JP4470408B2 - Soil purification method and system - Google Patents

Soil purification method and system Download PDF

Info

Publication number
JP4470408B2
JP4470408B2 JP2003206940A JP2003206940A JP4470408B2 JP 4470408 B2 JP4470408 B2 JP 4470408B2 JP 2003206940 A JP2003206940 A JP 2003206940A JP 2003206940 A JP2003206940 A JP 2003206940A JP 4470408 B2 JP4470408 B2 JP 4470408B2
Authority
JP
Japan
Prior art keywords
water
trench
pumping
soil
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003206940A
Other languages
Japanese (ja)
Other versions
JP2005058805A (en
Inventor
明 押谷
浩一 平石
時男 鴨下
裕二 河村
健 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003206940A priority Critical patent/JP4470408B2/en
Publication of JP2005058805A publication Critical patent/JP2005058805A/en
Application granted granted Critical
Publication of JP4470408B2 publication Critical patent/JP4470408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土壌中の汚染域に洗浄水を流して土壌を浄化する方法において、汚染域を効果的に洗浄する土壌浄化方法に関する。
【0002】
【従来の技術】
汚染土壌の浄化方法として従来から各種の処理方法が知られている。例えば、(イ)汚染土壌中に設けた削孔を通じて洗浄水を土中に噴射し、この噴射圧によって掘削した汚染土壌を水の還流によって地上に排出し、浄化処理する方法(特開2001−162262)、(ロ)汚染域を囲むように複数の注水井と揚水井とを設け、注水井を通じて洗浄水を汚染土壌中に注水し、汚染域を経由した洗浄水を揚水井によって地上に汲み上げて浄化処理し、これを再び注水井を通じて土中に戻す浄化方法(特開平10−277531号)、(ハ)揚水井戸を通じて汲上げた地下水を加熱し、注水井戸を通じて加熱地下水を汚染域に送り込み、土壌中の有害物質の気化を促進させる浄化方法(特開平9−174034号)、(ニ)汚染域の下流側に設けた揚水井戸を通じて汚染地下水を汲み上げ、地上で浄化処理した水を上流側の注水井戸を通じて土中に戻し、この浄化水が汚染域を流れることよって汚染域を洗浄し、再び揚水して浄化処理するサイクルを繰り返す浄化方法(特開平8−323338号)などが知られている。
【0003】
さらに、(ホ)汚染域に複数本の散水井戸を掘削し、この井戸にウオータジェット装置を挿入し、乳化材を含む清浄水を散水井戸から土壌中に噴射して汚染土を粉砕しながら散水して土壌を浄化する方法(特許第2755083号)が知られており、また(ヘ)地下水面より深く止水壁を設け、止水壁で囲まれた領域に注水孔と揚水孔を掘削し、注水孔から水を導入して地下水位を上昇させて汚染域を洗浄すると共に注水孔から揚水孔に向かう地下水流を発生させ、汚染物質を含む地下水を揚水孔から汲み上げて汚染物質を除去した後に注水孔を通じて再び地下水を土中に戻す浄化方法(特許第3191132号)が知られている。
【0004】
しかし、汚染域を水洗処理する従来の上記土壌浄化方法は、何れも汚染域に多数の注水井ないし揚水井を設け、これらの井戸を通じて浄化水を注揚水する処理方法であるため、汚染域全体に洗浄水が流れるようにするためには多数の注水井や揚水井を必要とする。しかも、汚染域に対して注水場所が点状であるため、井戸を多数設けても井戸から流出される洗浄水が汚染域に均一に拡散するのが難しく、汚染域を通過する洗浄水ないし地下水の流束密度が一定とならず、洗浄終了までに要する時間が、最低流束密度の汚染域に時間に律速されると云う問題がある。
【0005】
さらに、上記(ホ)のように地表面から洗浄水を土中に浸透させる方法では、汚染部位にまで水が拡散して浸透する時間が処理時間の律速となり、処理効率を高めるために揚水井戸からの汲み上げ水量を多くすると、地下水位が揚水井に向かって勾配を有するようになるため、洗浄水の流束が揚水井に向かって偏り、揚水井から離れた地点では未洗浄部分が残るという問題を生じる。また、上記(ヘ)の方法では、洗浄水の流束は個々の注水井から個々の揚水井に向かって流れるが、その向きと流速は井戸の位置関係によって定まるので均一ではなく、そのため洗浄部位と洗浄速度が流束密度の低い部分の洗浄速度によって律速されるという問題がある。
【0006】
【発明が解決しようとする課題】
本発明は土壌の汚染域に洗浄水を流して浄化する処理方法において、従来方法の上記問題を解決したものであり、浄化処理する土壌にトレンチを施工し、このトレンチの壁面を通じて洗浄水を放水することによって汚染域を含む広い領域に対して効果的に洗浄水を流し、かつ酸化剤添加手段ないし洗浄水の電解手段を設けて洗浄効果を高めると共に、好ましくは、汲み上げた洗浄水に含まれる汚染物質を除去する手段を二段に設けて汚染物質を確実に除去し、洗浄水を循環使用する土壌浄化方法および土壌浄化システムを提供するものである。
【0007】
【課題を解決する手段】
本発明は以下の構成を有する土壌浄化方法に関する。
〔1〕 土壌中に注水トレンチと揚水トレンチを設け、注水トレンチから洗浄水を土壌中に放水して注水トレンチと揚水トレンチの間に存在する汚染域に洗浄水を流し、汚染域を流れた洗浄水を揚水トレンチから汲み上げて汚染域を洗浄する浄化方法において、揚水トレンチから汲み上げた洗浄水を注水トレンチに戻す循環路を設け、さらに汚染域の上流側および下流側の水位測定孔に水位センサーを設け、あるいは注水トレンチおよび揚水トレンチに水位センサーを設けて地下水位観測手段を形成し、この地下水位観測手段によって洗浄水の水位が地中の汚染域より上側になるように制御し、また揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去する手段を設け、さらに汚染物質を除去した洗浄水の電気分解手段および次亜塩素酸ソーダの濃度測定手段を設け、揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去した後に、この洗浄水を電気分解して洗浄水に含まれる次亜塩素酸ソーダの濃度を調整し、この洗浄水を汚染域に流して洗浄することを特徴とする土壌浄化方法。
〔2〕 土壌中に相対向して設けた注水トレンチと揚水トレンチ、注水トレンチに洗浄水を供給する手段、揚水トレンチから洗浄水を汲み上げる手段、汲み上げた洗浄水に含まれる汚染物質を除去する手段、浄化した洗浄水を注水トレンチに導入する循環路、洗浄水の電気分解手段、次亜塩素酸ソーダの濃度測定手段を有し、さらに汚染域の上流側および下流側の水位測定孔に設けた水位センサー、あるいは注水トレンチおよび揚水トレンチに設けた水位センサーによって地下水位観測手段が形成されており、地下水位観測手段によって洗浄水の水位が汚染域より上側になるように制御し、揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去した後に、この洗浄水を電気分解して洗浄水に含まれる次亜塩素酸ソーダの濃度を調整し、この洗浄水を汚染域に流して洗浄することを特徴とする土壌浄化システム。
〔3〕 上記[2]の土壌浄化システムにおいて、汚染物質の除去手段として、揚水トレンチから汲み上げた洗浄水のイオン交換または電気透析を行う手段、および該洗浄水に含まれる重金属を吸着する手段を有する土壌浄化システム。
【0008】
さらに、本発明は以下の構成を有する土壌浄化システムに関する。
〔4〕 土壌中に相対向して設けた注水トレンチと揚水トレンチ、注水トレンチに洗浄水を供給する手段、揚水トレンチから洗浄水を汲み上げる手段、汲み上げた洗浄水に含まれる汚染物質を除去する手段、浄化した洗浄水を注水トレンチに導入する循環路、浄化した洗浄水に含まれる残留酸化剤濃度を測定する手段、浄化した洗浄水に酸化剤を添加する手段を有し、さらに汚染域の上流側および下流側の水位測定孔に設けた水位センサー、あるいは注水トレンチおよび揚水トレンチに設けた水位センサーによって地下水位観測手段が形成されており、地下水位観測手段によって洗浄水の水位が汚染域より上側になるように制御して汚染域を洗浄する土壌浄化システムにおいて、汚染物質の除去手段として、揚水トレンチから汲み上げた洗浄水のイオン交換または電気透析を行う手段、および該洗浄水に含まれる重金属を吸着する手段を有する土壌浄化システム。
【0009】
本発明の土壌浄化方法は、注水トレンチの壁面から洗浄水が放水されるので、従来の注水井戸を用いた場合と異なり、放水面が広く、汚染域に対して洗浄水を均一に流すことができる。さらに、注水トレンチに酸化剤の添加手段を設け、好ましくは残留酸化剤濃度を測定する手段を設け、所定濃度の酸化剤を含む洗浄水を汚染域に流すことによって洗浄効果を高めることができる。あるいは、酸化剤添加手段および残留酸化剤濃度測定手段に代えて、洗浄水の電解手段と残留塩素濃度測定手段を設け、塩素濃度を所定範囲に制御した洗浄水を汚染域に流すことによって洗浄効果を高めることができる。
【0010】
さらに、揚水トレンチを通じて汲み上げた洗浄水に含まれる汚染物質を除去する手段として、洗浄水のイオン交換または電気透析を行う手段と共に該洗浄水に含まれる重金属の吸着手段を併用することによって、汲み上げた洗浄水に含まれる汚染物質を確実に除去することができ、この洗浄水を循環使用することによって浄化効果をさらに高めると共に、排水処理の負担を軽減し、土壌浄化を低コストで行うことができる。
【0011】
【発明の実施の形態】
以下、本発明の土壌浄化方法ないし土壌浄化システムについて、図面に示す構成例を参照して具体的に説明する。図1は本発明に係る土壌浄化システムを示す模式的な縦断面図、図2はその模式平面図、図3は汚染域との位置関係を示す模式縦断面図、図4は本発明の土壌浄化システムの汚染物質除去手段、酸化剤添加手段、洗浄水循環路を示す模式構成図である。
【0012】
図示する本発明の土壌浄化システムは、汚染域Aを囲むように遮水壁10を設け、遮水壁10で囲まれた領域の上流側に注水トレンチ11を設けると共に下流側に揚水トレンチ12が設けられている。注水トレンチ11と揚水トレンチ12は両側の遮水壁10に沿って細長く形成されており、汚染域Aをはさんで相対向して設置されている。各トレンチ11、12は地下の難透水層20に達する深さに掘削されており、トレンチ11、12の外周は遮水壁10によって囲まれている。また、各トレンチ11、12の内壁の上側部分は遮水壁10によって形成されており、その下側部分は透水性壁面によって形成されている。
【0013】
具体的には、例えば、注水トレンチ11の内壁の上側部分は遮水性のコンクリート壁などによって形成されており、注水トレンチ11の下側部分には砕石や砂利などの透水材料が充填され、この透水材料が内壁下部の壁面を形成している。なお、施工場所を遮水壁10によって囲めば洗浄水が施工域外に拡散するのを防止できるので、汚染域の洗浄効果が向上するが、施工場所の条件によっては遮水壁10を一部だけに設けても良く、あるいは設けなくても良い。
【0014】
一方、揚水トレンチ12の上側部分は遮水性のコンクリート壁などによって形成されており、内壁下部は多数の通孔を有する透水性のコンクリート壁によって形成されている。また、揚水トレンチ12は汚染域Aを通過した洗浄水を汲み上げる揚水ポンプ15が接続している。
【0015】
注水トレンチ11および揚水トレンチ12は鋼矢板で挟んだ構造もしくは鋼管杭を連結した構造でも良い。トレンチ部分の洗浄水が容易に移動できる構造であって、外周部分が遮水性壁面によって形成されており、所定の深度に通水用の孔ないしストレーナーを施工できる構造であれば良い。この外周遮水壁によって洗浄を行う汚染域の地下水とその周囲の地下水との混合を抑止する。難透水層(粘土層等)まで、あるいは洗浄対象深度より十分深い深度まで外周遮水壁を打ち込むのが好ましい。また、内壁上部の遮水壁は洗浄を行う深度より上側への漏水を防止し、かつ洗浄水の注水側水頭圧を維持するために、地上部から土中の洗浄域に入り込む程度の深度まで打ち込むのが好ましい。この、内壁上部の遮水壁の高さを調整することによって、汚染域に対して集中的に洗浄水が流れるように制御することができる。
【0016】
注水トレンチ11には洗浄水の注水管路16が接続しており、注水バルブ17が装着されている。一方、揚水トレンチ12には汲み上げた洗浄水を処理設備に導く揚水管路18が接続している。注水トレンチ11には洗浄水が管路16を通じて導入される。洗浄水は管路16を通じて注水トレンチ11に供給され、下部透水性内壁面から土中に放水され、注水トレンチ11と揚水トレンチ12の間に位置する汚染域Aを流れてポンプ15によって揚水トレンチ12から地上に揚水され、管路18を通じて処理設備に送られ、ここで洗浄水に含まれる汚染物質が除去される。
【0017】
本発明の土壌浄化システムには地下を流れる洗浄水の水位(以下、地下水位と云う)を測定する手段を設けるのが好ましい。図1および図2に示す構成例では地下水位の傾斜を測定できるように、上流側と下流側に水位測定孔31、32が設けられており、この水位測定孔31、32に水位センサーが設置されている。なお、水位測定孔を設けずに、注水トレンチ11と揚水トレンチ12に水位測定センサーを設けても良い。この水位測定手段によって地下水位をモニタリングして土壌浄化を行う。
【0018】
さらに、図示する構成例では、水位測定センターと注水バルブ17および揚水ポンプ15を結ぶ水位制御ユニット33が形成されている。この制御系33は水位センサーの情報に基づいて注水バルブ17および揚水ポンプ15の運転を制御し、地下水位が汚染域Aよりも上側になり、汚染域Aが水没するように地下水位を自動制御する。具体的には、例えば地下水位が基準水位より低い場合には注水バルブ17を開いて注水を行い、あるいは揚水ポンプ15を停止する。一方、地下水位が基準水位より高い場合には注水バルブ17を閉じ、または揚水ポンプ15を稼動させる。
【0019】
図4に示す土壌洗浄システムには、汚染物質を除去した洗浄水に酸化剤を添加する手段、汲み上げた洗浄水に含まれている汚染物質を除去する手段、この洗浄水を注水トレンチに戻す循環路が設けられている。この循環路には適宜の箇所に送液ポンプ35が設けられている。
【0020】
図示するように、注水トレンチ11は管路16を通じて調整槽26に接続している。この調整槽26には洗浄水が導入されており、さらに洗浄水の残留酸化剤濃度を測定する手段27と、酸化剤を供給する手段28が設けられている。残留酸化剤濃度の測定値は酸化剤の供給手段28に伝達され、この値に応じた量の酸化剤が調整槽27の洗浄水に添加され、洗浄水の酸化剤濃度が一定範囲に保たれる。酸化剤としては、例えば次亜塩素酸ソーダ(NaOCl)などを用いることができる。酸化剤の濃度は土壌の汚染程度に応じて調整される。酸化剤の濃度が調整された洗浄水は調整槽26から注水管路16およびバルブ17を通じて注水トレンチ11に供給される。
【0021】
酸化剤の添加に代えて洗浄水の電気分解手段を設けてもよい。この電気分解手段は注水トレンチ11の上端に設置してもよく、あるいは土壌中の汚染域Aに設置してもよい。洗浄水の電気分解によって次亜塩素酸ソーダが生成される。電気分解の条件は、例えば、電流密度1〜100A/m2、電圧1.5〜10Vが適当である。
【0022】
次亜塩素酸ソーダは最終的に塩化ナトリウムと酸素に分解する(2NaOCl→2NaCl+O2)が、次亜塩素酸イオン(OCl-)が存在している間は強い酸化力を示す。この酸化力を利用してCdS、PbSなどの硫化物や、Se、Asなどの不溶性重金属化合物の汚染物質をイオン化して可溶性に変える。前述したように次亜塩素酸ソーダの濃度はその残留イオン濃度によって調整する。なお、注水トレンチ11に供給する洗浄水の次亜塩素酸イオン濃度は概ね0.4〜40mg/lが適当である。
【0023】
酸化剤を含む洗浄水は注水トレンチ11の壁面から土壌中に放水され、汚染域を通過して揚水トレンチ12に流れる。なお、注水トレンチ11から放水される洗浄水を加圧してもよく、また脈動を与えて放水しても良い。汚染域を流れて揚水トレンチ12に達した洗浄水は揚水トレンチ12に設けた管路18を通じて汲み上げられる。
【0024】
揚水トレンチ12から延びた揚水管路18はバルブ19を介して受水槽20と処理槽21に接続している。受水槽20には洗浄水に含まれる残留塩分濃度を測定する手段22が設けられており、この測定値が上記バルブ19に伝達されて管路18の接続が受水槽20または処理槽21の何れかに切り替えられる。
【0025】
残留塩分濃度が基準より高い洗浄水はバルブ19を通じて処理槽21に導入される。この処理槽21にはイオン交換膜または電気透析手段が設けられており、イオン交換または電気透析によって洗浄水から残留塩分を分離して洗浄水を浄化する。処理槽21から流出した洗浄水は管路23を通じて受水槽20に導入される。一方、残留塩分濃度が基準より低い洗浄水はバルブ19の通路を切り替えて直接に受水槽20に導入される。分離した塩分は処理槽21から外部に排出される。
【0026】
上記残留塩分濃度の基準は処理条件に応じて設定される。例えば、2.0wt%程度である。一般に汲み上げた洗浄水の残留塩分濃度がこれより高いと、洗浄後の土壌中の塩分濃度が高くなる。なお、残留塩分濃度の上限基準2.0wt%のとき、この90%を超える濃度、すなわち残留塩分濃度が1.8wt%以上になった場合は塩分の分離を行うとよい。
【0027】
一方、洗浄水に含まれるCdやPbなどの重金属はイオン交換や電気透析では除去できない。そこで、受水槽20の洗浄水を吸着槽24に導き、ここで重金属を吸着剤に吸着させて除去する。図5に示すように、吸着槽24は内部を二つに仕切り、下流側の部分に吸着剤25を充填し、上流側の室内に流入した洗浄水が吸着剤25を通過してオバーフローするように形成するとよい。この構造によれば洗浄水と吸着剤との接触時間が長くなり、また吸着剤の入替えも容易である。吸着剤25としては、CdやPbなどの陽イオン系金属に対してはリン酸カルシウム(リン灰石)などが用いられ、AsやSeなどの陰イオン系金属に対してはシュベルトマナイトなどの粘土鉱物を用いるとよい。
【0028】
リン灰石は平均粒径5〜30mm程度に粉砕したものを用いるとよい。これより粗いと表面積が小さくなり、また微細過ぎると槽外への流失量が多くなるので好ましくない。また、シュベルトマナイトなどの粘土鉱物は粒径20〜30mmの砕石と共に吸着槽24に充填するとよい。なお、吸着槽24の内部にリン灰石充填部と粘土鉱物充填部を形成して洗浄水が両充填部を連続して流れるようにし、陽イオン系重金属と陰イオン系重金属の両方を吸着除去してもよい。
【0029】
吸着槽24で浄化された洗浄水は貯槽25を経て調整槽26に送られる。先に述べたように、この調整槽27で洗浄水の酸化剤濃度が一定範囲に調整された後に管路16およびバルブ17を通じて注水トレンチ11に供給され、汚染域の洗浄に繰り返し使用される。
【0030】
【実施例】
以下、本発明を実施例によって具体的に示す。
〔実施例1〕
底部に通液孔を有する処理容器を用い、容器底部に定性濾紙を敷き、その上に硫化カドミウム(CdS)200mg/kgを含有する試験土壌400gを充填し、次亜塩素酸ソーダを含む洗浄水を容器上部から流し入れて土壌を洗浄した。この結果を表1に示した。なお、洗浄水量は150ml/min、単位面積当たりの水量は2.63cm3/cm2・分であり、残留塩素濃度と溶出Cd濃度は容器底部から流出した洗浄水に含まれる塩素濃度とCd濃度であり、残留Cd濃度は土壌に残留するCd濃度である。洗浄水量が1000m3/m2までの洗浄効果は低いが、洗浄水量が10000m3/m2以上になると、土壌中の硫化カドミウムが殆ど溶出除去され、最終的に土壌中の残留Cd濃度を0.1mg/kgに低減することができる。
【0031】
【表1】

Figure 0004470408
【0032】
〔実施例2〕
図4の土壌浄化システムによって土壌中の重金属汚染域を洗浄した。処理条件と効果を表2に示した。
【0033】
【表2】
Figure 0004470408
【0034】
【発明の効果】
本発明の土壌浄化方法では、注水トレンチの壁面から洗浄水が放水されるので放水面が広く、汚染域に対して洗浄水を均一に流すことができ、さらに水位測定孔を設け、測定水位に基づいて注水量ないし揚水量を制御して土壌中の汚染域を流れる洗浄水の水位を適正に保つことによって洗浄効果が向上する。また、洗浄水の酸化剤濃度を所定範囲に調整することによって洗浄効果をさらに向上することができる。さらに、揚水トレンチを通じて汲み上げた洗浄水に含まれる汚染物質を二段階に処理して除去することによって洗浄水の浄化効果を高め、洗浄水を繰り返し使用することができる。
【図面の簡単な説明】
【図1】本発明に係る土壌浄化システムを示す模式的な縦断面図
【図2】図1の土壌浄化システムの模式平面図
【図3】図1の土壌浄化システムの模式縦断面図
【図4】本発明の土壌浄化システムの汚染物質除去手段、酸化剤添加手段、洗浄水循環路を示す模式構成図
【図5】処理槽の模式断面図
【符号の説明】 10−遮水壁、11−注水トレンチ、12−揚水トレンチ、13−透水層、15−揚水ポンプ、16−注水管路、17−注水バルブ、18−揚水管路、20−難透水層、31、32−水位測定孔、33−水位コントロールユニット、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soil purification method for effectively washing a contaminated area in a method for purifying soil by flowing wash water into the contaminated area in soil.
[0002]
[Prior art]
Conventionally, various treatment methods are known as methods for purifying contaminated soil. For example, (a) a method of injecting cleaning water into the soil through a drilling hole provided in the contaminated soil, discharging the contaminated soil excavated by this injection pressure to the ground by recirculation of water, and performing a purification treatment (JP 2001- (262), (b) Multiple water injection wells and pumping wells are provided so as to surround the contaminated area, the wash water is poured into the contaminated soil through the water injection well, and the wash water passing through the contaminated area is pumped to the ground by the pumping well. Purification method to return to the soil through the water injection well (JP-A-10-277531), (c) Heat the groundwater pumped up through the pumping well, and send the heated groundwater to the contaminated area through the water injection well Purification method to promote the vaporization of harmful substances in soil (Japanese Patent Laid-Open No. 9-174034), (d) Contaminated groundwater is pumped up through a pumping well provided on the downstream side of the contaminated area, and the purified water on the upstream side Return to the ground through the water injection well In addition, a purification method (JP-A-8-323338) is known in which the purified water flows through the contaminated area to wash the contaminated area and repeat the cycle of pumping up and purifying again.
[0003]
(E) Drilling multiple water wells in the contaminated area, inserting a water jet device into this well, spraying clean water containing emulsifying material into the soil from the water well, and sprinkling the contaminated soil In addition, a method for purifying soil (Patent No. 2750883) is known, and (f) a water blocking wall is provided deeper than the groundwater surface, and a water injection hole and a water pumping hole are excavated in the area surrounded by the water blocking wall. Introducing water from the water injection hole to raise the groundwater level to clean the contaminated area and to generate a groundwater flow from the water injection hole to the pumping hole, pumping the groundwater containing the pollutant from the water pumping hole to remove the pollutant A purification method (Patent No. 31911132) is known in which groundwater is returned to the soil again through a water injection hole later.
[0004]
However, the conventional soil purification methods for washing the contaminated area with water are all treatment methods in which a large number of injection wells or pumping wells are provided in the contaminated area and the purified water is pumped through these wells. A large number of water injection wells and pumping wells are required to allow the washing water to flow through. In addition, since the water injection location is dotted with respect to the contaminated area, it is difficult for the wash water flowing out from the well to spread evenly in the contaminated area even if many wells are provided. However, there is a problem that the time required for the end of cleaning is limited by time in the contaminated area having the lowest flux density.
[0005]
Furthermore, in the method of infiltrating washing water from the ground surface into the soil as described in (e) above, the time for the water to diffuse and penetrate to the contaminated site becomes the rate-determining treatment time, and the pumping well is used to increase the treatment efficiency. If the amount of water pumped up from the ground becomes higher, the groundwater level will have a gradient toward the pumping well, so the wash water flux will be biased toward the pumping well, and unwashed parts will remain at points away from the pumping well. Cause problems. In the above method (f), the washing water flux flows from the individual injection wells to the individual pumping wells, but the direction and flow rate are determined by the positional relationship of the wells and are not uniform. In addition, there is a problem that the cleaning speed is limited by the cleaning speed of the portion having a low flux density.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the conventional method in a treatment method in which washing water is poured into a contaminated area of the soil, and a trench is constructed in the soil to be treated, and the washing water is discharged through the wall of the trench. In this way, the washing water is effectively allowed to flow over a wide area including the contaminated area, and an oxidant addition means or a washing water electrolysis means is provided to enhance the washing effect, and preferably, the washing water is included in the pumped washing water. The present invention provides a soil purification method and a soil purification system in which means for removing contaminants are provided in two stages to reliably remove the contaminants and to circulate and use wash water.
[0007]
[Means for solving the problems]
The present invention relates to a soil purification method having the following configuration.
[1] A water injection trench and a water pumping trench are provided in the soil, the cleaning water is discharged from the water injection trench into the soil, and the cleaning water flows into the contaminated area between the water pouring trench and the water pumping trench. In a purification method that pumps water from the pumping trench and cleans the contaminated area, a circulation path is provided to return the cleaning water pumped from the pumping trench to the water injection trench, and water level sensors are installed in the water level measurement holes on the upstream and downstream sides of the contaminated area. Or water level sensors are provided in the water filling and pumping trenches to form groundwater level observation means, and this groundwater level observation means controls the wash water level to be above the contaminated area in the ground. A means for removing pollutants contained in the wash water pumped from the water is provided, and electrolysis means and hypochlorite for the wash water from which the pollutants have been removed After installing the acid soda concentration measurement means and removing the pollutants contained in the wash water pumped up from the pumping trench, the wash water is electrolyzed to adjust the concentration of sodium hypochlorite contained in the wash water, A soil remediation method characterized by flowing the wash water into a contaminated area for washing .
[2] Water injection trench and pumping trench provided opposite to each other in the soil, means for supplying cleaning water to the water injection trench, means for pumping cleaning water from the pumping trench, means for removing contaminants contained in the pumped cleaning water , A circuit for introducing purified cleaning water into the water injection trench, electrolysis means for cleaning water, concentration measuring means for sodium hypochlorite, and further provided in water level measuring holes upstream and downstream of the contaminated area Groundwater level observation means is formed by water level sensors, or water level sensors installed in the water filling and pumping trenches. The groundwater level observation means controls the wash water level to be above the contaminated area and pumps it from the pumping trench. After removing contaminants contained in the wash water, the wash water is electrolyzed to adjust the concentration of sodium hypochlorite contained in the wash water, A soil remediation system characterized by flowing the wash water into a contaminated area for washing .
[3] In the soil purification system of [2], as means for removing pollutants, means for performing ion exchange or electrodialysis of wash water pumped from a pumping trench, and means for adsorbing heavy metals contained in the wash water Having soil purification system.
[0008]
Furthermore, this invention relates to the soil purification system which has the following structures.
[4] Water injection trench and pumping trench provided opposite to each other in the soil, means for supplying cleaning water to the water injection trench, means for pumping cleaning water from the pumping trench, means for removing contaminants contained in the pumped cleaning water A circuit for introducing purified cleaning water into the water injection trench, means for measuring the residual oxidant concentration contained in the cleaned cleaning water, means for adding an oxidant to the cleaned cleaning water, and further upstream of the contaminated area Groundwater level observation means is formed by the water level sensors provided in the water level measurement holes on the side and downstream side, or the water level sensors provided in the water injection and pumping trenches, and the water level of the wash water is above the contaminated area by the groundwater level observation means. controlled to so as to wash the contaminated zone in a soil remediation system, a means for removing contaminants, the washing water pumped from the pumping trench Soil purification system having means for adsorbing heavy metals contained means for performing ion exchange or electrodialysis, and washing water.
[0009]
In the soil purification method of the present invention, since the wash water is discharged from the wall surface of the water injection trench, unlike the case of using a conventional water injection well, the water discharge surface is wide and the wash water can be flowed uniformly over the contaminated area. it can. Further, an oxidant addition means is provided in the water injection trench, preferably a means for measuring the residual oxidant concentration, and the cleaning effect can be enhanced by flowing cleaning water containing a predetermined concentration of oxidant into the contaminated area. Alternatively, instead of the oxidant addition means and the residual oxidant concentration measurement means, a cleaning water electrolysis means and a residual chlorine concentration measurement means are provided, and the cleaning effect is achieved by flowing the cleaning water whose chlorine concentration is controlled within a predetermined range to the contaminated area. Can be increased.
[0010]
Furthermore, as a means for removing contaminants contained in the wash water pumped up through the pumping trench, pumping was performed by using a means for adsorbing heavy metals contained in the wash water together with a means for performing ion exchange or electrodialysis of the wash water. Contaminants contained in the wash water can be reliably removed, and by using this wash water in a circulating manner, the purification effect can be further enhanced, the burden of waste water treatment can be reduced, and soil purification can be performed at low cost. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a soil purification method or a soil purification system of the present invention will be specifically described with reference to a configuration example shown in the drawings. 1 is a schematic longitudinal sectional view showing a soil purification system according to the present invention, FIG. 2 is a schematic plan view thereof, FIG. 3 is a schematic longitudinal sectional view showing a positional relationship with a contaminated area, and FIG. 4 is a soil according to the present invention. It is a schematic block diagram which shows the contaminant removal means of a purification system, an oxidizing agent addition means, and a washing water circulation path.
[0012]
In the illustrated soil purification system of the present invention, a water shielding wall 10 is provided so as to surround a contaminated area A, a water injection trench 11 is provided on the upstream side of a region surrounded by the water shielding wall 10, and a pumping trench 12 is provided on the downstream side. Is provided. The water injection trench 11 and the pumping trench 12 are formed to be elongated along the impermeable walls 10 on both sides, and are placed opposite to each other across the contaminated area A. Each of the trenches 11 and 12 is excavated to a depth reaching the underground water-impermeable layer 20, and the outer peripheries of the trenches 11 and 12 are surrounded by the water-impervious wall 10. Moreover, the upper part of the inner wall of each trench 11 and 12 is formed of the water-impervious wall 10, and the lower part is formed of the water-permeable wall surface.
[0013]
Specifically, for example, the upper portion of the inner wall of the water injection trench 11 is formed of a water-impervious concrete wall, and the lower portion of the water injection trench 11 is filled with a water-permeable material such as crushed stone or gravel. The material forms the lower wall surface of the inner wall. In addition, since the washing water can be prevented from diffusing outside the construction area if the construction place is enclosed by the impermeable wall 10, the cleaning effect of the contaminated area is improved. However, depending on the conditions of the construction place, only a part of the impermeable wall 10 is provided. May or may not be provided.
[0014]
On the other hand, the upper part of the pumping trench 12 is formed by a water-impervious concrete wall or the like, and the lower part of the inner wall is formed by a water-permeable concrete wall having a large number of through holes. Further, the pumping trench 12 is connected to a pumping pump 15 that pumps the cleaning water that has passed through the contaminated area A.
[0015]
The water injection trench 11 and the pumping trench 12 may have a structure sandwiched between steel sheet piles or a structure in which steel pipe piles are connected. Any structure can be used as long as the cleaning water in the trench portion can easily move, the outer peripheral portion is formed by a water-impervious wall surface, and a hole or strainer for passing water can be constructed at a predetermined depth. Mixing of the groundwater in the contaminated area to be cleaned and the surrounding groundwater is suppressed by this outer peripheral impermeable wall. It is preferable to drive the outer impermeable wall up to a hardly water permeable layer (such as a clay layer) or a depth sufficiently deeper than the depth to be cleaned. In addition, the water-impervious wall at the top of the inner wall prevents water leaking upward from the depth at which cleaning is performed, and maintains a water head pressure on the injection side of the cleaning water up to a depth enough to enter the cleaning area in the soil. It is preferable to drive in. By adjusting the height of the water-impervious wall at the upper part of the inner wall, it is possible to control the washing water to flow intensively with respect to the contaminated area.
[0016]
A water injection conduit 16 for cleaning water is connected to the water injection trench 11 and a water injection valve 17 is attached. On the other hand, a pumping pipe 18 is connected to the pumping trench 12 to guide the cleaning water pumped up to the treatment facility. Wash water is introduced into the water injection trench 11 through the pipe line 16. The washing water is supplied to the water injection trench 11 through the pipe line 16, discharged into the soil from the lower permeable inner wall surface, flows through the contaminated area A located between the water injection trench 11 and the pumping trench 12, and is pumped by the pump 15. The water is pumped to the ground and sent to the treatment facility through the pipe 18 where the contaminants contained in the wash water are removed.
[0017]
The soil purification system of the present invention is preferably provided with a means for measuring the water level of the wash water flowing in the underground (hereinafter referred to as the groundwater level). In the configuration example shown in FIGS. 1 and 2, water level measurement holes 31 and 32 are provided on the upstream side and the downstream side so that the inclination of the groundwater level can be measured, and a water level sensor is installed in the water level measurement holes 31 and 32. Has been. In addition, you may provide a water level measurement sensor in the water injection trench 11 and the pumping trench 12 without providing a water level measurement hole. Soil purification is performed by monitoring the groundwater level with this water level measuring means.
[0018]
Further, in the illustrated configuration example, a water level control unit 33 that connects the water level measurement center to the water injection valve 17 and the pumping pump 15 is formed. The control system 33 controls the operation of the water injection valve 17 and the pump 15 based on the information of the water level sensor, and automatically controls the groundwater level so that the groundwater level is above the contaminated area A and the contaminated area A is submerged. To do. Specifically, for example, when the groundwater level is lower than the reference water level, the water injection valve 17 is opened to perform water injection, or the pumping pump 15 is stopped. On the other hand, when the groundwater level is higher than the reference water level, the water injection valve 17 is closed or the pumping pump 15 is operated.
[0019]
The soil cleaning system shown in FIG. 4 includes means for adding an oxidizing agent to cleaning water from which contaminants have been removed, means for removing contaminants contained in the pumped cleaning water, and circulation for returning the cleaning water to the water injection trench. There is a road. The circulation path is provided with a liquid feed pump 35 at an appropriate location.
[0020]
As shown in the drawing, the water injection trench 11 is connected to the adjustment tank 26 through the pipe line 16. Wash water is introduced into the adjustment tank 26, and means 27 for measuring the residual oxidant concentration of the wash water and means 28 for supplying the oxidant are provided. The measured value of the residual oxidant concentration is transmitted to the oxidant supply means 28, and an amount of oxidant corresponding to this value is added to the wash water in the adjustment tank 27, so that the wash water oxidant concentration is kept within a certain range. It is. As the oxidizing agent, for example, sodium hypochlorite (NaOCl) can be used. The concentration of the oxidizing agent is adjusted according to the degree of soil contamination. The cleaning water whose oxidant concentration is adjusted is supplied from the adjustment tank 26 to the water injection trench 11 through the water injection pipe 16 and the valve 17.
[0021]
Instead of adding an oxidizing agent, electrolysis means for washing water may be provided. This electrolysis means may be installed at the upper end of the water injection trench 11 or may be installed in a contaminated area A in the soil. Sodium hypochlorite is produced by electrolysis of the wash water. Suitable conditions for the electrolysis are, for example, a current density of 1 to 100 A / m 2 and a voltage of 1.5 to 10 V.
[0022]
Sodium hypochlorite eventually decomposes into sodium chloride and oxygen (2NaOCl → 2NaCl + O 2 ), but exhibits strong oxidizing power while hypochlorite ions (OCl ) are present. Using this oxidizing power, sulfides such as CdS and PbS and contaminants of insoluble heavy metal compounds such as Se and As are ionized to be soluble. As described above, the concentration of sodium hypochlorite is adjusted by the residual ion concentration. The concentration of hypochlorite ions in the cleaning water supplied to the water injection trench 11 is generally about 0.4 to 40 mg / l.
[0023]
The cleaning water containing the oxidizing agent is discharged into the soil from the wall surface of the water injection trench 11, passes through the contaminated area, and flows into the pumping trench 12. In addition, you may pressurize the wash water discharged from the water injection trench 11, and you may give a pulsation and may discharge water. The cleaning water that has flowed through the contaminated area and reached the pumping trench 12 is pumped up through a pipe line 18 provided in the pumping trench 12.
[0024]
A pumping pipe line 18 extending from the pumping trench 12 is connected to a water receiving tank 20 and a processing tank 21 through a valve 19. The water receiving tank 20 is provided with means 22 for measuring the residual salt concentration contained in the washing water, and this measured value is transmitted to the valve 19 so that the pipe 18 is connected to either the water receiving tank 20 or the processing tank 21. It can be switched to.
[0025]
Washing water having a residual salinity concentration higher than the reference is introduced into the treatment tank 21 through the valve 19. The treatment tank 21 is provided with an ion exchange membrane or electrodialysis means, and purifies the washing water by separating residual salt from the washing water by ion exchange or electrodialysis. The washing water that has flowed out of the treatment tank 21 is introduced into the water receiving tank 20 through the conduit 23. On the other hand, the wash water having a residual salinity concentration lower than the reference is directly introduced into the water receiving tank 20 by switching the passage of the valve 19. The separated salt is discharged from the treatment tank 21 to the outside.
[0026]
The reference for the residual salinity concentration is set according to the processing conditions. For example, it is about 2.0 wt%. Generally, if the residual salinity of the wash water pumped up is higher than this, the salinity in the soil after washing becomes high. When the upper limit standard of the residual salinity concentration is 2.0 wt%, if the concentration exceeds 90%, that is, the residual salinity concentration is 1.8 wt% or more, the salinity may be separated.
[0027]
On the other hand, heavy metals such as Cd and Pb contained in washing water cannot be removed by ion exchange or electrodialysis. Therefore, the washing water of the water receiving tank 20 is guided to the adsorption tank 24 where heavy metals are adsorbed on the adsorbent and removed. As shown in FIG. 5, the adsorption tank 24 is divided into two parts, the adsorbent 25 is filled in the downstream portion, and the washing water flowing into the upstream chamber passes through the adsorbent 25 and overflows. It is good to form. According to this structure, the contact time between the washing water and the adsorbent becomes long, and the adsorbent can be easily replaced. As the adsorbent 25, calcium phosphate (apatite) is used for cationic metals such as Cd and Pb, and clay minerals such as Schwertmannite for anionic metals such as As and Se. Should be used.
[0028]
The apatite may be pulverized to an average particle size of about 5 to 30 mm. If it is coarser than this, the surface area becomes small, and if it is too fine, the amount of loss to the outside of the tank increases, which is not preferable. Also, clay minerals such as Schwertmannite are preferably filled into the adsorption tank 24 together with crushed stone having a particle size of 20 to 30 mm. In addition, an apatite filling portion and a clay mineral filling portion are formed inside the adsorption tank 24 so that washing water flows continuously through both filling portions, and both cationic heavy metals and anionic heavy metals are removed by adsorption. May be.
[0029]
The washing water purified in the adsorption tank 24 is sent to the adjustment tank 26 through the storage tank 25. As described above, the oxidant concentration of the cleaning water is adjusted to a certain range in the adjusting tank 27 and then supplied to the water injection trench 11 through the pipe line 16 and the valve 17 and repeatedly used for cleaning the contaminated area.
[0030]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
Using a processing container having a liquid passage hole at the bottom, qualitative filter paper is laid on the bottom of the container, 400 g of test soil containing 200 mg / kg of cadmium sulfide (CdS) is filled thereon, and washing water containing sodium hypochlorite Was poured from the top of the container to wash the soil. The results are shown in Table 1. The amount of washing water is 150 ml / min, the amount of water per unit area is 2.63 cm 3 / cm 2 · min, and the residual chlorine concentration and elution Cd concentration are the chlorine concentration and Cd concentration contained in the washing water flowing out from the bottom of the container. The residual Cd concentration is the Cd concentration remaining in the soil. Although the cleaning effect is low up to 1000 m 3 / m 2 , the cadmium sulfide content in the soil is almost eliminated and the residual Cd concentration in the soil is reduced to 0 when the cleaning water amount exceeds 10,000 m 3 / m 2. It can be reduced to 1 mg / kg.
[0031]
[Table 1]
Figure 0004470408
[0032]
[Example 2]
The heavy metal contaminated area in the soil was washed by the soil purification system of FIG. Treatment conditions and effects are shown in Table 2.
[0033]
[Table 2]
Figure 0004470408
[0034]
【The invention's effect】
In the soil purification method of the present invention, the wash water is discharged from the wall surface of the water injection trench, so that the water discharge surface is wide, the wash water can be uniformly flowed to the contaminated area, and a water level measurement hole is provided to adjust the measurement water level. The cleaning effect is improved by controlling the amount of water injected or pumped based on this and maintaining the water level of the cleaning water flowing through the contaminated area in the soil appropriately. Further, the cleaning effect can be further improved by adjusting the oxidizing agent concentration of the cleaning water to a predetermined range. Furthermore, the cleaning water can be reused by increasing the purification effect of the cleaning water by removing the contaminants contained in the cleaning water pumped up through the pumping trench in two stages.
[Brief description of the drawings]
1 is a schematic longitudinal sectional view showing a soil purification system according to the present invention. FIG. 2 is a schematic plan view of the soil purification system of FIG. 1. FIG. 3 is a schematic longitudinal sectional view of the soil purification system of FIG. 4] Schematic configuration diagram showing the contaminant removal means, oxidant addition means, and wash water circulation path of the soil purification system of the present invention. [FIG. 5] Schematic cross-sectional view of the treatment tank. Water filling trench, 12-pumping trench, 13-water permeable layer, 15-pumping pump, 16-poured water line, 17-poured water valve, 18-pumped water line, 20-hardly permeable layer, 31, 32-water level measuring hole, 33 -Water level control unit,

Claims (4)

土壌中に注水トレンチと揚水トレンチを設け、注水トレンチから洗浄水を土壌中に放水して注水トレンチと揚水トレンチの間に存在する汚染域に洗浄水を流し、汚染域を流れた洗浄水を揚水トレンチから汲み上げて汚染域を洗浄する浄化方法において、揚水トレンチから汲み上げた洗浄水を注水トレンチに戻す循環路を設け、さらに汚染域の上流側および下流側の水位測定孔に水位センサーを設け、あるいは注水トレンチおよび揚水トレンチに水位センサーを設けて地下水位観測手段を形成し、この地下水位観測手段によって洗浄水の水位が地中の汚染域より上側になるように制御し、また揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去する手段を設け、さらに汚染物質を除去した洗浄水の電気分解手段および次亜塩素酸ソーダの濃度測定手段を設け、揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去した後に、この洗浄水を電気分解して洗浄水に含まれる次亜塩素酸ソーダの濃度を調整し、この洗浄水を汚染域に流して洗浄することを特徴とする土壌浄化方法。A water injection trench and a water pumping trench are provided in the soil, the cleaning water is discharged from the water injection trench into the soil, and the cleaning water flows into the contaminated area existing between the water pouring trench and the pumping trench, and the cleaning water flowing through the contaminated area is pumped up. In the purification method to clean up the contaminated area by pumping up from the trench, a circulation path for returning the wash water pumped up from the pumping trench to the water injection trench is provided, and water level sensors are provided in the water level measurement holes upstream and downstream of the contaminated area , or Groundwater level observation means was formed by installing water level sensors in the water injection and pumping trenches, and the groundwater level observation means was used to control the wash water level to be above the contaminated area in the ground, and the water was pumped from the pumping trench. means for removing pollutants contained in the washing water provided, further electrolysis means and hypochlorite source of the washing water to remove contaminants After removing contaminants contained in the wash water pumped up from the pumping trench, the wash water is electrolyzed to adjust the concentration of sodium hypochlorite contained in the wash water. A soil remediation method characterized by flowing water into a contaminated area for washing . 土壌中に相対向して設けた注水トレンチと揚水トレンチ、注水トレンチに洗浄水を供給する手段、揚水トレンチから洗浄水を汲み上げる手段、汲み上げた洗浄水に含まれる汚染物質を除去する手段、浄化した洗浄水を注水トレンチに導入する循環路、洗浄水の電気分解手段、次亜塩素酸ソーダの濃度測定手段を有し、さらに汚染域の上流側および下流側の水位測定孔に設けた水位センサー、あるいは注水トレンチおよび揚水トレンチに設けた水位センサーによって地下水位観測手段が形成されており、地下水位観測手段によって洗浄水の水位が汚染域より上側になるように制御し、揚水トレンチから汲み上げた洗浄水に含まれる汚染物質を除去した後に、この洗浄水を電気分解して洗浄水に含まれる次亜塩素酸ソーダの濃度を調整し、この洗浄水を汚染域に流して洗浄することを特徴とする土壌浄化システム。Water injection trench and pumping trench provided opposite to each other in soil, means for supplying cleaning water to water injection trench, means for pumping cleaning water from pumping trench, means for removing pollutants contained in pumped cleaning water, purified A water level sensor having a circulation path for introducing cleaning water into the water injection trench, electrolysis means for cleaning water, concentration measuring means for sodium hypochlorite, and further provided in water level measurement holes upstream and downstream of the contaminated area, Alternatively, the groundwater level observation means is formed by the water level sensors provided in the water injection trench and the pumping trench, and the cleaning water pumped up from the pumping trench is controlled by the groundwater level observation means so that the water level of the cleaning water is above the contaminated area. After removing the pollutants contained in the water, the wash water is electrolyzed to adjust the concentration of sodium hypochlorite contained in the wash water. Soil purification system, characterized in that washing by flowing water contaminated zone. 請求項2の土壌浄化システムにおいて、汚染物質の除去手段として、揚水トレンチから汲み上げた洗浄水のイオン交換または電気透析を行う手段、および該洗浄水に含まれる重金属を吸着する手段を有する土壌浄化システム。 3. The soil purification system according to claim 2, comprising means for performing ion exchange or electrodialysis of washing water pumped up from a pumping trench and means for adsorbing heavy metals contained in the washing water as means for removing contaminants. . 土壌中に相対向して設けた注水トレンチと揚水トレンチ、注水トレンチに洗浄水を供給する手段、揚水トレンチから洗浄水を汲み上げる手段、汲み上げた洗浄水に含まれる汚染物質を除去する手段、浄化した洗浄水を注水トレンチに導入する循環路、浄化した洗浄水に含まれる残留酸化剤濃度を測定する手段、浄化した洗浄水に酸化剤を添加する手段を有し、さらに汚染域の上流側および下流側の水位測定孔に設けた水位センサー、あるいは注水トレンチおよび揚水トレンチに設けた水位センサーによって地下水位観測手段が形成されており、地下水位観測手段によって洗浄水の水位が汚染域より上側になるように制御して汚染域を洗浄する土壌浄化システムにおいて、汚染物質の除去手段として、揚水トレンチから汲み上げた洗浄水のイオン交換または電気透析を行う手段、および該洗浄水に含まれる重金属を吸着する手段を有する土壌浄化システム。 Water injection trench and pumping trench provided opposite to each other in soil, means for supplying cleaning water to water injection trench, means for pumping cleaning water from pumping trench, means for removing pollutants contained in pumped cleaning water, purified It has a circulation path for introducing cleaning water into the water injection trench, means for measuring the residual oxidant concentration contained in the purified cleaning water, means for adding oxidant to the purified cleaning water, and further upstream and downstream of the contaminated area The groundwater level observation means is formed by the water level sensor provided in the water level measurement hole on the side, or the water level sensor provided in the water injection trench and the pumping trench, so that the water level of the washing water is above the contaminated area by the groundwater level observation means. in soil remediation system control to wash the contaminated zone to as means for removing contaminants, the washing water pumped from the pumping trench Io It means for performing exchange or electrodialysis, and soil remediation system having means for adsorbing heavy metals contained in the washing water.
JP2003206940A 2003-08-08 2003-08-08 Soil purification method and system Expired - Lifetime JP4470408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206940A JP4470408B2 (en) 2003-08-08 2003-08-08 Soil purification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206940A JP4470408B2 (en) 2003-08-08 2003-08-08 Soil purification method and system

Publications (2)

Publication Number Publication Date
JP2005058805A JP2005058805A (en) 2005-03-10
JP4470408B2 true JP4470408B2 (en) 2010-06-02

Family

ID=34363616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206940A Expired - Lifetime JP4470408B2 (en) 2003-08-08 2003-08-08 Soil purification method and system

Country Status (1)

Country Link
JP (1) JP4470408B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070694B2 (en) * 2005-11-11 2012-11-14 栗田工業株式会社 Containment method for contaminated soil and groundwater
JP5144918B2 (en) * 2006-11-17 2013-02-13 日本国土開発株式会社 Soil purification apparatus and soil purification method using hydrotalcite-like substance
KR100850165B1 (en) 2007-04-23 2008-08-04 (주)대우건설 Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents
JP5938168B2 (en) * 2011-05-16 2016-06-22 大和ハウス工業株式会社 Contaminated soil treatment system and contaminated soil treatment method
JP2015058415A (en) * 2013-09-20 2015-03-30 株式会社オメガ Cleaning method of contaminated soil
JP6484522B2 (en) * 2015-07-17 2019-03-13 鹿島建設株式会社 Clogging countermeasure system and clogging countermeasure method
JP7145637B2 (en) * 2018-04-27 2022-10-03 清水建設株式会社 Method for treating selenium-containing soil and rock
CN109467143B (en) * 2018-12-07 2024-01-02 中冶南方都市环保工程技术股份有限公司 Shallow groundwater extraction and restoration treatment system and method
KR102184625B1 (en) * 2020-05-06 2020-11-30 (주)한국환경복원기술 Ultrasonic Soil Decontamination Device Within Cleaning Water Purification System
CN113753981A (en) * 2021-09-17 2021-12-07 河北省地矿局第三水文工程地质大队 Fourth series underground water and soil pollution treatment method
KR102589606B1 (en) * 2022-11-29 2023-10-17 한국건설기술연구원 System and Method for Remediation of Polluted Ground Water and for Recharge of Ground Water

Also Published As

Publication number Publication date
JP2005058805A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP3079109B2 (en) How to remove halogenated pollutants in groundwater
JP4470408B2 (en) Soil purification method and system
US7077208B2 (en) Method and system for directing fluid flow
CN109689236B (en) Polluted soil purifying method
JP3728510B2 (en) Soil pollution countermeasure method and soil pollution countermeasure system
US20070000841A1 (en) Directing fluid flow in remediation and other applications
US7108837B2 (en) Polluted soil remediation apparatus and pollutant degrading apparatus
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
JP2000051834A (en) Method for remedying polluted soil
KR101579241B1 (en) Multi-contaminated soil's Remediation system using In-Situ Hybrid Soil Flushing and Remediation method using the same
JP3894073B2 (en) Soil purification method by trench method
JP5176753B2 (en) In-situ containment method
JP3831769B2 (en) Purification equipment and purification method for contaminated soil
JP2004330084A (en) Method and equipment for contaminated-soil in situ treatment
KR100667465B1 (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology
JP2004223491A (en) Method for purifying soil
JP4572761B2 (en) In-situ containment method and in-situ containment device
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
JP4329361B2 (en) Groundwater purification wall and groundwater purification method
JP2004321863A (en) Original position cleaning apparatus for polluted soil
JP2007061799A (en) METHOD FOR pH ADJUSTMENT OF GROUND WATER
JP4292921B2 (en) Purification method and system for hardly air permeable and contaminated soil
KR102604316B1 (en) Installation facilities of permeable reactive barriers through hybrid groundwater flow control
JP4055076B2 (en) Contaminated soil purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150