JP4613954B2 - Ferroelectric glass ceramics, method for producing the same, and glass composition - Google Patents

Ferroelectric glass ceramics, method for producing the same, and glass composition Download PDF

Info

Publication number
JP4613954B2
JP4613954B2 JP2007517755A JP2007517755A JP4613954B2 JP 4613954 B2 JP4613954 B2 JP 4613954B2 JP 2007517755 A JP2007517755 A JP 2007517755A JP 2007517755 A JP2007517755 A JP 2007517755A JP 4613954 B2 JP4613954 B2 JP 4613954B2
Authority
JP
Japan
Prior art keywords
glass
ferroelectric
temperature
ceramic
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007517755A
Other languages
Japanese (ja)
Other versions
JPWO2006126375A1 (en
Inventor
恵介 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2006126375A1 publication Critical patent/JPWO2006126375A1/en
Application granted granted Critical
Publication of JP4613954B2 publication Critical patent/JP4613954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0072Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition having a ferro-electric crystal phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、低温焼成で得られ、比誘電率の制御が可能な強誘電性ガラスセラミックスおよびその製造方法、ならびに、この強誘電性ガラスセラミックスを製造する際に用いられ得るガラス組成物に関するものである。   The present invention relates to a ferroelectric glass ceramic obtained by low-temperature firing and capable of controlling a relative dielectric constant, a method for producing the same, and a glass composition that can be used in producing the ferroelectric glass ceramic. is there.

セラミックス多層基板は、各種の電気機器に用いられる電子回路部品として広く用いられている。特に、近年、携帯電話や携帯型パソコンなどの需要増大に伴い、これら電子機器の小型化、軽量化、高機能化等が要望されており、それに伴い、回路の高密度化や高周波化が進行している。このような動向に対し、基板用セラミックス材料としては、高周波における損失が小さく、Ag、Cu等の低融点金属材料と同時に焼成できる1000℃以下の低温焼成が可能な基板材料が開発されてきた。   Ceramic multilayer substrates are widely used as electronic circuit components used in various electric devices. In particular, in recent years, with the increase in demand for mobile phones and portable personal computers, there has been a demand for downsizing, weight reduction, high functionality, etc. of these electronic devices. is doing. In response to this trend, substrate materials that can be fired at a low temperature of 1000 ° C. or lower and that can be fired simultaneously with low-melting point metal materials such as Ag and Cu have been developed as ceramic materials for substrates.

一方、セラミックス多層基板には、回路構成要素として、コンデンサ素子や抵抗素子が必要となるが、従来、これらの素子は個々に基板表面に実装されており、このために、セラミックス多層基板、ひいては電子回路部品の小型化には限界があった。これに対して、セラミックス多層基板に比誘電率の高い強誘電性セラミックス層を内蔵し、ここにコンデンサ素子を形成して、小型化、高密度化した構造のセラミックス多層基板が提案され、実用化されつつある。   On the other hand, a ceramic multilayer substrate requires a capacitor element and a resistance element as circuit components. Conventionally, these elements are individually mounted on the surface of the substrate. There was a limit to the miniaturization of circuit components. On the other hand, a ceramic multilayer substrate with a structure in which a ferroelectric ceramic layer having a high relative dielectric constant is built in a ceramic multilayer substrate and a capacitor element is formed therein to reduce the size and increase the density has been proposed and put into practical use. It is being done.

強誘電性のセラミックス材料には、BaTiO3、CaTiO3などをベースにしたものが多く使われるが、これらのセラミックスの焼結温度は、通常1300℃以上の高温であり、低融点金属材料と同時に焼成することができない(特開平4−286181号公報(特許文献1)参照)。このため、シリカガラスやホウケイ酸ガラスなどガラス相の中に強誘電性セラミックス粒子が分散したガラスセラミックスが、低温焼成可能な強誘電性の材料として種々開発されている。しかしながら、ガラス相は一般的に比誘電率が低く、これらのガラスセラミックスでは必ずしも十分高い比誘電率は得られていない。Ferroelectric ceramic materials are often used based on BaTiO 3 , CaTiO 3, etc., but the sintering temperature of these ceramics is usually higher than 1300 ° C. It cannot be fired (see JP-A-4-286181 (Patent Document 1)). For this reason, various glass ceramics in which ferroelectric ceramic particles are dispersed in a glass phase such as silica glass and borosilicate glass have been developed as ferroelectric materials that can be fired at low temperature. However, the glass phase generally has a low relative dielectric constant, and these glass ceramics do not necessarily have a sufficiently high relative dielectric constant.

焼結温度を低くできる強誘電性セラミックスとして、BaTiO3のBaサイトをPbで置換し、Tiサイトを3価−5価や2価−6価のイオンの組合せで置換した複合ペロブスカイト型化合物が知られているが、Pbを含むセラミックスは環境への負荷がある(特開平5−152158号公報(特許文献2)参照)。As a ferroelectric ceramic capable of lowering the sintering temperature, there is known a compound perovskite type compound in which the Ba site of BaTiO 3 is substituted with Pb and the Ti site is substituted with a combination of trivalent-pentavalent or divalent-6valent ions. However, ceramics containing Pb have a burden on the environment (see JP-A-5-152158 (Patent Document 2)).

低温焼成可能な強誘電性ガラスセラミックスの中で、現在、実用的に最も多く活用されているのは、BaO−TiO2−SiO2−Al23系のアルミノケイ酸ガラスセラミックスである。これはガラスの熱処理により、強誘電性のBaTiO3を主とする相を析出させるもので、他のガラス組成物に比較して比誘電率が高く、高周波における誘電損失が低く、組成を選ぶことにより1000℃以下での焼成が可能である。Of the ferroelectric glass ceramics that can be fired at a low temperature, BaO—TiO 2 —SiO 2 —Al 2 O 3 -based aluminosilicate glass ceramics are currently most frequently used. This is because a phase mainly composed of ferroelectric BaTiO 3 is precipitated by heat treatment of the glass. The relative dielectric constant is higher than that of other glass compositions, the dielectric loss at high frequency is low, and the composition should be selected. Can be fired at 1000 ° C. or less.

この高い比誘電率を有し、しかも低温焼成により基板に組込むことができるガラスセラミックスは、さらに直流電圧印加により誘電率可変とすることが可能になれば、周波数可変型フィルタ、位相制御型アンテナ等へ、その適用範囲を大幅に拡大できる。   Glass ceramics that have this high relative dielectric constant and can be incorporated into a substrate by low-temperature firing can be made variable in frequency by applying a DC voltage, such as frequency variable filters, phase control antennas, etc. The scope of application can be greatly expanded.

一般に、強誘電性セラミックスでは、温度を上げていくと強誘電性相が常誘電性相に転移するが、この転移温度はキュリー温度と呼ばれている。キュリー温度を超えた温度では、常誘電性相でありながら強誘電性相ドメインが残存しているので高誘電率であり、誘電損失が小さく、ヒステリシスがない。このためマイクロ波帯などの高周波帯域での誘電率可変用途には、主としてこの領域が利用される。   In general, in a ferroelectric ceramic, a ferroelectric phase changes to a paraelectric phase when the temperature is raised, and this transition temperature is called a Curie temperature. At a temperature exceeding the Curie temperature, the ferroelectric phase domain remains even though it is a paraelectric phase, so that the dielectric constant is high, the dielectric loss is small, and there is no hysteresis. For this reason, this region is mainly used for dielectric constant variable applications in a high frequency band such as a microwave band.

BaTiO3系セラミックスの場合、ペロブスカイト型結晶構造の各サイトのイオンをSrなどに部分的に置き換えることで、キュリー温度の制御が行なわれている。BaO−TiO2−SiO2−Al23系のガラスセラミックスにおいても、その強誘電性は、析出するBaTiO3を主とする強誘電性相の特性に基づいており、この相のイオンを置き換える変性を行なえば、強誘電性ガラスセラミックスのキュリー温度が低下できると推測される(K. Kageyama and J. Takahashi, “Tunable Microwave Properties of Barium Titanate-Based Ferroelectric Glass-Ceramics” Communications of the American Ceramic Society, 2004, vol.87, no.8, 1602-1605(非特許文献1)参照)。In the case of BaTiO 3 ceramics, the Curie temperature is controlled by partially replacing ions at each site of the perovskite crystal structure with Sr or the like. In the BaO—TiO 2 —SiO 2 —Al 2 O 3 glass ceramics, the ferroelectricity is based on the characteristics of the ferroelectric phase mainly composed of precipitated BaTiO 3 , and the ions of this phase are replaced. If modified, it is speculated that the Curie temperature of ferroelectric glass ceramics can be lowered (K. Kageyama and J. Takahashi, “Tunable Microwave Properties of Barium Titanate-Based Ferroelectric Glass-Ceramics” Communications of the American Ceramic Society, 2004, vol.87, no.8, 1602-1605 (Non-Patent Document 1)).

しかしながら、これまでBaO−TiO2−SiO2−Al23系のガラスセラミックスにおいて、Srの置換によるキュリー温度の低下が種々試みられてきたが、100℃を大きく下回る温度へのキュリー温度のシフトは実現されていない。
特開平4−286181号公報 特開平5−152158号公報 K. Kageyama and J. Takahashi, “Tunable Microwave Properties of Barium Titanate-Based Ferroelectric Glass-Ceramics” Communications of the American Ceramic Society, 2004, vol.87, no.8, 1602-1605
However, various attempts have been made to lower the Curie temperature by substitution of Sr in BaO—TiO 2 —SiO 2 —Al 2 O 3 glass ceramics, but the Curie temperature shifts to temperatures well below 100 ° C. Is not realized.
JP-A-4-286181 JP-A-5-152158 K. Kageyama and J. Takahashi, “Tunable Microwave Properties of Barium Titanate-Based Ferroelectric Glass-Ceramics” Communications of the American Ceramic Society, 2004, vol.87, no.8, 1602-1605

本発明は、上述した実情に鑑みてなされたものであり、その目的は、キュリー温度が低く、かつ、AgやCuなどの低融点金属材料と同時焼成が可能な強誘電性ガラスセラミックスおよびその製造方法、ならびに、強誘電性ガラスセラミックスの素原料であるガラス組成物を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is a ferroelectric glass ceramic having a low Curie temperature and capable of cofiring with a low-melting-point metal material such as Ag or Cu, and its manufacture. It is an object of the present invention to provide a method and a glass composition which is a raw material for ferroelectric glass ceramics.

すなわち、本発明は、x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23(ただし、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+u+v=1,Lnは希土類元素)で表されるガラス組成物を焼成してなる、強誘電性ガラスセラミックスに関するものである。That is, the present invention provides x [(1-y) BaTiO 3 .yLnAlO 3 ] .uSiO 2 .vAl 2 O 3 (where 0.35 ≦ x ≦ 0.75, 0 <y ≦ 0.6, 0 < The present invention relates to a ferroelectric glass ceramic obtained by firing a glass composition represented by u ≦ 0.6, 0 <v ≦ 0.4, x + u + v = 1, and Ln is a rare earth element.

本発明の強誘電性ガラスセラミックスは、より具体的に言うと、(Ba,Ln)(Ti,Al)O3を主とする強誘電性相を析出しており、かつ、キュリー温度が−100℃から80℃までの範囲にあるものであってよい。More specifically, the ferroelectric glass-ceramics of the present invention precipitate a ferroelectric phase mainly composed of (Ba, Ln) (Ti, Al) O 3 and have a Curie temperature of −100. It may be in the range from 0C to 80C.

また、本発明は、本発明の強誘電性ガラスセラミックスを得るに際し、ガラス組成物の構成成分であるAl23の素原料としてAlF3を用い、所定組成の原料粉末を混合して、1300〜1400℃にて溶融した後、急冷して、ガラス粉末を得る工程と、ガラス粉末を900〜1200℃で焼成する工程と、を有する、強誘電性ガラスセラミックスの製造方法を提供するものである。Further, in the present invention, when the ferroelectric glass ceramic of the present invention is obtained, AlF 3 is used as a raw material of Al 2 O 3 which is a constituent component of the glass composition, and raw material powder having a predetermined composition is mixed. To provide a method for producing a ferroelectric glass ceramic, comprising melting a glass powder at ˜1400 ° C. and then rapidly cooling to obtain a glass powder and firing the glass powder at 900 to 1200 ° C. .

また、本発明は、本発明の強誘電性ガラスセラミックスを製造するに際し用いられるガラス組成物として、x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23(ただし、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+u+v=1,Lnは希土類元素)で表されるガラス組成物を提供するものである。Further, the present invention provides x [(1-y) BaTiO 3 · yLnAlO 3 ] · uSiO 2 · vAl 2 O 3 (however, 0) as a glass composition used in producing the ferroelectric glass ceramic of the present invention. .35 ≦ x ≦ 0.75, 0 <y ≦ 0.6, 0 <u ≦ 0.6, 0 <v ≦ 0.4, x + u + v = 1, and Ln is a rare earth element). It is to provide.

本発明によれば、キュリー温度が低く、かつ、AgやCuなどの低融点金属材料と同時焼成が可能な強誘電性ガラスセラミックスを得ることができる。特に、強誘電性ガラスセラミックスにおけるキュリー温度の低下は、印加電圧で容量を変えられる可変容量コンデンサ素子の形成が可能になり、電圧可変型フィルタ、位相制御型アンテナなどの誘電率可変用途へ、この強誘電性ガラスセラミックスの適用範囲を拡大させることができる。   According to the present invention, it is possible to obtain a ferroelectric glass ceramic having a low Curie temperature and capable of cofiring with a low melting point metal material such as Ag or Cu. In particular, the decrease in Curie temperature in ferroelectric glass ceramics makes it possible to form variable capacitor elements whose capacitance can be changed by the applied voltage, and this can be applied to variable dielectric constant applications such as voltage variable filters and phase control antennas. The application range of ferroelectric glass ceramics can be expanded.

まず、本発明の強誘電性ガラスセラミックスを説明する。
本発明の強誘電性ガラスセラミックスは、
一般式1:x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23
として表されるガラス組成物を焼成して得られるものである。すなわち、本発明の強誘電性ガラスセラミックスは、上記の酸化物表記にて表される特定組成のガラス組成物を焼成することによって得られるものであり、その焼成後の焼結体である強誘電性ガラスセラミックスにおいては、ガラスの網目構造中にBaTiO3を主とする強誘電性相が析出した構造となっている。
First, the ferroelectric glass ceramic of the present invention will be described.
The ferroelectric glass ceramic of the present invention is
General formula 1: x [(1-y) BaTiO 3 · yLnAlO 3 ] · uSiO 2 · vAl 2 O 3
It is obtained by firing a glass composition represented as: That is, the ferroelectric glass ceramic of the present invention is obtained by firing a glass composition having a specific composition represented by the above oxide notation, and is a sintered body after firing. The glass-ceramics have a structure in which a ferroelectric phase mainly composed of BaTiO 3 is precipitated in a glass network structure.

ここで、一般式1において、x、y、uおよびvは、各構成成分のモル比を表すものであって、
(1)0.35≦x≦0.75
(2)0<y≦0.6
(3)0<u≦0.6
(4)0<v≦0.4
(5)x+u+v=1
を満たすものである。
Here, in the general formula 1, x, y, u and v represent the molar ratio of each constituent component,
(1) 0.35 ≦ x ≦ 0.75
(2) 0 <y ≦ 0.6
(3) 0 <u ≦ 0.6
(4) 0 <v ≦ 0.4
(5) x + u + v = 1
It satisfies.

一般式1において、xの値が0.35未満であると、ガラスの形成は容易となるものの、析出する強誘電性相が少なく、相対的に比誘電率が低くなってしまい、他方、xの値が0.75を超えると、相対的に、ガラスの網目形成酸化物であるSiO2の量が少なくなってしまい、ガラスの形成が困難になってしまう。なお、強誘電性相の比率を増やして比誘電率を上げ、かつ、ガラスを効率良く形成するため、xの値は、0.5以上、0.7以下が好ましい。In the general formula 1, when the value of x is less than 0.35, glass formation is facilitated, but the deposited ferroelectric phase is small and the relative dielectric constant is relatively low. If the value exceeds 0.75, the amount of SiO 2 that is a network-forming oxide of glass is relatively reduced, and glass formation becomes difficult. Note that the value of x is preferably 0.5 or more and 0.7 or less in order to increase the ratio of the ferroelectric phase to increase the relative permittivity and to form the glass efficiently.

また、一般式1において、yの値が0.6を超えると、高温処理で析出するBaTiO3系強誘電性相において、誘電率の低い強誘電性相しか析出しなくなってしまう。なお、比誘電率の高い強誘電性相の比率を増やし、ガラスセラミックスの比誘電率を十分に上げるため、yの値は、0.1以上、0.3以下が好ましい。Further, in the general formula 1, when the value of y exceeds 0.6, only a ferroelectric phase having a low dielectric constant is precipitated in the BaTiO 3 ferroelectric phase precipitated by high-temperature treatment. In order to increase the ratio of the ferroelectric phase having a high relative dielectric constant and sufficiently increase the relative dielectric constant of the glass ceramic, the value of y is preferably 0.1 or more and 0.3 or less.

また、一般式1において、uの値が0.6を超えると、析出する強誘電性相の量が少なく、強誘電性が十分に発現しない。なお、uの値が0.1未満であると、ガラスの網目形成酸化物であるSiO2の量が少なくなってしまい、ガラスの形成が難しくなることから、uの値は0.1以上が好ましく、また、強誘電性相を十分に析出することから、uの値は0.3以下が好ましい。In the general formula 1, if the value of u exceeds 0.6, the amount of the deposited ferroelectric phase is small, and the ferroelectricity is not sufficiently developed. If the value of u is less than 0.1, the amount of SiO 2 that is a network-forming oxide of glass is reduced, and it becomes difficult to form glass. In addition, since the ferroelectric phase is sufficiently precipitated, the value of u is preferably 0.3 or less.

また、一般式1において、vの値が0.4を超えると、析出する強誘電性相の量が少なく、強誘電性が十分に発現しない。なお、vの値が0.1未満であると、ガラスの網目形成酸化物または中間酸化物であるAl23の量が少なくなってしまい、ガラスの形成が難しくなることから、vの値は0.05以上が好ましい。また、強誘電性相を十分に析出することから、vの値は0.25以下が好ましい。Further, in the general formula 1, when the value of v exceeds 0.4, the amount of the deposited ferroelectric phase is small and the ferroelectricity is not sufficiently developed. If the value of v is less than 0.1, the amount of Al 2 O 3 that is a network-forming oxide or intermediate oxide of glass is reduced, and it becomes difficult to form glass. Is preferably 0.05 or more. Further, the value of v is preferably 0.25 or less in order to sufficiently precipitate the ferroelectric phase.

なお、一般式1においてLnは希土類元素を示すが、希土類元素Lnとしては、ScやY、各種ランタノイド元素を用いることができ、特に、Nd、La、Smが好ましい。   In the general formula 1, Ln represents a rare earth element. As the rare earth element Ln, Sc, Y, and various lanthanoid elements can be used, and Nd, La, and Sm are particularly preferable.

本発明の強誘電性ガラスセラミックスは、(Ba,Ln)(Ti,Al)O3を主とする強誘電性相を析出していることが好ましい。つまり、本発明の強誘電性ガラスセラミックスにおいては、SiO2およびAl23を主とするガラスのマトリックス中に、(Ba,Ln)(Ti,Al)O3の強誘電性相が析出した形態をとっていることが好ましい。なお、(Ba,Ln)(Ti,Al)O3の強誘電性相以外には、BaO−SiO2−TiO2系、BaO−SiO2−TiO2−Ln23系、BaO−SiO2−TiO2−Al23、BaO−SiO2−TiO2−Al23−Ln23などの結晶相が析出する。In the ferroelectric glass ceramic of the present invention, it is preferable to deposit a ferroelectric phase mainly composed of (Ba, Ln) (Ti, Al) O 3 . That is, in the ferroelectric glass ceramic of the present invention, a ferroelectric phase of (Ba, Ln) (Ti, Al) O 3 was precipitated in a glass matrix mainly composed of SiO 2 and Al 2 O 3 . It is preferably in the form. In addition to the ferroelectric phase of (Ba, Ln) (Ti, Al) O 3 , a BaO—SiO 2 —TiO 2 system, a BaO—SiO 2 —TiO 2 —Ln 2 O 3 system, and a BaO—SiO 2 system. Crystal phases such as —TiO 2 —Al 2 O 3 and BaO—SiO 2 —TiO 2 —Al 2 O 3 —Ln 2 O 3 are precipitated.

なお、本発明の強誘電性ガラスセラミックスは、上記一般式1のガラス組成物において、Tiの一部がSnで置換されていてもよい。この場合、Snの置換比は、置換前のTi量を100モル%とするとき、42モル%以下が好ましい。これによって、焼成後のガラスセラミックスにおいて、Tiサイトの一部がSnで置換され、その比誘電率がさらに高くなる。また、Baの一部がSrで置換されていてもよい。この場合、Srの置換比は、置換前のBa量を100モル%とするとき、10〜70モル%、さらには12〜28モル%とすることが好ましい。これによって、焼成後のガラスセラミックスにおいて、Baサイトの一部がSrで置換され、そのキュリー温度をさらに低下させることができる。Srの置換比が0.1を下回る場合は、キュリー温度低下の顕著な効果が現れず、他方、0.7を超える場合は、ガラスの溶融が困難になる傾向にある。   In the ferroelectric glass ceramic of the present invention, in the glass composition of the general formula 1, a part of Ti may be substituted with Sn. In this case, the substitution ratio of Sn is preferably 42 mol% or less when the Ti amount before substitution is 100 mol%. As a result, in the glass ceramic after firing, a part of the Ti site is replaced with Sn, and the relative dielectric constant is further increased. Moreover, a part of Ba may be substituted with Sr. In this case, the substitution ratio of Sr is preferably 10 to 70 mol%, more preferably 12 to 28 mol%, when the Ba amount before substitution is 100 mol%. Thereby, in the glass ceramic after firing, a part of the Ba site is replaced with Sr, and the Curie temperature can be further lowered. When the substitution ratio of Sr is less than 0.1, a remarkable effect of lowering the Curie temperature does not appear. On the other hand, when it exceeds 0.7, melting of the glass tends to be difficult.

また、本発明の強誘電性ガラスセラミックスは、キュリー温度が−100℃から80℃までの範囲にあるものであってよい。好ましくは、キュリー温度が室温(25℃)以下である。このようにキュリー温度が80℃以下、さらには室温以下であれば、印加電圧で容量を変えられる可変容量コンデンサ素子の形成が可能になり、強誘電性ガラスセラミックスを電圧可変型フィルタ、位相制御型アンテナなどに適用できるようになる。なお、本発明によれば、比誘電率が60〜500程度の強誘電性ガラスセラミックスを得ることができ、容量の可変率を向上させ、キュリー温度をさらに低下したときであっても、200〜300程度の比誘電率を有する強誘電性ガラスセラミックスを十分に得ることができる。   Further, the ferroelectric glass ceramic of the present invention may have a Curie temperature in the range from −100 ° C. to 80 ° C. Preferably, the Curie temperature is room temperature (25 ° C.) or lower. As described above, when the Curie temperature is 80 ° C. or lower, and further room temperature or lower, it becomes possible to form a variable capacitor element whose capacitance can be changed by an applied voltage. Applicable to antennas. In addition, according to the present invention, a ferroelectric glass ceramic having a relative dielectric constant of about 60 to 500 can be obtained, and even when the variable rate of capacitance is improved and the Curie temperature is further lowered, 200 to Ferroelectric glass ceramics having a relative dielectric constant of about 300 can be sufficiently obtained.

次に、本発明の強誘電性ガラスセラミックスの製造方法を説明する。
本発明の強誘電性ガラスセラミックスの製造方法は、上述した強誘電性ガラスセラミックスを得るに際し、ガラス組成物の構成成分であるAl23の素原料としてAlF3を用い、所定組成の原料粉末を混合して、1300〜1400℃にて溶融した後、急冷して、ガラス粉末を得る工程と、ガラス粉末を900〜1200℃で焼成する工程と、を有するものである。
Next, a method for producing the ferroelectric glass ceramic of the present invention will be described.
The method for producing a ferroelectric glass ceramic of the present invention uses AlF 3 as a raw material for Al 2 O 3 which is a constituent of a glass composition when obtaining the above-described ferroelectric glass ceramic, and a raw material powder having a predetermined composition Are mixed and melted at 1300 to 1400 ° C. and then rapidly cooled to obtain glass powder, and the glass powder is fired at 900 to 1200 ° C.

通常、ガラス粉末は、SiO2やAl23などの素原料粉末を混合し、混合物を高温で加熱・溶融して均一相の溶融物とした後、得られた溶融物を急冷し、さらに急冷物を粉砕することによって得られる。そして、ガラスセラミックスは、ガラス粉末にバインダなどを添加し混練して所要形状に成形後、焼成することにより得られる。Usually, the glass powder is mixed with raw material powders such as SiO 2 and Al 2 O 3, and the mixture is heated and melted at a high temperature to obtain a homogeneous phase melt, and then the obtained melt is rapidly cooled. It is obtained by pulverizing the quenched material. And glass ceramics are obtained by adding a binder etc. to glass powder, kneading | mixing, shape | molding to a required shape, and baking.

上記のガラス組成物の場合、その焼成の過程で、BaTiO3を主とする強誘電性相がガラス中に析出し、この強誘電性相がガラスの網目構造に囲まれたガラスセラミックスの形態をとる。上記ガラス組成物は、1500℃またはそれ以上の温度にて加熱・溶融することにより単相化するが、素原料としてAl23の代わりにAlF3を原料に用いれば、ガラス作製時の溶融温度を1500℃未満まで低下させることができる。すなわち、素原料としてAlF3を用いると、ガラス溶融物が1500℃を下回る溶融温度で得られるため、粘性の低い単相のガラス融液が得られる。そして、ガラス製造時の溶融温度を低くすることにより、析出する強誘電性相中への他成分(特に、希土類元素)の固溶あるいは置換を容易にし、その結果として、キュリー温度を低下させることができる。In the case of the above glass composition, during the firing process, a ferroelectric phase mainly composed of BaTiO 3 is precipitated in the glass, and this ferroelectric phase is in the form of glass ceramics surrounded by a glass network structure. Take. The glass composition is made into a single phase by heating and melting at a temperature of 1500 ° C. or higher, but if AlF 3 is used as a raw material instead of Al 2 O 3 as a raw material, the glass composition is melted at the time of glass production. The temperature can be reduced to below 1500 ° C. That is, when AlF 3 is used as a raw material, a glass melt can be obtained at a melting temperature lower than 1500 ° C., so that a single-phase glass melt having a low viscosity can be obtained. And by lowering the melting temperature at the time of glass production, it is easy to dissolve or replace other components (especially rare earth elements) in the deposited ferroelectric phase, and as a result, to lower the Curie temperature. Can do.

なお、ガラスの溶融温度は、他の融点の低い酸化物を添加しても低下させることが可能であるが、このような添加物は得られるガラスセラミックスに残存した場合、その比誘電率や温度特性、特に高周波帯域における誘電損失に影響を与えることがある。これに対し、AlF3は、ガラス融液を急冷する過程で、あるいは、ガラスセラミックスを得るための焼成過程で、酸化物すなわちAl23に変化するため、得られるガラスセラミックス中にAlF3は実質的には残存しない。すなわち、AlF3を素原料として用いることにより、ガラス作製時の溶融温度を低下させることができ、特にBaへの希土類元素の置換を容易にし、キュリー温度を容易に低下させることができる。なお、このAlF3を用いれば、他のSrO、SnO2、ZrO2などによる変性も容易になり、これらの成分を添加することによって、ガラスセラミックスのキュリー温度をさらに低下させることも可能である。The melting temperature of the glass can be lowered by adding another oxide having a low melting point. However, when such an additive remains in the obtained glass ceramic, its dielectric constant or temperature is reduced. This may affect the characteristics, particularly the dielectric loss in the high frequency band. On the other hand, since AlF 3 changes to an oxide, that is, Al 2 O 3 , in the process of quenching the glass melt or in the firing process for obtaining the glass ceramic, AlF 3 is contained in the obtained glass ceramic. Virtually no residual. That is, by using AlF 3 as a raw material, the melting temperature at the time of glass production can be lowered, in particular, the substitution of rare earth elements for Ba can be facilitated, and the Curie temperature can be easily lowered. If AlF 3 is used, modification with other SrO, SnO 2 , ZrO 2 or the like can be facilitated, and by adding these components, the Curie temperature of the glass ceramic can be further lowered.

AlF3をガラス組成物の素原料とする場合、素原料中のAl成分量は、すべてがAlF3である必要はなく、AlF3と他の原料、たとえばAl23とを混合して用いてもよい。その場合、Al成分量のうち少なくとも0.05モル以上のAl23成分量、すなわち原料配合比率にて0.1モル以上のAlF3が用いられていれば、ガラス作製時の溶融温度を十分に低下させることができる。他の構成成分であるBaO、TiO2およびSiO2については、酸化物や炭酸塩などを用いればよい。これらの素原料は、AlF3を含め、いずれも純度95%以上のものを用いることが好ましい。When AlF 3 is used as the raw material of the glass composition, the amount of Al component in the raw material does not have to be all AlF 3 , and AlF 3 and other raw materials such as Al 2 O 3 are mixed and used. May be. In that case, if the Al 2 O 3 component amount of at least 0.05 mol or more of the Al component amount, that is, 0.1 mol or more of AlF 3 in the raw material blending ratio is used, the melting temperature at the time of glass production is set. It can be lowered sufficiently. As for other constituents such as BaO, TiO 2 and SiO 2 , oxides and carbonates may be used. As these raw materials, it is preferable to use those having a purity of 95% or more, including AlF 3 .

また、ガラスの溶融温度は、1300〜1400℃とすることが好ましい。これは、溶融温度が1300℃未満では素原料が十分に溶融せず、均一なガラスを得ることができないことがあり、他方、1400℃を超える温度では、AlF3の蒸散が甚だしくなるため、配合組成と大きく異なってくるおそれがあるからである。Moreover, it is preferable that the melting temperature of glass shall be 1300-1400 degreeC. When the melting temperature is less than 1300 ° C., the raw material is not sufficiently melted, and a uniform glass may not be obtained. On the other hand, when the temperature exceeds 1400 ° C., the transpiration of AlF 3 becomes excessive. This is because the composition may be greatly different.

得られたガラス組成物は、通常のガラスセラミックスと同様、ガラス粉末にバインダや溶剤などを添加して混練し、所望形状に成形後、900〜1200℃にて焼成することができる。焼成温度は、Ag、CuあるいはNiなどの低融点金属と同時焼成できる温度範囲にできる、900℃以下では、強誘電性相の析出が不十分になることがあり、他方、1200℃を超える温度では、低融点金属との同時焼成が困難になるとともに、ガラス組成物が焼成中に軟化変形するおそれがある。   The obtained glass composition can be baked at 900 to 1200 ° C. after adding a binder or a solvent to glass powder and kneading the resulting glass composition into a desired shape. The firing temperature can be in a temperature range that can be co-fired with a low-melting-point metal such as Ag, Cu, or Ni. At 900 ° C. or lower, the ferroelectric phase may be insufficiently precipitated, while the temperature exceeds 1200 ° C. Then, co-firing with a low melting point metal becomes difficult, and the glass composition may be softened and deformed during firing.

なお、本発明の強誘電性ガラスセラミックスの製造方法において、ガラス組成物は、ペーストとして厚膜印刷に用いられても構わないし、グリーンシートとしてグリーンシート積層法に用いられても構わない。   In the method for producing a ferroelectric glass ceramic of the present invention, the glass composition may be used as a paste for thick film printing, or may be used as a green sheet for a green sheet lamination method.

以下、本発明を具体的な実施例に基づいて説明する。
下記表1に示されるガラス組成物:x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23を得るため、素原料粉末として、BaCO3、TiO2、SiO2、Al23を用意した。なお、これらの素原料粉末は、いずれも純度99%以上のものである。次いで、これらの素原料粉末を秤量し、ボールミルにて湿式混合し、乾燥後、白金るつぼに入れ、1300〜1400℃で2時間かけて溶融した後、イオン交換水に投入することにより急冷してガラスカレットとした。次いで、これらガラスカレットを乾式粉砕後、さらにボールミルにて湿式粉砕し、ガラス粉末を得た。
Hereinafter, the present invention will be described based on specific examples.
In order to obtain a glass composition shown in Table 1 below: x [(1-y) BaTiO 3 · yLnAlO 3 ] · uSiO 2 · vAl 2 O 3 As raw material powders, BaCO 3 , TiO 2 , SiO 2 , Al 2 O 3 was prepared. These raw material powders have a purity of 99% or more. Next, these raw material powders are weighed, wet-mixed in a ball mill, dried, placed in a platinum crucible, melted at 1300-1400 ° C. for 2 hours, and then rapidly cooled by putting in ion-exchanged water. Glass cullet was used. Subsequently, these glass cullets were dry pulverized and then wet pulverized by a ball mill to obtain glass powder.

次いで、得られたガラス粉末に、バインダとして10重量%のPVA水溶液を加えて造粒し、直径15mm、厚さ2mmの円板に成形後、予備的に温度を変えて焼成してガラスセラミックスとなる温度を確認し、表1中に示すその温度および時間で電気炉中にて焼成し、ガラスセラミックス片を得た。そして、得られたガラスセラミックスの両面にAg電極をスクリーン印刷し、650℃で焼付けることにより、試片を得た。この試片にて比誘電率(εr)、キュリー温度(Tc)、および、5GHzにおける容量可変率(Tunability)を測定した。これらの結果を合わせて表1に示す。   Next, 10% by weight PVA aqueous solution as a binder is added to the obtained glass powder, granulated, formed into a disk having a diameter of 15 mm and a thickness of 2 mm, and preliminarily changed in temperature to be baked into glass ceramics. The obtained temperature was confirmed and fired in an electric furnace at the temperature and time shown in Table 1 to obtain glass ceramic pieces. And the specimen was obtained by screen-printing Ag electrode on both surfaces of the obtained glass ceramic, and baking at 650 degreeC. With this specimen, the relative dielectric constant (εr), the Curie temperature (Tc), and the capacity variable rate (Tunability) at 5 GHz were measured. These results are shown together in Table 1.

Figure 0004613954
Figure 0004613954

以上、表1から分かるように、一般式1:x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23で表され、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+u+v=1を満たすガラス組成物を、AgやCuなどの低融点金属材料と同時焼成が可能な温度で焼成することによって得られたガラスセラミックス(サンプルNo.2,3,8、10)は、Pbのような環境負荷物質を含有せずとも、キュリー温度が十分に低い。特に、ガラス組成物の組成によっては、比誘電率が60以上、キュリー温度が25℃以下、容量可変率が10%以上となるような強誘電性ガラスセラミックスを得ることができた。As can be seen from Table 1, it is represented by the general formula 1: x [(1-y) BaTiO 3 · yLnAlO 3 ] · uSiO 2 · vAl 2 O 3 , where 0.35 ≦ x ≦ 0.75, 0 < Firing a glass composition satisfying y ≦ 0.6, 0 <u ≦ 0.6, 0 <v ≦ 0.4, x + u + v = 1 at a temperature at which co-firing with a low melting point metal material such as Ag or Cu is possible. The glass ceramics (samples Nos. 2, 3, 8, and 10) obtained by doing so have a sufficiently low Curie temperature without containing environmentally hazardous substances such as Pb. In particular, depending on the composition of the glass composition, a ferroelectric glass ceramic having a relative dielectric constant of 60 or more, a Curie temperature of 25 ° C. or less, and a capacity variable ratio of 10% or more could be obtained.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (4)

x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23(ただし、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+u+v=1,Lnは希土類元素)で表されるガラス組成物を焼成してなる、強誘電性ガラスセラミックス。x [(1-y) BaTiO 3 .yLnAlO 3 ] .uSiO 2 .vAl 2 O 3 (where 0.35 ≦ x ≦ 0.75, 0 <y ≦ 0.6, 0 <u ≦ 0.6, Ferroelectric glass ceramics obtained by firing a glass composition represented by 0 <v ≦ 0.4, x + u + v = 1, and Ln is a rare earth element. (Ba,Ln)(Ti,Al)O3を主とする強誘電性相を析出しており、かつ、キュリー温度が−100℃から80℃までの範囲にある、請求の範囲第1項に記載の強誘電性ガラスセラミックス。The ferroelectric phase mainly composed of (Ba, Ln) (Ti, Al) O 3 is precipitated, and the Curie temperature is in the range from −100 ° C. to 80 ° C. The ferroelectric glass ceramic described. 請求の範囲第1項に記載の強誘電性ガラスセラミックスを得るに際し、
Al23の素原料としてAlF3を用い、所定組成の原料粉末を混合し、1300〜1400℃にて溶融した後、急冷して、ガラス粉末を得る工程と、
前記ガラス粉末を900〜1200℃で焼成する工程と、
を有する、強誘電性ガラスセラミックスの製造方法。
In obtaining the ferroelectric glass ceramic according to claim 1,
Using AlF 3 as a raw material for Al 2 O 3 , mixing raw material powders of a predetermined composition, melting at 1300 to 1400 ° C., and then rapidly cooling to obtain glass powder;
Baking the glass powder at 900 to 1200 ° C .;
A method for producing a ferroelectric glass ceramic, comprising:
x[(1−y)BaTiO3・yLnAlO3]・uSiO2・vAl23(ただし、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+u+v=1,Lnは希土類元素)で表されるガラス組成物。x [(1-y) BaTiO 3 .yLnAlO 3 ] .uSiO 2 .vAl 2 O 3 (where 0.35 ≦ x ≦ 0.75, 0 <y ≦ 0.6, 0 <u ≦ 0.6, 0 <v ≦ 0.4, x + u + v = 1, and Ln is a rare earth element).
JP2007517755A 2005-05-23 2006-05-01 Ferroelectric glass ceramics, method for producing the same, and glass composition Expired - Fee Related JP4613954B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005149805 2005-05-23
JP2005149805 2005-05-23
PCT/JP2006/309089 WO2006126375A1 (en) 2005-05-23 2006-05-01 Ferroelectric glass ceramic material, method for producing same, and glass composition

Publications (2)

Publication Number Publication Date
JPWO2006126375A1 JPWO2006126375A1 (en) 2008-12-25
JP4613954B2 true JP4613954B2 (en) 2011-01-19

Family

ID=37451803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007517755A Expired - Fee Related JP4613954B2 (en) 2005-05-23 2006-05-01 Ferroelectric glass ceramics, method for producing the same, and glass composition

Country Status (2)

Country Link
JP (1) JP4613954B2 (en)
WO (1) WO2006126375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503411A (en) * 2011-11-07 2012-06-20 哈尔滨工业大学 Method for preparing BaTiO3 conductive ceramic powder by taking water as medium through rare earth phase-phase permeation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011206B4 (en) * 2008-02-26 2011-05-05 Schott Ag Method for producing a glass ceramic and using a glass ceramic
CN103762078B (en) * 2014-01-20 2017-02-01 中国科学院物理研究所 Wide-temperature area tunable microwave device based on combined thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JPH0873239A (en) * 1994-08-31 1996-03-19 Nippon Electric Glass Co Ltd Glass-ceramic dielectric material
JP2003221277A (en) * 2001-11-21 2003-08-05 Asahi Glass Co Ltd Glass powder for forming dielectric, glass-ceramics composition for forming dielectric and dielectric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JPH0873239A (en) * 1994-08-31 1996-03-19 Nippon Electric Glass Co Ltd Glass-ceramic dielectric material
JP2003221277A (en) * 2001-11-21 2003-08-05 Asahi Glass Co Ltd Glass powder for forming dielectric, glass-ceramics composition for forming dielectric and dielectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503411A (en) * 2011-11-07 2012-06-20 哈尔滨工业大学 Method for preparing BaTiO3 conductive ceramic powder by taking water as medium through rare earth phase-phase permeation

Also Published As

Publication number Publication date
WO2006126375A1 (en) 2006-11-30
JPWO2006126375A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
CN101492293B (en) Barium titanate based Y5P ceramic dielectric material and method of producing the same
CN107986774B (en) Low-temperature sintered high-dielectric-constant microwave dielectric ceramic material and preparation method thereof
US20060194691A1 (en) Low-temperature sintered barium titanate microwave dielectric ceramic material
CN107176834B (en) LTCC (Low temperature Co-fired ceramic) ceramic material with medium and high dielectric constant and preparation method thereof
Ren et al. Investigating on sintering mechanism and adjustable dielectric properties of BLMT glass/Li2Zn3Ti4O12 composites for LTCC applications
JP2007137747A (en) Dielectric porcelain and method of manufacturing the same
JP2000044341A (en) Dielectric ceramic composition
US6846767B2 (en) Dielectric ceramic composition
JP2004507429A (en) Glass ceramic material and its use
US6740614B2 (en) Dielectric ceramic composition
JP4613954B2 (en) Ferroelectric glass ceramics, method for producing the same, and glass composition
JP3737774B2 (en) Dielectric ceramic composition
JP2006124201A (en) Nonlead glass, glass ceramic composition and dielectric
TWI585793B (en) Low-temperature co-fired ceramic microwave dielectric ceramic and manufacturing method thereof
JP3882847B2 (en) Ferroelectric glass ceramics and manufacturing method thereof
JP4166012B2 (en) Composition for high dielectric constant material
JPH08259319A (en) Low-temperature-baked dielectric porcelain and its production
CN104326742A (en) Ceramic composition and preparation method thereof
WO2004103929A1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
CN100372802C (en) High frequency thermostable titanium barium neodymium base ceramic medium materials and multilayer sheet type ceramic capacitor
KR100635015B1 (en) Dielectric Ceramic Composition Capable of Co-Firing at Low Temperature
Chen et al. The influence of ZrO2 doping on the microwave dielectric properties and microstructures of Bi2Mo2O9 ceramics
CN105272221A (en) Ceramic composition and preparation method thereof
KR100506877B1 (en) X7R Dielectirc ceramic composition and glass frit
CN104355613A (en) Ceramic composition and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Ref document number: 4613954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees