JP4674168B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4674168B2
JP4674168B2 JP2006018745A JP2006018745A JP4674168B2 JP 4674168 B2 JP4674168 B2 JP 4674168B2 JP 2006018745 A JP2006018745 A JP 2006018745A JP 2006018745 A JP2006018745 A JP 2006018745A JP 4674168 B2 JP4674168 B2 JP 4674168B2
Authority
JP
Japan
Prior art keywords
boron
iodine
liquid
ions
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006018745A
Other languages
Japanese (ja)
Other versions
JP2006231325A (en
Inventor
誠 高橋
孝明 宮澤
信洋 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippoh Chemicals Co Ltd
Original Assignee
Nippoh Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippoh Chemicals Co Ltd filed Critical Nippoh Chemicals Co Ltd
Priority to JP2006018745A priority Critical patent/JP4674168B2/en
Publication of JP2006231325A publication Critical patent/JP2006231325A/en
Application granted granted Critical
Publication of JP4674168B2 publication Critical patent/JP4674168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は排水の処理方法に関し、詳しくは、排水をアルカリ性条件の下蒸発濃縮を行った後に、濃縮した排水のpHを酸性にすることで析出したホウ素を除去する排水の処理方法、およびホウ素を除去した後さらにヨウ素を除去する工程を含む排水の処理方法に関する。   TECHNICAL FIELD The present invention relates to a wastewater treatment method, and more specifically, wastewater treatment method for removing precipitated boron by acidifying the pH of the concentrated wastewater after evaporating and concentrating the wastewater under alkaline conditions, and boron The present invention relates to a wastewater treatment method including a step of removing iodine after the removal.

ホウ素化合物は種々の分野で使用されており、その使用により発生する排水にはホウ素化合物を含むものがある。国内におけるホウ酸の使用量は35,000t/年で比較的安価な化合物であるため、回収されず廃棄されることが多い。   Boron compounds are used in various fields, and some waste water generated by the use contains boron compounds. The amount of boric acid used in Japan is 35,000 t / year, which is a relatively inexpensive compound and is often discarded without being recovered.

このような状況において、2001年に水質汚濁防止法が改正され、ホウ素の排水規制が始まった。ホウ素を海洋に流出させる場合の排水基準は230ppm以下であるのに対し、一般河川に流出させる場合の排水基準は10ppm以下であり、何らかの方法でホウ素を除去しなければならなくなった。一般工業排水からのホウ素の除去方法としては、マグネシウム塩による共沈除去、またはイオン交換樹脂もしくはホウ素吸着剤を用いた除去方法が知られている(特許文献1および特許文献2参照)。しかしながら、高濃度のホウ素を除去する場合、薬剤の添加量や汚泥の発生量が多量となることや、前記イオン交換樹脂の再生頻度が増大するため、経済的に不利である。   Under these circumstances, the Water Pollution Control Law was revised in 2001, and boron drainage regulations began. The drainage standard for draining boron into the ocean is 230 ppm or less, whereas the drainage standard for draining into a general river is 10 ppm or less, and boron has to be removed by some method. As a method for removing boron from general industrial wastewater, a coprecipitation removal using a magnesium salt or a removal method using an ion exchange resin or a boron adsorbent is known (see Patent Document 1 and Patent Document 2). However, removal of high concentration boron is economically disadvantageous because the amount of added chemicals and the amount of sludge generated is large, and the frequency of regeneration of the ion exchange resin is increased.

一方、ヨウ素は生活に関連した産業の原料として、レントゲン造影剤、医薬品、殺菌・殺カビ剤などに使用され、工業用として、触媒安定剤、写真用原料、偏光フィルムの製造時などに使用され、農業用として、飼料添加物、除草剤などに使用されている。しかしながら、これらの用途では、ヨウ素単独で用いられることはほとんどなく、種々の物質と混合して用いられる。よく知られるところでは、液中での有機性の安定化剤などと共に使用される場合や、工業的な物質生産の工程において使用される溶剤などと共に使用される場合が多い。   On the other hand, iodine is used as an industrial raw material in daily life, such as X-ray contrast media, pharmaceuticals, bactericides and fungicides, and industrially as a catalyst stabilizer, photographic raw material, and polarizing film. It is used for feed additives, herbicides, etc. for agriculture. However, in these applications, iodine is rarely used alone, and is used by mixing with various substances. As is well known, it is often used together with an organic stabilizer in a liquid or a solvent used in an industrial material production process.

従来、これら産業的に利用されたヨウ素、ヨウ素化合物、およびそれらの水溶液は、通常排水として処理されたが、ヨウ素が持つ殺菌性により、排水処理用の微生物が死滅し、ヨウ素のみならずBOD負荷の原因となりうる有機性物質をも排水として流出させてしまい、その結果排水が環境負荷となったり、世界的に貴重な資源であるヨウ素の散逸に繋がるとして問題となっていた。   Conventionally, iodine, iodine compounds, and their aqueous solutions used in the industry are usually treated as wastewater, but due to the bactericidal properties of iodine, microorganisms for wastewater treatment are killed, and not only iodine but also BOD load As a result, organic substances that can cause spillage are also discharged as wastewater. As a result, the wastewater becomes an environmental burden, and it leads to the dissipation of iodine, which is a valuable resource worldwide.

ヨウ素を含有する排水からヨウ素を回収する方法としては、例えば、ヨウ素含有水を、塩素等の酸化剤でヨウ素含有水中のヨウ素を遊離ヨウ素化して、ヨウ素を沈殿として得たのち加圧溶融法によって精製する公知の方法がある。しかし、ヨウ素含有水中に有機物などが存在すると、遊離ヨウ素の沈降性が悪化する、酸化剤の使用量が増える、処理に時間がかかる、有機物が不純物としてヨウ素中に混在するなどの問題点があり、必ずしも良好な手段とは言えなかった。
特開2004−074038号公報 特開平9−010766号公報
As a method for recovering iodine from wastewater containing iodine, for example, iodine-containing water is obtained by free-iodination of iodine in iodine-containing water with an oxidizing agent such as chlorine to obtain iodine as a precipitate, followed by a pressure melting method. There are known methods for purification. However, if organic substances are present in iodine-containing water, there are problems such as poor precipitation of free iodine, an increase in the amount of oxidizer used, processing takes time, and organic substances are mixed as impurities in iodine. It was not always a good means.
JP 2004-074038 A JP-A-9-010766

したがって、本発明の目的は、高濃度でホウ素を含有する排水から、ホウ素を効率良く除去する手段を提供することである。本発明の他の目的は、ホウ素に加えて排水がヨウ素を含有する場合、ホウ素を除去した後にヨウ素を効率よく除去する手段を提供するものである。   Accordingly, an object of the present invention is to provide means for efficiently removing boron from wastewater containing boron at a high concentration. Another object of the present invention is to provide means for efficiently removing iodine after removing boron when the wastewater contains iodine in addition to boron.

上記の課題は、下記の(1)〜(15)により解決される。   Said subject is solved by following (1)-(15).

(1)ヨウ素および/またはヨウ素イオン、ならびにホウ素および/またはホウ素イオンを含有する排水のpHを8〜14に調整する工程と、前記ホウ素および/またはホウ素イオンの濃度(ホウ素換算)が0.5質量%以上になるように濃縮する工程と、前記濃縮する工程において得られた液を冷却するとともに液のpHを1〜7に調整することによりホウ素分を析出させる工程と、前記ホウ素分を析出させる工程において得られた析出物を除去して、ホウ素および/またはホウ素イオンを分離する工程と、を含む排水の処理方法。   (1) Adjusting the pH of the waste water containing iodine and / or iodine ions and boron and / or boron ions to 8 to 14, and the concentration of boron and / or boron ions (in terms of boron) is 0.5 A step of concentrating to at least mass%, a step of precipitating boron by cooling the liquid obtained in the step of concentrating and adjusting the pH of the liquid to 1 to 7, and precipitating the boron And a step of separating the boron and / or boron ions by removing precipitates obtained in the step of causing wastewater to be treated.

(2)前記濃縮する工程は、加熱蒸発により行われる、前記(1)に記載の方法。   (2) The method according to (1), wherein the step of concentrating is performed by heat evaporation.

(3)前記濃縮する工程は、連続的に行われる、前記(1)または(2)に記載の方法。   (3) The method according to (1) or (2), wherein the step of concentrating is performed continuously.

(4)前記濃縮する工程は、前記ホウ素および/またはホウ素イオンの濃縮(ホウ素換算)が0.5〜4.8質量%となるまで行われる、前記(1)〜(3)のいずれか一つに記載の方法。   (4) The step of concentrating is performed until the concentration of boron and / or boron ions (in terms of boron) is 0.5 to 4.8% by mass, and any one of (1) to (3). The method described in one.

(5)前記排水のpHを8〜14に調整する工程は、水酸化ナトリウム、水酸化カリウム、および水酸化カルシウムよりなる群より選ばれた少なくとも1種のアルカリ金属塩またはアルカリ土類金属塩を用いて行われる、前記(1)〜(4)のいずれか一つに記載の方法。   (5) The step of adjusting the pH of the waste water to 8 to 14 includes at least one alkali metal salt or alkaline earth metal salt selected from the group consisting of sodium hydroxide, potassium hydroxide, and calcium hydroxide. The method according to any one of (1) to (4), wherein the method is performed using a method.

(6)前記ホウ素分を析出させる工程において、冷却後の液の温度が−10〜60℃であり、液のpHは1〜4である前記(1)〜(5)のいずれか一つに記載の方法。   (6) In the step of precipitating the boron content, the temperature of the liquid after cooling is −10 to 60 ° C., and the pH of the liquid is 1 to 4, in any one of (1) to (5) The method described.

(7)ヨウ素および/またはヨウ素イオン、ならびにホウ素および/またはホウ素イオンを含有する排水のpHを8〜14に調整する工程と、前記ホウ素および/またはホウ素イオンの濃度(ホウ素換算)が0.5質量%以上になるように濃縮する工程と、前記濃縮する工程において得られた液を冷却するとともに液のpHを1〜7に調整することによりホウ素分を析出させる工程と、前記ホウ素分を析出させる工程において得られた析出物を除去して、ホウ素および/またはホウ素イオンを分離する工程と、前記分離する工程において得られた液に塩素を供給することにより、ヨウ素および/またはヨウ素イオンを酸化させ、沈降させてヨウ素を回収する工程と、を含む排水の処理方法。   (7) Adjusting the pH of the wastewater containing iodine and / or iodine ions and boron and / or boron ions to 8 to 14, and the concentration of boron and / or boron ions (in terms of boron) is 0.5 A step of concentrating to at least mass%, a step of precipitating boron by cooling the liquid obtained in the step of concentrating and adjusting the pH of the liquid to 1 to 7, and precipitating the boron The precipitate obtained in the step of removing the boron and / or boron ions is separated, and chlorine is supplied to the liquid obtained in the separation step to oxidize iodine and / or iodine ions. And a step of recovering iodine by sedimentation, and a method of treating waste water.

(8)前記濃縮する工程は、加熱蒸発により行われる、前記(7)に記載の方法。   (8) The said concentration process is a method as described in said (7) performed by heating evaporation.

(9)前記濃縮する工程は、連続的に行われる、前記(7)または(8)に記載の方法。   (9) The method according to (7) or (8), wherein the step of concentrating is performed continuously.

(10)前記濃縮する工程は、前記ホウ素および/またはホウ素イオンの濃縮(ホウ素換算)が0.5〜4.8質量%となるまで行われる、前記(7)〜(9)のいずれか一つに記載の方法。   (10) The step of concentrating is performed until the concentration of boron and / or boron ions (in terms of boron) is 0.5 to 4.8% by mass, any one of (7) to (9). The method described in one.

(11)前記排水のpHを8〜14に調整する工程は、水酸化ナトリウム、水酸化カリウム、および水酸化カルシウムからなる群より選択される少なくとも1種のアルカリ金属塩またはアルカリ土類金属塩を用いて行われる、前記(7)〜(10)のいずれか一つに記載の方法。   (11) The step of adjusting the pH of the waste water to 8 to 14 includes at least one alkali metal salt or alkaline earth metal salt selected from the group consisting of sodium hydroxide, potassium hydroxide, and calcium hydroxide. The method according to any one of (7) to (10), wherein the method is performed by using.

(12)前記ホウ素分を析出させる工程において、冷却後の液の温度は−10〜60℃であり、液のpHは1〜4である、前記(7)〜(11)のいずれか一つに記載の方法。   (12) In the step of precipitating the boron content, the temperature of the liquid after cooling is −10 to 60 ° C., and the pH of the liquid is 1 to 4, any one of (7) to (11) The method described in 1.

(13)前記ホウ素分を析出させる工程における液のpHの1〜7への調整は、硫酸、塩酸、硝酸、およびリン酸からなる群より選択される少なくとも1種以上の酸を用いて行われる、前記(1)または(7)に記載の方法。   (13) The pH of the liquid in the step of precipitating boron is adjusted to 1 to 7 using at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid. The method according to (1) or (7).

(14)前記ホウ素分を析出させる工程において、液が含有する有機物を除去するため、液に対し、0.01〜10質量%の吸着剤を添加する工程をさらに含む、前記(7)に記載の方法。   (14) In the step of precipitating the boron content, the method further includes a step of adding 0.01 to 10% by mass of an adsorbent to the liquid in order to remove organic substances contained in the liquid. the method of.

(15)前記吸着剤が活性炭または酸性白土である、前記(14)に記載の方法。   (15) The method according to (14), wherein the adsorbent is activated carbon or acidic clay.

本発明によれば、高濃度でホウ素を含有する排水から、ホウ素を効率良く除去することができ、さらにホウ素に加えて排水がヨウ素を含有する場合、ホウ素を除去した後にヨウ素を効率良く除去することができる。   According to the present invention, boron can be efficiently removed from wastewater containing boron at a high concentration. Further, when the wastewater contains iodine in addition to boron, iodine is efficiently removed after removing boron. be able to.

以下、本発明の好ましい実施態様を、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による排水の処理方法の一実施態様を示すフローシートである。図1に示すように、ヨウ素および/またはヨウ素イオン、ならびにホウ素および/またはホウ素イオンを含有する排水1をpH調整槽3に送り、アルカリ性pH調整剤2を添加してpHを8〜14、好ましくは11〜13に調整する。これは、廃液中のヨウ素の遊離を抑制するとともに、その後の蒸発濃縮時にホウ酸を容易に析出させないためである。この際、使用されるアルカリ性pH調整剤としては、水酸化ナトリウム、水酸化カリウム、および水酸化カルシウムからなる群より選択される少なくとも1種が好ましいが、これらに制限されるものではない。前記アルカリ性pH調整剤は、固体のままでまたは水溶液として用いられうる。溶解度の観点から、水酸化ナトリウムおよび水酸化カリウムがより好ましい。   FIG. 1 is a flow sheet showing an embodiment of the wastewater treatment method according to the present invention. As shown in FIG. 1, wastewater 1 containing iodine and / or iodine ions, and boron and / or boron ions is sent to a pH adjustment tank 3, and an alkaline pH adjuster 2 is added to adjust the pH to 8 to 14, preferably Is adjusted to 11-13. This is because the release of iodine in the waste liquid is suppressed and boric acid is not easily precipitated during the subsequent evaporation and concentration. In this case, the alkaline pH adjuster used is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, and calcium hydroxide, but is not limited thereto. The alkaline pH adjuster may be used as a solid or as an aqueous solution. From the viewpoint of solubility, sodium hydroxide and potassium hydroxide are more preferable.

pHがアルカリ性に調整された液は、濃縮缶4でホウ素および/またはホウ素イオンの濃度(ホウ素換算)が0.5質量%以上、好ましくは0.5〜4.8質量%、より好ましくは1〜4.5質量%となるように蒸発濃縮される。この際、発生した蒸気が凝縮した留出液5aは、後述するように、必要に応じてホウ素除去液12の希釈水5bとして使用されうる。   The liquid whose pH is adjusted to alkaline has a concentration of boron and / or boron ions (in terms of boron) in the concentration can 4 of 0.5% by mass or more, preferably 0.5 to 4.8% by mass, more preferably 1 Evaporated and concentrated to ˜4.5% by mass. Under the present circumstances, the distillate 5a which the generated vapor | steam condensed can be used as the dilution water 5b of the boron removal liquid 12 as needed so that it may mention later.

蒸発濃縮された液は、冷却6が行われる。冷却6の後の液の温度は、好ましくは−10〜60℃、より好ましくは0〜30℃に調整される。その後のホウ素除去のために、酸性pH調整剤によりpHが1〜7、好ましくは1〜4に調整され、晶析9が行われる。用いられる酸性pH調整剤としては、硫酸、塩酸、硝酸、リン酸が好ましく、後工程を考慮すると、硫酸がより好ましい。このpHの調整の工程において、液の温度が上昇する場合があるので、pH調整の後、さらに液を冷却する工程が行われてもよい。   The evaporated and concentrated liquid is cooled 6. The temperature of the liquid after cooling 6 is preferably adjusted to -10 to 60 ° C, more preferably 0 to 30 ° C. In order to remove boron thereafter, the pH is adjusted to 1 to 7, preferably 1 to 4, with an acidic pH adjuster, and crystallization 9 is performed. As the acidic pH adjuster to be used, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid are preferable, and sulfuric acid is more preferable in consideration of the post-process. In this pH adjustment step, the temperature of the liquid may increase, and therefore a step of cooling the liquid may be performed after the pH adjustment.

この際、前記排水中に有機物が存在する場合、ヨウ素製造時の塩素酸化工程において発生し排水中に含まれうる遊離ヨウ素の沈降性を悪化させる可能性があり、ヨウ素回収率を低下させうる。これを防止するために、好ましくは前記排水に対して0.01〜10質量%、より好ましくは0.05〜1.0質量%の吸着剤を添加することができる。この吸着剤により有機物を除去することができ、遊離ヨウ素の沈降性を向上させうる。前記吸着剤としては、活性炭または酸性白土が好ましい。また、吸着剤を添加するタイミングは、後述のホウ素除去10の工程の後でもよい。   At this time, when organic substances are present in the waste water, the precipitation of free iodine that may occur in the chlorine oxidation process during the production of iodine and may be contained in the waste water may be deteriorated, and the iodine recovery rate may be reduced. In order to prevent this, an adsorbent of preferably 0.01 to 10% by mass, more preferably 0.05 to 1.0% by mass, can be added to the waste water. Organic substances can be removed by this adsorbent, and the precipitation of free iodine can be improved. The adsorbent is preferably activated carbon or acidic clay. Moreover, the timing which adds adsorbent may be after the process of the boron removal 10 mentioned later.

沈降させたホウ素、および吸着剤を添加した場合の吸着剤は、ホウ素除去10により除去され、ホウ素除去液12が得られる。ホウ素除去10では濾過やデカンテーション等の固液分離操作を行なえばよい。この固液分離に用いられうる装置、例えばスクリューデカンタ等は、分離操作後に希釈水5bが加えられることによって洗浄されるとともに、その希釈水5bがホウ素除去液12のホウ酸の飽和状態を緩和して、液温と外気温との差による過飽和分のホウ酸の再析出を防止することができる。   The precipitated boron and the adsorbent when the adsorbent is added are removed by boron removal 10 to obtain a boron removal liquid 12. For boron removal 10, solid-liquid separation operations such as filtration and decantation may be performed. An apparatus that can be used for the solid-liquid separation, such as a screw decanter, is washed by adding the diluted water 5b after the separation operation, and the diluted water 5b relaxes the saturated state of boric acid in the boron removing liquid 12. Thus, reprecipitation of the supersaturated boric acid due to the difference between the liquid temperature and the outside air temperature can be prevented.

なお、ホウ素除去液12は、その後のヨウ素回収工程を行なうために、希釈水5bによって所定の濃度に希釈されうる。   The boron removing liquid 12 can be diluted to a predetermined concentration with the dilution water 5b in order to perform the subsequent iodine recovery step.

図2は、本発明による排水の処理方法を示す他の実施態様である。   FIG. 2 shows another embodiment of the wastewater treatment method according to the present invention.

図2に示すように、ホウ素除去後の液32に希釈水25bを加えて、図1の場合と同様に希釈したのち、この希釈処理液33に塩素34を加えて酸化処理を施すことによりヨウ素結晶を析出させる。ヨウ素結晶が析出した液はメルター釜35に送られ、析出した遊離ヨウ素を沈降させる。上澄液はオーバーフローさせて処理水37とし、沈降したヨウ素は下部からヨウ素36として回収する。   As shown in FIG. 2, the diluted water 25b is added to the liquid 32 after removing boron and diluted in the same manner as in FIG. Crystals are precipitated. The liquid in which the iodine crystals are precipitated is sent to the melter kettle 35 to precipitate the precipitated free iodine. The supernatant is overflowed into treated water 37, and the precipitated iodine is recovered as iodine 36 from the lower part.

ヨウ素および/またはヨウ素イオン、ならびにホウ素および/またはホウ素イオンを含有する排水を濃縮し、さらに濃縮液のpHを4以下に調整することで、有機物除去における活性炭の吸着効率が向上する。活性炭使用の目的はホウ素除去後の排水からヨウ素を取り出す際、塩素酸化により得られたヨウ素結晶の晶析槽における沈降性の向上にある。   By concentrating the wastewater containing iodine and / or iodine ions and boron and / or boron ions, and further adjusting the pH of the concentrate to 4 or less, the adsorption efficiency of activated carbon in organic matter removal is improved. The purpose of using activated carbon is to improve the sedimentation of iodine crystals obtained by chlorination in the crystallization tank when iodine is taken out from the waste water after boron removal.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
pH12に調整した、ホウ素濃度が5,915mg/リットルである排水804gを減圧濃縮し、濃縮液229gを得た。この濃縮液204gに濃硫酸16gを添加してpHを4に調整した後、5℃以下まで冷却しながら攪拌し、ホウ素を析出させた。その後濾過により析出したホウ素を除去した。
Example 1
804 g of waste water having a boron concentration of 5,915 mg / liter adjusted to pH 12 was concentrated under reduced pressure to obtain 229 g of a concentrated solution. After adding concentrated sulfuric acid 16g to this concentrated liquid 204g and adjusting pH to 4, it stirred, cooling to 5 degrees C or less, and deposited boron. Thereafter, boron precipitated by filtration was removed.

ホウ素除去後の濾液は168gで、ホウ素濃度は5,682mg/リットルであった。
ホウ素の絶対量は、処理前が4,195mgであったのに対し、処理後は730mgとなり、処理前の1/5以下にまで減少した。
The filtrate after boron removal was 168 g, and the boron concentration was 5,682 mg / liter.
The absolute amount of boron was 4,195 mg before the treatment, but became 730 mg after the treatment, and decreased to 1/5 or less of that before the treatment.

(実施例2)
pH12に調整した、ホウ素濃度が6,000mg/リットルであり、ヨウ素の濃度が7.8質量%である水溶液を、実施例1と同様の方法で減圧濃縮した。得られた濃縮液中のホウ素の濃度は22,000mg/リットル、ヨウ素の濃度は23.3質量%であった。この濃縮液200gに、ヤシ殻系粉末活性炭(白鷺(登録商標))0.6g(減圧濃縮する前の水溶液の0.1質量%相当)および濃硫酸15.1gを添加し、pHを3に調整した。pH調整後30分撹拌し、さらに氷水浴による冷却下、30分撹拌した。析出したホウ素および活性炭の濾過を行い、172gの濾液を得た。この濾液64gに水を126g加え希釈し、その希釈液のORP(酸化還元電位)値が700mVを超えるまで塩素を吹き込み、析出した遊離ヨウ素の沈降性を目視にて確認した。結果は良好であった。
(Example 2)
An aqueous solution adjusted to pH 12 and having a boron concentration of 6,000 mg / liter and an iodine concentration of 7.8% by mass was concentrated under reduced pressure in the same manner as in Example 1. The concentration of boron in the obtained concentrated liquid was 22,000 mg / liter, and the concentration of iodine was 23.3 mass%. To 200 g of this concentrate, 0.6 g of coconut shell powder activated carbon (Shirakaba (registered trademark)) (corresponding to 0.1% by mass of the aqueous solution before concentration under reduced pressure) and 15.1 g of concentrated sulfuric acid are added, and the pH is adjusted to 3. It was adjusted. The mixture was stirred for 30 minutes after pH adjustment, and further stirred for 30 minutes under cooling with an ice water bath. The precipitated boron and activated carbon were filtered to obtain 172 g of filtrate. The filtrate was diluted with 126 g of water by adding 126 g of water, and chlorine was blown until the ORP (redox potential) value of the diluted solution exceeded 700 mV, and the sedimentation property of the precipitated free iodine was visually confirmed. The result was good.

(比較例)
pH12に調整した、ホウ素濃度が6,000mg/リットルであり、ヨウ素の濃度が7.8質量%である水溶液200gに、ヤシ殻系粉末活性炭(白鷺(登録商標))および濃硫酸を添加し、pHを3〜5に調整した。添加する活性炭量を前記でpHを調整した液200gに対し、0.1〜0.5質量%で、0.1質量%刻みで変化させた計5サンプルを準備した。それぞれのサンプルのpHを調整し、室温にて30分撹拌した。その後活性炭の濾過を行い、得られた濾液に、濾液のORP値が700mVを超えるまで塩素を吹き込み、析出した遊離ヨウ素の沈降性を目視にて確認した。その結果、0.5質量%で良好、0.4質量%でほぼ良好、0.3質量%でやや良好、それ以下の活性炭量については改善が確認されないという結果となった。
(Comparative example)
Coconut shell powder activated carbon (Shirakaba (registered trademark)) and concentrated sulfuric acid were added to 200 g of an aqueous solution adjusted to pH 12 and having a boron concentration of 6,000 mg / liter and an iodine concentration of 7.8% by mass, The pH was adjusted to 3-5. A total of 5 samples were prepared in which the amount of activated carbon added was changed from 0.1 to 0.5% by mass in increments of 0.1% by mass with respect to 200 g of the liquid whose pH was adjusted as described above. The pH of each sample was adjusted and stirred at room temperature for 30 minutes. Thereafter, the activated carbon was filtered, and chlorine was blown into the obtained filtrate until the ORP value of the filtrate exceeded 700 mV, and the sedimentation property of the precipitated free iodine was visually confirmed. As a result, 0.5% by mass was good, 0.4% by mass was almost good, 0.3% by mass was somewhat good, and the amount of activated carbon below that was not improved.

本発明による排水処理方法の一実施態様を示すフローシートである。It is a flow sheet which shows one embodiment of the waste water treatment method by the present invention. 本発明による排水処理方法の他の実施態様を示すフローシートである。It is a flow sheet which shows the other embodiment of the waste water treatment method by this invention.

符号の説明Explanation of symbols

1、21・・・排水、
2、22・・・アルカリ性pH調整剤、
3、23・・・pH調整槽、
4、24・・・蒸発濃縮、
5a、25a・・・留出液、
5b、25b・・・希釈水、
6、26・・・冷却、
7、27・・・酸性pH調整剤、
8、28・・・pH調整、
9、29・・・晶析、
10、30・・・固液分離、
11、31・・・ホウ素分、
12、32・・・ホウ素除去液
33・・・希釈処理液、
34・・・塩素、
35・・・メルター釜、
36・・・ヨウ素、
37・・・処理水。
1,21 ... Drainage,
2, 22 ... alkaline pH adjuster,
3, 23 ... pH adjustment tank,
4, 24 ... evaporation concentration,
5a, 25a ... distillate,
5b, 25b ... dilution water,
6, 26 ... Cooling,
7, 27 ... acidic pH adjuster,
8, 28 ... pH adjustment,
9, 29 ... crystallization,
10, 30 ... solid-liquid separation,
11, 31 ... boron content,
12, 32 ... Boron removal solution 33 ... Dilution treatment solution,
34 ... chlorine,
35 ... Melter kettle,
36 ... Iodine,
37 ... treated water.

Claims (8)

ヨウ素および/またはヨウ素イオン、ならびにホウ素および/またはホウ素イオンを含有する排水のpHを11〜14に調整する工程と、
前記ホウ素および/またはホウ素イオンの濃度(ホウ素換算)が0.5質量%以上になるように濃縮する工程と、
前記濃縮する工程において得られた液に対して0.01〜10質量%の、前記濃縮する工程において得られた液に含まれる有機物を除去する吸着剤を添加し、液を冷却するとともに液のpHを1〜7に調整することによりホウ素分を析出させる工程と、
前記ホウ素分を析出させる工程において得られた析出物を除去して、ホウ素および/またはホウ素イオンを分離する工程と、
前記分離する工程において得られた液に塩素を供給することにより、ヨウ素および/またはヨウ素イオンを酸化させ、沈降させてヨウ素を回収する工程と、
を含む排水の処理方法。
Adjusting the pH of the waste water containing iodine and / or iodine ions and boron and / or boron ions to 11-14;
A step of concentrating so that the concentration of boron and / or boron ions (in terms of boron) is 0.5% by mass or more;
The adsorbent which removes the organic substance contained in the liquid obtained in the said concentration process of 0.01-10 mass% with respect to the liquid obtained in the said concentration process is added, and while cooling a liquid, a step of precipitating boron by adjusting the pH to 1 to 7,
Removing the precipitate obtained in the step of precipitating boron, and separating boron and / or boron ions;
Supplying iodine to the liquid obtained in the separating step, oxidizing iodine and / or iodine ions, and precipitating to recover iodine;
Wastewater treatment method.
前記濃縮する工程は、加熱蒸発により行われる、請求項1に記載の方法。   The method according to claim 1, wherein the step of concentrating is performed by heat evaporation. 前記濃縮する工程は、連続的に行われる、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the step of concentrating is performed continuously. 前記濃縮する工程は、前記ホウ素および/またはホウ素イオンの濃度(ホウ素換算)が0.5〜4.8質量%となるまで行われる、請求項1〜3のいずれか1項に記載の方法。   The said concentration process is a method of any one of Claims 1-3 performed until the density | concentration (boron conversion) of the said boron and / or a boron ion becomes 0.5-4.8 mass%. 前記排水のpHを11〜14に調整する工程は、水酸化ナトリウム、水酸化カリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種のアルカリ金属塩またはアルカリ土類金属塩を用いて行われる、請求項1〜4のいずれか1項に記載の方法。   The step of adjusting the pH of the waste water to 11 to 14 is performed using at least one alkali metal salt or alkaline earth metal salt selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide. The method of any one of Claims 1-4. 前記ホウ素分を析出させる工程において、冷却後の液の温度は−10〜60℃であり、液のpHは1〜4である、請求項1〜5のいずれか1項に記載の方法。   6. The method according to claim 1, wherein, in the step of depositing the boron content, the temperature of the liquid after cooling is −10 to 60 ° C., and the pH of the liquid is 1 to 4. 前記ホウ素分を析出させる工程における液のpHの1〜7への調整は、硫酸、塩酸、硝酸、およびリン酸からなる群より選択される少なくとも1種以上の酸を用いて行われる、請求項1〜6のいずれか1項に記載の方法。   The adjustment of the pH of the liquid in the step of depositing boron to 1 to 7 is performed using at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid. The method according to any one of 1 to 6. 前記吸着剤が活性炭または酸性白土である、請求項1〜7のいずれか1項に記載の方法。   The method according to claim 1, wherein the adsorbent is activated carbon or acidic clay.
JP2006018745A 2005-01-28 2006-01-27 Wastewater treatment method Active JP4674168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018745A JP4674168B2 (en) 2005-01-28 2006-01-27 Wastewater treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005021597 2005-01-28
JP2006018745A JP4674168B2 (en) 2005-01-28 2006-01-27 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006231325A JP2006231325A (en) 2006-09-07
JP4674168B2 true JP4674168B2 (en) 2011-04-20

Family

ID=37039549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018745A Active JP4674168B2 (en) 2005-01-28 2006-01-27 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4674168B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189322B2 (en) * 2007-06-20 2013-04-24 合同資源産業株式会社 Method for producing hydroiodic acid
JP4948305B2 (en) * 2007-07-23 2012-06-06 合同資源産業株式会社 Method and system for circulating use of polarizing film manufacturing chemicals
JP5446349B2 (en) * 2009-03-17 2014-03-19 ダイキン工業株式会社 Method for producing hydrogen iodide and method for producing iodine
JP6841481B2 (en) * 2016-05-24 2021-03-10 株式会社ササクラ Method for treating polarizing plate manufacturing waste liquid
JP7039862B2 (en) * 2016-06-09 2022-03-23 三菱ケミカル株式会社 Method for manufacturing polarizing film, polarizing film, polarizing plate
CN107265406B (en) * 2017-07-25 2023-07-21 贵州开磷碘业有限责任公司 Iodine device is retrieved to dilute phosphoric acid
JP7117698B2 (en) * 2018-11-20 2022-08-15 伊勢化学工業株式会社 Method for producing inorganic compound-containing aqueous solution
JP7048950B2 (en) 2020-03-27 2022-04-06 日東電工株式会社 Method for treating polarizing plate manufacturing waste liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208201A (en) * 1989-02-03 1990-08-17 Nippo Kagaku Kk Extraction of iodine
JP2001314864A (en) * 2000-05-08 2001-11-13 Japan Organo Co Ltd Treating method for waste liquid from polarizing plate manufacturing
JP2002310974A (en) * 2001-04-11 2002-10-23 Hirotaka Komiya Acidic air detector
JP2004074038A (en) * 2002-08-20 2004-03-11 Tohoku Electric Power Co Inc Recovering method of boron
JP2005000816A (en) * 2003-06-12 2005-01-06 Toho Earthtech Inc Preventing and sterilizing treatment method of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208201A (en) * 1989-02-03 1990-08-17 Nippo Kagaku Kk Extraction of iodine
JP2001314864A (en) * 2000-05-08 2001-11-13 Japan Organo Co Ltd Treating method for waste liquid from polarizing plate manufacturing
JP2002310974A (en) * 2001-04-11 2002-10-23 Hirotaka Komiya Acidic air detector
JP2004074038A (en) * 2002-08-20 2004-03-11 Tohoku Electric Power Co Inc Recovering method of boron
JP2005000816A (en) * 2003-06-12 2005-01-06 Toho Earthtech Inc Preventing and sterilizing treatment method of water

Also Published As

Publication number Publication date
JP2006231325A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4674168B2 (en) Wastewater treatment method
JP4907950B2 (en) Method and apparatus for removing metal from waste water
JP5023469B2 (en) Method and apparatus for treating chlorine-containing waste
CN102438957B (en) Method for treatment and purification of seawater to recover high purity sodium chloride for industrial usage
KR101233776B1 (en) Treating method of waste water
JP2019507082A (en) Method for producing phosphorus products from wastewater
US6893474B2 (en) Purification process
JP5118572B2 (en) Sewage treatment method
US5474581A (en) Method for producing an aqueous sodium chloride solution and use thereof
JP5293005B2 (en) Method and apparatus for recovering thallium and potassium nitrate
JP5032784B2 (en) Sodium chloride production system
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
CN104230084A (en) Device for recovering sodium chloride and glycerinum from high-salinity and high-depth organic wastewater containing glycerinum
JP7108392B2 (en) Silica-containing water treatment apparatus and treatment method
JP2010158633A (en) Method for separating fluorine from fluorine-containing waste water
JP7380732B2 (en) Clean water production method and production equipment
KR102480233B1 (en) A method for recovering magnesium from seawater as high purity magnesium sulfate
US20060110312A1 (en) Bromide reduction process in liquid solutions
JP2011020064A (en) Method and apparatus for treating waste liquid containing inorganic salt
JP4758766B2 (en) Water treatment method
JP2009233633A (en) Water treatment method and water treatment apparatus
JP6891653B2 (en) Wastewater purification agent for heavy metal-containing aqueous solution
CN118047493A (en) Thiazole zinc wastewater treatment process
JP4129799B2 (en) Separation of sodium and potassium in concentrated brine.
JP4122207B2 (en) Method for removing metal from wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Ref document number: 4674168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250