JP4611439B1 - Method for producing instant noodles using noodle strings having a special structure - Google Patents

Method for producing instant noodles using noodle strings having a special structure Download PDF

Info

Publication number
JP4611439B1
JP4611439B1 JP2009292110A JP2009292110A JP4611439B1 JP 4611439 B1 JP4611439 B1 JP 4611439B1 JP 2009292110 A JP2009292110 A JP 2009292110A JP 2009292110 A JP2009292110 A JP 2009292110A JP 4611439 B1 JP4611439 B1 JP 4611439B1
Authority
JP
Japan
Prior art keywords
noodle strings
noodle
starch
starch particle
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009292110A
Other languages
Japanese (ja)
Other versions
JP2011130694A (en
Inventor
邦彦 吉田
佳文 宮崎
行央 平野
伸二 松尾
充 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Foods Holdings Co Ltd
Original Assignee
Nissin Foods Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Foods Holdings Co Ltd filed Critical Nissin Foods Holdings Co Ltd
Priority to JP2009292110A priority Critical patent/JP4611439B1/en
Application granted granted Critical
Publication of JP4611439B1 publication Critical patent/JP4611439B1/en
Publication of JP2011130694A publication Critical patent/JP2011130694A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Noodles (AREA)

Abstract

【課題】吸水性が向上した麺線であって、水分補給、蒸煮及び乾燥を経ることにより、優れた湯戻り性を発揮する乾燥麺を製造するための、中間体としての麺線を提供する。
【解決手段】即席麺の製造に使用される麺線であって、前記麺線は、その断面において、前記断面の中央に位置する澱粉粒子構成層と、当該澱粉粒子構成層の外側でかつ前記麺線の表面に沿って位置する崩壊澱粉粒子含有層とを有し、前記崩壊澱粉粒子含有層が所定厚さで形成されていることを特徴とする。
【選択図】図1
Provided is an noodle string as an intermediate for producing dry noodles having improved water absorption, which exhibits excellent hot water reversibility through hydration, steaming and drying. .
A noodle string used in the manufacture of instant noodles, wherein the noodle strings are, in a cross section, a starch particle constituent layer located at the center of the cross section, outside the starch particle constituent layer, and A collapsed starch particle-containing layer located along the surface of the noodle strings, wherein the collapsed starch particle-containing layer is formed with a predetermined thickness.
[Selection] Figure 1

Description

即席麺は一般に切り出し後の麺線を蒸煮や茹で等により、麺線の主たる構成成分である澱粉をα化(糊化)し、乾燥するというプロセスを経て製造するが、本発明は、上記工程のうち、α化(糊化)の初期プロセスにおける中間体としての特殊構造を有する麺線に関するものである。   Instant noodles are generally manufactured through a process in which starch, which is the main component of the noodle strings, is gelatinized (dried) and dried by steaming, boiling, etc. after cutting the noodle strings. Among them, it relates to a noodle string having a special structure as an intermediate in the initial process of gelatinization (gelatinization).

即席麺の製造工程においては、生の麺線が含有する澱粉をα化した後に乾燥する。ここでは、生麺を蒸気で蒸すことでα化してから、乾燥される方法が多用されているが、特に麺線が太い場合、生麺を蒸気で蒸すプロセスでは、麺線に水をふりかける(水シャワー)ことで麺線に水分を吸収させつつ、蒸気をあてることにより麺線内部でのα化を促進させることも行われている(例えば、特許文献1を参照)。   In the instant noodle manufacturing process, the starch contained in the raw noodle strings is gelatinized and then dried. Here, a method of drying raw noodles by steaming and then drying is often used, but when the noodle strings are thick, in the process of steaming raw noodles, the noodle strings are sprinkled with water ( It has also been practiced to promote α-ization inside the noodle strings by applying steam while absorbing moisture in the noodle strings by water shower) (see, for example, Patent Document 1).

この際、麺線が水シャワーから水を吸収する割合が高いと、その後の加熱により麺線内部までα化が迅速に進行することが知られている。また、前記水を吸収する割合が高いと、α化(糊化)・乾燥を経て完成される即席麺を喫食する際に湯戻しする場合において、迅速に湯戻しが進行することが期待できる。   At this time, it is known that when the ratio of the noodle strings to absorb water from the water shower is high, the gelatinization rapidly proceeds to the inside of the noodle strings by the subsequent heating. Moreover, when the ratio of absorbing the water is high, it can be expected that the hot water rewind progresses quickly when the hot noodle is refilled when eating instant noodles that are completed through gelatinization (gelatinization) and drying.

特開昭59−102365号公報JP 59-102365 A

即席麺では、特に麺線が太い場合において、喫食する際の湯戻しをより迅速に進行させることが求められていた。   In the case of instant noodles, particularly when the noodle strings are thick, it has been required to make hot water resumption more quickly when eating.

そこで、本発明者らは、麺線に含有される澱粉をα化するにあたって、水シャワー等の水分補給時の麺線による水分吸収性を促進することで、その後の迅速なα化を実現し、さらに、湯戻り性が向上した即席麺を製造することを目的として鋭意研究を行った。   Therefore, the inventors of the present invention have achieved rapid subsequent alpha conversion by promoting moisture absorption by the noodle strings during water replenishment such as a water shower when the starch contained in the noodle strings is alpha. In addition, intensive research was conducted with the aim of producing instant noodles with improved hot water return.

すなわち本発明は、蒸煮と共に行う水分補給時の麺線による水分吸収性が向上した麺線であって、水分補給、蒸煮及び乾燥を経ることにより、優れた湯戻り性を発揮する乾燥麺を製造するための、即席麺製造における中間体としての麺線を提供することを課題とする。   That is, the present invention is a noodle string that has improved moisture absorption by the noodle strings during hydration performed with steaming, and produces dried noodles that exhibit excellent hot water return properties through hydration, steaming and drying. An object of the present invention is to provide a noodle string as an intermediate in the production of instant noodles.

本発明者らは水シャワー及び蒸煮(澱粉のα化)を行う直前の麺線の断面構造に着目し、この麺線構造を、より迅速な水分吸収性を実現できる構造にすることを目的に検討した。その結果、麺線に対し従来知られていない新規の前処理を行うと、従来品には見られない新規の麺線構造が形成され、この特定の麺線構造を有する場合に、水シャワー時の水分吸収性が向上することを見出し、本発明に至った。   The present inventors pay attention to the cross-sectional structure of the noodle strings immediately before performing water shower and steaming (starch gelatinization), and aim to make this noodle string structure into a structure that can realize more rapid moisture absorption. investigated. As a result, when a new pretreatment not conventionally known is performed on noodle strings, a new noodle string structure not found in conventional products is formed. As a result, the present invention has been found.

すなわち、本発明は、即席麺の製造に使用される麺線であって、前記麺線は、その断面において、前記断面の中央に位置する澱粉粒子構成層と、当該澱粉粒子構成層の外側でかつ前記麺線の表面に沿って位置する崩壊澱粉粒子含有層とを有し、前記崩壊澱粉粒子含有層が所定厚さで形成されていることを特徴とする麺線に関する。   That is, the present invention is a noodle string used in the production of instant noodles, the noodle strings in the cross section, the starch particle constituent layer located in the center of the cross section, outside the starch particle constituent layer In addition, the present invention relates to a noodle string characterized by having a collapsed starch particle-containing layer positioned along the surface of the noodle string, wherein the collapsed starch particle-containing layer is formed with a predetermined thickness.

本発明において、前記所定厚さは、前記麺線の表面からの深さが平均50μm以上であることが好ましい。   In the present invention, the predetermined thickness preferably has an average depth of 50 μm or more from the surface of the noodle strings.

本発明によると、即席麺の製造時における澱粉のα化(糊化)の工程において実施する水シャワー等の水分補給時の麺線による吸水性を高めることができる。これによって蒸煮工程による迅速な澱粉のα化(糊化)を実現し、さらに、その後の乾燥工程を経て製造される即席麺の湯戻り性を改善することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water absorption by the noodle strings at the time of water replenishment, such as a water shower implemented in the process of gelatinization (gelatinization) of starch in the production of instant noodles, can be enhanced. This makes it possible to realize quick gelatinization (gelatinization) of starch by the steaming process, and to improve the hot water reversion property of instant noodles manufactured through the subsequent drying process.

本発明の麺線の断面を示す概念図The conceptual diagram which shows the cross section of the noodle strings of this invention 従来の蒸煮後の麺線の断面を示す概念図Conceptual diagram showing a cross-section of conventional steamed noodle strings 実施例1の麺線の断面を撮影した走査型電子顕微鏡写真Scanning electron micrograph showing a cross section of the noodle strings of Example 1 比較例1の麺線の断面を撮影した走査型電子顕微鏡写真Scanning electron micrograph of the cross section of the noodle strings of Comparative Example 1 比較例2の麺線の断面を撮影した走査型電子顕微鏡写真Scanning electron micrograph of the cross section of the noodle strings of Comparative Example 2 実施例1の麺線をホルマリン固定して作製した薄切標本を撮影した光学顕微鏡写真An optical micrograph of a sliced sample prepared by fixing the noodle strings of Example 1 with formalin. 比較例1の麺線をホルマリン固定して作製した薄切標本を撮影した光学顕微鏡写真Optical micrograph of a sliced specimen prepared by fixing formal noodle strings of Comparative Example 1 比較例2の麺線をホルマリン固定して作製した薄切標本を撮影した光学顕微鏡写真Optical micrograph of a sliced sample prepared by fixing formal noodle strings in Comparative Example 2 麺線を水中でホモジナイズし、静置した後、上から第三層目を分離して光学顕微鏡で観察した写真。崩壊澱粉粒子含有層が形成された本発明の麺線に関する写真。A photograph of the noodle strings homogenized in water and allowed to stand, and then the third layer separated from above and observed with an optical microscope. The photograph regarding the noodle strings of this invention in which the disintegrated starch particle content layer was formed. 麺線を水中でホモジナイズし、静置した後、上から第三層目を分離して光学顕微鏡で観察した写真。崩壊澱粉粒子含有層が形成されていない比較用麺線に関する写真。A photograph of the noodle strings homogenized in water and allowed to stand, and then the third layer separated from above and observed with an optical microscope. The photograph regarding the noodle strings for comparison in which the disintegrated starch particle content layer is not formed. 実施例2の麺線の断面を撮影した走査型電子顕微鏡写真Scanning electron micrograph of a cross section of the noodle strings of Example 2 比較例3の麺線の断面を撮影した走査型電子顕微鏡写真Scanning electron micrograph of a cross section of the noodle strings of Comparative Example 3

以下、本発明の麺線を具体的に説明する。   Hereinafter, the noodle strings of the present invention will be specifically described.

本発明の麺線は、常法により形成された生麺を、後述する加熱処理等に付して製造されたものである。前記生麺は、従来知られている一般的な生麺であってよく、小麦粉等の原料粉に、副原料、練り水を加えて混練した後、複合・圧延・切出すことで生の麺線を得ることができる。切出しではなく、エクストルーダ等で押し出して麺線としても良い。主原料たる原料粉としては小麦粉、澱粉等が使用される。副原料としては、かんすい、食塩、増粘剤、グルテン、卵白、色素等を必要に応じて添加することができる。   The noodle strings of the present invention are produced by subjecting raw noodles formed by a conventional method to a heat treatment described later. The raw noodle may be a conventionally known general raw noodle, and after adding and kneading the auxiliary raw material and kneaded water to raw flour such as wheat flour, the raw noodle is mixed, rolled and cut out. You can get a line. The noodle strings may be extruded by an extruder or the like instead of being cut out. As the raw material powder as the main raw material, wheat flour, starch or the like is used. As auxiliary materials, citrus, salt, thickener, gluten, egg white, pigment, and the like can be added as necessary.

本発明の麺線の太さは特に限定されないが、例えば1.0〜3.0mmの範囲の太さを例示することができる。特に1.5〜3.0mmの範囲の太さを有する麺線は、従来のα化(糊化)方法のみで即席麺にすると、麺線の内部まで十分に吸水がされず湯戻り性が悪いという問題があった。しかしながら、本発明の特定断面構造を有する麺線を水分補給工程、蒸煮工程及び乾燥工程に付すことで製造された即席麺では、湯戻り性が改善されるため、太さが1.5〜3.0mmの範囲にある比較的太めの麺線であっても、一般的な復元条件(熱湯に浸して数分間放置する、又は1〜数分程度熱湯で茹でる)によって良好に湯戻りがなされ、喫食が可能となる。   Although the thickness of the noodle strings of the present invention is not particularly limited, for example, a thickness in the range of 1.0 to 3.0 mm can be exemplified. In particular, when noodle strings having a thickness in the range of 1.5 to 3.0 mm are made into instant noodles only by the conventional α-formation (gelatinization) method, water is not sufficiently absorbed up to the inside of the noodle strings, and the hot-water removability is high. There was a problem of being bad. However, in the instant noodles manufactured by subjecting the noodle strings having the specific cross-sectional structure of the present invention to the hydration process, the steaming process and the drying process, the hot water return property is improved, so the thickness is 1.5-3. Even with a relatively thick noodle strip in the range of 0.0 mm, the hot water can be returned well by general restoration conditions (soak in hot water and leave for a few minutes, or boil in hot water for about 1 to several minutes) Eating is possible.

次に本発明の麺線の断面構造について説明する。   Next, the cross-sectional structure of the noodle strings of the present invention will be described.

図1は、本発明の麺線の断面を示す概念図である。また、図2は従来の蒸煮後の麺線の断面を示す概念図である。   FIG. 1 is a conceptual diagram showing a cross section of the noodle strings of the present invention. Moreover, FIG. 2 is a conceptual diagram which shows the cross section of the noodle strings after the conventional cooking.

本発明の麺線の断面構造の一例を図1で示しており、従来の澱粉のα化工程における蒸煮途中(水分補給前)の麺線の断面構造を図2で示している。以下では、これらの構造を対比的に説明する。尚、麺線の断面形状は図1に示すような丸状に限られず、略方形状等を種々の形状を含む。   An example of the cross-sectional structure of the noodle strings of the present invention is shown in FIG. 1, and the cross-sectional structure of the noodle strings in the middle of steaming (before hydration) in the conventional starch gelatinization step is shown in FIG. Below, these structures are demonstrated comparatively. The cross-sectional shape of the noodle strings is not limited to the round shape as shown in FIG. 1, and includes various shapes such as a substantially rectangular shape.

本発明における麺線10は、その断面において、前記断面の中央に、澱粉粒子構成層11を有する。当該澱粉粒子構成層11では、後述する図3に示すように断面の表面に微細な凹凸構造が観察される。この微細な凹凸構造は澱粉粒子により形成されているものであり、これにより澱粉粒子構成層における澱粉粒子の存在を確認できる。ただし、澱粉粒子構成層は全面的に澱粉粒子のみが観察されるものに限定されず、その一部に、後述する崩壊澱粉粒子含有層に相当するペースト状の領域がわずかに含まれている場合もあり得る。   In the cross section, the noodle strings 10 in the present invention have a starch particle constituent layer 11 in the center of the cross section. In the starch particle constituting layer 11, a fine uneven structure is observed on the surface of the cross section as shown in FIG. This fine concavo-convex structure is formed by starch particles, whereby the presence of starch particles in the starch particle constituent layer can be confirmed. However, the starch particle constituent layer is not limited to those in which only starch particles are observed over the entire surface, and a part thereof includes a paste-like region corresponding to the collapsed starch particle-containing layer described later. There is also a possibility.

本発明における麺線10は、その断面において、前記澱粉粒子構成層11に加えて、当該澱粉粒子構成層11の外側でかつ前記麺線の表面に沿って、崩壊澱粉粒子含有層12を有する。崩壊澱粉粒子含有層12は、澱粉粒子構成層11の外面を被覆するように所定の厚さで形成されている。   In the cross section, the noodle strings 10 in the present invention have a collapsed starch particle-containing layer 12 outside the starch particle constituent layer 11 and along the surface of the noodle strings in addition to the starch particle constituent layer 11. The collapsed starch particle-containing layer 12 is formed with a predetermined thickness so as to cover the outer surface of the starch particle constituting layer 11.

通常、生麺に含まれる澱粉粒子はその糊化の過程において、蒸煮等による加熱の開始とともに飽和水蒸気に含まれる水を吸収して膨潤を開始し、さらに蒸煮時間の経過とともに、澱粉粒子はさらに膨潤を続け体積は数倍に膨らむ。そして膨潤が極限に達すると粒子の破壊が生じる。このように一般には、澱粉粒子は、加熱に伴って吸水、膨潤、さらに崩壊の過程を経る。   Normally, starch particles contained in raw noodles start to swell by absorbing water contained in saturated water vapor with the start of heating by steaming etc. in the process of gelatinization, and further with the passage of cooking time, the starch particles It continues to swell and the volume expands several times. When the swelling reaches the limit, the particles are destroyed. Thus, in general, starch particles undergo a process of water absorption, swelling and further disintegration with heating.

前記崩壊澱粉粒子含有層12では、このようなプロセスを経て多数の澱粉粒子が崩壊しており、これによってアミロースやアミロペクチンが溶出している。前記崩壊澱粉粒子含有層12は多くの澱粉粒子が崩壊していることによって、後述する図3で示すように麺線断面において、前記澱粉粒子構成層11と比較して微細な凹凸構造が顕著に少ない、ペースト状の層を形成している。   In the collapsed starch particle-containing layer 12, a large number of starch particles are broken through such a process, and amylose and amylopectin are eluted. The collapsed starch particle-containing layer 12 has a fine uneven structure as compared with the starch particle constituting layer 11 in the noodle strip cross section as shown in FIG. A small paste-like layer is formed.

但し、前記崩壊澱粉粒子含有層12では、含まれているすべての澱粉粒子が崩壊しているのではなく、崩壊していない澱粉粒子も含まれ、更に、α化が殆んど起こっていない澱粉粒子も存在するということが後述する実験から明らかとなった。   However, in the disintegrated starch particle-containing layer 12, not all starch particles contained therein are disintegrated, but starch particles that have not been disintegrated are also included, and further, starch that has hardly undergone pregelatinization. It was clarified from experiments described later that particles exist.

従って、澱粉粒子構成層11と崩壊澱粉粒子含有層12は、麺線断面を走査型電子顕微鏡で撮影した場合には、図3に示すように微細な凹凸構造を有する中心層と、これと比較して凹凸構造が明らかに少なくペースト状を呈している外側の被覆層によって識別することができる。前記中心層すなわち澱粉粒子構成層11では、膨潤しているが崩壊はしていない澱粉粒子の存在が多数認められ、前記被覆層すなわち崩壊澱粉粒子含有層12では、崩壊していない澱粉粒子の存在が、まったく観察されないか、又は、澱粉粒子構成層11と比較してわずかしか観察されない。   Therefore, the starch particle constituent layer 11 and the collapsed starch particle-containing layer 12 are compared with the central layer having a fine concavo-convex structure as shown in FIG. 3 when the noodle strip section is photographed with a scanning electron microscope. Thus, it can be identified by the outer coating layer having a clearly uneven structure and presenting a paste. In the center layer, that is, the starch particle constituting layer 11, a large number of starch particles that are swollen but not disintegrated are observed, and in the covering layer, that is, the disintegrated starch particle-containing layer 12, the presence of undisintegrated starch particles. Is not observed at all or only slightly compared to the starch particle constituting layer 11.

このような麺線の断面を解析するための方法としては、走査型電子顕微鏡を使用する方法が挙げられるが、共焦点レーザー顕微鏡による観察でもよい。   As a method for analyzing the cross section of such noodle strings, a method using a scanning electron microscope may be mentioned, but observation with a confocal laser microscope may be used.

また、本発明の麺線から、上述した断面を露出させるための方法としては、カミソリ等による切断ではなく、急速凍結装置を用いた凍結後の割断がよい。割断後の麺線をさらに凍結乾燥することで麺線の断面を解析することができる。   Moreover, as a method for exposing the above-mentioned cross section from the noodle strings of the present invention, cutting after freezing using a quick freezing apparatus is preferable, not cutting with a razor or the like. The section of the noodle strings can be analyzed by freeze-drying the noodle strings after the cleaving.

具体的には、例えば、サンプリングした麺線を急速凍結庫にて−40℃程度まで急速凍結する。次に、完全に凍結した麺線の両端を−40℃程度の環境下で、冷却したラテックス製手袋等を装着して持ち、物理的に力を加え、麺線の中央部分を割断することで割断面とすることができる。また、凍結乾燥は定法により、前記凍結した割断面を含む麺線を真空下で乾燥すればよい。   Specifically, for example, the sampled noodle strings are rapidly frozen to about −40 ° C. in a quick freezer. Next, by holding both ends of the completely frozen noodle strings in an environment of about −40 ° C., wearing a cooled latex glove, etc., physically applying force, and cleaving the central portion of the noodle strings It can be a split section. In addition, freeze-drying may be carried out by a conventional method, and the noodle strings including the frozen split section may be dried under vacuum.

本発明における麺線の断面においては、崩壊澱粉粒子含有層が所定厚さtで形成されている。この所定厚さtとは、麺線の表面から測定した崩壊澱粉粒子含有層の深さが、平均で概ね50μm以上である。また、より優れた吸水性を発揮できるよう60μm以上であることが好ましい。さらに好ましくは80μm以上である。尚、所定の厚さの上限は限定されないが、概ね麺線の半径に対して1/4以下の厚みが好ましい。   In the cross section of the noodle strings in the present invention, the disintegrated starch particle-containing layer is formed with a predetermined thickness t. The predetermined thickness t is that the average depth of the disintegrated starch particle-containing layer measured from the surface of the noodle strings is approximately 50 μm or more. Moreover, it is preferable that it is 60 micrometers or more so that the more outstanding water absorption can be exhibited. More preferably, it is 80 μm or more. In addition, although the upper limit of predetermined | prescribed thickness is not limited, The thickness of 1/4 or less with respect to the radius of noodle strings is preferable.

このような崩壊澱粉粒子含有層の厚みの平均値は、走査型電子顕微鏡で撮影した麺線断面全体写真を拡大印刷し、崩壊澱粉粒子含有層を適当な分画に分け、各分画の面積を算出した後に、崩壊澱粉粒子含有層中心部の長さで除すことにより求めることができる。   The average value of the thickness of the collapsed starch particle-containing layer is obtained by enlarging and printing the whole noodle strip cross-section photograph taken with a scanning electron microscope, dividing the collapsed starch particle-containing layer into appropriate fractions, and the area of each fraction. Can be calculated by dividing by the length of the central part of the layer containing the collapsed starch particles.

具体的には、例えば、走査型電子顕微鏡で撮影した麺線断面全体写真を、実際の長さの90倍程度となるように拡大印刷する。その後、崩壊澱粉粒子含有層の外部の輪郭線(外輪線)を引く。さらに、澱粉粒子構成層と崩壊澱粉粒子含有層の境界線を引く。本境界線については電子顕微鏡の写真を用いて目視で判断することができる。すなわち、崩壊澱粉粒子含有層はペースト状に観察されるため、ペースト状部分とそれ以外の部分との境目が境界線となる。尚、当該境界線は滑らかではなく、凹凸の生じる場合が多い。   Specifically, for example, an entire cross-sectional photograph of the noodle strings taken with a scanning electron microscope is enlarged and printed so as to be about 90 times the actual length. Then, the outline (outer ring line) outside the disintegrated starch particle-containing layer is drawn. Further, a boundary line between the starch particle constituent layer and the collapsed starch particle-containing layer is drawn. This boundary line can be visually determined using a photograph of an electron microscope. That is, since the disintegrated starch particle-containing layer is observed as a paste, the boundary between the paste-like part and the other part is a boundary line. Note that the boundary line is not smooth and often has irregularities.

次に、外輪線と境界線で囲まれた崩壊澱粉粒子含有層を容易に面積が算出できる多角形(三角形、正方形、長方形、平行四辺形、台形等)に分割し、各多角形の面積の合計、即ち崩壊澱粉粒子崩壊層の総面積、を求めた後に、崩壊澱粉粒子含有層の外輪線と境界線の長さの平均値で総面積を除す。このようにして崩壊澱粉粒子含有層の厚みの平均値を求めることができる。   Next, the collapsed starch particle-containing layer surrounded by the outer ring line and the boundary line is divided into polygons (triangles, squares, rectangles, parallelograms, trapezoids, etc.) whose area can be easily calculated, and the area of each polygon is After obtaining the total, that is, the total area of the disintegrated starch particle disintegrating layer, the total area is divided by the average value of the lengths of the outer ring line and the boundary line of the disintegrating starch particle-containing layer. Thus, the average value of the thickness of the disintegrated starch particle-containing layer can be obtained.

一方、通常の蒸煮条件で加熱された従来の麺線20では、その断面において、中心層が澱粉粒子構成層11である点は本発明の麺線と共通している。しかしながら、図2及び後述する図4で示すように、その外側に崩壊澱粉粒子含有層が全く形成されていないか、あるいは形成されていたとしても一部にしか形成されておらず、その形成箇所における厚さもせいぜい10〜20μm程度にすぎない。従って、本発明の麺線の断面構造と従来の麺線の断面構造は明らかに相違している。なお、上述した通常の蒸煮条件で蒸煮時間を長くしても、明確な2層構造を有する本発明の麺線を製造することはできない。   On the other hand, the conventional noodle strings 20 heated under normal steaming conditions are common to the noodle strings of the present invention in that the central layer is the starch particle constituting layer 11 in the cross section. However, as shown in FIG. 2 and FIG. 4 to be described later, the disintegrated starch particle-containing layer is not formed at all on the outer side, or even if it is formed, it is only partially formed. The thickness at is also only about 10 to 20 μm. Therefore, the cross-sectional structure of the noodle strings of the present invention is clearly different from the cross-sectional structure of the conventional noodle strings. In addition, even if cooking time is extended under the normal cooking conditions described above, the noodle strings of the present invention having a clear two-layer structure cannot be produced.

次に、本発明の麺線を製造する方法の一例を説明する。しかし、本発明の麺線は以下に説明する製法で製造された麺線に限定されるものではない。   Next, an example of a method for producing the noodle strings of the present invention will be described. However, the noodle strings of the present invention are not limited to the noodle strings manufactured by the manufacturing method described below.

基本的には、生麺線の表面近傍に存在する澱粉粒子を選択的に、かつ急激に崩壊させる処理を行うことが必要になる。具体的には、切り出し後の生の麺線(通常30〜40重量%の水分)に対して、水分を生麺線重量の2〜30重量%程度、表面に水分を付与した後、急激に加熱する等の方法が挙げられる。表面への水分付与の方法としては、霧吹き、シャワー、浸漬や、低温物質が高温環境に置かれた時に発生する結露現象も含まれる。   Basically, it is necessary to selectively and rapidly disintegrate starch particles existing near the surface of the raw noodle strings. Specifically, after the cut noodle strings (usually 30 to 40% by weight of water), the moisture is applied to the surface about 2 to 30% by weight of the raw noodle strings, and then rapidly. The method of heating etc. is mentioned. Examples of methods for applying moisture to the surface include spraying, showering, dipping, and dew condensation that occurs when a low-temperature substance is placed in a high-temperature environment.

例えば、切り出し後の生の麺線に対して、霧吹き等で水分を吹きかけることで、少量の水分を生麺線の表面に付与する。具体的には、生麺線重量を100重量%として2〜30重量%の水分が付与されるように湿らせる。その後、110℃〜200℃程度の流体を麺線表面に短時間当てて加熱することで、通常の蒸煮とは異なり、水分が欠乏した条件下で急激に加熱を実施することにより、麺線表面近傍に存在する澱粉粒子を選択的に崩壊させることができ、上述した特定の二層構造を有する本発明の麺線を製造することができる。110℃〜200℃程度の流体を麺線表面に当てる時間は、過乾燥を避けるため、10〜90秒程度の時間が好ましい。また、麺線表面近傍の澱粉粒子崩壊を十分に、かつ急激に進行させるため、麺線が暴露される環境は、高温だけではなく、風速が秒速0.5m程度以上の流体が好ましい。   For example, a small amount of moisture is imparted to the surface of the raw noodle strings by spraying moisture on the raw noodle strings after cutting with a sprayer or the like. Specifically, the raw noodle strings are 100% by weight and moistened so that 2 to 30% by weight of water is applied. Then, by applying a fluid at a temperature of about 110 ° C. to 200 ° C. to the noodle string surface for a short period of time, unlike normal steaming, the noodle string surface is rapidly heated under conditions of lack of moisture. The starch particles present in the vicinity can be selectively broken down, and the noodle strings of the present invention having the specific two-layer structure described above can be produced. The time for applying a fluid of about 110 ° C. to 200 ° C. to the surface of the noodle strings is preferably about 10 to 90 seconds in order to avoid overdrying. In addition, in order to cause the starch particle collapse near the surface of the noodle strings to proceed sufficiently and rapidly, the environment to which the noodle strings are exposed is preferably not only a high temperature but also a fluid having a wind speed of about 0.5 m / s or more.

尚、加熱する際に使用する流体については、乾燥流体であればよく、空気に限られない。   In addition, about the fluid used when heating, what is necessary is just a dry fluid, and it is not restricted to air.

尚、99℃付近の通常の蒸煮等により生麺線の加熱を行うと、澱粉粒子が均一的に膨潤工程を経るために、本発明のように表面に所定厚さで崩壊澱粉粒子含有層が形成された麺線を製造することはできない。   In addition, when the raw noodle strings are heated by ordinary steaming or the like around 99 ° C., the starch particles uniformly undergo a swelling process, so that the collapsed starch particle-containing layer has a predetermined thickness on the surface as in the present invention. The formed noodle strings cannot be manufactured.

次に、本発明の麺線から即席麺を製造する方法を説明する。   Next, a method for producing instant noodles from the noodle strings of the present invention will be described.

本発明の麺線は、その後、水分付与工程を経てから、蒸煮及び/又は茹で工程、あるいは、乾燥流体を再度麺線表面に付与する等した後、乾燥工程に付すことにより即席麺とすることができる。   The noodle strings of the present invention are then subjected to a moisture-imparting process, followed by steaming and / or boiled processes, or after applying a drying fluid to the noodle strings surface again, etc., and then subjecting to a drying process to make instant noodles. Can do.

本発明の麺線は水分吸収率が高いため、前記水分付与工程では、本発明の麺線に水分をシャワー等により与えることにより、効率よく麺線に水分が吸収される。その後、蒸煮工程等に付すことにより、効率よく、麺線内の澱粉のα化(糊化)を進めることができる。   Since the noodle strings of the present invention have a high moisture absorption rate, in the moisture application step, moisture is efficiently absorbed into the noodle strings by applying moisture to the noodle strings of the present invention by a shower or the like. Thereafter, by subjecting it to a steaming step or the like, it is possible to efficiently promote the gelatinization (gelatinization) of starch in the noodle strings.

水分付与工程と蒸煮工程等の条件は特に限定されず、一般的に即席麺の製造で適用される条件であってよい。例えば、水分付与工程に関しては、シャワーによる方法や水槽への浸漬方法が採用される。また、次に、蒸煮工程を行うのであれば、飽和水蒸気による1分〜3分程度の蒸煮といった条件でよい。また、水分付与工程と蒸煮工程は交互に繰り返してもよいし、両工程を同時に実施してもよい(すなわち蒸煮を実施しながら、水分を付与してもよい)。   Conditions such as the moisture application process and the steaming process are not particularly limited, and may be conditions generally applied in the production of instant noodles. For example, with respect to the moisture application step, a method using a shower or a dipping method in a water bath is employed. Moreover, if a steaming process is performed next, conditions, such as steaming for about 1 to 3 minutes by saturated steam, may be sufficient. Moreover, a moisture provision process and a steaming process may be repeated alternately, and you may implement both processes simultaneously (that is, you may provide a water | moisture content, implementing steaming).

以上によりα化が完了した麺線を、最後に、乾燥工程に付すことで麺線の水分を除去して即席麺とする。乾燥工程に付す前には、通常1食分量の大きさにカットされて、リテーナ等に型詰めされる。その型詰めされた状態で乾燥工程を実施する。ただし、麺線のカットは、前述した蒸煮を行う以前に実施してもよい。   The noodle strings that have been pregelatinized as described above are finally subjected to a drying process to remove moisture from the noodle strings to obtain instant noodles. Before being subjected to the drying process, it is usually cut into a single serving size and packed in a retainer or the like. The drying process is carried out in the mold-packed state. However, the noodle strings may be cut before the above-described steaming.

乾燥工程の種類は特に限定されず、即席麺の製造において一般的に使用されている乾燥処理を適用することができる。具体的には、フライ(油揚げ)乾燥処理のほか、熱風乾燥処理、凍結乾燥処理、マイクロ波乾燥、低温での送風乾燥といったノンフライ乾燥処理が挙げられる。これらを組み合わせて乾燥工程を実施することができる。具体的な条件は特に限定されないが、例えばフライ乾燥処理の場合は通常130〜160℃で1〜3分間、熱風乾燥処理の場合は通常60〜120℃で15〜180分程度の処理を実施する。乾燥後の麺線の水分含量は、フライ乾燥処理の場合で1〜5重量%、熱風乾燥処理の場合で5〜10重量%程度とすればよい。   The kind of drying process is not specifically limited, The drying process generally used in manufacture of instant noodles can be applied. Specifically, non-fly drying treatments such as hot air drying treatment, freeze-drying treatment, microwave drying, and air blowing drying at low temperature in addition to the fly (fried oil) drying treatment can be mentioned. A drying process can be implemented combining these. Specific conditions are not particularly limited. For example, in the case of a fly drying treatment, the treatment is usually performed at 130 to 160 ° C. for 1 to 3 minutes, and in the case of hot air drying treatment, the treatment is usually carried out at 60 to 120 ° C. for about 15 to 180 minutes. . The moisture content of the noodle strings after drying may be about 1 to 5% by weight in the case of the fly drying process and about 5 to 10% by weight in the case of the hot air drying process.

以下に、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

実験1
<実施例1>
小麦粉700g、澱粉300gに対して、食塩10g、水380gを添加して麺生地を得た。この得られた麺生地を最終麺厚1.7mmの麺帯として、9番角刃の切刃で切出した。当該麺線の水分含量は38重量%であった。
Experiment 1
<Example 1>
Noodle dough was obtained by adding 10 g of salt and 380 g of water to 700 g of wheat flour and 300 g of starch. The obtained noodle dough was cut out as a noodle strip having a final noodle thickness of 1.7 mm with a cutting blade having a number 9 blade. The water content of the noodle strings was 38% by weight.

当該生の麺線500gを採取し、トレイ上に載置し、上部より霧吹きで麺線表面を湿らせた。湿らせた後の麺線重量をトレイより採取し、重量を測定したところ、600gであった。   500 g of the raw noodle strings were collected and placed on a tray, and the surface of the noodle strings was moistened by spraying from the top. The weight of the noodle strings after wetting was collected from the tray and measured for a weight of 600 g.

次に、当該湿らせた後の麺線に対して、温度130℃、風量25m/secの熱風を30秒間当て麺線を処理した。   Next, the noodle strings were treated for 30 seconds by applying hot air at a temperature of 130 ° C. and an air volume of 25 m / sec to the wet noodle strings.

<比較例1>
小麦粉700g、澱粉300gに対して、食塩10g、水380gを添加して麺生地を得た。この得られた麺生地を最終麺厚1.7mmの麺帯として、9番角の切刃で切出した。当該麺線の水分含量は38重量%であった。当該生の麺線を500g採取し、トレイ上に載置し、温度100℃の飽和蒸気で30秒間処理して麺線を調製した。
<Comparative Example 1>
Noodle dough was obtained by adding 10 g of salt and 380 g of water to 700 g of wheat flour and 300 g of starch. The obtained noodle dough was cut out as a noodle strip having a final noodle thickness of 1.7 mm with a cutting blade of No. 9 corner. The water content of the noodle strings was 38% by weight. 500 g of the raw noodle strings were collected, placed on a tray, and treated with saturated steam at a temperature of 100 ° C. for 30 seconds to prepare noodle strings.

<比較例2>
上述の比較例1と同様の条件で飽和蒸気での処理時間を120秒に変更して麺線を調製した。
<Comparative Example 2>
Noodle strings were prepared by changing the treatment time with saturated steam to 120 seconds under the same conditions as in Comparative Example 1 described above.

<実施例1および比較例1、2の構造解析>
─電子顕微鏡による解析─
実施例1、比較例1及び比較例2の麺線それぞれについて、麺線を数cm採取した。このサンプリングした麺線を急速凍結庫(急速凍結装置BLIZZAR;C&C製)にて−40℃で急速凍結した。完全に凍結した麺線の両端を−40℃程度の環境下で、冷却したラテックス製手袋を装着して持ち、物理的に力を加え、麺線の中央部分を割断することで割断面とした。次に、割断した凍結麺線は凍結乾燥機(FD−81;東京理化製)を用い、最終真空度10pa以下となるように、10時間以上凍結乾燥を行なった。当該凍結乾燥した麺線断面に対して、ION SPUTTER(JFC−1100E;日本電子製)を用いて、90秒間、10mAの定電流で、真空金蒸着を行い、観察に用いた。
<Structural analysis of Example 1 and Comparative Examples 1 and 2>
─Analysis by electron microscope─
For each of the noodle strings of Example 1, Comparative Example 1, and Comparative Example 2, several centimeters of noodle strings were collected. The sampled noodle strings were snap frozen at −40 ° C. in a quick freezer (rapid freezer BLIZZAR; manufactured by C & C). At both ends of a completely frozen noodle string, in an environment of about −40 ° C., wearing a cooled latex glove, physically applying force, and cutting the center part of the noodle string to obtain a cut section . Next, the frozen noodle strings were freeze-dried for 10 hours or more using a freeze dryer (FD-81; manufactured by Tokyo Rika Co., Ltd.) so that the final vacuum was 10 pa or less. Using ION SPUTTER (JFC-1100E; manufactured by JEOL Ltd.), vacuum gold vapor deposition was performed for 90 seconds at a constant current of 10 mA on the freeze-dried noodle strings, and used for observation.

電子顕微鏡観察は走査型電子顕微鏡(JSM−6380LA;日本電子製)を用いて低真空モードで形態観察を行なった。撮影した電子顕微鏡写真を図3〜図5に示す。   The electron microscope was observed in a low vacuum mode using a scanning electron microscope (JSM-6380LA; manufactured by JEOL). The photographed electron micrographs are shown in FIGS.

図3より、実施例1の麺線では、微細な凹凸構造が形成されている澱粉粒子構成層が麺線内部に形成されるとともに、そのような凹凸構造があまり見られないペースト状の崩壊澱粉粒子含有層が麺線表層部に分厚く形成されていることが分かる。この崩壊澱粉粒子含有層の、麺線表面からの深さを、該当層の面積を層平均長で除す方法により測定したところ、平均厚さは約60μmであった。図4及び図5より、比較例1及び比較例2の麺線では、麺線内部の澱粉粒子構成層は観察されるが、崩壊澱粉粒子含有層はほとんど観察されないことが分かる。観察されたとしても麺線表層部の一部でせいぜい10μmの厚さで一部形成されているにすぎない。   From FIG. 3, in the noodle strings of Example 1, a paste-like disintegrated starch in which a starch particle constituent layer in which a fine uneven structure is formed is formed inside the noodle strings and such an uneven structure is not often seen. It can be seen that the particle-containing layer is thickly formed on the surface of the noodle strings. When the depth of the collapsed starch particle-containing layer from the surface of the noodle strings was measured by a method of dividing the area of the corresponding layer by the layer average length, the average thickness was about 60 μm. 4 and 5, in the noodle strings of Comparative Examples 1 and 2, it can be seen that the starch particle constituting layer inside the noodle string is observed, but the collapsed starch particle-containing layer is hardly observed. Even if it is observed, it is only partially formed with a thickness of 10 μm at most in a part of the surface portion of the noodle strings.

<実施例1及び比較例1、2の水分補給後の吸水率>
実施例1及び比較例1、2それぞれで得られた麺線に対して、20℃の水に20秒浸漬という条件下で水分補給を行い、それによる麺線の重量変化を調べたところ、実施例1では、処理後の麺線の重量が生麺重量と比べ26%(浸漬により19%)増加した。一方、比較例1では23%(浸漬により16%)の増加であった。このように崩壊澱粉粒子含有層を所定厚さで有する本発明の麺線は、従来の蒸煮により得られる麺線と比較して麺線の吸水量が増加することが分かった。このため、本発明の麺線は、水分補給工程によってより多量の水分を含むことが可能になり、その後の蒸煮工程での澱粉のα化が、麺線内部方向へ効率よく進行する。さらに、即席麺とした場合に迅速に湯戻しを行うことができる。
<Water absorption after rehydration of Example 1 and Comparative Examples 1 and 2>
The noodle strings obtained in Example 1 and Comparative Examples 1 and 2 were each replenished with water at 20 ° C. for 20 seconds, and the weight change of the noodle strings was investigated. In Example 1, the weight of the noodle strings after the treatment increased by 26% (19% by immersion) compared with the weight of the raw noodles. On the other hand, in Comparative Example 1, it was an increase of 23% (16% by immersion). Thus, it was found that the noodle strings of the present invention having the collapsed starch particle-containing layer with a predetermined thickness have an increased amount of water absorption of the noodle strings as compared with the noodle strings obtained by conventional steaming. For this reason, the noodle strings of the present invention can contain a larger amount of moisture by the water replenishment step, and the starch pregelatinization in the subsequent steaming step efficiently proceeds toward the inside of the noodle strings. Furthermore, when instant noodles are used, hot water can be quickly reconstituted.

−光学顕微鏡による解析−
崩壊澱粉粒子含有層を詳細に検討するために光学顕微鏡による観察を行った。実施例1、比較例1及び比較例2の麺線それぞれについて、10%中性緩衝ホルマリンで3日間以上固定後、常法通りパラフィン包埋し、ミクロトームによる薄切標本作製を行った。それぞれの薄切標本について、常法通りPAS染色を行い澱粉を染色し、光学顕微鏡(オリンパス製BX−50)で断面構造を観察した。
-Analysis by optical microscope-
Observation with an optical microscope was carried out in order to examine in detail the disintegrated starch particle-containing layer. Each of the noodle strings of Example 1, Comparative Example 1 and Comparative Example 2 was fixed with 10% neutral buffered formalin for 3 days or more, then embedded in paraffin as usual, and a sliced sample was prepared using a microtome. Each sliced piece was subjected to PAS staining as usual and the starch was stained, and the cross-sectional structure was observed with an optical microscope (Olympus BX-50).

以上により撮影した写真を図6〜図8に示す。前記ホルマリン固定工程において、ホルマリンで固定されない澱粉由来低分子(アミロース及びアミロペクチン)は溶出するため、完全に崩壊していない澱粉粒子のみが選択的に観察される。   The photographs taken as described above are shown in FIGS. In the formalin fixing step, starch-derived low molecules (amylose and amylopectin) that are not fixed with formalin elute, and therefore only starch particles that are not completely disintegrated are selectively observed.

図6(実施例1)と、図7(比較例1)及び図8(比較例2)とを比較すると、いずれの写真でも澱粉粒子間の空隙は観察されるものの、図6の表層部、すなわち形成された崩壊澱粉粒子含有層近傍で最も多く観察される。これにより、崩壊澱粉粒子含有層では実施例1の麺線でより多くの澱粉粒子が崩壊していることが確認された。   When FIG. 6 (Example 1) is compared with FIG. 7 (Comparative Example 1) and FIG. 8 (Comparative Example 2), the voids between the starch particles are observed in any photograph, but the surface layer portion of FIG. That is, it is observed most frequently in the vicinity of the formed layer containing the collapsed starch particles. This confirmed that more starch particles were disintegrated in the noodle strings of Example 1 in the collapsed starch particle-containing layer.

−崩壊澱粉粒子含有層を構成する澱粉粒子状態の解析−
崩壊澱粉粒子含有層を構成する澱粉粒子の状態を調査するために、崩壊澱粉粒子含有層を形成した麺線、及び、当該層が形成されていない麺線の表層部各1gを実験的に採取し、これに水を加えてホモジナイズし20mLに調製した。
-Analysis of the state of starch particles constituting the layer containing disintegrated starch particles-
In order to investigate the state of the starch particles constituting the collapsed starch particle-containing layer, the noodle strings formed with the collapsed starch particle-containing layer and the surface layer part 1 g of the noodle strings where the layer is not formed were experimentally collected. Then, water was added to this and homogenized to prepare 20 mL.

これを良くふりまぜた後に、16時間静置した。その結果、4層の性状の異なる画分に分かれた。これらの各層について、ヨウ素染色により光学顕微鏡観察を行った。図9は、上から第三層目について光学顕微鏡で観察した写真を示し、(a)は崩壊澱粉粒子含有層を形成した麺線についての結果を、(b)は崩壊澱粉粒子含有層が形成されていない麺線についての結果を示す。以上の結果から以下のことが分かった。   This was mixed well and allowed to stand for 16 hours. As a result, it was divided into four layers having different properties. Each of these layers was observed with an optical microscope by iodine staining. FIG. 9 shows a photograph of the third layer from the top as observed with an optical microscope. (A) shows the results for the noodle strings formed with the collapsed starch particle-containing layer, and (b) shows the formation of the collapsed starch particle-containing layer. The result about the noodle string which is not done is shown. From the above results, the following was found.

沈殿しない第1層(最上層)は溶出したアミロースやアミロペクチンを含むものと推定される。また、沈殿した第2層から第4層には、粒子サイズの異なる澱粉粒子やグルテンの存在が認められた。崩壊澱粉粒子含有層を構成する澱粉粒子の解析例では、特に第3層において、内部は透明なものの輪郭が明瞭な小粒子の混入が認められた(図9)が、崩壊澱粉粒子含有層が形成されていない例ではそのような小粒子の存在は、第3層も含めていずれの層でもほぼ認められなかった。この小粒子は糊化がされていない澱粉粒子に相当するものと推定される。なお両例に存在する透明度の低い大粒子は、糊化がされた澱粉粒子に相当するものと推定される。   The first layer (the uppermost layer) that does not precipitate is presumed to contain eluted amylose and amylopectin. In addition, in the precipitated second to fourth layers, starch particles and gluten having different particle sizes were observed. In the analysis example of the starch particles constituting the collapsed starch particle-containing layer, especially in the third layer, the inside was transparent, but the inclusion of small particles with a clear outline was recognized (FIG. 9), but the collapsed starch particle-containing layer was In the case where the particles were not formed, the presence of such small particles was hardly observed in any layer including the third layer. These small particles are presumed to correspond to starch particles that have not been gelatinized. In addition, it is estimated that the large particle | grains with low transparency which exist in both examples correspond to the starch particle in which gelatinization was carried out.

以上より、崩壊澱粉粒子含有層には、同層が形成されていない麺線の表層部と比較して、糊化がされていない澱粉粒子が多く含まれていることが分かる。上述したように崩壊澱粉粒子含有層では多数の澱粉粒子が完全に崩壊していることを考慮すると、本発明の麺線では、澱粉粒子が多数崩壊し、その他に、糊化がされていない澱粉粒子や糊化された澱粉粒子等が混在しており、澱粉の糊化の段階が極めて不均一な状態にあることが分かる。このような状態は、通常の蒸煮等の澱粉糊化工程で惹起されることは無く、極めて特異な状態であると言える。   From the above, it can be seen that the disintegrated starch particle-containing layer contains more starch particles that are not gelatinized, as compared to the surface layer portion of the noodle strings in which the same layer is not formed. Considering that a large number of starch particles are completely disintegrated in the disintegrated starch particle-containing layer as described above, in the noodle strings of the present invention, a large number of starch particles are disintegrated, and in addition, starch that has not been gelatinized. It can be seen that particles, gelatinized starch particles, and the like are mixed, and the starch gelatinization stage is in a very uneven state. Such a state is not caused by a conventional starch gelatinization step such as steaming, and can be said to be a very unique state.

一般に小麦澱粉は大粒子と小粒子から成り、中間サイズのものが存在しないとされており、また大粒子の方が小粒子より糊化しやすいとされている(文献「澱粉科学の事典」(不破英次ら編)、「でん粉製品の知識」(高橋禮治著))。比較例の通常蒸煮においては粒子サイズの区分無く均一に糊化が進行するが、本発明の方法においては小粒子の糊化が開始する前に、豊富な熱量により大粒子の糊化が進行し、糊化の進行に伴い水分を奪うため、小粒子が糊化出来ない状態となっていると考えられる。   In general, wheat starch is composed of large and small particles, and it is said that there is no intermediate size, and that large particles are easier to gelatinize than small particles (ref. Eiji et al.), “Knowledge of Starch Products” (written by Junji Takahashi)). In the normal cooking of the comparative example, gelatinization proceeds uniformly without classification of particle size, but in the method of the present invention, gelatinization of large particles proceeds due to abundant heat before the gelatinization of small particles starts. It is considered that the small particles cannot be gelatinized because the moisture is taken away with the progress of gelatinization.

実験2
<実施例2>
小麦粉900g、澱粉100gに対して、食塩10g、かんすい5g、水360gを添加して麺生地を得た。当該麺線の水分含量は37重量%であった。この得られた麺生地を最終麺圧1.2mmの麺帯として、20番丸刃の切刃で切出した。
Experiment 2
<Example 2>
To 900 g of wheat flour and 100 g of starch, 10 g of sodium chloride, 5 g of potassium and 360 g of water were added to obtain a noodle dough. The water content of the noodle strings was 37% by weight. The obtained noodle dough was cut out as a noodle strip having a final noodle pressure of 1.2 mm with a No. 20 round blade.

当該麺線500gを採取し、トレイ上に載置し、上部より霧吹きで麺線表面を湿らせた。湿らせた後の麺線重量をトレイより取り重量を測定したところ、525gであった。   500 g of the noodle strings were collected and placed on a tray, and the surface of the noodle strings was moistened by spraying from the top. The noodle string weight after wetting was taken from the tray and measured for a weight of 525 g.

次に、当該湿らせた後の麺線に対して、温度120℃、風量3m/secの熱風を1分間当て麺線を処理した。   Next, the noodle strings were treated with hot air having a temperature of 120 ° C. and an air volume of 3 m / sec for 1 minute on the wet noodle strings.

<比較例3>
小麦粉900g、澱粉100gに対して、食塩10g、かんすい5g、水360gを添加して麺生地を得た。この得られた麺生地を最終麺圧1.2mmの麺帯として、20番丸刃の切刃で切出した。当該麺線の水分含量は37重量%であった。当該生の麺線を500g採取し、トレイ上に載置し、温度100℃の飽和蒸気で30秒間処理して麺線を調製した。
<Comparative Example 3>
To 900 g of wheat flour and 100 g of starch, 10 g of sodium chloride, 5 g of potassium and 360 g of water were added to obtain a noodle dough. The obtained noodle dough was cut out as a noodle strip having a final noodle pressure of 1.2 mm with a No. 20 round blade. The water content of the noodle strings was 37% by weight. 500 g of the raw noodle strings were collected, placed on a tray, and treated with saturated steam at a temperature of 100 ° C. for 30 seconds to prepare noodle strings.

<実施例2および比較例3の構造解析>
上述と同様にして撮影した電子顕微鏡写真を図10〜11に示す。図10より、実施例2の麺線では、微細な凹凸構造が形成されている澱粉粒子構成層が麺線内部に形成されるとともに、そのような凹凸構造があまり見られないペースト状の崩壊澱粉粒子含有層が麺線表層部に分厚く形成されていることが分かる。この崩壊澱粉粒子含有層の、麺線表面からの深さを同様に測定したところ、平均厚さは約90μmであった。図11より、比較例3の麺線では、麺線内部の澱粉粒子構成層は観察されるが、崩壊澱粉粒子含有層はほとんど観察されないことが分かる。
<Structural analysis of Example 2 and Comparative Example 3>
Electron micrographs taken in the same manner as described above are shown in FIGS. From FIG. 10, in the noodle strings of Example 2, a paste-like disintegrated starch in which a fine particle uneven structure formed in the noodle strings is formed inside the noodle strings and such an uneven structure is not often seen. It can be seen that the particle-containing layer is thickly formed on the surface of the noodle strings. When the depth from the surface of the noodle strings of the disintegrated starch particle-containing layer was measured in the same manner, the average thickness was about 90 μm. From FIG. 11, it can be seen that in the noodle strings of Comparative Example 3, the starch particle constituting layer inside the noodle strings is observed, but the collapsed starch particle-containing layer is hardly observed.

<実施例2及び比較例3の水分補給後の吸水率>
実施例2及び比較例3のそれぞれで得られた麺線に対して、4m/分の速度のコンベア上で一定水量の水シャワーを行い、それによる麺線の重量変化を調べたところ、実施例2では、処理後の麺線の重量が生麺重量と比べ16%(シャワーにより14%)増加した。一方、比較例3では、15%(シャワーにより8%)の増加であった。
<Water absorption after rehydration of Example 2 and Comparative Example 3>
When the noodle strings obtained in each of Example 2 and Comparative Example 3 were subjected to a water shower with a constant amount of water on a conveyor at a speed of 4 m / min, the weight change of the noodle strings was examined. In No. 2, the weight of the noodle strings after the treatment increased by 16% (14% by shower) compared with the weight of the raw noodles. On the other hand, in Comparative Example 3, the increase was 15% (8% by shower).

実施例1のように麺厚の厚い麺線(所謂「太麺」)と比べ、水分補給による吸水率の上昇の程度は小さいものの、細い麺でも吸水が亢進される傾向が認められた。   Compared to the thick noodle strings (so-called “thick noodles”) as in Example 1, although the degree of increase in the water absorption rate due to water replenishment was small, there was a tendency for water absorption to be enhanced even with thin noodles.

本発明によれば、吸水性が向上した麺線を提供することができ、この麺線を、水分補給、蒸煮及び乾燥工程に付すことにより、優れた湯戻り性を発揮する乾燥麺を製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the noodle strings which improved water absorption can be provided, and the dry noodles which exhibit the outstanding hot water return property are manufactured by attaching | subjecting this noodle strings to water replenishment, steaming, and a drying process. It becomes possible.

Claims (2)

所定の麺線構造を有する麺線を水分付与工程、α化工程及び乾燥工程に付すことにより即席麺を製造する方法であって、
前記麺線は、小麦粉及び澱粉を原料粉とする切り出し後の生麺線が表面に水分を付与されて、その表面が湿った状態で110〜200℃で10〜90秒間加熱処理されることにより製造されたものであり、
前記麺線は、太さが1.0〜3.0mmであり、
前記麺線は、その断面において、前記断面の中央に位置する澱粉粒子構成層と、当該澱粉粒子構成層の外側でかつ前記麺線の表面に沿って位置する崩壊澱粉粒子含有層とを有し、
前記崩壊澱粉粒子含有層が、前記麺線の表面から所定厚さで形成されていることを特徴とする、即席麺の製造方法。
A method for producing instant noodles by subjecting a noodle string having a predetermined noodle string structure to a moisture application step, a gelatinization step and a drying step,
The noodle lines, flour and starch are applied moisture to raw noodle strings surface after excision of the raw material powder, by its surface is 10 to 90 seconds heat treatment at 110 to 200 ° C. in a wet state Manufactured,
The noodle strings have a thickness of 1.0 to 3.0 mm,
In the cross section, the noodle strings have a starch particle constituent layer located in the center of the cross section, and a collapsed starch particle-containing layer located outside the starch particle constituent layer and along the surface of the noodle strings. ,
The method for producing instant noodles, wherein the collapsed starch particle-containing layer is formed with a predetermined thickness from the surface of the noodle strings.
前記所定厚さは、前記麺線の表面からの深さが平均50μm以上である請求項1に記載の即席麺の製造方法。   2. The method for producing instant noodles according to claim 1, wherein the predetermined thickness has an average depth of 50 μm or more from the surface of the noodle strings.
JP2009292110A 2009-12-24 2009-12-24 Method for producing instant noodles using noodle strings having a special structure Active JP4611439B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292110A JP4611439B1 (en) 2009-12-24 2009-12-24 Method for producing instant noodles using noodle strings having a special structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292110A JP4611439B1 (en) 2009-12-24 2009-12-24 Method for producing instant noodles using noodle strings having a special structure

Publications (2)

Publication Number Publication Date
JP4611439B1 true JP4611439B1 (en) 2011-01-12
JP2011130694A JP2011130694A (en) 2011-07-07

Family

ID=43566584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292110A Active JP4611439B1 (en) 2009-12-24 2009-12-24 Method for producing instant noodles using noodle strings having a special structure

Country Status (1)

Country Link
JP (1) JP4611439B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114690A1 (en) * 2010-03-19 2011-09-22 日清食品ホールディングス株式会社 Instant noodles and method of producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998660A (en) * 1982-11-26 1984-06-07 House Food Ind Co Ltd Drying of noodle
JPS59102365A (en) * 1982-12-01 1984-06-13 Toyo Suisan Kk Preparation of steamed noodle
JPH03133350A (en) * 1989-10-19 1991-06-06 Nippon Flour Mills Co Ltd Preparation of frozen chinese noodle
JP2002335895A (en) * 2001-05-18 2002-11-26 Nippon Flour Mills Co Ltd Drying and sterilizing method for noodle, and noodle
JP2003038114A (en) * 2001-07-31 2003-02-12 Nippon Flour Mills Co Ltd Method for producing steamed noodle and the resultant noodle
JP2003174853A (en) * 2001-10-05 2003-06-24 Toyo Suisan Kaisha Ltd Method for producing instant noodle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998660A (en) * 1982-11-26 1984-06-07 House Food Ind Co Ltd Drying of noodle
JPS59102365A (en) * 1982-12-01 1984-06-13 Toyo Suisan Kk Preparation of steamed noodle
JPH03133350A (en) * 1989-10-19 1991-06-06 Nippon Flour Mills Co Ltd Preparation of frozen chinese noodle
JP2002335895A (en) * 2001-05-18 2002-11-26 Nippon Flour Mills Co Ltd Drying and sterilizing method for noodle, and noodle
JP2003038114A (en) * 2001-07-31 2003-02-12 Nippon Flour Mills Co Ltd Method for producing steamed noodle and the resultant noodle
JP2003174853A (en) * 2001-10-05 2003-06-24 Toyo Suisan Kaisha Ltd Method for producing instant noodle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114690A1 (en) * 2010-03-19 2011-09-22 日清食品ホールディングス株式会社 Instant noodles and method of producing same
US8968813B2 (en) 2010-03-19 2015-03-03 Nissin Foods Holdings Co., Ltd. Instant noodles and method for producing the same

Also Published As

Publication number Publication date
JP2011130694A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
Yu et al. Effect of guar gum with glycerol coating on the properties and oil absorption of fried potato chips
JP2011030501A (en) Method for producing instant noodles
JP5911462B2 (en) Instant noodle manufacturing method
JP6650484B2 (en) Dry noodle and method for producing the same
Ouchon et al. Studying oil absorption in restructured potato chips
JP4865108B2 (en) Instant noodles and method for producing the same
JP6494276B2 (en) Dried noodles and method for producing the same
JP5436504B2 (en) Production method of instant hot air dried noodles
Edwards et al. Anatomical evidence in the detection of the earliest wildfires
TWI566789B (en) Tissue repair material derived from fish skin and manufacturing method thereof
CZ425298A3 (en) Quick-boiling preboiled rice and process for preparing thereof
WO2011077600A1 (en) Instant noodles and method for producing same
Rahimi et al. Inter-particle space fractions in fried batter coatings as influenced by batter formulation and pre-drying time
BR112013006644B1 (en) Process for the production of fried noodles
JP4611439B1 (en) Method for producing instant noodles using noodle strings having a special structure
Zamani‐Ghalehshahi et al. Effect of hydrocolloid coatings (Basil seed gum, xanthan, and methyl cellulose) on the mass transfer kinetics and quality of fried potato strips
JP3660892B2 (en) Production method of instant hot air dried noodles
JP6085115B2 (en) Method for producing non-fried food
Sundaram et al. Influence of processing methods on mechanical and structural characteristics of vacuum microwave dried biopolymer foams
JP4297936B2 (en) Dried noodles
JP6510851B2 (en) Method of producing instant hot air dry noodle and instant hot air dry noodle
JPS59120079A (en) Drying of food
BR112016012168B1 (en) METHOD TO PRODUCE INSTANT Noodles
JP4273166B2 (en) Method for producing dried food eaten after hot water cooking or hot water reconstitution
JP6878735B2 (en) Manufacturing method of processed cooked rice

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250