JP4684734B2 - Carbonaceous materials for electrode materials - Google Patents

Carbonaceous materials for electrode materials Download PDF

Info

Publication number
JP4684734B2
JP4684734B2 JP2005132127A JP2005132127A JP4684734B2 JP 4684734 B2 JP4684734 B2 JP 4684734B2 JP 2005132127 A JP2005132127 A JP 2005132127A JP 2005132127 A JP2005132127 A JP 2005132127A JP 4684734 B2 JP4684734 B2 JP 4684734B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
temperature
carbonaceous
electrode material
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005132127A
Other languages
Japanese (ja)
Other versions
JP2006306666A (en
Inventor
良一 田嶋
崇志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2005132127A priority Critical patent/JP4684734B2/en
Publication of JP2006306666A publication Critical patent/JP2006306666A/en
Application granted granted Critical
Publication of JP4684734B2 publication Critical patent/JP4684734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous substance suitable for an electrode material, such as a negative electrode activator for a lithium secondary battery and an activated carbon for an electrical double layer capacitor, and having less distribution of the interlayer distances of (002) plane, and to provide a carbide of the carbonaceous substance. <P>SOLUTION: The carbonaceous substance consists of the coke obtained by heat-treating coal-derived and/or petroleum-derived heavy oils. The carbonaceous substance has &ge;0.01% and &le;0.5% water content and has &ge;500&deg;C and &le;600&deg;C weight reduction starting temperature, which is obtained from a thermogravimetric analysis measured in the air. The carbonaceous substance or its carbide is used as an electrode material for a power storage device. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、高性能な電極材料、特に電気二重層キャパシタ用活性炭およびリチウム二次電池用負極活物質などを製造するための原料として好適な炭素質物および低温焼成炭素粉末ならびに蓄電装置用電極材料に関する。   The present invention relates to a high-performance electrode material, in particular, a carbonaceous material and a low-temperature calcined carbon powder suitable as a raw material for producing activated carbon for an electric double layer capacitor and a negative electrode active material for a lithium secondary battery, and an electrode material for a power storage device. .

近年、電気二重層キャパシタやリチウムイオン二次電池などの新しい蓄電装置が相次いで開発されている。該蓄電装置は、従来の蓄電池やコンデンサに比べて高容量および/ま
たは高出力であり、携帯電話やノートパソコンなどの携帯電子機器から、ハイブリッド電気自動車などの比較的大型な装置まで、幅広く使われている。
In recent years, new power storage devices such as electric double layer capacitors and lithium ion secondary batteries have been developed one after another. The power storage device has a higher capacity and / or higher output than conventional storage batteries and capacitors, and is widely used from portable electronic devices such as mobile phones and laptop computers to relatively large devices such as hybrid electric vehicles. ing.

該蓄電装置には、その電極材料として、活性炭、黒鉛、低温焼成炭素などの炭素材料が使用されている。該炭素材料は、導電性、層間化合物形成能、耐薬品性などの物理特性、あるいは供給安定性や価格などの経済性において、他元素を主体とする材料に比べて優れている。しかしながら、それと同時に該炭素材料の特性が該蓄電装置の性能に大きく影響するので、該炭素材料の製造方法には特段の注意を払う必要がある。   The power storage device uses a carbon material such as activated carbon, graphite, or low-temperature calcined carbon as an electrode material. The carbon material is superior to materials mainly composed of other elements in physical properties such as conductivity, intercalation compound forming ability, chemical resistance, and economics such as supply stability and price. However, at the same time, since the characteristics of the carbon material greatly affect the performance of the power storage device, special attention must be paid to the method of manufacturing the carbon material.

電気二重層キャパシタにおいては、その静電容量は、電気二重層キャパシタの電極を構成する活性炭粒子の比表面積、細孔分布、結晶度、純度などに依存する。したがって、適切な活性炭を得るためには、原料である炭素質物に粉砕、炭化、賦活など種々の処理を施す必要がある。   In the electric double layer capacitor, the capacitance depends on the specific surface area, pore distribution, crystallinity, purity and the like of the activated carbon particles constituting the electrode of the electric double layer capacitor. Therefore, in order to obtain suitable activated carbon, it is necessary to perform various treatments such as pulverization, carbonization, and activation on the carbonaceous material as a raw material.

上記の炭素質物から活性炭を製造する工程は、原料である炭素質物の種類などによって若干異なるが、概ね以下の通りである。
すなわち、乾燥した炭素質物を粒径数mm以下の粒子状に粉砕する。次いで、粉砕した炭素質物を不活性雰囲気下で、600〜900℃の温度範囲で炭化する。次いで、炭化物を水蒸気流入下あるいは水酸化カリウムなどを添加混合した状態で賦活処理する。さらに、賦活物を希塩酸水などで酸洗あるいは水洗する。最終的に、篩分けにより夾雑物を取り除いて、活性炭とする。
The process for producing activated carbon from the carbonaceous material described above is generally as follows, although it varies slightly depending on the type of carbonaceous material that is the raw material.
That is, the dried carbonaceous material is pulverized into particles having a particle size of several mm or less. Next, the pulverized carbonaceous material is carbonized at a temperature range of 600 to 900 ° C. in an inert atmosphere. Next, the carbide is activated in a state where steam is introduced or potassium hydroxide is added and mixed. Further, the activation product is pickled or washed with dilute hydrochloric acid. Finally, impurities are removed by sieving to make activated carbon.

リチウム二次電池においては、その容量は、正極および負極を構成する活物質の物性に依存する。すなわち、負極活物質には、主に黒鉛系および/または低温焼成炭素系炭素が
使用されているが、両者ともに、負極活物質粒子の比表面積、細孔分布、結晶度、純度などが該電池の容量に大きく影響する。したがって、適切な負極活物質を得るために、原料である炭素質物に粉砕、炭化、黒鉛化など種々の処理を施す必要がある。
In the lithium secondary battery, the capacity depends on the physical properties of the active material constituting the positive electrode and the negative electrode. That is, as the negative electrode active material, mainly graphite-based and / or low-temperature calcined carbon-based carbon is used, and both of them have a specific surface area, pore distribution, crystallinity, purity, etc. of the negative electrode active material particles. This greatly affects the capacity. Therefore, in order to obtain an appropriate negative electrode active material, it is necessary to subject the carbonaceous material as a raw material to various treatments such as pulverization, carbonization, and graphitization.

上記の炭素質物から低温焼成炭素系負極活物質を製造する工程は、原料である炭素質物の種類などによって若干異なるが、概ね以下の通りである。
すなわち、乾燥した炭素質物を粒径数mm以下の粒子状に粉砕する。次いで、粉砕した炭素質物を不活性雰囲気下で、800〜1,400℃の温度範囲で炭化する。さらに、得られた炭化物を所定の平均粒径に粉砕する。このようにして低温焼成炭素系負極活物質が得られる。
The process for producing a low-temperature-fired carbon-based negative electrode active material from the carbonaceous material described above is generally as follows, although it varies slightly depending on the type of carbonaceous material that is the raw material.
That is, the dried carbonaceous material is pulverized into particles having a particle size of several mm or less. Next, the pulverized carbonaceous material is carbonized at a temperature range of 800 to 1,400 ° C. in an inert atmosphere. Further, the obtained carbide is pulverized to a predetermined average particle size. In this way, a low-temperature fired carbon-based negative electrode active material is obtained.

また、黒鉛系負極活物質は、通常、上記炭化物に以下の処理を施して得られる。
すなわち、上記で得られる所定の平均粒径に粉砕した炭化物に、必要に応じて酸化ホウ素などの黒鉛化触媒を添加混合する。該混合物に、コールタールピッチなどの粘結材を適量加えて混合する。次いで、該混合物をアルゴン雰囲気下、2,800〜3,000℃で黒鉛化する。さらに、得られた黒鉛化物を解砕して、所定の平均粒径に調整する。このようにして黒
鉛系負極活物質が得られる。
The graphite-based negative electrode active material is usually obtained by subjecting the carbide to the following treatment.
That is, if necessary, a graphitization catalyst such as boron oxide is added to and mixed with the carbide pulverized to the predetermined average particle diameter obtained above. An appropriate amount of caking material such as coal tar pitch is added to the mixture and mixed. The mixture is then graphitized at 2,800-3,000 ° C. under an argon atmosphere. Furthermore, the obtained graphitized material is crushed and adjusted to a predetermined average particle size. In this way, a graphite-based negative electrode active material is obtained.

上記で説明したように、電気二重層キャパシタ用活性炭およびリチウム二次電池用負極活物質のいずれの製造工程においても、粒子状に粉砕された炭素質物または所定の平均粒径に粉砕された炭素質物を600〜1,400℃で炭化した低温焼成炭素(以下、炭化品というこ
とがある)を得る工程が存在する。すなわち、通常、炭素質物は、複数のベンゼン環から
なる芳香族化合物、枝分かれした炭化水素、ヘテロ原子を含む官能基を持つ炭化水素などの混合物である。したがって、上記の炭化により、ヘテロ原子を含む官能基を持つ炭化水素などを除去するとともに、複数のベンゼン環からなる芳香族化合物や枝分かれした炭化水素などを炭素六角網面へと成長させる。
As described above, in any production process of the activated carbon for an electric double layer capacitor and the negative electrode active material for a lithium secondary battery, the carbonaceous material pulverized into particles or the carbonaceous material pulverized to a predetermined average particle size There is a step of obtaining low-temperature calcined carbon (hereinafter sometimes referred to as a carbonized product) carbonized at 600 to 1,400 ° C. That is, normally, the carbonaceous material is a mixture of an aromatic compound composed of a plurality of benzene rings, a branched hydrocarbon, a hydrocarbon having a functional group containing a hetero atom, and the like. Therefore, by the above carbonization, hydrocarbons having a functional group containing a hetero atom are removed, and aromatic compounds composed of a plurality of benzene rings or branched hydrocarbons are grown on a carbon hexagonal network surface.

該炭素六角網面の一部は、炭化中に黒鉛微結晶を生成する。該黒鉛微結晶の (002)面の層間距離(以下、 d002ということがある)は、電極材料の特性に影響するので、所定の値
に保つことが必要である。さらに、該 d002は炭化条件に応じて変動するので、炭化の温
度、時間などを厳密に制御する必要がある。
A portion of the carbon hexagonal network surface produces graphite microcrystals during carbonization. Since the interlayer distance of the (002) plane of the graphite microcrystal (hereinafter sometimes referred to as d002 ) affects the characteristics of the electrode material, it must be kept at a predetermined value. Further, since d 002 varies depending on the carbonization conditions, it is necessary to strictly control the temperature and time of carbonization.

しかしながら、炭化条件が厳密な制御下にあるにも拘わらず、炭化品の d002が変動す
ることが知られている。このような d002の変動は、炭素質物中の炭化水素の構造、C/H比、バナジウムなどの金属含有量などのロット間格差によると考えられるが、詳細は不明である。したがって、 d002の有効な変動防止法は、未だ知られていなかった。
However, it is known that d 002 of the carbonized product fluctuates despite the carbonization conditions being under strict control. Such a variation in d 002, the structure of the hydrocarbons in the carbonaceous material, C / H ratio is considered to be due to lot-to-lot differences, such as metal content, such as vanadium, details are unclear. Therefore, an effective variation Act of d 002 has not yet been known.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電極材料として、均一な (002)面の層間距離を有する蓄電装置用炭素質物、低温焼成炭素粉末(炭化品)ならびに蓄電装置用電極材料を提供することを課題とする。   The present invention has been made in view of the above-described problems of the prior art, and as an electrode material, a carbonaceous material for a power storage device having a uniform (002) plane interlayer distance, a low-temperature fired carbon powder (carbonized product), and a power storage It is an object to provide an electrode material for a device.

本発明者らは、炭素質物を構成する炭化水素の構造、炭素質物の水分などを詳細に検討した結果、驚くべきことに、炭化前の炭素質物を乾燥する工程において、乾燥後の炭素質物の水分含量および空気中で測定した熱重量分析から得られる減量開始温度(以下、減量
開始温度という)が、炭化品の d002の変動幅に影響することを見出した。
As a result of detailed examination of the structure of hydrocarbons constituting the carbonaceous material, the moisture content of the carbonaceous material, etc., the present inventors have surprisingly found that the carbonaceous material after drying is dried in the step of drying the carbonaceous material before carbonization. It has been found that the weight loss starting temperature (hereinafter referred to as weight loss starting temperature) obtained from the moisture content and thermogravimetric analysis measured in air affects the fluctuation range of d 002 of the carbonized product.

すなわち、通常、工業的に製造される炭素質物は可燃物であるため、反応槽からの切り出しのためにウォーターカッターが使用されることが多い。また、運搬、保管などの過程において大気にさらされるため吸湿する。特に、ウォーターカッターが使用された場合、炭素質物の水分含量が5%以上に達することもあり、製造工程の最初に乾燥を行う必要がある。該乾燥工程は、炭素質物に高温の空気を強制的に吹き込んで水分を蒸発させる工程であり、作業時間短縮のために、回転ドラム内にて炭素質物を攪拌しながら、150℃以上の
空気を送風し、回転ドラムの外面をLPGバーナーで外熱する。このような操作により、1時間当たり約1tonの乾燥処理が可能で、炭素質物の水分含量は1%未満となる。
That is, since the carbonaceous material manufactured industrially is a combustible material, a water cutter is often used for cutting out from a reaction tank. It absorbs moisture because it is exposed to the atmosphere during transportation and storage. In particular, when a water cutter is used, the water content of the carbonaceous material may reach 5% or more, and it is necessary to perform drying at the beginning of the production process. The drying process is a process in which high-temperature air is forcedly blown into the carbonaceous material to evaporate moisture, and air of 150 ° C. or higher is stirred while stirring the carbonaceous material in the rotating drum in order to shorten the work time. Air is blown and the outer surface of the rotating drum is externally heated with an LPG burner. By such an operation, a drying process of about 1 ton per hour is possible, and the water content of the carbonaceous material is less than 1%.

本発明者らによると、乾燥された炭素質物を詳細に検討した結果、200℃の空気を送風
し、かつ温度維持のために回転ドラムに外熱を加えて、1時間当たり約1tonの乾燥を行っ
た場合、水分含量に最大1%から0.1%までの分布があることが判明した。さらに、水分含量0.1%の炭素質物を詳細に検討した結果、減量開始温度に最大500℃から600℃までの分布があることが判明した。このような水分含量および減量開始温度の分布が、炭化品の d002
の変動原因と推定し、鋭意検討した結果、水分含量および減量開始温度の分布を特定の範囲とすることにより、 d002の変動幅を低減させることが可能であることを見出し、本発
明を完成するに至った。
According to the present inventors, as a result of detailed examination of the dried carbonaceous material, air of 200 ° C. was blown, and external heat was applied to the rotating drum to maintain the temperature, and about 1 ton per hour was dried. When done, it was found that there was a maximum 1% to 0.1% distribution of moisture content. Furthermore, as a result of detailed examination of a carbonaceous material having a moisture content of 0.1%, it was found that the weight loss starting temperature has a distribution from a maximum of 500 ° C. to 600 ° C. Such water content and the weight loss initiation temperature distribution, the carbonized product d 002
As a result of presuming the cause of fluctuations and diligently examining it, it was found that the fluctuation range of d002 could be reduced by setting the distribution of the moisture content and the weight loss starting temperature within a specific range, and the present invention was completed. It came to do.

すなわち、本発明の第1の発明によれば、石油系および/または石炭系重質油を熱処理して得られるコークスからなる炭素質物であって、該炭素質物中の水分含量が0.01%以上0.5%以下、かつ該炭素質物の空気中で測定した熱重量分析から得られる減量開始温度が500℃以上600℃以下である電極材料用炭素質物が提供される。   That is, according to the first aspect of the present invention, the carbonaceous material is made of coke obtained by heat treating petroleum-based and / or coal-based heavy oil, and the water content in the carbonaceous material is 0.01% or more and 0.5%. %, And the carbonaceous material for electrode materials has a weight loss starting temperature of 500 ° C. or higher and 600 ° C. or lower obtained from thermogravimetric analysis of the carbonaceous material measured in air.

また、本発明の第2の発明によれば、第1の発明における炭素質物が、150℃以下の空
気を用いて乾燥処理を行ったものである電極材料用炭素質物が提供される。
また、本発明の第3の発明によれば、第1の発明における炭素質物を、平均粒径1μm以上30μm以下に粉砕した後、600℃以上1,400℃以下の温度で焼成するか、または600℃以上1,400℃以下の温度で焼成した後、平均粒径1μm以上30μm以下に粉砕してなる電極材料用低温焼成炭素粉末(炭化品)が提供される。
In addition, according to the second invention of the present invention, there is provided a carbonaceous material for an electrode material, wherein the carbonaceous material in the first invention has been subjected to a drying treatment using air of 150 ° C. or lower.
According to the third invention of the present invention, the carbonaceous material in the first invention is pulverized to an average particle size of 1 μm or more and 30 μm or less and then fired at a temperature of 600 ° C. or more and 1,400 ° C. or less, or 600 ° C. There is provided a low-temperature fired carbon powder (carbonized product) for an electrode material, which is fired at a temperature of 1,400 ° C. or lower and then pulverized to an average particle size of 1 μm to 30 μm.

さらに、本発明の第4の発明によれば、第3の発明における低温焼成炭素粉末(炭化品)からなる蓄電装置用電極材料が提供される。
また、本発明の第5の発明によれば、第3の発明における低温焼成炭素粉末(炭化品)を、さらに賦活または黒鉛化して得られる炭素粉末からなる蓄電装置用電極材料が提供される。
Furthermore, according to the 4th invention of this invention, the electrode material for electrical storage apparatuses which consists of the low-temperature baking carbon powder (carbonized product) in 3rd invention is provided.
According to the fifth aspect of the present invention, there is provided an electrode material for a power storage device comprising a carbon powder obtained by further activating or graphitizing the low-temperature calcined carbon powder (carbonized product) in the third aspect.

本発明の水分含量および減量開始温度が厳密に制御された炭素質物を用いることによって、炭化品の(002)面の層間距離の分布を低減することが可能となる。
本発明の均一な (002)面の層間距離を有する炭素質物および炭化品は、蓄電装置用材料として用いるのに最適である。
By using the carbonaceous material in which the water content and the weight loss starting temperature are strictly controlled according to the present invention, it is possible to reduce the distribution of the interlayer distance on the (002) plane of the carbonized product.
The carbonaceous material and carbonized product having a uniform (002) plane interlayer distance of the present invention are most suitable for use as a power storage device material.

本発明の炭素質物は、石油系重質油および/または石炭系重質油を熱処理して得られる
コークスである。通常、コークスは、石油系重質油および/または石炭系重質油を400℃から600℃で熱処理することによって得られる。工業的には、該熱処理にディレードコーカ
ーを用い、1バッチ数千トン程度の量を製造する。ディレードコーカーからウォーターカ
ッターで切り出したコークスは、大きさが不特定であるので、ロールクラッシャーなどで破砕し、数十cmの塊にする。
The carbonaceous material of the present invention is coke obtained by heat-treating petroleum heavy oil and / or coal heavy oil. Coke is usually obtained by heat treating petroleum heavy oil and / or coal heavy oil at 400 to 600 ° C. Industrially, a delayed coker is used for the heat treatment, and an amount of about several thousand tons per batch is produced. Coke cut from a delayed coker with a water cutter is unspecified, so it is crushed with a roll crusher or the like to form a mass of several tens of centimeters.

さらに、得られた炭素質物を乾燥する。乾燥方法としては、天日乾燥、送風乾燥、減圧乾燥などが考えられるが、処理速度、水分含量、不純物混入防止などの観点から、高温の空気を用いた送風乾燥が好ましい。また、乾燥機としては、回転ドラムの中で炭素質物を攪拌しながら高温の空気を炭素質物に強制送風し排気する形式の装置が好ましい。   Further, the obtained carbonaceous material is dried. As a drying method, solar drying, blow drying, reduced pressure drying, and the like are conceivable, but blow drying using high-temperature air is preferable from the viewpoints of processing speed, moisture content, prevention of contamination with impurities, and the like. Moreover, as a dryer, the apparatus of the type which forcedly ventilates high temperature air to a carbonaceous material and is exhausted, stirring a carbonaceous material in a rotating drum is preferable.

なお、乾燥後の炭素質物の水分含量は(水分含量の測定方法は、後述する)ロット中の、どの画分においても0.01%以上0.5%以下である。該乾燥工程中に、一定の頻度で炭素質
物の水分含量を測定したとき、全ての水分含量が0.1%から0.2%の範囲になることが好ましい。ロット中に0.5%を超える画分があると、炭化工程において、水分の蒸発のために炭化温度の厳密な制御が困難となるので好ましくない。また、水分含量を0.01%未満とするた
めには、乾燥に使用する高温の空気の温度を200℃以上に設定する必要がある。この場合
、炭素質物の減量開始温度が600℃を超える可能性があるため、したがって水分含量0.01%未満の炭素質物は好ましくない。
The water content of the carbonaceous material after drying is 0.01% or more and 0.5% or less in any fraction in the lot (the method for measuring the water content will be described later). When the water content of the carbonaceous material is measured at a certain frequency during the drying step, it is preferable that the total water content is in the range of 0.1% to 0.2%. If there is a fraction exceeding 0.5% in the lot, it is difficult to strictly control the carbonization temperature due to the evaporation of moisture in the carbonization step, which is not preferable. Further, in order to make the water content less than 0.01%, it is necessary to set the temperature of the high-temperature air used for drying to 200 ° C. or higher. In this case, the carbonaceous material may have a weight loss starting temperature exceeding 600 ° C. Therefore, a carbonaceous material having a moisture content of less than 0.01% is not preferable.

また、乾燥に使用する高温の空気の温度は、150℃以下であることが好ましい。高温の
空気の温度を120℃以下に設定し、炭素質物中に送風することがさらに好ましい。高温の
空気の温度が150℃を超えると、炭素質物の減量開始温度が600℃を超える可能性があるた
め好ましくない。さらに、乾燥時間を短縮するための回転ドラムの外熱は、炭素質物の減量開始温度が600℃を超えるため好ましくない。
The temperature of the high temperature air used for drying is preferably 150 ° C. or lower. More preferably, the temperature of the high-temperature air is set to 120 ° C. or less and the air is blown into the carbonaceous material. If the temperature of the hot air exceeds 150 ° C, the carbonaceous material weight loss starting temperature may exceed 600 ° C, which is not preferable. Furthermore, the external heat of the rotating drum for shortening the drying time is not preferable because the carbonaceous material weight loss starting temperature exceeds 600 ° C.

また、乾燥速度は、上記の乾燥方法と乾燥温度との範囲内で、水分含量が0.1%以上0.2%未満となる速度に設定することが好ましい。より具体的には、回転ドラムの中を流れる炭素質物の断面積あたりの乾燥速度が、0.1ton/hr・m2から0.5ton/hr・m2であることが好ましい。0.05ton/hr・m2以下では、適切な乾燥品が得られるものの、生産量が低下するので好ましくない。また、1ton/hr・m2以上では、水分含量の分布が大きくなり、部分的に0.5%を超える画分ができる可能性が高くなるため好ましくない。 The drying speed is preferably set to a speed at which the water content is 0.1% or more and less than 0.2% within the range of the above drying method and drying temperature. More specifically, the drying speed per cross-sectional area of the carbonaceous material flowing in the rotating drum is preferably 0.1 ton / hr · m 2 to 0.5 ton / hr · m 2 . An amount of 0.05 ton / hr · m 2 or less is not preferable because an appropriate dry product can be obtained, but the production amount decreases. On the other hand, if it is 1 ton / hr · m 2 or more, the moisture content distribution becomes large, and the possibility that a fraction exceeding 0.5% may be partially increased is not preferable.

さらに、乾燥後の炭素質物の減量開始温度は、ロット中のどの画分においても500℃以
上600℃以下である。乾燥工程中に一定の頻度で炭素質物の減量開始温度を測定したとき
、全ての減量開始温度が530℃から570℃の範囲になることが好ましい。減量開始温度が600℃を超えると、炭素質物中の低分子量の炭化水素濃度が減少し、炭化工程において炭素
六角網面の成長が不均一となり、したがって d002の変動の原因となるので好ましくない
。また、減量開始温度が500℃未満の炭素質物(コークス)は、コーキング不良と考えら
れ、良好な炭化品が得られない可能性が高いため好ましくない。
Furthermore, the weight loss starting temperature of the carbonaceous material after drying is 500 ° C. or higher and 600 ° C. or lower in any fraction in the lot. When the carbonaceous material weight loss starting temperature is measured at a certain frequency during the drying process, it is preferable that all the weight loss starting temperatures fall within the range of 530 ° C to 570 ° C. If weight loss initiation temperature exceeds 600 ° C., it reduces the hydrocarbon concentration of the low molecular weight in the carbonaceous material, because the growth of the carbon hexagonal net plane in the carbonization step becomes non-uniform, thus causing variations in the d 002 unfavorable . Further, a carbonaceous material (coke) having a weight loss starting temperature of less than 500 ° C. is considered unsatisfactory, and is not preferable because there is a high possibility that a good carbonized product cannot be obtained.

次いで、上記のようにして乾燥された炭素質物を、最大粒径が2mm以下となるように粗
粉砕する。粗粉砕機としては、衝撃またはせん断型で中程度の粒度が得られる粉砕機であればいずれも好適に用いることができ、ハンマーミル、アトリションミル、カッターミル、ピンミルなどが例示し得る。
Next, the carbonaceous material dried as described above is roughly pulverized so that the maximum particle size is 2 mm or less. As the coarse pulverizer, any pulverizer capable of obtaining a medium particle size with an impact or shear type can be suitably used, and examples thereof include a hammer mill, an attrition mill, a cutter mill, and a pin mill.

次いで、粗粉砕した炭素質物を600℃以上1,400℃以下の温度範囲にて炭化する。炭化における雰囲気は、不活性ガスであればいずれも好適に使用し得るが、製造コストの観点から窒素が好ましい。炭化に用いる焼成炉は、バッチ式焼成炉、ロータリーキルン、ローラーハースキルンなど気密性があり、かつ温度制御可能なものであればいずれも好適に使用し得る。   Next, the coarsely pulverized carbonaceous material is carbonized in a temperature range of 600 ° C. to 1,400 ° C. Any atmosphere can be used for the carbonization as long as it is an inert gas, but nitrogen is preferable from the viewpoint of manufacturing cost. As the firing furnace used for carbonization, any batch-type firing furnace, rotary kiln, roller hearth kiln, or the like that has airtightness and can be temperature-controlled can be preferably used.

さらに、上記の炭化物を所定の平均粒径となるように微粉砕する。通常、電極材料として好ましく使用される炭化品の平均粒径は、1μm以上30μm以下であるので微粉砕機とし
てはジェットミルの使用が好ましい。微粉砕時に副成する粒径1μm未満の微粉を気流分級機などで除去することがさらに好ましい。
Further, the above carbide is finely pulverized to have a predetermined average particle size. Usually, since the average particle diameter of the carbonized product preferably used as the electrode material is 1 μm or more and 30 μm or less, it is preferable to use a jet mill as the fine pulverizer. It is more preferable to remove fine powder having a particle size of less than 1 μm, which is a by-product during pulverization, with an air classifier or the like.

また、上記の炭化工程および微粉砕・分級工程の順序を変えて炭化品の製造を行ってもよい。
なお、炭素質物の水分含量および減量開始温度を測定するための一定頻度での試料採取は、以下の通りとした。すなわち、1ロット10tonの場合、1ロットの乾燥作業中に、2ton(1ロットの20重量%)処理毎に約500gの炭素質物を採取した。該採取物をよく混合した後、
水分含量および減量開始温度の測定に必要な量を採取し試料とした。1試料当たり、2回の測定を行った。
Further, the carbonized product may be manufactured by changing the order of the carbonization step and the fine pulverization / classification step.
In addition, sampling at a fixed frequency for measuring the moisture content and the weight loss starting temperature of the carbonaceous material was as follows. That is, in the case of one lot of 10 tons, about 500 g of carbonaceous material was collected every 2 tons (20 wt% of one lot) during the drying operation of one lot. After mixing the harvest well,
An amount necessary for measuring the moisture content and the weight loss starting temperature was collected and used as a sample. Two measurements were performed per sample.

また、炭素質物の d002を測定するための一定頻度での試料採取は、以下の通りとした
。すなわち、1ロット8tonの場合、1.6ton処理毎に約500gの炭素質物を採取した。該採取
物をよく混合した後、 d002の測定に必要な量を採取し試料とした。1試料当たり、1回の
測定を行った。
In addition, sampling at a constant frequency for measuring d 002 of carbonaceous material was performed as follows. That is, in the case of one lot of 8 tons, about 500 g of carbonaceous material was collected every 1.6 ton treatment. After the sample was mixed well, an amount necessary for d002 measurement was sampled. One measurement was performed per sample.

なお、炭素質物の水分含量は、JIS M8812:2004「石炭類及びコークス類−工業分析方
法」にしたがって測定した。
また、炭素質物の減量開始温度は、以下の手順にて測定した。すなわち、先ずセイコー
Ins製TG/DTA6300Rに、試料約5mgを入れたPt製開放パンを装着した。空気気流(100mL/分)
下、30℃から1,250℃まで、昇温速度10℃/分にて昇温した。試料の重量変化を測定し、温度と試料重量とのグラフを作成した。200℃以上の低温側のベースラインと、試料重量の
減少開始から終了までに観察される曲線の変曲点を通る直線との交点の温度を減量開始温度とした。
The water content of the carbonaceous material was measured according to JIS M8812: 2004 “Coals and cokes—industrial analysis method”.
Moreover, the weight loss start temperature of the carbonaceous material was measured by the following procedure. First, Seiko
An Ins TG / DTA6300R was fitted with a Pt open pan containing about 5 mg of sample. Air flow (100mL / min)
Then, the temperature was increased from 30 ° C. to 1,250 ° C. at a temperature increase rate of 10 ° C./min. A change in the weight of the sample was measured, and a graph of temperature and sample weight was created. The temperature at the intersection of the baseline on the low temperature side of 200 ° C. or higher and the straight line passing through the inflection point of the curve observed from the start to the end of the decrease in the sample weight was taken as the decrease start temperature.

また、炭素質物の d002は、以下の手順にて測定を行った。すなわち、試料約50mgを粉
末X線回折用アモルファスガラスホルダーに詰め込み、ハンドプレスにて圧縮成形した。次いで、理学電機株式会社製RAD-1Cに該ホルダーを装着し、X線源:Cukα1(λ=0.15407nm)、測定範囲:10°〜90°、スキャン速度:4deg/minの条件にて回折X線強度を測定した。X線強度と回折角とのグラフを作成し、2θ=25.8°付近のピークの半価幅とλ値から計算式: d002=λ/SIN(RADIANS((2θ)/2))/2を用いて 、d002を算出した。
Further, d 002 of the carbonaceous material was measured by the following procedure. That is, about 50 mg of a sample was packed in an amorphous glass holder for powder X-ray diffraction and compression molded by a hand press. Next, the holder is mounted on RAD-1C manufactured by Rigaku Denki Co., Ltd., and X-ray source: Cukα1 (λ = 0.15407 nm), measurement range: 10 ° -90 °, scan speed: 4 deg / min. The line strength was measured. Create a graph of X-ray intensity and diffraction angle, and calculate from the half width of the peak near 2θ = 25.8 ° and λ value: d 002 = λ / SIN (RADIANS ((2θ) / 2)) / 2 Was used to calculate d002 .

常圧蒸留残渣油と流動接触分解残渣油とを重量比50:50にて混合した混合油13m3を内容積20m3のベンチリアクターに仕込み、圧力約0.5Mpa、温度約500℃にて40時間保持するこ
とによりコークス12tonを得た。ウォーターカッター(最大吐出圧力:400Mpa、オリフィス径:0.3mm)を使用して、リアクター内部からコークスを切り出した。切り出されたコークスをロールクラッシャーで直径10cm以下に破砕した。破砕物中の水分含量は6.3%であった。
13m 3 of mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at a weight ratio of 50:50 was charged into a bench reactor with an internal volume of 20m 3 and pressure of about 0.5Mpa and temperature of about 500 ° C for 40 hours. By holding, 12 tons of coke was obtained. Coke was cut out from the inside of the reactor using a water cutter (maximum discharge pressure: 400 MPa, orifice diameter: 0.3 mm). The cut coke was crushed to a diameter of 10 cm or less with a roll crusher. The water content in the crushed material was 6.3%.

該炭素質物(コークス破砕物)約11tonを乾燥機のドラム(長さ:20m、直径:1.8m)に連続的に送り込み、ドラムを回転させながら、高温の空気を送風した。空気温度は、送風機の出口において120℃および炭素質物の乾燥処理速度は、0.32ton/hr・m2とした。乾燥し
た炭素質物を2ton毎に試料採取し、水分含量および減量開始温度の測定を行った。結果を表1に示す。全ての測定点において、水分含量は0.2%以下、かつ減量開始温度は570℃以
下であった。
About 11 tons of the carbonaceous material (coke crushed material) was continuously fed into a drum (length: 20 m, diameter: 1.8 m) of a dryer, and hot air was blown while rotating the drum. The air temperature was 120 ° C. at the outlet of the blower, and the drying rate of the carbonaceous material was 0.32 ton / hr · m 2 . The dried carbonaceous material was sampled every 2 tons, and the moisture content and the weight loss starting temperature were measured. The results are shown in Table 1. At all measurement points, the water content was 0.2% or less and the weight loss starting temperature was 570 ° C. or less.

次いで、乾燥した炭素質物10tonを、SUS304製のハンマーミル(ハンマー直径500mm)を用い、粒径2mm以上の粒子が0.1重量%以下となるように粗粉砕した。さらに、粗粉砕した炭
素質物10tonを、ロータリーキルン(加熱方式LPG炎、胴体内径40cm、加熱帯240cm)を用い
、胴体出口温度720℃、窒素流量20L/min、搬送速度30kg/hrの条件にて炭化を行った。
Next, 10 tons of the dried carbonaceous material was coarsely pulverized using a SUS304 hammer mill (hammer diameter: 500 mm) so that particles having a particle diameter of 2 mm or more were 0.1% by weight or less. Furthermore, 10 tons of coarsely pulverized carbonaceous material was carbonized using a rotary kiln (heating method LPG flame, fuselage inner diameter 40 cm, heating zone 240 cm) under conditions of fuselage outlet temperature 720 ° C, nitrogen flow rate 20 L / min, and conveyance speed 30 kg / hr. Went.

得られた炭化物約8tonにつき、ジェットミル(ノズル径2mm)を用い、処理速度200kg/hr
の条件にて、平均粒径12μmに微粉砕した。さらに、粒径1μm未満の微粉が0.1重量%未満
となるように、微粉砕物を気流分級機(缶体外径1m、缶体高さ2m)で分級した。このようにして得られた炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。
炭化品の d002の平均は、0.3466[nm]、最大値と最小値の差は、0.0005[nm]であった。
About 8 tons of obtained carbide, using a jet mill (nozzle diameter 2mm), processing speed 200kg / hr
Under the above conditions, the powder was finely pulverized to an average particle size of 12 μm. Further, the finely pulverized product was classified by an air classifier (can outer diameter 1 m, can height 2 m) so that fine powder having a particle diameter of less than 1 μm was less than 0.1 wt%. Thus samples were collected every 1.6ton The resulting carbonized product with was measured d 002. The results are shown in Table 2.
The average d 002 of the carbonized product was 0.3466 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

実施例1の粗粉砕された炭素質物10tonを用いて、炭化と微粉砕・分級との順序を変え
たこと以外は、実施例1と同様にして微粉砕・分級、次いで炭化を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3465[nm]、最大値と最小値との差は、0.0005[nm]であった。
Using the coarsely pulverized carbonaceous material of 10 tons of Example 1, fine pulverization / classification and then carbonization were performed in the same manner as in Example 1 except that the order of carbonization and pulverization / classification was changed. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3465 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

実施例1の炭化工程における胴体出口温度を600℃に設定したこと以外は、実施例1と
同様にして炭化品を得た。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表
2に示す。炭化品の d002の平均は、0.3442[nm]、最大値と最小値との差は、0.0005[nm]
であった。
A carbonized product was obtained in the same manner as in Example 1, except that the body outlet temperature in the carbonization step of Example 1 was set to 600 ° C. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of carbonized products is 0.3442 [nm], and the difference between the maximum and minimum values is 0.0005 [nm]
Met.

実施例1の粗粉砕された炭素質物10tonを、アルミナ製の矩形るつぼ(縦20cm、横30cm
、深さ10cm)約5,000個(1個当たり2kg)に充填した。充填した矩形るつぼ500個を1ロットとして、バッチ式焼成炉(加熱方式LPG炎、内寸400cm、300cm、200cm)に収納した。炉内中心部に設置した熱電対の指示値が1,000℃、窒素流量10L/minの条件にて、10ロットの炭化を行った。
10 tons of coarsely pulverized carbonaceous material of Example 1 was placed in a rectangular crucible made of alumina (length 20 cm, width 30 cm).
, Depth 10cm) about 5,000 pieces (2kg per piece). One lot of 500 filled rectangular crucibles was stored in a batch-type firing furnace (heating type LPG flame, inner dimensions 400 cm, 300 cm, 200 cm). Ten lots of carbonization were performed under the condition that the indicated value of the thermocouple installed in the center of the furnace was 1,000 ° C and the flow rate of nitrogen was 10L / min.

得られた炭化物約8tonを、実施例1と同様にして粉砕・分級した。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3493[nm]、最大値と最小値との差は、0.0005[nm]であった。 About 8 tons of the obtained carbide was pulverized and classified in the same manner as in Example 1. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average of d 002 of the carbonized product was 0.3493 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

実施例4と同様の粗粉砕された炭素質物10tonを用いて、炭化と微粉砕・分級との順序
を変えたこと以外は、実施例4と同様にして微粉砕・分級、次いで炭化を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3494 [nm]、最大値と最小値との差は、0.0005[nm]であった。
Using the same coarsely pulverized carbonaceous material 10 ton as in Example 4, the order of carbonization and fine pulverization / classification was changed, and fine pulverization / classification and then carbonization were performed in the same manner as in Example 4. . Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3494 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

実施例4の熱電対の指示値を1,400℃としたこと以外は、実施例4と同様にして炭化品
を得た。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品
の d002の平均は、0.3464[nm]、最大値と最小値との差は、0.0005[nm]であった。
A carbonized product was obtained in the same manner as in Example 4 except that the indicated value of the thermocouple in Example 4 was 1,400 ° C. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average of d 002 of the carbonized product was 0.3464 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

キノリン可溶分100重量%のコールタールピッチ約12m3を、内容積20m3のベンチリアクターに仕込み、圧力約0.5Mpa、温度約500℃にて40時間保持することによりコークス12tonを得た。ウォーターカッター(最大吐出圧力:400Mpa、オリフィス径:0.3mm)を使用して、
リアクター内部からコークスを切り出した。切り出されたコークスをロールクラッシャーで直径10cm以下に破砕した。破砕物の水分量は5.1%であった。
About 12 m 3 of coal tar pitch having a quinoline soluble content of 100% by weight was charged into a bench reactor having an internal volume of 20 m 3 and kept at a pressure of about 0.5 Mpa and a temperature of about 500 ° C. for 40 hours to obtain 12 tons of coke. Using a water cutter (maximum discharge pressure: 400Mpa, orifice diameter: 0.3mm)
Coke was cut out from inside the reactor. The cut coke was crushed to a diameter of 10 cm or less with a roll crusher. The water content of the crushed material was 5.1%.

該破砕物11tonを、実施例1と同様にして乾燥処理し炭素質物10tonを得た。乾燥した炭素質物を2ton毎に試料採取し、水分含量および減量開始温度を測定した。結果を表1に示す。全ての測定点において、水分含量は0.2%以下、かつ減量開始温度は570℃以下であっ
た。
11 tons of the crushed material was dried in the same manner as in Example 1 to obtain 10 tons of carbonaceous material. The dried carbonaceous material was sampled every 2 tons, and the moisture content and the weight loss starting temperature were measured. The results are shown in Table 1. At all measurement points, the water content was 0.2% or less and the weight loss starting temperature was 570 ° C. or less.

次いで、乾燥した炭素質物約10tonを実施例1と同様に処理して、炭化品約8tonを得た
。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3467[nm]、最大値と最小値との差は、0.0005[nm]であった。
Next, about 10 tons of the dried carbonaceous material was treated in the same manner as in Example 1 to obtain about 8 tons of carbonized product. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3467 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].

実施例7の粗粉砕された炭素質物10tonを用いて、炭化と微粉砕・分級との順序を変え
たこと以外は、実施例7と同様にして微粉砕・分級、次いで炭化を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3468[nm]、最大値と最小値との差は、0.0005[nm]であった。
[比較例1]
実施例1と同様の炭素質物約11tonを乾燥機のドラム(長さ:20m、直径:1.8m)に連続的に送り込み、ドラムを回転させながら、高温の空気を送風した。ドラムの外表面をLPGバ
ーナーで加熱し、ドラム内表面の温度を約300℃に調節した。空気温度は送風機の出口に
おいて200℃、炭素質物の乾燥処理速度は1.3ton/hr・m2であった。乾燥した炭素質物を2ton毎に試料採取し、水分含量および減量開始温度を測定した。結果を表1に示す。水分含
量は、測定点10点中3点が0.5%を超える値を示した。また、減量開始温度は測定点10点中2点で600℃を超える値を示した。
Using the coarsely pulverized carbonaceous material 10 ton of Example 7, the order of carbonization and fine pulverization / classification was changed, and fine pulverization / classification and carbonization were performed in the same manner as in Example 7. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3468 [nm], and the difference between the maximum value and the minimum value was 0.0005 [nm].
[Comparative Example 1]
About 11 tons of carbonaceous material similar to that in Example 1 was continuously fed into a drum (length: 20 m, diameter: 1.8 m) of a dryer, and hot air was blown while rotating the drum. The outer surface of the drum was heated with an LPG burner, and the temperature of the inner surface of the drum was adjusted to about 300 ° C. The air temperature was 200 ° C. at the outlet of the blower, and the drying rate of the carbonaceous material was 1.3 ton / hr · m 2 . The dried carbonaceous material was sampled every 2 tons, and the moisture content and the weight loss starting temperature were measured. The results are shown in Table 1. The water content was such that 3 out of 10 measurement points exceeded 0.5%. Moreover, the weight loss starting temperature showed a value exceeding 600 ° C. at 2 out of 10 measurement points.

乾燥した炭素質物を実施例1と同様に処理して、炭化品約8tonを得た。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3462[nm]、最大値と最小値との差は、0.0053[nm]であった。
[比較例2]
比較例1の粗粉砕された炭素質物10tonを用いて、炭化と微粉砕・分級との順序を変え
たこと以外は、比較例1と同様にして微粉砕・分級、次いで炭化を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭化品の d002の平均は、0.3468[nm]、最大値と最小値との差は、0.0057[nm]であった。
[比較例3]
比較例1の炭化工程における胴体出口温度を600℃に設定したこと以外は、比較例1と
同様にして炭化品を得た。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表
2に示す。炭化品の d002の平均は、0.3438[nm]、最大値と最小値との差は、0.0048[nm]
であった。
[比較例4]
比較例1の粗粉砕された炭素質物10tonを用いて、実施例4と同様にして炭化および微
粉砕・分級を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に
示す。炭化品の d002の平均は、0.3489[nm]、最大値と最小値との差は、0.0074[nm]であ
った。
[比較例5]
比較例1の粗粉砕された炭素質物10tonを用いて、実施例6と同様にして炭化および微
粉砕・分級を行った。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に
示す。炭化品の d002の平均は、0.3460[nm]、最大値と最小値との差は、0.0077[nm]であ
った。
[比較例6]
実施例7の炭素質物に比較例1の乾燥処理を行い、実施例1と同様に処理して、炭化品8tonを得た。炭化品を1.6ton毎に試料採取し、 d002を測定した。結果を表2に示す。炭
化品の d002の平均は、0.3464[nm]、最大値と最小値との差は、0.0053[nm]であった。
The dried carbonaceous material was treated in the same manner as in Example 1 to obtain about 8 tons of carbonized product. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average of d 002 of the carbonized product was 0.3462 [nm], and the difference between the maximum value and the minimum value was 0.0053 [nm].
[Comparative Example 2]
Using the coarsely pulverized carbonaceous material 10 ton of Comparative Example 1, the order of carbonization and fine pulverization / classification was changed, and fine pulverization / classification and then carbonization were performed in the same manner as Comparative Example 1. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3468 [nm], and the difference between the maximum value and the minimum value was 0.0057 [nm].
[Comparative Example 3]
A carbonized product was obtained in the same manner as in Comparative Example 1 except that the body outlet temperature in the carbonization step of Comparative Example 1 was set to 600 ° C. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of carbonized products is 0.3438 [nm], and the difference between the maximum and minimum values is 0.0048 [nm]
Met.
[Comparative Example 4]
Using 10 tons of coarsely pulverized carbonaceous material of Comparative Example 1, carbonization and fine pulverization / classification were performed in the same manner as in Example 4. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3489 [nm], and the difference between the maximum value and the minimum value was 0.0074 [nm].
[Comparative Example 5]
Using 10 tons of coarsely pulverized carbonaceous material of Comparative Example 1, carbonization, fine pulverization and classification were performed in the same manner as in Example 6. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average d 002 of the carbonized product was 0.3460 [nm], and the difference between the maximum value and the minimum value was 0.0077 [nm].
[Comparative Example 6]
The carbonaceous material of Example 7 was subjected to the drying treatment of Comparative Example 1 and treated in the same manner as in Example 1 to obtain a carbonized product of 8 tons. Samples were taken carbide products for each 1.6Ton, was measured d 002. The results are shown in Table 2. The average of d 002 of the carbonized product was 0.3464 [nm], and the difference between the maximum value and the minimum value was 0.0053 [nm].

Figure 0004684734
Figure 0004684734

Figure 0004684734
Figure 0004684734

本発明の水分含量および減量開始温度が厳密に制御された炭素質物を用いて製造される炭化品は、(002)面の層間距離の分布が少ないため、リチウム二次電池用負極活物質およ
び電気二重層キャパシタ用活性炭などの原料として好適に用いることができる。

Since the carbonized product produced using the carbonaceous material in which the moisture content and the weight loss starting temperature are strictly controlled according to the present invention has a small distribution of the interlayer distance on the (002) plane, the negative electrode active material for lithium secondary batteries and electrical It can be suitably used as a raw material for activated carbon for double layer capacitors.

Claims (5)

石油系および/または石炭系重質油を熱処理して得られるコークスからなる炭素質物であって、該炭素質物中の水分含量が0.01%以上0.5%以下、かつ該炭素質物の空気中で測定
した熱重量分析から得られる減量開始温度が500℃以上600℃以下であることを特徴とする電極材料用炭素質物。
A carbonaceous material comprising coke obtained by heat-treating petroleum-based and / or coal-based heavy oil, the moisture content of the carbonaceous material being 0.01% or more and 0.5% or less, measured in the air of the carbonaceous material A carbonaceous material for an electrode material having a weight loss starting temperature obtained from thermogravimetric analysis of 500 ° C or higher and 600 ° C or lower.
150℃以下の空気を用いて乾燥処理を行ったものであることを特徴とする請求項1に記
載の電極材料用炭素質物。
The carbonaceous material for an electrode material according to claim 1, wherein the carbonaceous material for an electrode material has been subjected to a drying treatment using air of 150 ° C or lower.
請求項1に記載の炭素質物を、平均粒径1μm以上30μm以下に粉砕した後、600℃以上1,400℃以下の温度で焼成するか、または600℃以上1,400℃以下の温度で焼成した後、平均
粒径1μm以上30μm以下に粉砕したことを特徴とする電極材料用低温焼成炭素粉末。
The carbonaceous material according to claim 1 is pulverized to an average particle size of 1 μm to 30 μm and then fired at a temperature of 600 ° C. to 1,400 ° C., or after firing at a temperature of 600 ° C. to 1,400 ° C. A low-temperature calcined carbon powder for electrode materials, characterized by being pulverized to a particle size of 1 μm to 30 μm.
請求項3に記載の低温焼成炭素粉末からなることを特徴とする蓄電装置用電極材料。   An electrode material for a power storage device, comprising the low-temperature fired carbon powder according to claim 3. 請求項3に記載の低温焼成炭素粉末を、さらに賦活または黒鉛化して得られた炭素粉末からなることを特徴とする蓄電装置用電極材料。

An electrode material for a power storage device, comprising a carbon powder obtained by further activating or graphitizing the low-temperature fired carbon powder according to claim 3.

JP2005132127A 2005-04-28 2005-04-28 Carbonaceous materials for electrode materials Expired - Fee Related JP4684734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132127A JP4684734B2 (en) 2005-04-28 2005-04-28 Carbonaceous materials for electrode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132127A JP4684734B2 (en) 2005-04-28 2005-04-28 Carbonaceous materials for electrode materials

Publications (2)

Publication Number Publication Date
JP2006306666A JP2006306666A (en) 2006-11-09
JP4684734B2 true JP4684734B2 (en) 2011-05-18

Family

ID=37473984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132127A Expired - Fee Related JP4684734B2 (en) 2005-04-28 2005-04-28 Carbonaceous materials for electrode materials

Country Status (1)

Country Link
JP (1) JP4684734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124893B1 (en) * 2010-06-21 2012-03-27 지에스칼텍스 주식회사 Anode active material improved safety and secondary battery employed with the same
JP5698102B2 (en) * 2011-05-26 2015-04-08 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410301A (en) * 1977-06-27 1979-01-25 Koa Oil Co Ltd Method of calcining coke
JPH0269356A (en) * 1988-09-02 1990-03-08 Nippon Steel Corp Production of isotropic graphite material having high purity
JPH07335217A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH1140158A (en) * 1997-05-19 1999-02-12 Toyo Tanso Kk Carbon material for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using the carbon material for negative electrode
JP2005104748A (en) * 2003-09-29 2005-04-21 Sumitomo Bakelite Co Ltd Carbon material and composition therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410301A (en) * 1977-06-27 1979-01-25 Koa Oil Co Ltd Method of calcining coke
JPH0269356A (en) * 1988-09-02 1990-03-08 Nippon Steel Corp Production of isotropic graphite material having high purity
JPH07335217A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH1140158A (en) * 1997-05-19 1999-02-12 Toyo Tanso Kk Carbon material for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using the carbon material for negative electrode
JP2005104748A (en) * 2003-09-29 2005-04-21 Sumitomo Bakelite Co Ltd Carbon material and composition therefor

Also Published As

Publication number Publication date
JP2006306666A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP2020176055A (en) Graphite production from biomass
JP4694288B2 (en) Low temperature calcined carbon for electrode materials
US9725323B2 (en) Method for producing graphite and particulates for graphite production
JP7290242B2 (en) Manufacturing equipment for carbon materials
JP4660608B2 (en) Carbon material manufacturing method
JP2020532058A (en) A method for manufacturing a negative electrode active material for a lithium secondary battery, and a lithium secondary battery containing the same.
JP6320023B2 (en) Graphite powder production apparatus and method
Coutinho et al. Preparing and characterizing biocarbon electrodes
CN101723356B (en) Method for graphitizing amorphous carbon material at low temperature
WO2015061160A1 (en) Process for making chemically activated carbon
Zhao et al. Thermal & chemical analyses of hydrothermally derived carbon materials from corn starch
JP4684734B2 (en) Carbonaceous materials for electrode materials
JP5230117B2 (en) Method for producing graphite particles
US20170096340A1 (en) Method for producing carbon material, and carbon material
JP7101819B2 (en) Amorphous carbon material, manufacturing method and use
JP4624830B2 (en) Carbonaceous materials for electrode materials
JP7090743B2 (en) Amorphous carbon material, manufacturing method and use
JP2013001582A (en) Isotropic graphite material, and method for producing the same
JP6014012B2 (en) Coke production method and coke
US11518679B2 (en) Composition of matter for the production of high purity, high density graphite
JP4615416B2 (en) Carbonaceous material for activated carbon production
US9751764B2 (en) Carbon material production method and carbon material
TW202248123A (en) Composition of matter for the production of graphite powder
Sulistyo et al. Pore Size Distribution and Microstructure of Oil Palm Shell Heat Treated at 300 C Followed by Slow or Fast Heating Treatment
KR20240042582A (en) Composition of materials for the production of graphite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees