JP4695822B2 - Method for regulating a steam turbine and a steam turbine - Google Patents

Method for regulating a steam turbine and a steam turbine Download PDF

Info

Publication number
JP4695822B2
JP4695822B2 JP2002529646A JP2002529646A JP4695822B2 JP 4695822 B2 JP4695822 B2 JP 4695822B2 JP 2002529646 A JP2002529646 A JP 2002529646A JP 2002529646 A JP2002529646 A JP 2002529646A JP 4695822 B2 JP4695822 B2 JP 4695822B2
Authority
JP
Japan
Prior art keywords
valve
steam turbine
adjustment
valves
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002529646A
Other languages
Japanese (ja)
Other versions
JP2004518050A (en
Inventor
エインハウゼン ハインリッヒ
シュタインボルン リヒャルト
ヴェルテス ヘリベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004518050A publication Critical patent/JP2004518050A/en
Application granted granted Critical
Publication of JP4695822B2 publication Critical patent/JP4695822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

【0001】
本発明は、蒸気タービンを調整する方法において、蒸気タービンの蒸気が少なくとも3つの弁を介して供給される形式のものに関する。本発明はさらに、蒸気流入を調整するための弁群を備えた蒸気タービンに関する。
【0002】
蒸気タービンを調整する方法は、ヨハネス・ダスチヒとハインツ・ウンベハウヘン、マーティン・ベンアウアーとヘリベルト・ヴェルテス(Johannes Dastych und Heinz Unbehauen, Martin Bennauer und Heribert Werthes, ATP 41 (1999) , Heft 5)による論文 "Praxisgerechte Auslegung von Drehzahl und Leistungsreglern fuer Dampfturbinen"から明らかである。蒸気タービンは回転数若しくは出力に応じて調整される。図2に示す回転数及び出力のための調整回路は、回転数/出力調整部(D−/LR)、生蒸気−調整弁(FD−STV)、受容調整弁(AF−STV)、蒸気発生器(DE)、及びタービン(T)のような機能ブロックと、例えば入力信号のための定数、勾配、及び跳躍関数のような要素的なブロックとから成る。電気的な出力を提供するために、ターボ発電器(Turbosatz)は蒸気を蒸気発生器から供給され、この場合、蒸気供給は調節弁を介して、必要な出力が得られるように調整される。回転数及び出力の調整は、共通の1つの回転数/出力調整部を介して、選択可能な一定の負荷運転のためにも、並びに無負荷運転時の回転数の調整のためにも行われる。回転数/出力調整部の出力信号は、生蒸気弁と受容調節弁とに作用する。蒸気タービンのこのような調整は、非常に複雑な調整回路と、十分に速い調整を可能にする調節弁とを必要とする。これまでは蒸気流入調整のためには、専ら液力により駆動される調節弁が用いられている。なぜなら、そのような液力式の駆動装置を介してのみ、弁行程の十分に速い調節が可能だからである。
【0003】
電動機式の駆動装置を備えた蒸気タービンの弁のための動作システムが、世界知的所有権機構第98/13633号パンフレットにより公知である。このような電動機式の駆動装置は非常に安価であり、さらに液圧油の使用を回避することによって火災危険が減じられる。蒸気弁のためのこのような電動機式の駆動装置は、蒸気導管の急速閉鎖のみが問題となる蒸気タービンの急速閉鎖弁のために使用することができる。しかしながら、蒸気タービン調整のためにはこの電動機式の駆動装置は不適切である。なぜなら、必要な弁行程調節のためには調節時間があまりに短く、弁行程調節があまりに不正確だからである。
【0004】
そこで本発明の課題は、特に非常に安価で、しかも高い作動確実性を達成できる、蒸気タービンを調整する方法を提供することである。本発明の別の課題は、同じ利点を有する蒸気タービンを提供することである。
【0005】
方法に対する課題は、蒸気タービンを調整する本発明に基づく方法において、蒸気タービンの蒸気を少なくとも3つの弁を介して供給し、この場合、1つの弁を調整弁として調整し、少なくとも2つの弁を制御弁として制御することによって解決される。
【0006】
これにより、蒸気タービンを調整する際に、異なる2つのカテゴリの弁を使用するという全く新しい方策が取られている。本発明は、蒸気タービンの効果的で確実かつ迅速な調整のために、これまで通常の見解であったように、全ての弁が調整弁として形成されている必要は決してないという認識から出発している。広範囲にわたるテストの結果、調整弁と制御弁とによるコンビネーションは、蒸気タービンの十分に確実で迅速な調整を実際に可能にするということが、裏付けられた。この場合、制御弁は調整部出力信号に関係して、弁行程の所定の値に調節される。約0の調整差値の保持は、単数、場合によっては複数の調整弁によっても引受けられる。従って、少なくとも2つの調整弁は、極めて単純な制御弁によって代替することができ、これにより調整回路は著しく簡易化される。
【0007】
A)有利には制御弁は電動機式に駆動される。電動機式の駆動装置は、ほぼ電気油圧制御式の駆動装置に比べて、顕著なコスト的利点を有する。さらに、液圧油の不使用により、火災危険が減じられる。調整弁によって精密調整が引受けられることにより、電動機式の駆動装置の小さな調節力でも調整プロセスに使用するために十分である。
【0008】
B)有利には、2つの調整弁と2つの制御弁とが使用されている。通常、蒸気タービンにおける調整プロセスでは4つの弁が使用される。原理的には、新しい調整コンセプトに基づき1つの調整弁で十分であり、該調整弁が3つの制御弁と協働する。しかし、より自由に使用できることを考慮して、2つの調整弁と2つの制御弁とを使用すると有利である。
【0009】
C)蒸気タービンの所定の出力消費での有利な方法においては、まず調整弁が開き、次いで、調整弁の調整のために使用される調整部出力信号が規定された第1の値を越えた場合、かつ正の調整差が生じた場合に、制御弁の1つが開く。さらに有利には、第1の値は最大の調整部出力信号の約1/4のところに位置している。正の調整差は、出力のため若しくはまた回転数の所望の値がまだ得られていないことを表している。
【0010】
D)さらに有利には、調整部出力信号が第2の値を越えた場合、かつ正の調整差が生じた場合に、第2の調整弁が開く。調整部出力信号の第2の値は、このとき、調整部出力信号の第1の値よりも大きい。これにより、出力消費の際の別の段階が達成され、この段階で第3の弁、すなわち第2の調整弁が接続される。さらに有利には、調整部出力信号の第2の値は、ここでは、調整部出力信号の最大値の約半分のところに位置している。
【0011】
E)有利には、調整部出力信号が第3の値を越えた場合、かつ正の調整差が生じた場合に、第2の制御弁が開く。調整部出力信号の第3の値は、ここでは、調整部出力信号の第2の値を越えたところに位置している。これにより、蒸気タービンの出力消費の際のさらに別の段階が達成され、この段階で第2の制御弁が接続される。調整部出力信号の100%では、全ての弁が完全に開かれている。
【0012】
F)有利には、それぞれの制御弁の閉鎖速度は、調整差のそれぞれの大きさに関係して調節される。調整差は、説明した通り、蒸気タービンの回転数若しくは出力の目標値と実測値との間の差異を表している。調整差が大きい場合には、制御弁は大きい速度で目標位置に移動させられる。調整差が小さい場合には、小さい調節速度で十分である。電動機式の駆動装置にとって、特に周波数変換器が調整差の正負符号に関係して、調整弁のための調節方向を決定してよい。
【0013】
AからFまでの段落に示す手段は、任意の形で互いに組合わせることができる。
【0014】
蒸気タービンに対する課題は、本発明によると、蒸気流入を調整するための弁群を備えた本発明に基づく蒸気タービンにおいて、この弁群群が1つの調整弁と、少なくとも2つの制御弁とを有していることにより解決される。
【0015】
このような蒸気タービンの利点は、蒸気タービンを調整する方法の利点についての前述の説明から明らかである。
【0016】
有利には制御弁は電動機式の駆動装置を有している。
【0017】
本発明による実施例を図面に基づいて詳細に説明する。示される図は、概略的であって寸法通りではない。
【0018】
図1は、蒸気タービン装置図、
図2は、対応する制御配線を備えた一連の蒸気流入弁図、
図3は、蒸気流入弁のための特性曲線図である。
【0019】
同じ符号は種々異なる図において、同じ意味を有している。
【0020】
図1は蒸気タービン装置を概略的に示している。蒸気タービン1には、蒸気発生器3からの蒸気が供給管路5を介して供給される。供給管路5には、弁群7が組み込まれている。弁群7は、第1の調整弁9と第2の調整弁11とを有している。弁群7は、さらに第1の制御弁13と第2の制御弁15とを有している。弁群7を介して、蒸気タービン1内に導入される蒸気量が制御される。これは、蒸気タービン1にとって所望の出力若しくは回転数に関係して行われる。このことは、図2及び図3に基づいて詳しく説明する。
【0021】
図2には、図1の弁群7が対応する制御配線と共に示されている。制御部21は、回転数若しくは出力の実測値と、回転数若しくは出力の目標値とに関係して、調整差のために適切に調整部出力信号を発する。調整部出力信号は、第1の調整弁9の第1のサーボ増幅器23に供給される。調整部出力信号は、第2の調整弁11の第2のサーボ増幅器27にも供給される。調整部出力信号は、第1の制御弁13の第1の周波数変換器25にも供給される。調整部出力信号は、第2の制御弁15の第2の周波数変換器29にも供給される。制御方法は図3に基づいて詳しく説明する。
【0022】
図3は、例として弁9,11,13,15それぞれの弁行程を、調整部出力信号に関係して図表で示したものである。データはそれぞれの最大値をパーセントで示している。特性曲線9Kは、第1の調整弁9の弁行程33の経過を、調整部出力信号31に関係して示している。特性曲線13Kは、第1の制御弁13に対応する特性曲線を示している。特性曲線11Kは、第2の調整弁11に対応する特性曲線を示している。特性曲線15Kは、第2の制御弁15に対応する特性曲線を示している。第1の調整弁9は、調整部出力信号31の大きさに比例して開く。調整部出力信号31が22,5%の値になると、第1の制御弁13が開く。調整部出力信号31が47,5%の値になると、第1の調整弁9及び第2の制御弁13のための弁行程33は100%である。この時点から、第2の調整弁11が開く。72.5%の値になると、第2の制御弁15はようやく接続される。調整部出力信号31が100%の値になると、全ての弁9,11,13,15が完全に開かれている。始動、定格回転数への上昇、及び同期化は、第1の調整弁9によって行われる。調整差の大きさは制御弁13,15の開放速度を決定する。負荷低下時には、負の調整差が生じる。負の調整差の大きさは制御弁の閉鎖速度を決定する。図示の実施例において電動機式に駆動される制御弁の調節力の小さいことに基づいて、負荷低下時の調整弁9,11及び制御弁13,15の切換行程「閉鎖」のための応答値は、異なってよい。
【図面の簡単な説明】
【図1】 蒸気タービン装置図である。
【図2】 対応する調整配線を備えた一連の蒸気流入弁図である。
【図3】 蒸気流入弁のための特性曲線図である。
[0001]
The present invention relates to a method for regulating a steam turbine, wherein the steam of the steam turbine is supplied via at least three valves. The present invention further relates to a steam turbine provided with a valve group for adjusting steam inflow.
[0002]
The method of adjusting the steam turbine is described in the paper "Praxisgerechte Ausung by Johannes Dastych und Heinz Unbehauen, Martin Bennauer und Heribert Werthes, ATP 41 (1999), Heft 5". It is clear from "von Drehzahl und Leistungsreglern fuer Dampfturbinen". The steam turbine is adjusted according to the rotational speed or the output. The adjusting circuit for rotating speed and output shown in FIG. 2 includes a rotating speed / output adjusting unit (D- / LR), a live steam-adjusting valve (FD-STV), a receiving adjusting valve (AF-STV), and steam generation. It consists of functional blocks such as generators (DE) and turbines (T) and elemental blocks such as constants, gradients and jump functions for input signals. In order to provide an electrical output, a turbo generator is supplied with steam from a steam generator, in which case the steam supply is regulated via a regulating valve to obtain the required output. The adjustment of the rotation speed and the output is performed for a selectable constant load operation as well as for the adjustment of the rotation speed at the time of no-load operation through one common rotation speed / output adjustment unit. . The output signal of the rotation speed / output adjusting unit acts on the live steam valve and the receiving control valve. Such adjustment of the steam turbine requires a very complex adjustment circuit and a control valve that allows a sufficiently fast adjustment. Until now, a control valve driven exclusively by liquid force has been used for adjusting the inflow of steam. This is because a sufficiently fast adjustment of the valve stroke is possible only through such a hydraulic drive.
[0003]
An operating system for a valve of a steam turbine with an electric drive is known from World Intellectual Property Organization No. 98/13633. Such a motorized drive is very inexpensive and further reduces the risk of fire by avoiding the use of hydraulic oil. Such a motorized drive for the steam valve can be used for a steam turbine rapid closing valve where only the rapid closing of the steam conduit is a problem. However, this electric motor drive is not suitable for steam turbine adjustment. This is because the adjustment time is too short for the required valve stroke adjustment and the valve stroke adjustment is too inaccurate.
[0004]
It is therefore an object of the present invention to provide a method for adjusting a steam turbine that is very inexpensive and that can achieve high operational reliability. Another object of the present invention is to provide a steam turbine having the same advantages.
[0005]
The problem to the method is that in the method according to the invention for regulating a steam turbine, the steam of the steam turbine is supplied via at least three valves, in which case one valve is regulated as a regulating valve and at least two valves are It is solved by controlling as a control valve.
[0006]
This has taken a completely new approach of using two different categories of valves when adjusting the steam turbine. The present invention starts from the recognition that for effective, reliable and rapid adjustment of the steam turbine, it is not necessary for all valves to be formed as regulating valves, as was the usual view so far. ing. Extensive testing has confirmed that the combination of regulator and control valves actually allows a sufficiently reliable and rapid adjustment of the steam turbine. In this case, the control valve is adjusted to a predetermined value of the valve stroke in relation to the adjustment unit output signal. The holding of the adjustment difference value of about 0 is also undertaken by a single, possibly a plurality of adjustment valves. Thus, the at least two regulating valves can be replaced by a very simple control valve, which greatly simplifies the regulating circuit.
[0007]
A) The control valve is preferably driven electrically. An electric motor type driving device has a significant cost advantage compared to a substantially electrohydraulic control type driving device. In addition, fire hazard is reduced by the absence of hydraulic oil. Since the fine adjustment is undertaken by the regulating valve, the small regulating force of the motorized drive is sufficient for use in the regulating process.
[0008]
B) Advantageously, two regulating valves and two control valves are used. Typically, four valves are used in the conditioning process in a steam turbine. In principle, one regulating valve is sufficient based on the new regulating concept, which cooperates with three control valves. However, it is advantageous to use two regulating valves and two control valves, considering that they can be used more freely.
[0009]
C) In an advantageous method with a predetermined power consumption of the steam turbine, the regulator valve is first opened and then the regulator output signal used for regulating the regulator valve exceeds a defined first value. And if a positive adjustment difference occurs, one of the control valves opens. More advantageously, the first value is located about 1/4 of the maximum regulator output signal. A positive adjustment difference indicates that the desired value of the rotational speed has not yet been obtained for output or also.
[0010]
D) More advantageously, the second regulator valve opens when the regulator output signal exceeds the second value and when a positive regulation difference occurs. At this time, the second value of the adjustment unit output signal is larger than the first value of the adjustment unit output signal. This achieves another stage in the output consumption, at which stage the third valve, ie the second regulating valve, is connected. More advantageously, the second value of the adjustment unit output signal is here approximately half the maximum value of the adjustment unit output signal.
[0011]
E) Advantageously, the second control valve opens when the regulator output signal exceeds the third value and when a positive adjustment difference occurs. Here, the third value of the adjustment unit output signal is located beyond the second value of the adjustment unit output signal. This achieves yet another stage in the power consumption of the steam turbine, at which stage the second control valve is connected. At 100% of the regulator output signal, all valves are fully open.
[0012]
F) Advantageously, the closing speed of each control valve is adjusted in relation to the respective magnitude of the adjustment difference. As described above, the adjustment difference represents the difference between the target value of the rotation speed or output of the steam turbine and the actual measurement value. When the adjustment difference is large, the control valve is moved to the target position at a high speed. If the adjustment difference is small, a small adjustment speed is sufficient. For motorized drive devices, the frequency converter may determine the adjustment direction for the adjustment valve, in particular in relation to the sign of the adjustment difference.
[0013]
The means shown in the paragraphs A to F can be combined with each other in any form.
[0014]
The problem with the steam turbine is that, according to the present invention, in the steam turbine according to the present invention provided with a valve group for regulating steam inflow, the valve group group has one regulating valve and at least two control valves. It is solved by doing.
[0015]
The advantages of such a steam turbine are apparent from the foregoing description of the advantages of the method of adjusting the steam turbine.
[0016]
The control valve preferably has a motorized drive.
[0017]
Embodiments according to the present invention will be described in detail with reference to the drawings. The figures shown are schematic and not to scale.
[0018]
FIG. 1 is a diagram of a steam turbine device,
FIG. 2 shows a series of steam inlet valves with corresponding control wiring,
FIG. 3 is a characteristic curve diagram for the steam inlet valve.
[0019]
The same symbols have the same meaning in different figures.
[0020]
FIG. 1 schematically shows a steam turbine apparatus. Steam from the steam generator 3 is supplied to the steam turbine 1 via a supply line 5. A valve group 7 is incorporated in the supply pipeline 5. The valve group 7 includes a first adjustment valve 9 and a second adjustment valve 11. The valve group 7 further includes a first control valve 13 and a second control valve 15. The amount of steam introduced into the steam turbine 1 is controlled via the valve group 7. This is done in relation to the desired output or rotational speed for the steam turbine 1. This will be described in detail with reference to FIGS.
[0021]
FIG. 2 shows the valve group 7 of FIG. 1 together with the corresponding control wiring. The control unit 21 appropriately outputs an adjustment unit output signal for the adjustment difference in relation to the actual value of the rotation speed or output and the target value of the rotation speed or output. The adjustment unit output signal is supplied to the first servo amplifier 23 of the first adjustment valve 9. The adjustment unit output signal is also supplied to the second servo amplifier 27 of the second adjustment valve 11. The adjustment unit output signal is also supplied to the first frequency converter 25 of the first control valve 13. The adjustment unit output signal is also supplied to the second frequency converter 29 of the second control valve 15. The control method will be described in detail with reference to FIG.
[0022]
FIG. 3 shows, as an example, the valve stroke of each of the valves 9, 11, 13, and 15 in the form of a chart related to the adjustment unit output signal. The data shows the respective maximum values in percent. The characteristic curve 9 </ b> K shows the progress of the valve stroke 33 of the first regulator valve 9 in relation to the regulator output signal 31. A characteristic curve 13K indicates a characteristic curve corresponding to the first control valve 13. A characteristic curve 11K shows a characteristic curve corresponding to the second regulating valve 11. A characteristic curve 15K indicates a characteristic curve corresponding to the second control valve 15. The first regulating valve 9 opens in proportion to the magnitude of the regulating unit output signal 31. When the adjustment unit output signal 31 reaches a value of 22.5%, the first control valve 13 is opened. When the adjustment unit output signal 31 has a value of 47.5%, the valve stroke 33 for the first adjustment valve 9 and the second control valve 13 is 100%. From this point, the second regulating valve 11 opens. When the value becomes 72.5%, the second control valve 15 is finally connected. When the adjuster output signal 31 reaches a value of 100%, all the valves 9, 11, 13, 15 are fully opened. Start-up, increase to the rated speed, and synchronization are performed by the first regulating valve 9. The magnitude of the adjustment difference determines the opening speed of the control valves 13 and 15. When the load drops, a negative adjustment difference occurs. The magnitude of the negative adjustment difference determines the closing speed of the control valve. In the illustrated embodiment, the response value for the switching process “closing” of the regulating valves 9 and 11 and the control valves 13 and 15 at the time of load reduction is based on the small adjustment force of the control valve driven by an electric motor. May be different.
[Brief description of the drawings]
FIG. 1 is a diagram of a steam turbine apparatus.
FIG. 2 is a series of steam inlet valves with corresponding adjustment wiring.
FIG. 3 is a characteristic curve diagram for a steam inlet valve.

Claims (7)

蒸気タービン(1)を調整する方法において、蒸気タービン(1)の蒸気を、少なくとも3つの弁(9,11,13,15)を介して供給し、弁(9,11)の1つを調整弁として調整し、かつ少なくも2つの弁(13,15)を制御弁として制御し、蒸気タービン(1)の出力消費のために、まず調整弁(9,11)を開き、調整弁(9,11)の調整のために使用される調整部出力信号(31)が、規定された第1の値を越えた場合、かつ正の調整差が生じた場合に、制御弁(13,15)の1つを開き、該制御弁(13,15)を電動機式に駆動する、蒸気タービン(1)を制御する方法。In a method for adjusting a steam turbine (1), steam of the steam turbine (1) is supplied via at least three valves (9, 11, 13, 15), and one of the valves (9, 11) is adjusted. As a control valve, and at least two valves (13, 15) are controlled as control valves, and in order to consume the output of the steam turbine (1), the control valve (9, 11) is first opened and the control valve (9 , 11) When the adjustment unit output signal (31) used for the adjustment exceeds the prescribed first value and a positive adjustment difference occurs, the control valves (13, 15) And controlling the steam turbine (1) by driving one of the control valves (13, 15) in a motorized manner. 2つの調整弁(9,11)と2つの制御弁(13,15)とを使用する、請求項1記載の方法。  2. The method according to claim 1, wherein two regulating valves (9, 11) and two control valves (13, 15) are used. 調整部出力信号(31)が第2の値を越えた場合、かつ正の調整差が生じた場合に、第2の調整弁(11)を開く、請求項1又は2記載の方法。The method according to claim 1 or 2, wherein the second regulator valve (11) is opened when the regulator output signal (31) exceeds the second value and a positive regulation difference occurs. 調整部出力信号(31)が第3の値を越えた場合、かつ正の調整差が生じた場合に、第2の制御弁(15)を開く、請求項1から3までのいずれか1項記載の方法。If adjuster output signal (31) exceeds a third value, and when the adjustment difference positive occurs, opens the second control valve (15), any one of claims 1 to 3 The method described. それぞれの制御弁(13,15)の閉鎖速度を、調整差のそれぞれの大きさに関係して調節する、請求項1記載の方法。2. The method according to claim 1, wherein the closing speed of each control valve (13, 15) is adjusted in relation to the respective magnitude of the adjustment difference. 蒸気流入を調整するための弁群(7)を備えた蒸気タービン(1)において、該弁群(7)が、1つの調整弁(9,11)と少なくとも2つの制御弁(13,15)とを有しており、蒸気タービン(1)の出力消費のために、まず調整弁(9,11)が開かれ、調整弁(9,11)の調整のために使用される調整部出力信号(31)が、規定された第1の値を越えた場合、かつ正の調整差が生じた場合に、制御弁(13,15)の1つが開かれる、蒸気タービン。In a steam turbine (1) provided with a valve group (7) for regulating steam inflow, the valve group (7) comprises one regulating valve (9, 11) and at least two control valves (13, 15). In order to consume the output of the steam turbine (1), the regulator valve (9, 11) is first opened and the regulator output signal used for regulating the regulator valve (9, 11). A steam turbine in which one of the control valves (13, 15) is opened when (31) exceeds a defined first value and a positive adjustment difference occurs . 制御弁(13,15)が電動機式の駆動装置を有している、請求項6記載の蒸気タービン。  The steam turbine according to claim 6, wherein the control valve (13, 15) comprises an electric drive.
JP2002529646A 2000-09-20 2001-09-07 Method for regulating a steam turbine and a steam turbine Expired - Fee Related JP4695822B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00120574.9 2000-09-20
EP00120574A EP1191190A1 (en) 2000-09-20 2000-09-20 Method for regulating a steam turbine and steam turbine
PCT/EP2001/010358 WO2002025067A1 (en) 2000-09-20 2001-09-07 Method for regulating a steam turbine, and corresponding steam turbine

Publications (2)

Publication Number Publication Date
JP2004518050A JP2004518050A (en) 2004-06-17
JP4695822B2 true JP4695822B2 (en) 2011-06-08

Family

ID=8169887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002529646A Expired - Fee Related JP4695822B2 (en) 2000-09-20 2001-09-07 Method for regulating a steam turbine and a steam turbine

Country Status (6)

Country Link
EP (2) EP1191190A1 (en)
JP (1) JP4695822B2 (en)
CN (1) CN100335751C (en)
DE (1) DE50115502D1 (en)
ES (1) ES2344591T3 (en)
WO (1) WO2002025067A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528446A1 (en) 2003-10-29 2005-05-04 Siemens Aktiengesellschaft Method and controller for positioning an actuator and use of the controller
DE102005033292B4 (en) * 2005-07-16 2007-07-26 I.N.T.-Rickert GmbH Ingenieurbüro für neue Technologien Device for applying adhesives or sealants
JP2013079580A (en) * 2011-09-30 2013-05-02 Toshiba Corp Method of operating combined power generating facility and combined power generating facility
CN103244203B (en) * 2013-05-21 2014-12-03 国家电网公司 Throttle valve system and working method thereof
CN108252752B (en) * 2017-12-22 2020-05-12 东方电气集团东方汽轮机有限公司 Steam turbine steam inlet adjusting method
WO2019217636A1 (en) * 2018-05-09 2019-11-14 Abb Schweiz Ag Turbine diagnostics
CN109356674A (en) * 2018-12-25 2019-02-19 大庆特博科技发展有限公司 A kind of organic working medium turbine of adjustable nozzle quantity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261101U (en) * 1988-10-26 1990-05-07

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE272691C (en) *
NL26523C (en) * 1926-08-28 1900-01-01
NL29786C (en) * 1929-12-30 1932-12-15
FR787271A (en) * 1934-06-21 1935-09-19 Rateau Sa Steam or gas turbine adjustment device
US3763894A (en) * 1971-06-16 1973-10-09 Westinghouse Electric Corp Sequentially operable control valve for a steam turbine
US4245162A (en) * 1973-08-15 1981-01-13 Westinghouse Electric Corp. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control
AU537607B2 (en) * 1980-12-02 1984-07-05 Hitachi Limited Combined valve for use in a reheating steam turbine
JPS57188705A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
DE19616178C2 (en) * 1995-07-14 1998-07-16 Ver Energiewerke Ag Method for loading and unloading the high pressure part of a steam turbine operated with a duo steam boiler block
WO1998013633A1 (en) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Turbine valve actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261101U (en) * 1988-10-26 1990-05-07

Also Published As

Publication number Publication date
EP1319117A1 (en) 2003-06-18
CN1461374A (en) 2003-12-10
EP1319117B1 (en) 2010-06-02
JP2004518050A (en) 2004-06-17
CN100335751C (en) 2007-09-05
WO2002025067A1 (en) 2002-03-28
EP1191190A1 (en) 2002-03-27
ES2344591T3 (en) 2010-09-01
DE50115502D1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP3322060B2 (en) Power plant and power plant control device
CN101050753B (en) Control system for wind turbine with hydrodynamic transmission
JP4695822B2 (en) Method for regulating a steam turbine and a steam turbine
CA1082057A (en) Boiler feed water pump control systems
JPH07507196A (en) Method and device for regulating turbine generator equipment
JP2002502065A (en) In particular, a control method and a control apparatus for a gas turbine generator of a combined gas and steam power plant
JPH0281906A (en) Steam turbine facility by regulated bleeding
EP1755210A1 (en) Device simulating operation of a machine that functions as either a motor or a generator
JPS6139043Y2 (en)
US20040101396A1 (en) Method for regulating a steam turbine, and corresponding steam turbine
CN109672377A (en) A kind of quick Lai control of method of diesel locomotive generator
JP2768688B2 (en) How to start a variable speed hydropower plant
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
RU2059875C1 (en) Servicing method for small hydroelectric power station unit
CN1933321B (en) Control device for motor output
SU1607072A1 (en) Wind power unit
JPS59105974A (en) Governor for water turbine
SU1128364A1 (en) Independent electric power plant with synchronous diesel-generators
JP2731147B2 (en) Control unit for hydroelectric power plant
JP2752075B2 (en) Control devices for hydraulic machines
CN1023142C (en) Method for regulation of a steam turbine and arrangement for execution of this method
Tripathy Digital speed governor for steam turbine
JP3770939B2 (en) Extraction type BFP turbine pressure regulating valve and control device therefor
SU1159138A1 (en) Hoist electric drive
CN1016030B (en) Controller for alternating-eddy-current braking speed regulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees