problem, the invention of claim 1 is configured to switch between a low concentration region detection unit having a catalytic combustion type gas sensor and a high concentration region detection unit having a heat conduction type gas sensor by a switching means. In the combustible gas detection apparatus which measures the density | concentration of volatile gas intermittently only during a detection period, it is equipped with an oxygen sensor and the following conditions (A) to (D)
(A) The concentration of the combustible gas is low enough to guarantee normal operation of the catalytic combustion type gas sensor, and the indicated value of the low concentration region detection unit is 100% LEL or more,
(B) The indicated value of the oxygen sensor is 19.5% or less, and the ratio L1 / L2 between the minimum output L1 after the start of the catalytic combustion gas sensor and the output L2 at the end of the detection cycle is 0.96 or less. ,
(C) The indicated value of the oxygen sensor is 10% or less,
(D) The indication value of the low concentration region detection unit is -10% LEL or less,
In any of the cases, the high-concentration area detection unit is selected by the switching means.

請求項の発明は、前記低濃度領域検出部または前記高濃度領域検出部のいずれかの信号が選択された場合には、前記高濃度領域検出部または前記低濃度領域検出部のいずれかを休止させる。 According to the second aspect of the present invention, when either the low concentration region detection unit or the high concentration region detection unit is selected, the high concentration region detection unit or the low concentration region detection unit is activated. Pause.

請求項1の発明によれば、酸素濃度が燃焼に十分な濃度の環境下で可燃性ガスが高濃度に存在する場合には、接触燃焼型ガスセンサの検出出力が規定値を超えるから、熱伝導型ガスセンサに切り替える。
また、酸素濃度が触媒上で可燃性ガスを燃焼させるには不十分な場合には、触媒の表面に吸着されている酸素による極めて短時間の燃焼が生じ、安定状態に到達できないから、この変化と酸素の濃度とにより判定して熱伝導型ガスセンサに切り替える。これにより、間欠駆動であっても可燃性ガスの濃度の如何にかかわりなく、可燃性ガスの濃度に対応したセンサを自動的、かつ確実に選択することができる。
According to the first aspect of the present invention, when the combustible gas is present in a high concentration in an environment where the oxygen concentration is sufficient for combustion, the detection output of the catalytic combustion type gas sensor exceeds the specified value, so that heat conduction Switch to type gas sensor.
Also, if the oxygen concentration is insufficient to burn the combustible gas on the catalyst, this change occurs because combustion for a very short time due to oxygen adsorbed on the surface of the catalyst occurs and a stable state cannot be reached. And switch to a heat conduction type gas sensor. Thereby, even if it is intermittent drive, the sensor corresponding to the concentration of combustible gas can be selected automatically and reliably regardless of the concentration of combustible gas.

請求項の発明によれば、電力消費を抑制して電池の消耗を抑えることができる。 According to the invention of claim 2 , it is possible to suppress power consumption and suppress battery consumption.

図1は、本発明の可燃性ガス検出装置の一実施例を示すものであって、図中符号1、2、3は、それぞれ高濃度領域検出部、低濃度領域検出部、及び酸素センサ3で、高濃度領域検出部1は、熱伝導型ガスセンサS1と抵抗R1とを、また低濃度領域検出部2は、接触燃焼型ガスセンサS2と抵抗R2とを直列接続し、電源11、21から電力の供給を受けるパルス発生手段12、22から駆動電力の供給を受けている。
なお、この実施例では熱伝導型ガスセンサS1、接触燃焼型ガスセンサS2には電源定電圧維持回路13、23を介して一定電圧を供給するように構成されている。
FIG. 1 shows an embodiment of the combustible gas detection device of the present invention. In the figure, reference numerals 1, 2, and 3 denote a high concentration region detection unit, a low concentration region detection unit, and an oxygen sensor 3, respectively. The high-concentration region detection unit 1 connects the heat conduction type gas sensor S1 and the resistor R1, and the low-concentration region detection unit 2 connects the contact combustion type gas sensor S2 and the resistor R2 in series. The drive power is supplied from the pulse generators 12 and 22 that receive the supply.
In this embodiment, the heat conduction type gas sensor S1 and the contact combustion type gas sensor S2 are configured to supply a constant voltage via the power source constant voltage maintaining circuits 13 and 23.

熱伝導型ガスセンサS1は、温度抵抗係数が大きく、かつ被検ガスに対して触媒作用を奏しない材料、例えば白金に金メッキを施した材料を、被検ガスと熱伝導関係を形成するように配置して構成されている。   The heat conduction type gas sensor S1 is arranged such that a material having a large temperature resistance coefficient and having no catalytic action on the test gas, for example, a material in which platinum is plated with gold is formed in a heat conduction relationship with the test gas. Configured.

接触燃焼型ガスセンサS2は、図2に示したように通電により発熱するヒータコイル24に、熱伝導関係を形成するように電気絶縁性材料、たとえばアルミナ等の電気絶縁層25を形成し、その外周に可燃性ガスと酸素との酸化反応を促す酸化触媒層26を形成して構成されている。   As shown in FIG. 2, the contact combustion type gas sensor S2 is formed with an electrically insulating material 25, such as alumina, on the heater coil 24 that generates heat when energized so as to form a heat conduction relationship. Further, an oxidation catalyst layer 26 that promotes an oxidation reaction between the combustible gas and oxygen is formed.

なお、酸素センサ3は、電力消費の少く、かつ精度の高いガルバニー電池式センサが最適であるが、固体電解質型などの大気中の酸素を検出するのに適した他の形式の酸素センサも使用できることはいうまでもない。   The oxygen sensor 3 is optimally a galvanic battery type sensor with low power consumption and high accuracy, but other types of oxygen sensors suitable for detecting atmospheric oxygen such as a solid electrolyte type are also used. Needless to say, it can be done.

これら高濃度領域検出部1、低濃度領域検出部2は、それぞれ図3(イ)に示したように所定周期T1、例えば8秒ごとに熱伝導性ガスセンサS1、及び接触燃焼型ガスセンサS2の温度がともに定常状態に到達するに要する時間T2、例えば2秒の電力を供給するパルス発生手段12、22を介して電力が供給されている。   The high-concentration region detection unit 1 and the low-concentration region detection unit 2, respectively, as shown in FIG. 3 (a), the temperatures of the thermal conductive gas sensor S1 and the catalytic combustion type gas sensor S2 every predetermined period T1, for example, every 8 seconds. Both are supplied with power through pulse generating means 12 and 22 for supplying power for a time T2, for example, 2 seconds required to reach a steady state.

再び図1に戻って、高濃度領域検出部1、低濃度領域検出部2、及び酸素センサ3の検出信号は、それぞれ判定手段4に入力し、高濃度ガス検出部1、低濃度領域検出部2、及び酸素センサ3の検出信号に基づいて切換手段5により検出部1または検出部2のいずれか一方の信号を選択して測定手段6に出力させるように構成されている。   Returning to FIG. 1 again, the detection signals of the high concentration region detection unit 1, the low concentration region detection unit 2, and the oxygen sensor 3 are respectively input to the determination means 4, and the high concentration gas detection unit 1, the low concentration region detection unit. 2 and based on the detection signal of the oxygen sensor 3, the switching means 5 selects either one of the detection part 1 or the detection part 2 and outputs it to the measurement means 6.

判定手段4は、低濃度領域検出部2からの信号を測定手段6に出力させている状態で、
(A)可燃性ガスの濃度が、接触燃焼型ガスセンサS2の正常な動作を保証できる程度に低い場合で、低濃度領域検出部2の指示値が100%LEL以上
(B)酸素センサ3の指示値が19.5%以下で、かつL1/L2の値が0.96以下
(C)酸素センサ3の指示値が10%以下
(D)低濃度領域検出部2の信号による指示値が−10%LEL以下
のいずれかの状態を検出した場合には、測定手段6に出力する信号を高濃度領域検出部1の信号に切り替える。
The determination unit 4 is in a state where the signal from the low concentration region detection unit 2 is output to the measurement unit 6,
(A) When the concentration of the combustible gas is low enough to guarantee normal operation of the catalytic combustion type gas sensor S2, the indication value of the low concentration region detection unit 2 is 100% LEL or more. (B) The indication of the oxygen sensor 3 The value is 19.5% or less, and the value of L1 / L2 is 0.96 or less. (C) The indication value of the oxygen sensor 3 is 10% or less. (D) The indication value by the signal of the low concentration region detection unit 2 is -10. When any state below% LEL is detected, the signal output to the measuring means 6 is switched to the signal of the high concentration region detection unit 1.

また、判定手段4は、高濃度領域検出部1からの信号を測定手段6に出力させている状態で、高濃度領域検出部1の指示値が80%LEL以下で、かつ酸素センサ3の指示値が20%以上の状態が検出された場合には、低濃度領域検出部2の信号を測定手段6に出力させる。   In addition, the determination unit 4 outputs the signal from the high concentration region detection unit 1 to the measurement unit 6, the indication value of the high concentration region detection unit 1 is 80% LEL or less, and the indication of the oxygen sensor 3 When a state where the value is 20% or more is detected, the signal of the low concentration region detection unit 2 is output to the measuring means 6.

高濃度領域検出部1から低濃度領域検出部2に切り替える際の可燃性ガスの濃度を、低濃度領域検出部2から高濃度領域検出部1に切り替える際よりも若干低く、この実施例では20%LEL分低くして2つの切換えモードの間にヒステリシスを設定したのは、爆発下限界近傍での測定を安定化さるためで、判定手段4にヒステリシスを設定しておくことにより容易に実現することができる。
すなわち、可燃性ガス、この実施例ではCH4の濃度が上昇傾向にある場合には、判定基準として使用する可燃性ガスの濃度基準を5vol%に設定し、反対に可燃性ガスの濃度が5vol%以上から減少傾向を示した場合には判定基準として使用する可燃性ガスの濃度基準を4vol%に設定する。
The concentration of the combustible gas when switching from the high concentration region detection unit 1 to the low concentration region detection unit 2 is slightly lower than that when switching from the low concentration region detection unit 2 to the high concentration region detection unit 1, which is 20 in this embodiment. The reason why the hysteresis is set between the two switching modes by lowering by% LEL is to stabilize the measurement in the vicinity of the lower explosion limit, and is easily realized by setting the hysteresis in the determination means 4. be able to.
That is, when the concentration of combustible gas, in this embodiment, CH4 tends to increase, the concentration standard of the combustible gas used as the determination standard is set to 5 vol%, and conversely, the concentration of the combustible gas is 5 vol%. When the decreasing tendency is shown from the above, the concentration standard of the combustible gas used as the determination standard is set to 4 vol%.

すなわち、大気中の酸素濃度は最大21%である一方、不活性ガス(N2)が注入されたり、また可燃性ガス(CH4)の濃度が高い場合には酸素がこれらガスにより希釈されるため、検出対象領域は図5にハッチングで示した領域となる。
一方、接触燃焼型ガスセンサS2は、酸素濃度が10%以下では触媒表面での燃焼を維持できないので、可燃性ガスと窒素との合計の濃度が90%以下の場合(図6のハッチング領域)だけ作動可能。また、可燃性ガスが爆発下限界(5vol%)以上では過剰な燃焼反応を生じてセンサにダメージを与える恐れがあるので、爆発下限界以下の濃度の場合だけ使用可能(図7のハッチング領域)。
これらのことから接触燃焼型ガスセンサS2が正常、かつ安定に作動する範囲は、図8のクロスハッチングの領域だけとなる。
That is, while the oxygen concentration in the atmosphere is 21% at the maximum, when inert gas (N2) is injected or the concentration of combustible gas (CH4) is high, oxygen is diluted with these gases. The detection target area is an area indicated by hatching in FIG.
On the other hand, since the catalytic combustion type gas sensor S2 cannot maintain combustion on the catalyst surface when the oxygen concentration is 10% or less, only when the total concentration of combustible gas and nitrogen is 90% or less (hatching region in FIG. 6). Operable. In addition, if the combustible gas exceeds the lower explosion limit (5 vol%), an excessive combustion reaction may occur and damage the sensor, so it can be used only when the concentration is lower than the lower explosion limit (hatched area in Fig. 7). .
For these reasons, the range in which the catalytic combustion type gas sensor S2 operates normally and stably is only the cross-hatched region of FIG.

他方、熱伝導型ガスセンサは、精度の高低を問わなければ図9のハッチングの領域が対象となるが、上述のように接触燃焼型ガスセンサS2が損傷することなく、かつ熱伝導型ガスセンサよりも高精度に検出できる領域(図9のクロスハッチングの領域)を除く図10のハッチングの領域を担当すればよい。   On the other hand, the heat conduction type gas sensor is applicable to the hatched region in FIG. 9 unless the accuracy is high or low. However, as described above, the contact combustion type gas sensor S2 is not damaged and is higher than the heat conduction type gas sensor. What is necessary is just to take charge of the hatched area of FIG.

以上のことを踏まえて前述の判定基準についてさらに説明する。
前述の判定基準Aは、図11のクロスハッチング以外のハッチングの領域で、この領域は、接触燃焼型ガスセンサS2によりガス濃度を高い精度で検出できるものの、過剰燃焼により長時間の作動させることは避けるべき領域であるから、この領域を検出した時点で熱伝導型ガスセンサに切り替える。
Based on the above, the aforementioned criteria will be further described.
The aforementioned criterion A is a hatching area other than the cross-hatching in FIG. 11. This area can detect the gas concentration with high accuracy by the contact combustion type gas sensor S2, but avoid operating for a long time due to excessive combustion. Since this is a power region, switching to a heat conduction type gas sensor is performed when this region is detected.

判定基準Bは、図12のハッチングの領域で、この領域は可燃性ガスが10%以上であるため、接触燃焼型ガスセンサS2は、助燃性ガスの不足により安定な燃焼を持続することができない。この現象を図15、図16に示したように接触燃焼型ガスセンサS2の起動後の最小出力L1と検出周期の最終時の出力L2との比L1/L2として検出し、その値が0.96以下の場合として検出し、熱伝導型ガスセンサに切り替える。   The criterion B is the hatched region in FIG. 12, and the combustible gas is 10% or more in this region. Therefore, the contact combustion type gas sensor S2 cannot maintain stable combustion due to the shortage of the auxiliary combustible gas. This phenomenon is detected as a ratio L1 / L2 between the minimum output L1 after activation of the catalytic combustion type gas sensor S2 and the output L2 at the end of the detection cycle as shown in FIGS. 15 and 16, and the value is 0.96. It detects as the following cases and switches to a heat conduction type gas sensor.

判定基準Cは、図13のハッチングの領域で、酸素の濃度が10vol%以下で接触燃焼型ガスセンサS2の酸化触媒層26で接触燃焼反応が生ぜず、したがって酸素センサ3により検出した酸素濃度に基づいて判断し、熱伝導型センサに切り替える。   The criterion C is based on the oxygen concentration detected by the oxygen sensor 3 in the hatched region of FIG. 13 when the oxygen concentration is 10 vol% or less and no catalytic combustion reaction occurs in the oxidation catalyst layer 26 of the catalytic combustion type gas sensor S2. Switch to a thermal sensor.

判定基準Dは、図14のハッチングの領域で、この領域は可燃性ガスが接触燃焼型ガスセンサS2に接触燃焼を生じさせることができない程度まで高濃度となっており、かつ可燃性ガスの熱伝導度が酸素や窒素よりも高いため、接触燃焼型ガスセンサS2の出力が負の方向に変化する。したがって、ゼロ以下に変化した状態を検出して熱伝導型センサに切り替える。   The criterion D is the hatched area in FIG. 14, and this area has a high concentration to such an extent that the combustible gas cannot cause contact combustion in the catalytic combustion type gas sensor S2, and the heat conduction of the combustible gas. Since the degree is higher than that of oxygen or nitrogen, the output of the catalytic combustion type gas sensor S2 changes in the negative direction. Therefore, the state changed to zero or less is detected and switched to the heat conduction type sensor.

つまり、電源オン後、接触燃焼型ガスセンサS2、及び酸素センサ3により図10のハッチングで示す領域がいずれかの方法で検出された場合に、熱伝導型センサS1からなる高濃度領域検出部1に切換えることになる。   In other words, after the power is turned on, when the contact combustion type gas sensor S2 and the oxygen sensor 3 detect the hatched region in FIG. 10 by any method, the high concentration region detection unit 1 including the heat conduction type sensor S1 is used. Will be switched.

この実施例において可燃性ガスの実濃度が低い状態、つまり100%LEL(5vol%)以下で、かつ酸素センサ3の指示値が10%以上の場合には(図8のハッチングで示す領域)、接触燃焼型ガスセンサS2が正常に動作することが保証されているため、判定手段4は、低濃度領域検出部2の信号を測定手段6に出力させ、環境中の可燃性ガスの濃度を測定する。   In this embodiment, when the actual concentration of the flammable gas is low, that is, when the indicated value of the oxygen sensor 3 is 10% or more (area indicated by hatching in FIG. 8), 100% LEL (5 vol%) or less. Since it is guaranteed that the contact combustion type gas sensor S2 operates normally, the determination unit 4 outputs the signal of the low concentration region detection unit 2 to the measurement unit 6 and measures the concentration of the combustible gas in the environment. .

測定手段6には、低濃度領域検出部2の信号だけを出力させるものの、判定手段4には高濃度領域検出部1、低濃度領域検出部2、及び酸素センサ3からの信号が入力している。   Although the measuring means 6 outputs only the signal of the low concentration region detection unit 2, the determination unit 4 receives signals from the high concentration region detection unit 1, the low concentration region detection unit 2, and the oxygen sensor 3. Yes.

すなわち、パルス発生手段13、23から周期T1ごとに時間T2のパルス電力が出力すると、熱伝導性センサS1、及び接触燃焼型ガスセンサS2の温度が時間とともに上昇する。接触燃焼型ガスセンサS2は図3(ロ)、図16(イ)に示したように時間と共に所定温度に上昇し、所定時間後T3にガスの濃度に比例した温度で定常状態となり、レベルL0の信号を出力する。   That is, when pulse power of time T2 is output from the pulse generating means 13 and 23 every period T1, the temperatures of the thermal conductivity sensor S1 and the catalytic combustion type gas sensor S2 increase with time. As shown in FIGS. 3 (b) and 16 (a), the catalytic combustion type gas sensor S2 rises to a predetermined temperature with time, and after a predetermined time reaches a steady state at a temperature proportional to the gas concentration at T3. Output a signal.

酸化触媒層26により可燃性ガスがその濃度に応じた発熱量で発熱するから、ヒータコイル24が可燃性ガスの濃度に対応する温度まで上昇し、これに伴ってヒータコイル24の抵抗値も上昇して定常状態で安定する。測定手段6は、定常状態に到達した時点の信号レベルL0と、データ記憶手段7に格納されている検量線データとに基づいて低い濃度の可燃性ガスを検出する。このように検出部を間欠的に駆動させることにより、それぞれのセンサを動作温度に維持するのに必要な電力を節約することができる。   Since the combustible gas generates heat with a calorific value corresponding to its concentration by the oxidation catalyst layer 26, the heater coil 24 rises to a temperature corresponding to the concentration of the combustible gas, and the resistance value of the heater coil 24 also rises accordingly. And stable in steady state. The measuring means 6 detects a low-concentration combustible gas based on the signal level L0 when the steady state is reached and the calibration curve data stored in the data storage means 7. Thus, by driving the detection unit intermittently, it is possible to save the electric power necessary to maintain each sensor at the operating temperature.

以下、判定手段4は、低濃度領域検出部2の指示値が100%LEL(5vol%)以下で、かつ酸素センサ3の指示値が10%以上の場合には、低濃度領域検出部2の信号L0を測定手段6に出力させて可燃性ガスの濃度を監視する。   Hereinafter, when the indication value of the low concentration region detection unit 2 is 100% LEL (5 vol%) or less and the indication value of the oxygen sensor 3 is 10% or more, the determination unit 4 determines the low concentration region detection unit 2 The signal L0 is output to the measuring means 6 to monitor the concentration of combustible gas.

一方、可燃ガスの濃度が低濃度領域検出部2が正常に動作できる酸素濃度よりも酸素の濃度が低下した場合、つまり理論的には低濃度領域検出部2による指示値が100%LEL(5vol%)を超えた場合、低濃度領域検出部2の指示値が可燃性ガスの濃度とともに低下する場合、さらにはマイナス値を指示する場合には接触燃焼型ガスセンサS2を十分に機能させる酸素が存在しないため、判定手段4は、切換手段5を作動させて測定手段6に高濃度領域検出部1の信号を出力させる。   On the other hand, when the concentration of combustible gas is lower than the oxygen concentration at which the low concentration region detection unit 2 can operate normally, that is, theoretically, the indication value by the low concentration region detection unit 2 is 100% LEL (5 vol. %), When the indicated value of the low-concentration area detector 2 decreases with the concentration of the combustible gas, or when indicating a negative value, there is oxygen that makes the catalytic combustion type gas sensor S2 function sufficiently. Therefore, the determination unit 4 operates the switching unit 5 to cause the measurement unit 6 to output the signal of the high concentration area detection unit 1.

このように可燃性ガスの濃度が接触燃焼型ガスセンサS2を正常に動作させることができない程度にまで上昇した場合にでも指示値として0乃至200%LELを指示するので、判定手段4は酸素センサ3からの酸素濃度によりを検出して酸素センサ3の指示値が10%以下となった場合には高濃度領域検出部1からの信号を測定手段6に出力させる。   Thus, even when the concentration of the combustible gas rises to such an extent that the catalytic combustion type gas sensor S2 cannot be operated normally, 0 to 200% LEL is indicated as the indicated value. When the indication value of the oxygen sensor 3 is detected to be 10% or less by detecting the oxygen concentration from the sensor, the signal from the high concentration region detection unit 1 is output to the measuring means 6.

ここで谷の信号レベルL1と、通電終了直前の信号レベルL2との比がL1/L2の値について説明する。
接触燃焼型ガスセンサS2での接触燃焼が不可能となるような高い濃度の可燃性ガスが急激に流入すると、ヒータコイル24が可燃性ガスの濃度に対応する温度まで上昇し、これに伴ってヒータコイル24の抵抗値も上昇するものの、酸素が存在しないため図16(ロ)に示したように接触燃焼型ガスセンサS2に吸着されている酸素により酸化触媒層26で可燃性ガスが燃焼して時間T4、つまり駆動パルスの略中央の時点ではレベルL1の信号を出力する。
Here, a description will be given of a value where the ratio between the valley signal level L1 and the signal level L2 immediately before the end of energization is L1 / L2.
When a high concentration of combustible gas that makes contact combustion in the contact combustion type gas sensor S2 impossible suddenly flows, the heater coil 24 rises to a temperature corresponding to the concentration of the combustible gas, and accordingly the heater is heated. Although the resistance value of the coil 24 is also increased, since oxygen is not present, the time that the combustible gas burns in the oxidation catalyst layer 26 by the oxygen adsorbed by the catalytic combustion type gas sensor S2 as shown in FIG. A signal of level L1 is output at T4, that is, at a substantially central point of the drive pulse.

しかし時間とともに吸着などによる酸素が消失するから、可燃性ガスの接触燃焼が停止して燃焼による発熱が停止する。
その後は、ヒータコイル24の熱は、エアの熱伝導率に比較して熱伝導率の高い可燃性ガスにより奪われるため、時間T2、つまり駆動パルスの立下り時点では純粋なエアが接触している場合よりも抵抗値が低下してレベルL2に上昇する。
そして、接触燃焼型ガスセンサS2が検出範囲とする0乃至5%未満では、比L1/L2は0.98以上となる。
なお、熱伝導型ガスセンサS1によりガス濃度を確実に検出できる場合(ガスの実濃度5%以上)では比L1/L2は0.98未満となることが確認されている。
However, since oxygen due to adsorption or the like disappears with time, contact combustion of the combustible gas stops and heat generation due to combustion stops.
After that, since the heat of the heater coil 24 is taken away by the combustible gas having a higher thermal conductivity than the thermal conductivity of air, pure air is in contact at time T2, that is, at the falling edge of the drive pulse. The resistance value decreases and increases to the level L2 as compared with the case where it is present.
When the catalytic combustion type gas sensor S2 has a detection range of 0 to less than 5%, the ratio L1 / L2 is 0.98 or more.
It is confirmed that the ratio L1 / L2 is less than 0.98 when the gas concentration can be reliably detected by the heat conduction type gas sensor S1 (the actual gas concentration is 5% or more).

ところが、狭い領域、例えばタンカーの船倉などでは、ハッチの開閉などによりガスの濃度が短時間で急激に変化するため、この波形の形状が図16(ハ)に示したように乱れる場合があり、比L1/L2が必ずしもガスの濃度、もしくは酸素濃度を反映するといは言えない。
このため、本発明においては、判定手段4は、は酸素センサ3により検出された酸素の濃度をも参照して測定手段6への信号として高濃度領域検出部1の信号を出力する。
However, in a narrow area, such as a tanker's hold, the gas concentration changes rapidly in a short time due to the opening and closing of the hatch, etc., so the shape of this waveform may be disturbed as shown in FIG. It cannot be said that the ratio L1 / L2 necessarily reflects the gas concentration or the oxygen concentration.
Therefore, in the present invention, the determination means 4 outputs the signal of the high concentration region detection unit 1 as a signal to the measurement means 6 with reference to the oxygen concentration detected by the oxygen sensor 3.

なお、このように出力信号が特異的に変動したことを検出する手法としては、谷の信号レベルL1と、通電終了直前の信号レベルL2との比が1未満、例えば0.98になったことを検出してもよい。
図15は、空気に含まれる可燃性ガスの濃度と、L1とL1との比L1/L2を示すもので、接触燃焼型ガスセンサS2が検出範囲とする0以上、5%未満では、比L1/L2は、0.98以上であり、また熱伝導型ガスセンサS1により確実に検出できる5%以上では比L1/L2は、0.98未満であることが確認された。
As a method for detecting the specific fluctuation of the output signal in this way, the ratio between the valley signal level L1 and the signal level L2 immediately before the end of energization is less than 1, for example, 0.98. May be detected.
FIG. 15 shows the concentration of combustible gas contained in the air and the ratio L1 / L2 between L1 and L1, and when the contact combustion type gas sensor S2 has a detection range of 0 or more and less than 5%, the ratio L1 / L2 is shown. L2 is 0.98 or more, and it was confirmed that the ratio L1 / L2 is less than 0.98 at 5% or more that can be reliably detected by the heat conduction gas sensor S1.

これにより、切換手段5は、高濃度領域検出部1からの検出信号を測定手段6に出力して、高くなったガスの濃度を高濃度領域検出部1の信号と、データ記憶手段7に格納されている検量線データに基づいて測定手段6が可燃性ガスの濃度を出力する。
以下、
(A)低濃度領域検出部2の指示値が100%LEL以上
(B)酸素センサ3の指示値が19.5%以下で、かつL1/L2の値が0.96以下
(C)酸素センサ3の指示値が10%以下
(D)低濃度領域検出部2の指示値が−10%LEL以下
のいずれかの状態が検出されている限り、判定手段4は、高濃度領域検出部1の出力を測定手段6に出力させる。
As a result, the switching means 5 outputs the detection signal from the high concentration region detection unit 1 to the measurement unit 6 and stores the increased gas concentration in the signal of the high concentration region detection unit 1 and the data storage unit 7. Based on the calibration curve data, the measuring means 6 outputs the concentration of the combustible gas.
Less than,
(A) The indication value of the low concentration region detection unit 2 is 100% LEL or more. (B) The indication value of the oxygen sensor 3 is 19.5% or less, and the value of L1 / L2 is 0.96 or less. (C) The oxygen sensor As long as the state in which the indication value of 3 is 10% or less (D) the indication value of the low concentration region detection unit 2 is −10% LEL or less is detected, the determination means 4 The output is output to the measuring means 6.

なお、環境中の可燃ガスの濃度が低く、かつその濃度が時間と共に上昇した場合には、低濃度領域検出部2からの信号のレベルが基準値を超えるから、これを判定手段4が検出して切換手段5が高濃度領域検出部1の信号を測定手段6に出力する。   When the concentration of the combustible gas in the environment is low and the concentration increases with time, the level of the signal from the low concentration region detection unit 2 exceeds the reference value, so the determination means 4 detects this. Then, the switching means 5 outputs the signal of the high concentration area detecting unit 1 to the measuring means 6.

可燃性ガスの濃度が、時間と共に低下して高濃度領域検出部1の検出信号のレベルが基準値、この実施例では4%vol%を下回ると、切換手段5は低濃度領域検出部2からの検出信号を測定手段6に出力し、濃度の低い可燃性ガスを接触燃焼型ガスセンサS2の信号に基づいてデータ記憶手段7に格納されている検量線データに基づいて測定手段6が高い感度で測定する。   When the concentration of the combustible gas decreases with time and the level of the detection signal of the high concentration region detection unit 1 falls below the reference value, which is 4% vol% in this embodiment, the switching means 5 starts from the low concentration region detection unit 2. Is output to the measuring means 6, and the measuring means 6 has a high sensitivity based on the calibration curve data stored in the data storage means 7 based on the signal of the contact combustion type gas sensor S 2. taking measurement.

以上説明したように本発明においては、酸素センサ3により酸素濃度を勘案しつつ低濃度領域検出部の出力形態に対応して高濃度領域検出部の出力を取り込むようにしたので、切換え動作の信頼性を高めることができ、被検ガスの濃度が上昇した場合にもその濃度を確実に検出することができる。   As described above, in the present invention, since the oxygen sensor 3 takes into account the oxygen concentration, the output of the high concentration region detection unit is captured corresponding to the output form of the low concentration region detection unit. Therefore, even when the concentration of the test gas increases, the concentration can be reliably detected.

すなわち、酸素濃度が同一であっても、不活性ガスの濃度により可燃性ガスの濃度が左右されるので、酸素濃度と可燃性ガスセンサによる可燃性ガスの濃度とを勘案してセンサを選択することにより、可燃性ガスの濃度に適したセンサを的確に選択することができる。   In other words, even if the oxygen concentration is the same, the concentration of the combustible gas depends on the concentration of the inert gas, so the sensor should be selected in consideration of the oxygen concentration and the concentration of the combustible gas from the combustible gas sensor. Thus, a sensor suitable for the concentration of the combustible gas can be accurately selected.

なお、上述の実施例においては、高濃度領域検出部1と低濃度領域検出部2とを同時に動作させているが、被検ガスの濃度に適した一方の検出部だけを作動させることも可能である。
すなわち、図17に示したように切換手段5、または判定手段4からの信号をパルス発生手段12、22に出力させ、パルス発生手段12、22の動作をオン、オフさせたり、図18に示したようにパルス発生手段12、22に電力を供給する電源11、21とパルス発生手段12、22との間にスイッチSW1、SW2を接続して切換手段5、または判定手段4からの信号によりこれらのスイッチSW1、SW2をオン、オフするよう構成することができる。
In the above-described embodiment, the high concentration region detection unit 1 and the low concentration region detection unit 2 are operated at the same time, but it is also possible to operate only one detection unit suitable for the concentration of the test gas. It is.
That is, as shown in FIG. 17, the signal from the switching means 5 or the judging means 4 is output to the pulse generating means 12 and 22, and the operation of the pulse generating means 12 and 22 is turned on or off. As described above, the switches SW 1 and SW 2 are connected between the power sources 11 and 21 for supplying power to the pulse generators 12 and 22 and the pulse generators 12 and 22, and these are determined by signals from the switching unit 5 or the determination unit 4. The switches SW1, SW2 can be configured to be turned on and off.

これによれば、被検ガスの検出に関与しない側の検出部1、2による電力消費をなくすることができる。
すなわち、測定開始時点では低濃度領域検出部2だけを作動させ、高濃度領域検出部1を休止状態に維持することにより、高度領域検出部1での電力消費をなくして電池の寿命を延長することが可能となる。
According to this, it is possible to eliminate power consumption by the detection units 1 and 2 on the side not involved in detection of the gas to be detected.
That is, by operating only the low concentration region detection unit 2 at the start of measurement and maintaining the high concentration region detection unit 1 in a resting state, power consumption in the altitude region detection unit 1 is eliminated and the battery life is extended. It becomes possible.

一方、可燃性ガスの濃度による低濃度領域検出部2の出力形態と酸素センサ3による酸素濃度とにより、低濃度領域検出部2による可燃性ガスの検出領域、つまり測定値として出力するのに適した濃度領域を可燃性ガスの濃度が逸脱したことを確実に検出でき、その時点で高濃度領域検出部1を作動させ、また低濃度領域検出部2を休止させて高い濃度の可燃性ガスの測定値を出力する。   On the other hand, the output form of the low-concentration region detection unit 2 based on the concentration of the combustible gas and the oxygen concentration by the oxygen sensor 3 are suitable for outputting as a detection region of the combustible gas by the low-concentration region detection unit 2, that is, a measurement value It is possible to reliably detect that the concentration of the combustible gas has deviated from the concentration range. At that time, the high concentration region detection unit 1 is activated, and the low concentration region detection unit 2 is deactivated. Outputs the measured value.

これにより、電力消費を可及的に抑制しつつ、低濃度から高濃度までの可燃性ガスを確実に検出することができる。また、可燃性ガスの濃度が高い場合に接触燃焼型ガスセンサS2の温度が過熱するのを防止して、センサ寿命の短縮を防止することができる。   Thereby, combustible gas from a low concentration to a high concentration can be reliably detected while suppressing power consumption as much as possible. Further, when the concentration of the combustible gas is high, the temperature of the contact combustion type gas sensor S2 can be prevented from being overheated, and the sensor life can be prevented from being shortened.

本発明の可燃性ガス検出装置の一実施例を示す構成図である。It is a block diagram which shows one Example of the combustible gas detection apparatus of this invention. 接触燃焼型ガスセンサS2の一実施例を示す断面図である。It is sectional drawing which shows one Example of contact combustion type gas sensor S2. 図(イ)乃至(ハ)は、それぞれ同上装置の動作を示す線図である。FIGS. (A) to (c) are diagrams showing the operation of the apparatus. 可燃性ガスの実濃度と低濃度領域検出部の信号による指示値との関係を示す線図である。It is a diagram which shows the relationship between the actual value of combustible gas, and the instruction | indication value by the signal of the low concentration area | region detection part. 高、及び低濃度領域検出部が検出対象とする領域を示す図である。It is a figure which shows the area | region made into a detection target by the high and low concentration area | region detection part. 低濃度領域検出部が検出できる可能性のある領域を示す図である。It is a figure which shows the area | region which a low concentration area | region detection part may be able to detect. 低濃度領域検出部が検出するのに適した可燃性ガスの濃度領域を示す図である。It is a figure which shows the density | concentration area | region of the combustible gas suitable for a low concentration area | region detection part to detect. 低濃度領域検出部が担当すべき領域を示す図である。It is a figure which shows the area | region which a low concentration area | region detection part should take charge of. 高濃度領域検出部で検出可能な領域を示す図である。It is a figure which shows the area | region which can be detected with a high concentration area | region detection part. 高濃度領域検出部が担当すべき領域を示す図である。It is a figure which shows the area | region which a high concentration area | region detection part should take charge of. 判定基準Aの対象となる領域を示す図である。It is a figure which shows the area | region used as the object of the criterion A. 判定基準B対象となる領域を示す図である。It is a figure which shows the area | region used as the criterion C. 判定基準C対象となる領域を示す図である。It is a figure which shows the area | region used as the criterion C. 判定基準D対象となる領域を示す図である。It is a figure which shows the area | region used as the criterion C. 可燃性ガスの濃度と、接触燃焼型ガスセンサの起動後の最小出力L1と検出周期の最終時の出力L2との比L1/L2との関係を示す線図である。It is a diagram which shows the relationship between the density | concentration of combustible gas, and ratio L1 / L2 of the minimum output L1 after starting of a contact combustion type gas sensor, and the output L2 at the time of the last of a detection period. 図(イ)乃至(ハ)は、それぞれ低濃度領域検出部を間欠駆動した場合の、環境中の可燃性ガス濃度による低濃度領域検出部の信号の時間的変化を示す図である。FIGS. 1A to 1C are diagrams showing temporal changes in signals of the low concentration region detection unit depending on the combustible gas concentration in the environment when the low concentration region detection unit is intermittently driven. 本発明の可燃性ガス検出装置の他の実施例を示す構成図である。It is a block diagram which shows the other Example of the combustible gas detection apparatus of this invention. 本発明の可燃性ガス検出装置の他の実施例を示す構成図である。It is a block diagram which shows the other Example of the combustible gas detection apparatus of this invention.

符号の説明Explanation of symbols

1 高濃度領域検出部
2 低濃度領域検出部
3 酸素センサ3
4 判定手段
5 切換手段
6 測定手段
7 データ記憶手段
24 ヒータコイル
25 電気絶縁層
26 酸化触媒層
S1 熱伝導型ガスセンサ
S2 接触燃焼型ガスセンサS2
SW1、SW2 スイッチ
DESCRIPTION OF SYMBOLS 1 High concentration area | region detection part 2 Low concentration area | region detection part 3 Oxygen sensor 3
DESCRIPTION OF SYMBOLS 4 Judging means 5 Switching means 6 Measuring means 7 Data storage means 24 Heater coil 25 Electrical insulation layer 26 Oxidation catalyst layer S1 Thermal conduction type gas sensor S2 Contact combustion type gas sensor S2
SW1, SW2 switch

Claims (2)

接触燃焼型ガスセンサを備えた低濃度領域検出部と、熱伝導型ガスセンサを備えた高濃度領域検出部とを切換手段により切り換えて可燃性ガスの濃度を検出周期の間だけ間欠的に測定する可燃性ガス検出装置において、酸素センサを備え、次の(A)〜(D)の条件、
(A)可燃性ガスの濃度が、前記接触燃焼型ガスセンサの正常な動作を保証できる程度に低く、かつ前記低濃度領域検出部の指示値が100%LEL以上、
(B)前記酸素センサの指示値が19.5%以下で、かつ前記接触燃焼型ガスセンサの起動後の最小出力L1と検出周期の最終時の出力L2との比L1/L2が0.96以下、
(C)前記酸素センサの指示値が10%以下、
(D)低濃度領域検出部の指示値が−10%LEL以下、
のいずれかの場合には、前記高濃度領域検出部を前記切換手段により選択する間欠駆動型可燃性ガス検出装置。
A combustible gas detector that intermittently measures the concentration of combustible gas only during the detection cycle by switching the low-concentration region detection unit equipped with a catalytic combustion type gas sensor and the high-concentration region detection unit equipped with a heat conduction type gas sensor. In the sex gas detection device, an oxygen sensor is provided, and the following conditions (A) to (D):
(A) The concentration of the combustible gas is low enough to guarantee normal operation of the catalytic combustion type gas sensor, and the indicated value of the low concentration region detection unit is 100% LEL or more,
(B) The indicated value of the oxygen sensor is 19.5% or less, and the ratio L1 / L2 between the minimum output L1 after the start of the catalytic combustion gas sensor and the output L2 at the end of the detection cycle is 0.96 or less. ,
(C) The indicated value of the oxygen sensor is 10% or less,
(D) The indication value of the low concentration region detection unit is -10% LEL or less,
In any of the cases, the intermittent drive type combustible gas detection device that selects the high concentration region detection unit by the switching means.
前記低濃度領域検出部または前記高濃度領域検出部のいずれかの信号が選択された場合には、前記高濃度領域検出部または前記低濃度領域検出部のいずれかを休止させる請求項1に記載の間欠駆動型可燃性ガス検出装置。   The one of the high concentration region detection unit and the low concentration region detection unit is suspended when a signal of either the low concentration region detection unit or the high concentration region detection unit is selected. Intermittent drive type combustible gas detector.
JP2006040425A 2006-02-17 2006-02-17 Intermittent drive type combustible gas detector Expired - Fee Related JP4803658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040425A JP4803658B2 (en) 2006-02-17 2006-02-17 Intermittent drive type combustible gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040425A JP4803658B2 (en) 2006-02-17 2006-02-17 Intermittent drive type combustible gas detector

Publications (2)

Publication Number Publication Date
JP2007218763A JP2007218763A (en) 2007-08-30
JP4803658B2 true JP4803658B2 (en) 2011-10-26

Family

ID=38496227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040425A Expired - Fee Related JP4803658B2 (en) 2006-02-17 2006-02-17 Intermittent drive type combustible gas detector

Country Status (1)

Country Link
JP (1) JP4803658B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844556B2 (en) * 2011-06-15 2016-01-20 理研計器株式会社 Method for correcting output of heat conduction type gas sensor and gas detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8928177D0 (en) * 1989-12-13 1990-02-14 City Tech Flammable gas detection
JP3929846B2 (en) * 2002-07-26 2007-06-13 理研計器株式会社 Intermittent drive type combustible gas detector
JP2005207879A (en) * 2004-01-22 2005-08-04 Riken Keiki Co Ltd Combustible gas detector

Also Published As

Publication number Publication date
JP2007218763A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
CA2488252C (en) Combustible-gas measuring instrument
JP5517963B2 (en) Gas detector
JP2010086199A (en) Alarm
JP4803658B2 (en) Intermittent drive type combustible gas detector
EP1189055B1 (en) Gas detector-alarm employing hot-wire gas sensor and method of detection
JP2009271018A (en) Gas detection device for burning appliance
JP4528638B2 (en) Gas detector
JP5091078B2 (en) Combustible gas detector
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP2007315925A (en) Combustible gas sensor, and combustible gas detector
JP5021400B2 (en) Combustible gas detector
JP3929845B2 (en) Combustible gas detector
JP2005207879A (en) Combustible gas detector
JP2008304291A (en) Gas sensor
JP5169622B2 (en) Gas detection method and gas detection apparatus for thin film gas sensor
JP2016170020A (en) Gas detector
JP5903353B2 (en) Gas detector
JP3809898B2 (en) Combustible gas detector
JP6108516B2 (en) Gas detector
JP3999831B2 (en) Gas detection method and apparatus
JP4711332B2 (en) Hydrogen detector
JP2002243686A (en) Measuring instrument for combustible gas concentration
JP6727753B2 (en) Gas detector
JP2006112911A (en) Gas detector for modified fuel cell
JP2000329736A (en) Circuit for controlling carbon monoxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Ref document number: 4803658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees