JP4282501B2 - Reflow soldering apparatus and method - Google Patents

Reflow soldering apparatus and method Download PDF

Info

Publication number
JP4282501B2
JP4282501B2 JP2004026161A JP2004026161A JP4282501B2 JP 4282501 B2 JP4282501 B2 JP 4282501B2 JP 2004026161 A JP2004026161 A JP 2004026161A JP 2004026161 A JP2004026161 A JP 2004026161A JP 4282501 B2 JP4282501 B2 JP 4282501B2
Authority
JP
Japan
Prior art keywords
temperature
printed wiring
heating
wiring board
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004026161A
Other languages
Japanese (ja)
Other versions
JP2005222964A (en
Inventor
耕一 永井
彰男 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004026161A priority Critical patent/JP4282501B2/en
Publication of JP2005222964A publication Critical patent/JP2005222964A/en
Application granted granted Critical
Publication of JP4282501B2 publication Critical patent/JP4282501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電子部品などの部品が搭載されたプリント配線基板を加熱してはんだ付けを行なうリフローはんだ付け装置および方法に関する。   The present invention relates to a reflow soldering apparatus and method for performing soldering by heating a printed wiring board on which components such as electronic components are mounted.

図5は従来の代表的なリフローはんだ付け装置の構成を示す。図5(a)に示すように、電子部品などの部品1a,1bが搭載されたプリント基板1をリフローはんだ付けするリフローはんだ付け装置は、複数個の炉体22で構成されていて、電子部品などの部品1a,1bが搭載されたプリント基板1は、一定の速度で稼動される搬送チェーン23に載せられて、複数個の炉体22に連続的に搬入搬出される。   FIG. 5 shows a configuration of a conventional typical reflow soldering apparatus. As shown in FIG. 5 (a), a reflow soldering apparatus for reflow soldering a printed circuit board 1 on which components 1a and 1b such as electronic components are mounted includes a plurality of furnace bodies 22, and the electronic components The printed circuit board 1 on which the components 1a and 1b are mounted is placed on a transport chain 23 that operates at a constant speed, and is continuously carried into and out of a plurality of furnace bodies 22.

各炉体22の内部には、図5(b)にも示すように、雰囲気ガスを強制的に循環させる循環ファン24が設置されるとともに、その循環経路中にシーズヒータ25とノズル26とが配置されていて、炉体22内を搬送されるプリント基板1は、シーズヒータ25により所定の温度に昇温された雰囲気ガスがノズル26を通して熱風として吹きつけられ加熱される。   As shown in FIG. 5B, a circulation fan 24 for forcibly circulating the atmospheric gas is installed in each furnace body 22, and a sheathed heater 25 and a nozzle 26 are provided in the circulation path. The printed circuit board 1 that is disposed and transported in the furnace body 22 is heated by blowing air as hot air through the nozzle 26, which is heated to a predetermined temperature by the sheath heater 25.

なお、複数個の炉体22はそれぞれ熱容量が大きく、循環される雰囲気ガスの量も大きく、全体がカバー27で覆われていることから、各炉体22内の温度はほぼ均一に保たれている。このため複数個の炉体22にわたって連続的に搬入搬出されるプリント基板1は、各炉体22内で均一な熱量が与えられ、プリント基板1上の温度ばらつきは極力抑えられる。   Each of the plurality of furnace bodies 22 has a large heat capacity and a large amount of atmospheric gas to be circulated, and the entire furnace body 22 is covered with the cover 27, so that the temperature in each furnace body 22 is kept substantially uniform. Yes. For this reason, the printed circuit board 1 carried in and out continuously over a plurality of furnace bodies 22 is given a uniform amount of heat in each furnace body 22, and temperature variations on the printed circuit boards 1 are suppressed as much as possible.

図6に示す他の代表的なリフローはんだ付け装置にあっては、プレートヒータ28を下部に配した吸着ブロック29がステージとして設けられていて、プリント基板1は吸着ブロック29の上面に吸着され、吸着ブロック29を介して伝えられるプレートヒータ28の熱によって加熱される。プリント基板1の搬送は、一つずつ個別に搬送する方式であり、プリント基板1は搬入時に吸着ノズル(図示せず)で吸着して吸着ブロック29上に設置され、リフロー加熱終了後に搬入時と同様に吸着ノズルで搬出される。   In another typical reflow soldering apparatus shown in FIG. 6, an adsorption block 29 having a plate heater 28 disposed below is provided as a stage, and the printed circuit board 1 is adsorbed on the upper surface of the adsorption block 29. Heated by the heat of the plate heater 28 transmitted through the suction block 29. The printed circuit boards 1 are transported individually one by one. The printed circuit boards 1 are sucked by suction nozzles (not shown) at the time of carry-in and placed on the suction block 29. Similarly, it is carried out by the suction nozzle.

しかしながら、図5を用いて説明した従来のリフローはんだ付け装置では、処理対象のプリント基板1に対して一様に均一な熱量が加えられるため、プリント基板1上に搭載された部品1a,1bが耐熱性の低い電子部品等である場合に、また特に鉛フリーはんだが使用されている等の理由で高温雰囲気に曝される場合に、必要以上の熱ストレスを受けて、耐熱仕様限界を超えてしまうこともあり、部品の機能破壊が生じてしまう。   However, in the conventional reflow soldering apparatus described with reference to FIG. 5, a uniform and uniform amount of heat is applied to the printed circuit board 1 to be processed. Therefore, the components 1 a and 1 b mounted on the printed circuit board 1 are When it is an electronic component with low heat resistance, etc., especially when it is exposed to a high temperature atmosphere due to the use of lead-free solder etc. In some cases, the function of the component is destroyed.

図6を用いて説明したリフローはんだ付け装置では、ステージ(吸着ブロック29)自体の熱容量が大きいことと、プリント基板1をステージに吸着するための空間がステージ内部にあることから、プレートヒータ28からプリント基板1への熱伝達の効率が非常に悪い。また、プリント基板1がステージ上に設置された際にステージ表面の熱を奪うことになるが、このステージ表面に対してプレートヒータ28が離れているため、失われた熱を補う加熱の応答が非常に遅い。これらの結果、プリント基板1の昇温速度が遅くなり、はんだ付け接合部の加熱が終わるまでに耐熱性の低い部品に熱が伝わってしまい、部品によっては耐熱仕様温度を超えてしまうことに繋がる。   In the reflow soldering apparatus described with reference to FIG. 6, since the heat capacity of the stage (suction block 29) itself is large and the space for sucking the printed circuit board 1 to the stage is inside the stage, the plate heater 28 The efficiency of heat transfer to the printed circuit board 1 is very poor. Further, when the printed circuit board 1 is placed on the stage, the heat of the stage surface is taken away. However, since the plate heater 28 is separated from the stage surface, there is a response of heating to compensate for the lost heat. Very slow. As a result, the rate of temperature rise of the printed circuit board 1 is slowed, and heat is transferred to the low heat resistance component by the time the heating of the soldered joint is finished, leading to exceeding the heat resistant specification temperature depending on the component. .

本発明は上記問題を解消するもので、耐熱性の低い部品を搭載したプリント基板に対しても、部品の昇温をその仕様限界以下に抑えながら、はんだ付け接合部付近を所望の昇温条件に保つことができ、安定したリフローはんだ付け品質が得られるリフローはんだ付け装置および方法を提供することを目的とするものである。   The present invention solves the above-mentioned problem. Even on a printed circuit board mounted with a component having low heat resistance, the temperature rise of the component is suppressed to the specification limit or less, and the vicinity of the soldered joint is desired temperature increase condition. It is an object of the present invention to provide a reflow soldering apparatus and method capable of maintaining a stable reflow soldering quality.

上記課題を解決するために、本発明のリフローはんだ付け装置は、表面に部品が搭載されたプリント配線基板を加熱してはんだ付けを行なうリフローはんだ付け装置であって、前記プリント配線基板の裏面における加熱対象部に接触する部分のみが磁性体で構成され残部が非磁性体、且つ磁界を遮断する材料で構成されて電磁誘導加熱可能なものであり、前記プリント配線基板が設置されて搬送経路に沿って所定の速度で連続搬送されるパレットと、互いに磁力線が干渉しない配置で搬送経路上の予熱領域と本加熱領域とに区分されて設置された複数のコイルと、前記プリント配線基板もしくは前記パレットの温度を非接触で検出する温度検出手段と、前記温度検出手段の検出温度に応じて前記複数のコイルに供給する交流電流を調節しながら、搬送経路に沿って所定の速度で連続搬送されている前記パレットの加熱量を制御する制御手段とを備えたことを特徴とする。 In order to solve the above-described problems, a reflow soldering apparatus according to the present invention is a reflow soldering apparatus that heats and solders a printed wiring board having components mounted on the surface thereof, and is provided on the back surface of the printed wiring board . is the balance non-magnetic construction only a portion contacting the heat target portion of a magnetic material, and made of a material that blocks a magnetic field are those capable electromagnetic induction heating, the conveying path the printed circuit board is installed Pallets that are continuously transported at a predetermined speed along with them, a plurality of coils that are arranged in a preheating area and a main heating area on the transport path in an arrangement where magnetic lines of force do not interfere with each other, and the printed wiring board or the pallet temperature detecting means for detecting the temperature in a non-contact, in accordance with the detected temperature of said temperature detecting means to regulate the alternating current supplied to the plurality of coils Naga , Characterized in that a control means for controlling the heating amount of said pallet along a conveyor path are continuously conveyed at a predetermined speed.

また本発明のリフローはんだ付け方法は、表面に部品が搭載されたプリント配線基板を加熱してはんだ付けを行なう際に、前記プリント配線基板の裏面における加熱対象部に接触する部分のみが磁性体で構成され残部が非磁性体、且つ磁界を遮断する材料で構成されて電磁誘導加熱可能なパレットに前記プリント配線基板を設置し、互いに磁力線が干渉しない配置で搬送経路上の予熱領域と本加熱領域とに区分されて設置された複数のコイルに前記パレットを所定の速度で連続搬送し、前記プリント配線基板もしくは前記パレットの温度を非接触の温度検出手段で検出し、制御手段で、前記温度検出手段の検出温度に応じて前記複数のコイルに供給する交流電流を調節しながら、搬送経路に沿って所定の速度で連続搬送されている前記パレットの加熱量を制御し、それにより加熱される前記加熱対象部で前記部品との間のはんだを溶融させることを特徴とする。 In the reflow soldering method of the present invention, when soldering is performed by heating a printed wiring board having components mounted on the surface, only the part in contact with the heating target part on the back surface of the printed wiring board is made of a magnetic material. The pre-heated area and the main heating area on the conveyance path are arranged in such a manner that the printed wiring board is installed on a pallet that is made of a non-magnetic material and the magnetic shielding material and is capable of electromagnetic induction heating, and the magnetic lines of force do not interfere with each other. The pallet is continuously conveyed at a predetermined speed to a plurality of coils that are divided and installed, and the temperature of the printed wiring board or the pallet is detected by a non-contact temperature detection means, and the temperature detection is performed by a control means The pallet being continuously conveyed at a predetermined speed along the conveyance path while adjusting the alternating current supplied to the plurality of coils in accordance with the detected temperature of the means. Controls of heating amount, characterized in that by melting the solder between the components by the heat target portion to be heated.

上記したリフローはんだ付け装置および方法のそれぞれにおいて、パレットの発熱量は、パレット自体もしくはプリント配線基板の温度を検出しつつ容易に調節できるので、はんだ付け接合部付近を所望の昇温条件に保ちながら、耐熱性の低い部品の搭載時にはその昇温を仕様限界以下に確実に抑えることができ、加熱の必要な部分のみ効率良く加熱することができる。さらに、加熱効率を向上できるとともに、安定したリフローはんだ付け品質が得られる。 In each of the reflow soldering apparatus and method described above, the heating value of the palette, because it easily adjusted while detecting the temperature of the pallet itself or printed wiring board, while keeping the vicinity of soldered joints on the desired heating conditions When a component with low heat resistance is mounted, the temperature rise can be reliably suppressed to below the specification limit, and only the portion that needs to be heated can be efficiently heated. Furthermore, the heating efficiency can be improved and a stable reflow soldering quality can be obtained.

温度検出手段は、プリント配線基板もしくは加熱物に対向するように配置された非接触温度計とすることができ、それによりプリント配線基板の静止状態で、もしくは連続搬送される状態で、温度を検出することができ、加熱時の温度制御を容易に行うことができる。   The temperature detection means can be a printed wiring board or a non-contact thermometer arranged so as to face the heated object, thereby detecting the temperature when the printed wiring board is stationary or continuously conveyed. Therefore, temperature control during heating can be easily performed.

本発明のリフローはんだ付け装置および方法は、プリント配線基板の加熱対象部に電磁誘導加熱可能な加熱物を接触配置するので、耐熱性の低い部品を搭載したプリント基板に対しても、不必要な熱ストレスを与えることなく部品との接合部を効率よく加熱することが可能であり、生産品質の向上を図ることができる。プリント基板を連続搬送する加熱処理も可能であり、タクトの向上を図ることができる。   In the reflow soldering apparatus and method of the present invention, a heated object that can be heated by electromagnetic induction is placed in contact with the heating target portion of the printed wiring board, which is unnecessary even for a printed board on which components having low heat resistance are mounted. It is possible to efficiently heat the joint with the component without applying thermal stress, and the production quality can be improved. Heat treatment for continuously conveying the printed circuit board is also possible, and the tact can be improved.

以下、本発明の実施の形態を説明する。
(第1実施形態)
図1は、本発明の第1実施形態におけるリフローはんだ付け装置の要部構成を示す断面図である。
Embodiments of the present invention will be described below.
(First embodiment)
FIG. 1 is a cross-sectional view showing the main configuration of a reflow soldering apparatus according to a first embodiment of the present invention.

図1(a)において、プリント基板1は電子部品などの部品1a,1bを上面に搭載しており、部品1a,1bの搭載位置にはクリームはんだ1cが印刷されている。
ステージ2は、個別搬送されるプリント基板1をリフロー加熱するものであり、プリント基板1は搬入時に吸着ノズルで(図示せず)吸着してステージ2上に設置され、リフロー加熱終了後に搬入時と同様に吸着ノズルで吸着して搬出される。
1A, a printed circuit board 1 has components 1a and 1b such as electronic components mounted on the upper surface, and cream solder 1c is printed at the mounting positions of the components 1a and 1b.
The stage 2 is for reflow heating the printed board 1 that is individually conveyed. The printed board 1 is sucked by a suction nozzle (not shown) at the time of carry-in and placed on the stage 2, and is loaded after the reflow heating is finished. Similarly, it is picked up and taken out by a suction nozzle.

このステージ2は、プリント基板1が上面に設置される加熱プレート3と、外部の吸引手段4に連通する内部空間5を有している。加熱プレート3の基板設置領域には、一端が内部空間5に臨み他端が加熱プレート3の上面で開口する複数の小孔3aが形成されていて、吸引手段4により内部空間5内が負圧にされた時に、上面に設置されたプリント配線基板1が吸着保持される。   The stage 2 has a heating plate 3 on which the printed circuit board 1 is installed, and an internal space 5 that communicates with external suction means 4. A plurality of small holes 3 a having one end facing the internal space 5 and the other end opened on the upper surface of the heating plate 3 are formed in the substrate installation area of the heating plate 3. When printed, the printed wiring board 1 installed on the upper surface is held by suction.

内部空間5には、電磁誘導用のコイル6が配置されるとともに、コイル6から発生する磁力線を効率的に加熱プレート3の方向に案内するためのフェライト部材7がコイル6の周辺に均等に配置されている。コイル6の出力制御は制御ユニット8で行われる。   In the internal space 5, a coil 6 for electromagnetic induction is arranged, and a ferrite member 7 for efficiently guiding the magnetic lines of force generated from the coil 6 in the direction of the heating plate 3 is evenly arranged around the coil 6. Has been. The output control of the coil 6 is performed by the control unit 8.

加熱プレート3は全体が磁性体(たとえば、鉄、鉄鋳物、SUS430(18クロム系)、SUS410(13クロム系)など)で構成されていて、コイル6による電磁誘導加熱で発熱する。ただし加熱プレート3は、誘導加熱によって発熱可能な材質であれば磁性体に限らず使用することができ、例えば、コイルの交流電流が高周波数の場合は銅などでも発熱するため使用可能である。   The entire heating plate 3 is made of a magnetic material (for example, iron, iron casting, SUS430 (18 chrome), SUS410 (13 chrome), etc.), and generates heat by electromagnetic induction heating by the coil 6. However, the heating plate 3 can be used without being limited to a magnetic material as long as it can generate heat by induction heating. For example, when the alternating current of the coil has a high frequency, it can be used because it generates heat even with copper.

加熱プレート3の表面には熱電対9が取り付けられていて、この熱電対9によって常時検出される加熱プレート3の表面温度に基づき、温度制御ユニット8によってコイル6の出力制御が行われる。   A thermocouple 9 is attached to the surface of the heating plate 3, and output control of the coil 6 is performed by the temperature control unit 8 based on the surface temperature of the heating plate 3 always detected by the thermocouple 9.

上記構成における作用を説明する。
プリント基板1の設置に先立って、加熱プレート3の表面温度が熱電対9で検出される状態において、制御ユニット8によりコイル6に交流電流が流され、それにより加熱プレート3が電磁誘導加熱され、プリヒート温度近傍の所定の温度に制御される。
The operation in the above configuration will be described.
Prior to installation of the printed circuit board 1, in a state in which the surface temperature of the heating plate 3 is detected by the thermocouple 9, an alternating current is passed through the coil 6 by the control unit 8, whereby the heating plate 3 is heated by electromagnetic induction, It is controlled to a predetermined temperature near the preheat temperature.

その後に、プリント基板1がステージ2上に設置、吸着され、所定のプリヒート温度に達するまでプリヒートされる。
その後の本加熱工程で、加熱プレート3の表面温度が熱電対9で検出される状態において、制御ユニット8によりコイル6に交流電流が流されて、加熱プレート3が所定の本加熱温度に加熱され、それにより昇温されたプリント基板1上のはんだ1cが溶融する。
Thereafter, the printed circuit board 1 is placed on the stage 2 and sucked and preheated until a predetermined preheat temperature is reached.
In the subsequent main heating step, in a state where the surface temperature of the heating plate 3 is detected by the thermocouple 9, an alternating current is passed through the coil 6 by the control unit 8, and the heating plate 3 is heated to a predetermined main heating temperature. As a result, the solder 1c on the printed circuit board 1 whose temperature has been raised melts.

本加熱温度が所定時間だけ保たれた後、ステージ2からプリント基板1が搬出される。搬出後にプリント基板1、その上のはんだ1cが冷却されるにしたがって、部品1a,1bが固着される。   After the main heating temperature is maintained for a predetermined time, the printed circuit board 1 is unloaded from the stage 2. As the printed circuit board 1 and the solder 1c thereon are cooled after unloading, the components 1a and 1b are fixed.

ここで、加熱プレート3の電磁誘導加熱の際には、加熱プレート3そのものの内部もしくは表面で渦電流によるジュール熱が発生するので、加熱プレート3の熱容量を小さくしておくことで、たとえば加熱プレート3を非常に薄く形成しておくことで、加熱の応答と昇温の速度を速くすることができる。   Here, during the electromagnetic induction heating of the heating plate 3, Joule heat due to eddy current is generated inside or on the surface of the heating plate 3, and therefore, by reducing the heat capacity of the heating plate 3, for example, the heating plate 3 By making 3 very thin, the response of heating and the speed of temperature increase can be increased.

このため、特に本加熱工程で、加熱プレート3の表面温度を検出しながら温度制御することにより、はんだ付け接合部付近を所望の昇温条件に保ちながら、耐熱性の低い部品の搭載時にはその昇温を仕様限界以下に確実に抑えることができ、加熱効率を向上できるとともに、安定したリフローはんだ付け品質を得ることができる。   For this reason, in particular in the main heating process, temperature control is performed while detecting the surface temperature of the heating plate 3, so that the temperature of the soldered joint is kept at a desired temperature rise condition, and the temperature rise is increased when a component having low heat resistance is mounted. The temperature can be reliably suppressed below the specification limit, the heating efficiency can be improved, and stable reflow soldering quality can be obtained.

また、次の処理対象のプリント基板1が搬入されるまでに、加熱プレート3を初期状態(プリヒート温度)まで急冷して待機することが可能である。
なお、温度検出手段として、上記したように熱電対9を加熱プレート3に直接に取り付けるのと併せて、あるいはそれに代えて、プリント基板1上の表面温度もしくは加熱プレート3の表面温度を非接触で測定する赤外線放射温度計等の非接触温度計10を用いて、温度制御ユニット8で温度制御を行うのも有効である。
Further, the heating plate 3 can be rapidly cooled to an initial state (preheat temperature) and waited until the next printed circuit board 1 to be processed is carried in.
In addition, as a temperature detection means, the surface temperature on the printed circuit board 1 or the surface temperature of the heating plate 3 can be contacted in combination with or instead of directly attaching the thermocouple 9 to the heating plate 3 as described above. It is also effective to perform temperature control by the temperature control unit 8 using a non-contact thermometer 10 such as an infrared radiation thermometer to be measured.

プリント基板1上の一部分のみ選択して(たとえば部品1a,1bなどに相応する部分のみ選択して)局所的に加熱したい場合には、上記したような全体が磁性体で構成された加熱プレート3に代えて、図1(b)に示すような加熱プレート3、すなわち、加熱したい個所に接触する部分のみ磁性体3aにより構成し、加熱の必要の無い、あるいは加熱を避けなければならない部分は非磁性体3bにより構成したものを用いればよい。   When only a part on the printed circuit board 1 is selected (for example, only a part corresponding to the components 1a, 1b, etc. is selected) and the heating is locally performed, the heating plate 3 made entirely of a magnetic material as described above. Instead, the heating plate 3 as shown in FIG. 1 (b), that is, only the portion that contacts the portion to be heated is constituted by the magnetic body 3a, and the portion that does not need to be heated or has to avoid heating is not included. What consists of the magnetic body 3b should just be used.

ただしこのとき、コイル6の磁束が非磁性体3b部分を通過してプリント基板1側まで到達してしまうと、プリント基板1自体に渦電流が発生してしまい、プリント基板1上に搭載された部品1a,1bなどに機能破壊を発生してしまう恐れがあるので、非磁性体3b部分をアルミニウム、銅などの金属で構成して、コイル6の交流電流による磁界がプリント基板1側まで達しないようにすることが必要である。
(第2実施形態)
図2は本発明の第2実施形態におけるリフローはんだ付け装置の概略構成を示す断面図である。
However, at this time, if the magnetic flux of the coil 6 reaches the printed circuit board 1 side through the non-magnetic body 3b, an eddy current is generated in the printed circuit board 1 itself, and the coil 6 is mounted on the printed circuit board 1. Since there is a risk of causing functional breakdown in the parts 1a, 1b, etc., the nonmagnetic material 3b portion is made of a metal such as aluminum or copper, and the magnetic field due to the alternating current of the coil 6 does not reach the printed circuit board 1 side. It is necessary to do so.
(Second Embodiment)
FIG. 2 is a sectional view showing a schematic configuration of a reflow soldering apparatus according to the second embodiment of the present invention.

このリフローはんだ付け装置が第1実施形態のものと相違するのは、プリント基板1を設置したパレット11を搬送チェーン12で連続搬送しながらリフローを行うようにした点である。   This reflow soldering apparatus is different from that of the first embodiment in that reflow is performed while the pallet 11 on which the printed circuit board 1 is installed is continuously transported by the transport chain 12.

そのために、パレット11の全体が磁性体(もしくは誘導加熱によって発熱可能な材質)で構成されている。またパレット11を誘導加熱するために、パレット11が通過する下面近傍にコイルユニット13が設けられている。コイルユニット13は、第1実施形態のステージ2と同様の構成を有しているが加熱プレート3は用いられず、それに代えてセラミックプレート14が安全の為にユニット表面に設置されている。   Therefore, the entire pallet 11 is made of a magnetic material (or a material that can generate heat by induction heating). Moreover, in order to induction-heat the pallet 11, the coil unit 13 is provided in the vicinity of the lower surface through which the pallet 11 passes. The coil unit 13 has the same configuration as that of the stage 2 of the first embodiment, but the heating plate 3 is not used, and instead a ceramic plate 14 is installed on the unit surface for safety.

上記構成によれば、パレット11が所定の速度で搬送されてコイルユニット13の近傍に到達すると、コイル6とパレット11との間に磁束を遮断するものが存在しないため、コイル6により発生する磁束によってパレット11内に徐々に渦電流が発生し、この渦電流損によるジュール熱でパレット11自体が発熱し、その熱がプリント基板1に伝達されて、はんだ1cが溶融される。   According to the above configuration, when the pallet 11 is transported at a predetermined speed and reaches the vicinity of the coil unit 13, there is no one that interrupts the magnetic flux between the coil 6 and the pallet 11. As a result, an eddy current is gradually generated in the pallet 11, and the pallet 11 itself generates heat due to the Joule heat due to the eddy current loss, and the heat is transmitted to the printed circuit board 1 to melt the solder 1c.

ただしこの場合、搬送されるパレット11の表面に直接に熱電対を取り付けるのは困難なので、図示したように、パレット11の搬送経路、コイルユニット13の上方に非接触温度計10が設置される。それにより、プリント基板1の表面温度が非接触で測定され、その測定結果を温度制御ユニット8にフィードバックされて、コイル6の出力が調節され温度制御される。   However, in this case, since it is difficult to attach a thermocouple directly to the surface of the pallet 11 to be transported, the non-contact thermometer 10 is installed above the transport path of the pallet 11 and the coil unit 13 as illustrated. Thereby, the surface temperature of the printed circuit board 1 is measured in a non-contact manner, the measurement result is fed back to the temperature control unit 8, and the output of the coil 6 is adjusted to control the temperature.

このような温度制御により、はんだ付け接合部付近を所望の昇温条件に保ちながら、耐熱性の低い部品の搭載時にはその昇温を仕様限界以下に確実に抑えることができ、加熱効率を向上できるとともに、安定したリフローはんだ付け品質を得ることができる。連続搬送する加熱処理であるため、タクトの向上も図ることができる。   With such temperature control, while maintaining the vicinity of the soldered joint at the desired temperature rise condition, when mounting parts with low heat resistance, the temperature rise can be reliably suppressed below the specification limit, and heating efficiency can be improved. In addition, stable reflow soldering quality can be obtained. Since the heat treatment is carried continuously, the tact can be improved.

プリント基板1上の一部分のみ選択して(たとえば部品1a,1bなどに相応する部分のみ選択して)局所的に加熱したい場合には、上記したような全体が磁性体で構成されたパレット11に代えて、図2(b)に示すようなパレット11、すなわち、加熱したい個所に接触する部分のみ磁性体11aにより構成し、加熱の必要の無い、あるいは加熱を避けなければならない部分は非磁性体11bにより構成したものを用いればよい。プリント基板1上に搭載された部品1a,1bなどに機能破壊が発生するのを防止するために、非磁性体11b部分をアルミニウムなどの金属で構成する必要があるのは、第1実施形態で説明したのと同様である。   When only a part on the printed circuit board 1 is selected (for example, only a part corresponding to the parts 1a, 1b, etc. is selected) and it is desired to locally heat, the pallet 11 made entirely of a magnetic material as described above is provided. Instead, the pallet 11 as shown in FIG. 2 (b), that is, only the portion that contacts the portion to be heated is constituted by the magnetic body 11a, and the portion that does not need to be heated or must be avoided is a non-magnetic material. What is comprised by 11b should just be used. In the first embodiment, it is necessary to configure the non-magnetic body 11b portion with a metal such as aluminum in order to prevent functional breakdown from occurring in the components 1a and 1b mounted on the printed circuit board 1. It is the same as explained.

このようにして搬送されるパレット11、プリント基板1に対しては、図3に示すように、複数のコイル6を互いに磁力線が干渉しないように配置することで、コイルユニット13を予熱領域と本加熱領域とに区分するのが好都合である。このようなコイルユニット13を複数段に設けることで、従来の連続搬送炉の複数炉体におけるのと同様の加熱が可能となり(図5参照)、任意の形状の温度プロファイルが実現可能となる。
(第3実施形態)
図4は本発明の第3実施形態におけるリフローはんだ付け装置の構成を示す。
With respect to the pallet 11 and the printed circuit board 1 thus transported, as shown in FIG. 3, the coil unit 13 and the main heating region are arranged by arranging the plurality of coils 6 so that the magnetic lines of force do not interfere with each other. It is convenient to divide it into heating zones. By providing such coil units 13 in a plurality of stages, it is possible to perform heating similar to that in a plurality of furnace bodies of a conventional continuous transfer furnace (see FIG. 5), and a temperature profile having an arbitrary shape can be realized.
(Third embodiment)
FIG. 4 shows the configuration of a reflow soldering apparatus according to the third embodiment of the present invention.

このリフローはんだ付け装置は、加熱シート15として構成されており、プリント基板1の加熱面(部品搭載面に背反する面)に対して、電気絶縁体で且つ高熱伝導の材質にて構成された接着シート16を介して、貼り付けられる。部品1a,1bなどは通常、貼り付け終了後に搭載される。   This reflow soldering apparatus is configured as a heating sheet 15, and is bonded to the heating surface of the printed circuit board 1 (the surface opposite to the component mounting surface) with an electrical insulator and a material with high thermal conductivity. Affixed via the sheet 16. The parts 1a, 1b, etc. are usually mounted after pasting.

図示した加熱シート15は、プリント基板1上の一部分のみ選択して局所的に加熱するのに適するように、プリント基板1と同一寸法に形成されるとともに、加熱したい個所に接触する部分のみ磁性体15aにより構成され、加熱の必要の無い、あるいは加熱を避けなればならない部分は非磁性体15bにより構成されている。プリント基板1上に搭載された部品1a,1bなどに機能破壊が発生するのを防止するために、非磁性体15b部分をアルミニウムなどの金属で構成されるのは、第1実施形態で説明したのと同様である。   The illustrated heating sheet 15 is formed to have the same dimensions as the printed circuit board 1 so that only a part of the printed circuit board 1 is selected and locally heated, and only the portion that contacts the portion to be heated is magnetic. The part which is comprised by 15a and does not need the heating or must avoid the heating is comprised by the nonmagnetic material 15b. As described in the first embodiment, the non-magnetic material 15b is made of a metal such as aluminum in order to prevent functional breakdown of the components 1a, 1b and the like mounted on the printed circuit board 1. It is the same as that.

プリント基板1上の一部分のみ選択して局所的に加熱するのでなければ、加熱シート15は、プリント基板1と同形状で全面均一厚さの、磁性体よりなるシートとすればよい。
このような加熱シート15が貼り付けられたプリント基板1は、先に第1実施形態で図1を用いて説明したステージ2と同様のステージであって、加熱プレートに代えてセラミックプレート等、磁界を遮断しない材質を用いたステージ上に個別搬送される。
Unless only a part of the printed circuit board 1 is selected and locally heated, the heating sheet 15 may be a sheet made of a magnetic material having the same shape as the printed circuit board 1 and a uniform thickness on the entire surface.
The printed circuit board 1 to which the heating sheet 15 is attached is the same stage as the stage 2 described with reference to FIG. 1 in the first embodiment, and a magnetic field such as a ceramic plate instead of the heating plate. It is individually conveyed on a stage using a material that does not block.

あるいはプリント基板1は、先に第2実施形態で図2を用いて説明したコイルユニット13と同様のコイルユニット上を、セラミック等の磁界を遮断しない材質で形成したパレットに設置して、あるいはパレットを一切用いずにプリント基板1の単体で、連続搬送するようにしてもよい。   Alternatively, the printed circuit board 1 is installed on a pallet formed of a material that does not block a magnetic field, such as ceramic, on the same coil unit 13 as the coil unit 13 described with reference to FIG. 2 in the second embodiment. Alternatively, the printed circuit board 1 may be transported continuously without using any of them.

このことにより、加熱シート15の磁性体15aで渦電流が発生し、渦電流損による発熱が起こり、それにより昇温されたプリント基板1上のはんだが溶融する。   Thereby, an eddy current is generated in the magnetic body 15a of the heating sheet 15, heat is generated due to eddy current loss, and the solder on the printed circuit board 1 whose temperature has been increased thereby melts.

本発明のリフローはんだ付け方法および装置は特に、耐熱性の低い部品の昇温を仕様限界以下に抑えるはんだ付けに有用である。   The reflow soldering method and apparatus of the present invention are particularly useful for soldering that keeps the temperature rise of parts with low heat resistance below a specification limit.

本発明の第1実施形態におけるリフローはんだ付け装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the reflow soldering apparatus in 1st Embodiment of this invention. 本発明の第2実施形態におけるリフローはんだ付け装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the reflow soldering apparatus in 2nd Embodiment of this invention. 図2のリフローはんだ付け装置の変更実施形態を示す説明図Explanatory drawing which shows the modified embodiment of the reflow soldering apparatus of FIG. 本発明の第3実施形態におけるリフローはんだ付け装置の構成図The block diagram of the reflow soldering apparatus in 3rd Embodiment of this invention 従来のリフローはんだ付け装置の概略全体構成を示す断面図Sectional drawing which shows the schematic whole structure of the conventional reflow soldering apparatus 従来の他のリフローはんだ付け装置の要部を示す断面図Sectional drawing which shows the principal part of the other conventional reflow soldering apparatus

符号の説明Explanation of symbols

1 プリント基板
2 ステージ
3 加熱プレート
3a 磁性体
3b 非磁性体
4 吸引手段
6 コイル
8 温度制御ユニット
9 熱電対
10 非接触温度計
11 パレット
11a 磁性体
11b 非磁性体
13 コイルユニット
14 セラミックプレート
15 加熱シート
15a 磁性体
15b 非磁性体
1 Printed circuit board 2 Stage 3 Heating plate
3a Magnetic material
3b Non-magnetic material 4 Suction means 6 Coil 8 Temperature control unit 9 Thermocouple
10 Non-contact thermometer
11 palettes
11a Magnetic material
11b Non-magnetic material
13 Coil unit
14 Ceramic plate
15 Heating sheet
15a Magnetic material
15b Non-magnetic material

Claims (5)

表面に部品が搭載されたプリント配線基板を加熱してはんだ付けを行なうリフローはんだ付け装置であって、
前記プリント配線基板の裏面における加熱対象部に接触する部分のみが磁性体で構成され残部が非磁性体、且つ磁界を遮断する材料で構成されて電磁誘導加熱可能なものであり、前記プリント配線基板が設置されて搬送経路に沿って所定の速度で連続搬送されるパレットと、
互いに磁力線が干渉しない配置で搬送経路上の予熱領域と本加熱領域とに区分されて設置された複数のコイルと、
前記プリント配線基板もしくは前記パレットの温度を非接触で検出する温度検出手段と、
前記温度検出手段の検出温度に応じて前記複数のコイルに供給する交流電流を調節しながら、搬送経路に沿って所定の速度で連続搬送されている前記パレットの加熱量を制御する制御手段と
を備えたリフローはんだ付け装置。
A reflow soldering apparatus that heats and solders a printed wiring board having components mounted on its surface ,
The printed wiring contacts the heat target portion on the back surface of the substrate portion only nonmagnetic material balance is composed of magnetic material, and a and capable induction heating consists of a material that blocks a magnetic field, the printed circuit board Is installed and a pallet that is continuously transported at a predetermined speed along the transport path ;
A plurality of coils arranged in a preheating area and a main heating area on the conveyance path in an arrangement in which the lines of magnetic force do not interfere with each other ;
Temperature detecting means for detecting the temperature of the printed wiring board or the pallet in a non-contact manner;
Control means for controlling the heating amount of the pallet continuously conveyed at a predetermined speed along the conveying path while adjusting the alternating current supplied to the plurality of coils in accordance with the detected temperature of the temperature detecting means; Reflow soldering equipment provided.
前記温度検出手段前記プリント配線基板もしくは前記パレットに対向するように配置された非接触温度計である請求項1記載のリフローはんだ付け装置。 It said temperature detecting means, the reflow soldering apparatus according to claim 1 which is a non-contact thermometer which is arranged so as to face the printed circuit board or the pallet. 表面に部品が搭載されたプリント配線基板を加熱してはんだ付けを行なうリフローはんだ付け装置であって、
前記プリント配線基板の裏面における加熱対象部に接触する部分のみが磁性体で構成され残部が非磁性体、且つ磁界を遮断する材料で構成されて電磁誘導加熱可能なものであり、電気絶縁シートを介して前記プリント配線基板の裏面に貼り付けられて搬送経路に沿って所定の速度で連続搬送される加熱シートと、
互いに磁力線が干渉しない配置で搬送経路上の予熱領域と本加熱領域とに区分されて設置された複数のコイルと、
前記プリント配線基板の温度を非接触で検出する温度検出手段と、
前記温度検出手段の検出温度に応じて前記複数のコイルに供給する交流電流を調節しながら、搬送経路に沿って所定の速度で連続搬送されている前記プリント配線基板の裏面に貼り付けられた前記加熱シートの加熱量を制御する制御手段と
を備えたリフローはんだ付け装置。
A reflow soldering apparatus that heats and solders a printed wiring board having components mounted on its surface,
Only the part that contacts the heating target part on the back surface of the printed wiring board is made of a magnetic material, the remaining part is made of a non-magnetic material, and is made of a material that blocks a magnetic field, and is capable of electromagnetic induction heating. A heating sheet that is affixed to the back surface of the printed wiring board through and continuously conveyed at a predetermined speed along the conveying path;
A plurality of coils arranged in a preheating area and a main heating area on the conveyance path in an arrangement in which the lines of magnetic force do not interfere with each other;
Temperature detecting means for detecting the temperature of the printed wiring board in a non-contact manner;
The affixed to the back surface of the printed wiring board that is continuously transported at a predetermined speed along the transport path while adjusting the alternating current supplied to the plurality of coils according to the detected temperature of the temperature detecting means. Control means for controlling the heating amount of the heating sheet;
Reflow soldering equipment with
前記温度検出手段が、前記プリント配線基板に対向するように配置された非接触温度計である請求項3に記載のリフローはんだ付け装置。   The reflow soldering apparatus according to claim 3, wherein the temperature detection means is a non-contact thermometer disposed so as to face the printed wiring board. 表面に部品が搭載されたプリント配線基板を加熱してはんだ付けを行なう際に、
前記プリント配線基板の裏面における加熱対象部に接触する部分のみが磁性体で構成され残部が非磁性体、且つ磁界を遮断する材料で構成されて電磁誘導加熱可能なパレットに前記プリント配線基板を設置し、
互いに磁力線が干渉しない配置で搬送経路上の予熱領域と本加熱領域とに区分されて設置された複数のコイルに前記パレットを所定の速度で連続搬送し、
前記プリント配線基板もしくは前記パレットの温度を非接触の温度検出手段で検出し、
制御手段で、前記温度検出手段の検出温度に応じて前記複数のコイルに供給する交流電流を調節しながら、搬送経路に沿って所定の速度で連続搬送されている前記パレットの加熱量を制御し、
それにより加熱される前記加熱対象部で前記部品との間のはんだを溶融させる
リフローはんだ付け方法。
When heating and soldering a printed wiring board with components mounted on the surface ,
The printed wiring board is placed on a pallet that can be heated by electromagnetic induction only in the back surface of the printed wiring board that is made of a magnetic material and the remaining part is made of a non-magnetic material and a material that blocks a magnetic field. And
Conveying the pallet continuously at a predetermined speed to a plurality of coils arranged in a preheating area and a main heating area on the conveyance path in an arrangement where magnetic field lines do not interfere with each other,
The temperature of the printed wiring board or the pallet is detected by a non-contact temperature detecting means,
The control means controls the heating amount of the pallet continuously conveyed at a predetermined speed along the conveyance path while adjusting the alternating current supplied to the plurality of coils according to the temperature detected by the temperature detection means. ,
Reflow soldering method for melting the solder between the components by the heat target portion thereby being heated.
JP2004026161A 2004-02-03 2004-02-03 Reflow soldering apparatus and method Expired - Fee Related JP4282501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026161A JP4282501B2 (en) 2004-02-03 2004-02-03 Reflow soldering apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026161A JP4282501B2 (en) 2004-02-03 2004-02-03 Reflow soldering apparatus and method

Publications (2)

Publication Number Publication Date
JP2005222964A JP2005222964A (en) 2005-08-18
JP4282501B2 true JP4282501B2 (en) 2009-06-24

Family

ID=34998393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026161A Expired - Fee Related JP4282501B2 (en) 2004-02-03 2004-02-03 Reflow soldering apparatus and method

Country Status (1)

Country Link
JP (1) JP4282501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985207A (en) * 2010-07-29 2013-03-20 涡轮梅坎公司 Method for the induction brazing of parts having complex shapes, and single or multiple brazing station for implementing same
EP4079435A4 (en) * 2019-12-18 2023-12-20 Origin Company, Limited Soldering board production method and soldering device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234723A (en) * 2006-02-28 2007-09-13 Toyota Industries Corp Mounting method and device of electronic component, and manufacturing process of semiconductor device
JP2009130269A (en) * 2007-11-27 2009-06-11 Nec Electronics Corp Semiconductor production apparatus and production process for semiconductor device
JP4778998B2 (en) * 2008-09-12 2011-09-21 ジヤトコ株式会社 Reflow device
JP5902107B2 (en) * 2013-01-24 2016-04-13 オリジン電気株式会社 Heat bonding apparatus and method for manufacturing heat bonded product
JP6896369B2 (en) * 2016-03-10 2021-06-30 株式会社ワンダーフューチャーコーポレーション Solder joining device and solder joining method
JP6700119B2 (en) * 2016-06-24 2020-05-27 三菱電機株式会社 Power semiconductor device and method of manufacturing power semiconductor device
CN107645847B (en) * 2017-08-31 2020-06-19 苏州浪潮智能科技有限公司 Temperature measurement board and temperature measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985207A (en) * 2010-07-29 2013-03-20 涡轮梅坎公司 Method for the induction brazing of parts having complex shapes, and single or multiple brazing station for implementing same
CN102985207B (en) * 2010-07-29 2016-01-13 涡轮梅坎公司 For having the method for the induction brazing of the part of complicated shape, and for the list that realizes the method or many solderings station
EP4079435A4 (en) * 2019-12-18 2023-12-20 Origin Company, Limited Soldering board production method and soldering device

Also Published As

Publication number Publication date
JP2005222964A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4282501B2 (en) Reflow soldering apparatus and method
WO1985003248A1 (en) Multi-zone thermal process system utilizing nonfocused infrared panel emitters
WO2007077727A1 (en) Reflow apparatus
WO2018164038A1 (en) Soldering device
JP4602536B2 (en) Reflow soldering equipment
JP3770238B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JP2007066896A (en) Manufacturing method of electric contact
JP2008226981A (en) Reflow device
JP5264079B2 (en) Heating device
US6857559B2 (en) System and method of soldering electronic components to a heat sensitive flexible substrate with cooling for a vector transient reflow process
JP3729689B2 (en) Reflow method and apparatus
JP2004214553A (en) Reflow furnace
JP2009164303A (en) Soldering device and soldering method
JPH09307221A (en) Flow solder device and soldering method of mounting board
JP2012243955A (en) Batch-type local heating device
JP5503605B2 (en) Soldering reflow device
JP4041627B2 (en) Heating device and heating method
JP5302081B2 (en) Flow soldering method for multilayer printed wiring board and flow soldering apparatus for multilayer printed wiring board
JP2013004789A (en) Reflow device
JPH05110242A (en) Board
JP2009200072A (en) Reflow soldering apparatus and reflow soldering method using the same
JP2022185954A (en) Reflow method
TW445559B (en) High frequency semiconductor soldering method
JP2019047050A (en) Preliminary heating device
JP2011245539A (en) Workpiece cooling enhancement unit for reflow soldering device and reflow soldering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees