JP4726427B2 - Ceramic molded body extrusion molding machine and extrusion molding method - Google Patents

Ceramic molded body extrusion molding machine and extrusion molding method Download PDF

Info

Publication number
JP4726427B2
JP4726427B2 JP2004097185A JP2004097185A JP4726427B2 JP 4726427 B2 JP4726427 B2 JP 4726427B2 JP 2004097185 A JP2004097185 A JP 2004097185A JP 2004097185 A JP2004097185 A JP 2004097185A JP 4726427 B2 JP4726427 B2 JP 4726427B2
Authority
JP
Japan
Prior art keywords
temperature
molding
raw material
mold
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004097185A
Other languages
Japanese (ja)
Other versions
JP2005280086A (en
Inventor
淳 鉄谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004097185A priority Critical patent/JP4726427B2/en
Publication of JP2005280086A publication Critical patent/JP2005280086A/en
Application granted granted Critical
Publication of JP4726427B2 publication Critical patent/JP4726427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、光通信等に使用される光ファイバを固定するための光コネクタ用セラミックフェルール成形体の押出成形機および押出成形方法に関するものである。   The present invention relates to an extrusion molding machine and an extrusion molding method for a ceramic ferrule molded body for an optical connector for fixing an optical fiber used for optical communication or the like.

近年、通信における情報量の増大に伴い、光ファイバを用いた光通信が使用されている。   In recent years, optical communication using an optical fiber has been used with an increase in the amount of information in communication.

この光通信において、光ファイバ42同士の接続、あるいは光ファイバと各種光素との接続には図3に示すような光コネクタが用いられている。例えば、光ファイバ42同士を接続するコネクタの場合、フェルール41に形成された貫通孔に光ファイバ42の端部を保持し、一対のフェルール41をスリーブ43の両端から挿入して、内部で凸球面状に加工した端面同士を当接させるようにした構造となっている。
In this optical communication, the connection between the optical fiber 42 connected between, or optical fibers and various optical element is an optical connector as shown in FIG. 3 are used. For example, in the case of a connector for connecting optical fibers 42 to each other, the end portions of the optical fiber 42 are held in through holes formed in the ferrule 41, and a pair of ferrules 41 are inserted from both ends of the sleeve 43, so The end surfaces processed into a shape are in contact with each other.

前記フェルール41や割スリーブ43の材質としてはセラミックス、金属、プラスチック、ガラス等、さまざまなものが試作されてきたが、現在は大半がセラミックス製となっている。その理由は、セラミックスは加工精度が高いため、内径、外径の公差を1μm以下と高精度にすることができ、またセラミックスは摩擦係数が低いため光ファイバ42の挿入性に優れ、剛性が高く熱膨張係数が低いことから外部応力や温度変化に対して安定であり、耐食性にも優れているためである。   Various materials such as ceramics, metal, plastic, and glass have been made as materials for the ferrule 41 and the split sleeve 43, but most of them are made of ceramics at present. The reason for this is that ceramics have high processing accuracy, so the tolerance of the inner and outer diameters can be as high as 1 μm or less, and because ceramics have a low coefficient of friction, the insertability of the optical fiber 42 is excellent and the rigidity is high. This is because the coefficient of thermal expansion is low, so it is stable against external stress and temperature change, and has excellent corrosion resistance.

前記フェルール41は、光ファイバ42をフェルール41の中心に保持する必要があるため内径精度と内径の真円度が重要である。これは光接続損失を小さくするために、スリーブ43の内部でフェルール41の端面同士を精度良く当接させる必要があるためであり、1μm以下の内径精度を要求される。このため前記のようにセラミックスを用いて加工しているが、加工に供するセラミック焼結体の内径精度及び内径真円度も良いことが要求される。   Since the ferrule 41 needs to hold the optical fiber 42 at the center of the ferrule 41, the inner diameter accuracy and the roundness of the inner diameter are important. This is because the end faces of the ferrule 41 need to be brought into contact with each other with high precision inside the sleeve 43 in order to reduce the optical connection loss, and an inner diameter accuracy of 1 μm or less is required. For this reason, processing is performed using ceramics as described above, but it is required that the inner diameter accuracy and inner diameter roundness of the ceramic sintered body to be processed are also good.

前記セラミック焼結体は、セラミック材料を押出成形、プレス成形及び射出成形等により所定形状に成形し、必要があれば切削等を行った後、焼成温度1350℃〜1450℃の範囲の大気雰囲気中で焼成することで得る。   The ceramic sintered body is formed in a predetermined shape by extrusion molding, press molding, injection molding, or the like, and if necessary, is subjected to cutting or the like, and then in an air atmosphere having a firing temperature in the range of 1350 ° C. to 1450 ° C. It is obtained by baking with.

プレス成形や射出成形がフェルール41の外周部を形成する外ダイとフェルール41の光ファイバ42の挿入孔を形成する内ダイを1回の成形ショット毎に分離する構造であるため、セラミック焼結体の内径と外径の同心度を良くすることが困難であるのに対して、押出成形は前記外ダイと内ダイを固定した構造であるため、セラミック焼結体の同心度を比較的高精度にすることが可能である。   Since the outer die that forms the outer periphery of the ferrule 41 and the inner die that forms the insertion hole for the optical fiber 42 of the ferrule 41 are separated in each molding shot by press molding or injection molding, a ceramic sintered body While it is difficult to improve the concentricity of the inner and outer diameters of the steel, the extrusion molding has a structure in which the outer die and the inner die are fixed. It is possible to

押出成形に使用する金型13は、フェルール41の外周部を形成する外ダイ11と光ファイバ42の挿入孔を形成する内ダイ12からなり、内ダイ12はスパイダー19と呼ばれる支持部で外ダイ11と接着固定される。この時、外ダイ11の内径部と内ダイ12の外径部の同心度が0となるように内ダイ12の位置調整を行う。   A mold 13 used for extrusion molding includes an outer die 11 that forms an outer peripheral portion of a ferrule 41 and an inner die 12 that forms an insertion hole for an optical fiber 42. The inner die 12 is a support portion called a spider 19 and is an outer die. 11 and adhesively fixed. At this time, the position of the inner die 12 is adjusted so that the concentricity between the inner diameter portion of the outer die 11 and the outer diameter portion of the inner die 12 becomes zero.

押出成形機は、図1に示すような構造をしており、供給ホッパー31から投入されたセラミック成形前原料は、上段スクリュー部32で混練を受けた後、真空室33に入る。この真空室33は、押出成形機内部を通過するセラミック材料の真空脱気を行うためのものであり、エア管35で、押出成形機内部の架台に設置された真空ポンプ装置34に接続され、真空引きできる構造となっている。   The extrusion molding machine has a structure as shown in FIG. 1, and the raw material before ceramic molding introduced from the supply hopper 31 is kneaded by the upper screw portion 32 and then enters the vacuum chamber 33. This vacuum chamber 33 is for performing vacuum deaeration of the ceramic material passing through the inside of the extrusion molding machine, and is connected to a vacuum pump device 34 installed on a frame inside the extrusion molding machine by an air tube 35, It has a structure that can be evacuated.

真空脱気されたセラミック材料は、押出スクリュー部14の回転によって圧力が加えられ、金型13で圧縮されて、所定の内径寸法を有する成形体を形成して押し出される。   The vacuum degassed ceramic material is pressurized by the rotation of the extrusion screw portion 14 and is compressed by the mold 13 to form a molded body having a predetermined inner diameter and extruded.

押出成形機での成形材料温度の調整方法は、成形機の構造、冷却方法等により異なるが、一般的には、成形機内部及びオーガバレル7内部等に冷却水を通し、その冷却水の温度を上下させることにより行う。   The method of adjusting the molding material temperature in the extrusion molding machine varies depending on the structure of the molding machine, the cooling method, and the like. Generally, cooling water is passed through the molding machine and the auger barrel 7 to adjust the temperature of the cooling water. This is done by moving it up and down.

成形機内部への通水は例えば、成形機本体のジャケット部15に、ジャケット部用冷却水注入口26から冷却水を供給し、ジャケット部15内の空間を通した後ジャケット部用冷却水排出口27から排出する。   The water flow into the molding machine is, for example, by supplying cooling water to the jacket part 15 of the molding machine main body from the cooling water inlet 26 for the jacket part and passing through the space in the jacket part 15 to discharge the cooling water for the jacket part. Discharge from outlet 27.

また、押出スクリュー部14に、押出スクリュー部用冷却水注入口22から冷却水を供給し、押出スクリュー部14内に設けられた空間を通した後、押出スクリュー部用冷却水排出口23から排出する。また、オーガバレル7内に、オーガバレル用冷却水注入口24から冷却水を供給し、オーガバレル7内に設けられた空間を通した後オーガバレル用冷却水排出口25から排出する。この時、最初の排出口から出た冷却水を次の注入口へと順番に通し、同じ冷却水を用いてもかまわないし、順番に通す場合、通す順序は特に限定されない。   Further, cooling water is supplied to the extrusion screw portion 14 from the extrusion screw portion cooling water inlet 22, passes through a space provided in the extrusion screw portion 14, and then discharged from the extrusion screw portion cooling water discharge port 23. To do. Cooling water is supplied into the auger barrel 7 from the auger barrel cooling water inlet 24, passes through a space provided in the auger barrel 7, and then discharged from the auger barrel cooling water outlet 25. At this time, the cooling water discharged from the first discharge port may be sequentially passed to the next injection port, and the same cooling water may be used. When passing the cooling water in order, the passing order is not particularly limited.

従来は、成形圧力を一定に保つためオーガバレル7に設置されたオーガバレル温度計3によって計測し、成形前原料を冷却水により温度を5〜50℃に調整していた(特許文献1参照)。
特開2003−104776号公報
Conventionally, in order to keep the molding pressure constant, the temperature is measured by an auger barrel thermometer 3 installed in the auger barrel 7 and the temperature of the raw material before molding is adjusted to 5 to 50 ° C. with cooling water (see Patent Document 1).
JP 2003-104776 A

しかし、押出成形体の金型の転写性を良くするため成形前原料を冷却し低温に維持した場合、バインダーが硬化し成形前原料の流動性が悪くなることで成形の圧力が上昇し金型が破損することが頻発に起こった。   However, when the raw material before molding is cooled and kept at a low temperature in order to improve the transferability of the mold of the extrusion molding, the binder is cured and the fluidity of the raw material before molding deteriorates, so that the molding pressure rises. Frequently happened to be damaged.

以上の原因により、押出成形体の金型の転写性を向上させることができないので高精度の内径及び内径真円度を要求される光コネクタ用セラミックフェルール焼結体で寸法を満足させるため後加工に大幅な時間をかけるという問題を抱えていた。   Due to the above reasons, the transferability of the mold of the extruded product cannot be improved, so post-processing to satisfy the dimensions with the sintered ceramic ferrule sintered body for optical connectors that requires high precision inner diameter and inner diameter roundness Had the problem of spending a lot of time.

上記に鑑みて本発明のセラミックス成形体の押出成形機は、出発原料に焼結助剤を混合しバインダーを添加した成形前原料に、押出スクリューを回転して圧力を加え、上記成形前原料を、外ダイと内ダイとからなる金型の間を通過させて成形するセラミック成形体の押出成形機において、上記金型を加熱する機構と上記成形前原料を冷却する機構とを有することを特徴とする。 In view of the above, an extrusion molding machine for a ceramic molded body of the present invention applies a pressure by rotating an extrusion screw to a raw material before molding, in which a sintering aid is mixed with a starting material and a binder is added. An extrusion molding machine for a ceramic molded body that is formed by passing between molds composed of an outer die and an inner die, and has a mechanism for heating the mold and a mechanism for cooling the raw material before molding. And

また、前記金型に埋め込まれた電熱線におって型を加熱する機を有することを特徴とする。
Further, characterized in that it has a machine configuration for heating the mold Oh the heating wire embedded in the mold.

また、上記成形前原料を冷却させる機構が成形機内部に冷却水を通水する機構であることを特徴とする。
The mechanism for cooling the raw material before molding is a mechanism for passing cooling water through the molding machine .

また、押出成形機を用いて、前記金型部の外ダイの温度を20〜35℃、成形前原料の温度を0〜20℃に制御し、外ダイの温度が成形前原料の温度以上とすることを特徴とする。   Further, using an extrusion molding machine, the temperature of the outer die of the mold part is controlled to 20 to 35 ° C., the temperature of the raw material before molding is controlled to 0 to 20 ° C., and the temperature of the outer die is equal to or higher than the temperature of the raw material before molding. It is characterized by doing.

以上のように本発明によれば、原料が冷却されバインダが常温よりも硬い状態でも原料の金型接触面を暖めることで原料表面の流動性を向上させ、成型圧力を増加させることなくセラミックス内周面に金型形状をボイドなしで精度よく転写することができるのでセラミックス焼結体の寸法精度が向上し後工程の大幅な時間削減を行うことができた。   As described above, according to the present invention, even when the raw material is cooled and the binder is harder than room temperature, the mold contact surface of the raw material is warmed to improve the fluidity of the raw material surface, and without increasing the molding pressure, Since the mold shape can be accurately transferred to the peripheral surface without voids, the dimensional accuracy of the ceramic sintered body is improved, and the time required for post-processing can be significantly reduced.

発明の実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明の実施形態を図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施形態による押出成形機全体を示す断面図である。   FIG. 1 is a sectional view showing an entire extrusion molding machine according to an embodiment of the present invention.

出発原料に焼結助剤等を混合しバインダーを添加した成形前原料の一部分を供給ホッパー31から投入し、上段スクリュー32によって混練たあと、真空室33に入真空ポンプ34によって真空脱気される。さらに押出スクリュー14によって圧縮されながら金型13に押し出される。 A portion of the molding before the raw material with the addition of a mixture of sintering aids such as the starting material a binder was charged from the feed hopper 31, after kneaded by the upper screw 32, a vacuum degassing in a vacuum chamber 33 by entry is a vacuum pump 34 Is done. Further, it is extruded into the mold 13 while being compressed by the extrusion screw 14.

一般的に金型13は、ホルダー17、ダイスキャップ21及びオーガバレル7を介して押出成形機本体先端部に取り付けられる。   In general, the mold 13 is attached to the distal end portion of the extruder main body through the holder 17, the die cap 21 and the auger barrel 7.

金型13は、外ダイ11および内ダイ12によって構成されている。そして外ダイ11は、固定手段18によって押出成形機に固定されたホルダー17の内側に収納されている。   The mold 13 is constituted by an outer die 11 and an inner die 12. The outer die 11 is housed inside a holder 17 fixed to the extrusion molding machine by a fixing means 18.

本発明の成形機は、成形前原料を冷却する成形機本体部分1と成形体を加熱することができる金型部2から構成されている。   The molding machine of the present invention includes a molding machine main body portion 1 that cools a raw material before molding and a mold portion 2 that can heat the molded body.

温度を調整する部分が成形機本体1のみであると、金型の転写性を向上させるために成形前原料を冷却し成形圧力を上げた場合に、その成形圧力のために金型を破損することが頻発するためである。   If the molding machine main body 1 is the only part where the temperature is adjusted, the mold will be damaged due to the molding pressure when the pre-molding raw material is cooled and the molding pressure is increased in order to improve the transferability of the mold. This is because of frequent occurrences.

金型13に加熱機能を付加することで、金型13と接触する成形体の外周表面部のみバインダが軟化し流動性が良くなることで、成形圧力が低下し金型13を破損することなく押出成形を行うことができる。   By adding a heating function to the mold 13, the binder is softened only on the outer peripheral surface portion of the molded body that comes into contact with the mold 13 and the fluidity is improved, so that the molding pressure is not lowered and the mold 13 is not damaged. Extrusion can be performed.

また、上記内容より金型温度は成形前原料の温度よりも高くなければならない。   From the above contents, the mold temperature must be higher than the temperature of the raw material before molding.

押出成形機での成形材料温度の調整方法は、成形機の構造、冷却方法等により異なるが、一般的には、成形機内部及びオーガバレル7内部等に冷却水を通し、その冷却水の温度を上下させることにより行う。 The method of adjusting the molding material temperature in the extrusion molding machine varies depending on the structure of the molding machine, the cooling method, and the like. Generally, cooling water is passed through the molding machine and the auger barrel 7 to adjust the temperature of the cooling water. This is done by moving it up and down.

成形機内部への通水は例えば、成形機本体のジャケット部15に、ジャケット部用冷却水注入口26から冷却水を供給し、ジャケット部15内の空間を通した後ジャケット部用冷却水排出口27から排出する。   The water flow into the molding machine is, for example, by supplying cooling water to the jacket part 15 of the molding machine main body from the cooling water inlet 26 for the jacket part and passing through the space in the jacket part 15 to discharge the cooling water for the jacket part. Discharge from outlet 27.

また、押出スクリュー部14に、押出スクリュー部用冷却水注入口22から冷却水を供給し、押出スクリュー部14内に設けられた空間を通した後、押出スクリュー部用冷却水排出口23から排出する。また、オーガバレル7内に、オーガバレル用冷却水注入口24から冷却水を供給し、オーガバレル7内に設けられた空間を通した後オーガバレル用冷却水排出口25から排出する。この時、最初の排出口から出た冷却水を次の注入口へと順番に通し、同じ冷却水を用いてもかまわないし、順番に通す場合、通す順序は特に限定されない。   Further, cooling water is supplied to the extrusion screw portion 14 from the extrusion screw portion cooling water inlet 22, passes through a space provided in the extrusion screw portion 14, and then discharged from the extrusion screw portion cooling water discharge port 23. To do. Cooling water is supplied into the auger barrel 7 from the auger barrel cooling water inlet 24, passes through a space provided in the auger barrel 7, and then discharged from the auger barrel cooling water outlet 25. At this time, the cooling water discharged from the first discharge port may be sequentially passed to the next injection port, and the same cooling water may be used. When passing the cooling water in order, the passing order is not particularly limited.

成形材料の温度測定方法は、オーガバレル7に設置されたオーガバレル部温度計3によって計測している。オーガバレル7には圧力計4も設置されており、原料の温度が測定される場所とほぼ同じ位置で計測されており、圧力が一定になるように温度が調整されている。   The molding material temperature is measured by the auger barrel thermometer 3 installed in the auger barrel 7. The auger barrel 7 is also provided with a pressure gauge 4, which is measured at substantially the same position as the place where the temperature of the raw material is measured, and the temperature is adjusted so that the pressure becomes constant.

一方、金型13の温度の調整方法は、外ダイ11にらせん状に溝をあけその中に電熱線20などの発熱体を埋め込むことで温度調整する。   On the other hand, the temperature of the mold 13 is adjusted by making a spiral groove in the outer die 11 and embedding a heating element such as the heating wire 20 in the groove.

または、金型内部にらせん状の空洞をあけ、その中に温水を通すことで温度を調整する。   Alternatively, the temperature is adjusted by opening a spiral cavity inside the mold and passing warm water through it.

金型13の温度測定方法は、外ダイ11の外周部から内周部寸前まで穴をあけ、その中に金型部温度計6を挿入することで温度を測定する。   The method for measuring the temperature of the mold 13 is to measure the temperature by making a hole from the outer peripheral portion of the outer die 11 to just before the inner peripheral portion and inserting the mold portion thermometer 6 therein.

金型温度を測定する際は、なるべく成形材料接触部の金型温度を測定したいため金型に空けた穴は金型外ダイ11の内周部近くまで空ける方がよい。   When measuring the mold temperature, in order to measure the mold temperature of the molding material contact portion as much as possible, it is better to open the hole opened in the mold to the vicinity of the inner peripheral portion of the die 11 outside the mold.

このとき、外ダイ11の温度を20〜35℃、成形前原料の温度を0〜20℃に制御する。   At this time, the temperature of the outer die 11 is controlled to 20 to 35 ° C., and the temperature of the raw material before molding is controlled to 0 to 20 ° C.

成形前原料の温度が0℃以下になると、成形前原料に含まれるバインダが凍結するため、バインダを溶かすのに余分にエネルギーが必要となるため金型接触部分だけでは成形圧力を下げることができなくなり、金型13が破損してしまう。   When the temperature of the raw material before molding becomes 0 ° C or lower, the binder contained in the raw material before molding freezes, so extra energy is required to melt the binder, so the molding pressure can be reduced only at the mold contact part. As a result, the mold 13 is damaged.

また、20℃以上になってしまうと成形前原料が柔らかくなり、金型13の転写性が悪く内径精度が大きくなってしまう。   Moreover, if it becomes 20 degreeC or more, the raw material before shaping | molding will become soft, the transcription | transfer property of the metal mold | die 13 will be bad, and an internal diameter precision will become large.

また、外ダイ11の温度が20℃以下になると成形時の圧力が高くなりすぎるため金型13の破損が起こりやすくなり、35℃以上になると成形体の表面のバインダが蒸発し、焼成を行ったときにボイドが発生してしまう。   Further, when the temperature of the outer die 11 is 20 ° C. or lower, the pressure at the time of molding becomes too high and the mold 13 is easily damaged. When the temperature is 35 ° C. or higher, the binder on the surface of the molded body evaporates and firing is performed. Voids will occur.

上記押出成形機を用いセラミックスを成形することで、金型の転写性に優れた高精度の内径を有するセラミックス成形体を得ることができる。   By molding ceramics using the above extrusion molding machine, it is possible to obtain a ceramic molded body having a highly accurate inner diameter with excellent mold transferability.

実施例として、以下に示す方法で実験を行った。   As an example, an experiment was performed by the following method.

製品形状は、図3に示す光コネクタ用のジルコニアセラミック製のフェルール41とし、図1に示す本発明の光コネクタ用セラミックス成形体の成形方法と比較例として図2に示す従来の光コネクタ用セラミック成形体の成形方法によって、次の条件で各サンプルの成形を行い成形圧力とセラミックス成形体の内径精度および内径真円度を比較した。   The product shape is a ferrule 41 made of zirconia ceramic for optical connectors shown in FIG. 3, and the conventional ceramic for optical connectors shown in FIG. 2 as a comparative example of the method of forming the ceramic molded body for optical connectors shown in FIG. Each sample was molded under the following conditions by the molding method of the molded body, and the molding pressure was compared with the inner diameter accuracy and inner diameter roundness of the ceramic molded body.

まず、ZrOへY23 を添加した部分安定化ジルコニアに必要なバインダーを混合した成形前原料を図1に示す押出成形機に投入し、外ダイ温度/成形前原料温度として35/−5、15/0、20/0、35/0、40/0、15/10、20/10、35/10、40/10、15/20、20/20、35/20、40/20、15/25、40/25となるように押出成形した(サンプルA〜O)。 First, a raw material before molding in which a binder necessary for partially stabilized zirconia in which Y 2 O 3 is added to ZrO 2 is mixed is put into an extrusion molding machine shown in FIG. 1, and the outer die temperature / pre-molding raw material temperature is 35 / −. 5, 15/0, 20/0, 35/0, 40/0, 15/10, 20/10, 35/10, 40/10, 15/20, 20/20, 35/20, 40/20, Extrusion molding was performed so as to be 15/25 and 40/25 (samples A to O).

次に図2に示す従来の押出成形機で成形温度を室温23℃に調整し成形した(サンプルP)。   Next, the molding temperature was adjusted to a room temperature of 23 ° C. using a conventional extruder shown in FIG. 2 (Sample P).

各サンプルは同一条件で乾燥および焼成した後、L寸カット加工を行い、50個ずつ作製した。   Each sample was dried and fired under the same conditions, and then L-shaped cut processing was performed to prepare 50 samples.

なお、サンプルの形状は、金型13において、外ダイ11の内周面を内径寸法φ3とし、さらに、内ダイ12の外周面を外径寸法φ0.15mmとすることによって、外径寸法φ2.5〜3.0mm、内径寸法φ0.125mmとし、カット加工で長さ12mmの円筒形状とした。   The shape of the sample is such that, in the mold 13, the inner peripheral surface of the outer die 11 has an inner diameter dimension φ3, and the outer peripheral surface of the inner die 12 has an outer diameter dimension φ0.15 mm. The cylindrical shape was 5 to 3.0 mm, the inner diameter was φ0.125 mm, and the length was 12 mm by cutting.

この円筒形状のサンプルについて、各サンプルの内径精度及び内径真円度、外観を調べた。   With respect to this cylindrical sample, the inner diameter accuracy, inner diameter roundness, and appearance of each sample were examined.

外観については実体顕微鏡40倍にて観察した。   The appearance was observed with a stereomicroscope 40 times.

結果を表1に示す。

Figure 0004726427
The results are shown in Table 1.
Figure 0004726427

はじめに成形前原料温度が本発明の製造方法の範囲外の−5℃であるサンプルAは、外ダイ11の温度が高くしても成形圧力が38.2MPaと高くなり金型13が破損してしまい成形できなかった。   First, in the sample A in which the raw material temperature before molding is −5 ° C. outside the range of the production method of the present invention, the molding pressure is increased to 38.2 MPa even if the temperature of the outer die 11 is high, and the mold 13 is damaged. It could not be molded.

また、外ダイ11の温度が15℃で有るサンプルB,F、J、Nについても成形圧力が31.2MPa以上と高く、金型が破損した。これは、外ダイ11の温度が低いため、外ダイ11の内周表面の成形前原料が熱により軟化せず原料の流動性が向上しなかったことが原因であると考えられる。   Further, the samples B, F, J, and N in which the temperature of the outer die 11 was 15 ° C. were high as 31.2 MPa or more, and the mold was damaged. It is considered that this is because the temperature of the outer die 11 is low and the pre-molding raw material on the inner peripheral surface of the outer die 11 is not softened by heat and the fluidity of the raw material is not improved.

また、成形前原料の温度が本発明の製造方法の範囲外である25℃のサンプルN、Oでは、内径精度Rが3.2〜4.2μm、内径真円度が0.32〜0.38μmと悪化していた。   Moreover, in the samples N and O at 25 ° C. where the temperature of the raw material before molding is outside the range of the production method of the present invention, the inner diameter accuracy R is 3.2 to 4.2 μm, and the inner diameter roundness is 0.32 to 0.00. It deteriorated to 38 μm.

これは成形前原料の温度が高くなるほど内径精度R及び内径真円度が悪くなっていることから成形前原料の温度が高いと成形前原料が柔らかくなるため成形体内径の内ダイ12の転写性が悪くなったと考えられる。   This is because the higher the temperature of the raw material before molding, the worse the inner diameter accuracy R and the inner diameter roundness. Therefore, the higher the temperature of the raw material before molding, the softer the raw material before molding. Seems to have gotten worse.

また、外ダイ11の温度が本発明の製造方法の範囲外で有る40℃のサンプルE、I、M、Oでは、成形前材料温度が同じであるそれぞれのサンプルと内径精度、内径真円度はほぼ同じであるが、外周面にボイドが観察された。   Moreover, in the samples E, I, M, and O of 40 ° C. in which the temperature of the outer die 11 is outside the range of the manufacturing method of the present invention, the inner diameter accuracy and inner diameter roundness are the same as those of the samples having the same pre-molding material temperature. Are almost the same, but voids were observed on the outer peripheral surface.

これは、外ダイ11の温度が高いと成形前原料中に含まれる水分が蒸発し、その気泡がボイドの原因となっていると考えられる。   This is considered that when the temperature of the outer die 11 is high, moisture contained in the raw material before molding evaporates, and the bubbles cause voids.

次に、本発明の製造方法の範囲内であるサンプルのデータについて説明する。   Next, sample data that is within the scope of the manufacturing method of the present invention will be described.

従来方法で作成したサンプルPは内径精度Rが3μm、内径真円度が0.3μmであるのに対し本発明の製造方法の範囲内である成形前原料温度が0〜20℃、外ダイ11の温度が20〜35℃のサンプルC、D、G、H、K、Lのサンプルでは内径精度Rが1.8μm以下、内径真円度0.15以下であり大幅に改善することができた。   The sample P prepared by the conventional method has an inner diameter accuracy R of 3 μm and an inner diameter roundness of 0.3 μm, whereas the raw material temperature before molding within the range of the manufacturing method of the present invention is 0 to 20 ° C., the outer die 11 Samples C, D, G, H, K, and L having a temperature of 20 to 35 ° C. have an inner diameter accuracy R of 1.8 μm or less and an inner diameter roundness of 0.15 or less, which can be greatly improved. .

特に成形前原料の温度が範囲内で低いサンプルC,Dは内径精度Rが1.0〜1.2μm、内径真円度が0.12μm以下と特に優れたサンプルを得ることができた。これは成形時に内ダイ12側の原料の温度が低い方が内ダイ12の転写性が良く精度が出やすいと考えられる。   In particular, Samples C and D, in which the temperature of the raw material before molding is low within the range, were able to obtain particularly excellent samples having an inner diameter accuracy R of 1.0 to 1.2 μm and an inner diameter roundness of 0.12 μm or less. It is considered that the lower the temperature of the raw material on the inner die 12 side during molding, the better the transferability of the inner die 12 and the higher the accuracy.

さらに、成形圧力が29MPaと金型13に無理な圧力をかけることなく押出成形を行うことができた。   Furthermore, extrusion molding could be performed without applying excessive pressure to the mold 13 with a molding pressure of 29 MPa.

以上の様に、外ダイ11の温度を20〜35℃、成形前原料の温度を0〜20℃に制御し、外ダイ11の温度を成形前原料の温度以上にすることで、従来方法では成形することができなかった、硬い原料を金型13に無理な圧力をかけることなく成形することができるようになり、内周部の内ダイ12の転写性を向上させ、従来方法で成形されたフェルールよりも内径精度及び内径真円度において優れたフェルールを得ることができた。
なお本発明の押出成形機及びそれを用いた押出成形方法は、前記光コネクタ用セラミックフェルール成形体に限られるものではなく、円筒形状を有し、内径精度を必要とするセラミック成形体に適用できる。
As described above, by controlling the temperature of the outer die 11 to 20 to 35 ° C., the temperature of the raw material before molding to 0 to 20 ° C., and setting the temperature of the outer die 11 to be equal to or higher than the temperature of the raw material before molding, Hard materials that could not be molded can be molded without applying excessive pressure to the mold 13, improving the transferability of the inner die 12 at the inner periphery, and molded by a conventional method. A ferrule superior in inner diameter accuracy and inner diameter roundness to the ferrule could be obtained.
The extrusion molding machine and the extrusion molding method using the same according to the present invention are not limited to the above-mentioned ceramic ferrule molded body for optical connectors, but can be applied to a ceramic molded body having a cylindrical shape and requiring an inner diameter accuracy. .

例として、キャピラリ、ノズル、スリーブ等が挙げられる。   Examples include capillaries, nozzles, sleeves and the like.

(a)は本発明の実施形態による押出成形機を示す断面図、(b)は要部拡大図である。(A) is sectional drawing which shows the extrusion molding machine by embodiment of this invention, (b) is a principal part enlarged view. 従来の押出成形機を示す断面図、(b)は要部拡大図である。Sectional drawing which shows the conventional extrusion molding machine, (b) is a principal part enlarged view.

である。
光ファイバ同士を接続する一般的な光コネクタの構造を示す断面図である。
It is.
It is sectional drawing which shows the structure of the general optical connector which connects optical fibers.

符号の説明Explanation of symbols

1:成形機本体
2:金型部
3:オーガバレル部温度計
4:圧力計
6:金型部温度計
7:オーガバレル
11:外ダイ
12:内ダイ
13:金型
14:押出スクリュー部
15:ジャケット部
17:ホルダー
18:固定手段
19:スパイダー
20:電熱線
21:ダイスキャップ
22:押出スクリュー部用冷却水注入口
23:押出スクリュー部用冷却水排出口
24:オーガバレル部用冷却水注入口
25:オーガバレル部用冷却水排出口
26:ジャケット用冷却水注入口
27:ジャケット用冷却水排出口
31:供給ホッパー
32:上段スクリュー
33:真空室
34:真空ポンプ装置
35:エア管
36:押出スクリューバレル
41:フェルール
42:光ファイバ
43:割スリーブ
1: Molding machine body 2: Mold part 3: Auger barrel part thermometer 4: Pressure gauge 6: Mold part thermometer 7: Auger barrel 11: Outer die 12: Inner die 13: Mold 14: Extrusion screw part 15: Jacket Part 17: Holder 18: Fixing means 19: Spider 20: Heating wire 21: Die cap 22: Extruding screw part cooling water inlet 23: Extruding screw part cooling water outlet 24: Auger barrel part cooling water inlet 25: Auger barrel cooling water outlet 26: jacket cooling water inlet 27: jacket cooling water outlet 31: supply hopper 32: upper screw 33: vacuum chamber 34: vacuum pump device 35: air tube 36: extrusion screw barrel 41 : Ferrule 42: Optical fiber 43: Split sleeve

Claims (4)

出発原料に焼結助剤を混合しバインダーを添加した成形前原料に、押出スクリューを回転して圧力を加え、上記成形前原料を、外ダイと内ダイとからなる金型の間を通過させて成形するセラミック成形体の押出成形機において、上記金型を加熱する機構と上記成形前原料を冷却する機構とを有することを特徴とするセラミックス成形体の押出成形機。 The raw material before molding, in which the sintering aid is mixed with the starting material and the binder is added , is pressurized by rotating the extrusion screw, and the raw material before molding is passed between the molds composed of the outer die and the inner die. A ceramic molded body extrusion molding machine comprising a mechanism for heating the mold and a mechanism for cooling the raw material before molding. 前記金型に埋め込まれた電熱線によって金型を加熱する機構を有することを特徴とする請求項1記載のセラミックス成形体の押出成形機。 2. The ceramic molded body extrusion molding machine according to claim 1, further comprising a mechanism for heating the mold with a heating wire embedded in the mold. 上記成形前原料を冷却する機構が成形機内部に冷却水を通水する機構であることを特徴とする請求項1記載のセラミックス成形体の押出成形機。 The ceramic molding body extrusion molding machine according to claim 1, wherein the mechanism for cooling the raw material before molding is a mechanism for passing cooling water through the molding machine. 請求項1または2のいずれかの押出成形機を用いて、前記金型部の外ダイの温度を20〜35℃、成形前原料の温度を0〜20℃に制御し、外ダイの温度が成形前原料の温度以上とすることを特徴とするセラミックス成形体の押出成形方法。
Using the extrusion molding machine according to claim 1 or 2, the temperature of the outer die of the mold part is controlled to 20 to 35 ° C, the temperature of the raw material before molding is controlled to 0 to 20 ° C, and the temperature of the outer die is A method for extruding a ceramic molded body, characterized in that the temperature is equal to or higher than the temperature of the raw material before molding.
JP2004097185A 2004-03-29 2004-03-29 Ceramic molded body extrusion molding machine and extrusion molding method Expired - Fee Related JP4726427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097185A JP4726427B2 (en) 2004-03-29 2004-03-29 Ceramic molded body extrusion molding machine and extrusion molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097185A JP4726427B2 (en) 2004-03-29 2004-03-29 Ceramic molded body extrusion molding machine and extrusion molding method

Publications (2)

Publication Number Publication Date
JP2005280086A JP2005280086A (en) 2005-10-13
JP4726427B2 true JP4726427B2 (en) 2011-07-20

Family

ID=35178978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097185A Expired - Fee Related JP4726427B2 (en) 2004-03-29 2004-03-29 Ceramic molded body extrusion molding machine and extrusion molding method

Country Status (1)

Country Link
JP (1) JP4726427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000052T5 (en) 2020-03-23 2022-07-14 Ngk Insulators, Ltd. Process for producing a ceramic shaped body and ceramic structure
CN114516138B (en) * 2022-02-08 2023-06-27 浙江荣泰电工器材股份有限公司 Preparation method of conical mica tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321209A (en) * 1976-08-10 1978-02-27 Ngk Insulators Ltd Manufacture for continuously extruding ceramic honeycomb structures by screw vacuum extruder
JPS60242007A (en) * 1984-05-17 1985-12-02 株式会社村田製作所 Ceramic extrusion molding machine
JPH09277234A (en) * 1996-04-08 1997-10-28 Denso Corp Forming device and method of honeycomb structural body
JP2001260116A (en) * 1999-02-26 2001-09-25 Denso Corp Method and apparatus for manufacturing ceramic molding
JP2003104776A (en) * 2001-09-27 2003-04-09 Kyocera Corp Production method for ceramic sintered compact
JP2004025753A (en) * 2002-06-27 2004-01-29 Kyocera Corp Ceramic molding die

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321209A (en) * 1976-08-10 1978-02-27 Ngk Insulators Ltd Manufacture for continuously extruding ceramic honeycomb structures by screw vacuum extruder
JPS60242007A (en) * 1984-05-17 1985-12-02 株式会社村田製作所 Ceramic extrusion molding machine
JPH09277234A (en) * 1996-04-08 1997-10-28 Denso Corp Forming device and method of honeycomb structural body
JP2001260116A (en) * 1999-02-26 2001-09-25 Denso Corp Method and apparatus for manufacturing ceramic molding
JP2003104776A (en) * 2001-09-27 2003-04-09 Kyocera Corp Production method for ceramic sintered compact
JP2004025753A (en) * 2002-06-27 2004-01-29 Kyocera Corp Ceramic molding die

Also Published As

Publication number Publication date
JP2005280086A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
CN1147750C (en) Sleeve for optical-connector case and mfg. method therefor
KR100332008B1 (en) Capillary for optical fiber connector and method of manufacturing the same
JP4726427B2 (en) Ceramic molded body extrusion molding machine and extrusion molding method
US20090017155A1 (en) Apparatus for injection molding
Samuel et al. Near-net-shape forming of zirconia optical sleeves by ceramics injection molding
CN102666054A (en) Mold and mold manufacturing method
JP2003104776A (en) Production method for ceramic sintered compact
JP2010126378A (en) Mold for forming optical element
JP2006116933A (en) Extrusion molding machine, extrusion molding method using the same and ferrule for optical communication obtained by the same
JP5240722B2 (en) Ceramic ferrule and its manufacturing method
JP5063092B2 (en) Screw-type extruder and method for producing cylindrical ceramic member using the same
JP4618992B2 (en) Molding method of ceramic powder
WO2013183296A1 (en) Sleeve for optical communication, and method for manufacture for same sleeve for optical communication
JP2003252683A (en) Method for producing ceramic sintered compact
JP2004115307A (en) Method for manufacturing ceramic sintered compact
JP4934003B2 (en) Optical element manufacturing method and optical element mold
JP2002169056A (en) Ferrule for optical fiber and its manufacturing method
JP4951394B2 (en) Optical element molding method
JP2007090633A (en) Extrusion molding equipment
JP2005212164A (en) Extrusion molding die and extrusion molding method using it
JP2001147343A (en) Ferrule for optical connector
JP2579481B2 (en) Extrusion molding device for cylindrical molded body made of ceramic fiber
JP2003311797A (en) Mold and method for molding plastic using the mold
JP2006062944A (en) Method for producing ceramic sintered compact and ferrule for optical communication using it
CN110713389A (en) Method for forming non-spherical ceramic mold core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4726427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees