JP4202067B2 - Delay line type electromagnetic frequency selection filter - Google Patents

Delay line type electromagnetic frequency selection filter Download PDF

Info

Publication number
JP4202067B2
JP4202067B2 JP2002224152A JP2002224152A JP4202067B2 JP 4202067 B2 JP4202067 B2 JP 4202067B2 JP 2002224152 A JP2002224152 A JP 2002224152A JP 2002224152 A JP2002224152 A JP 2002224152A JP 4202067 B2 JP4202067 B2 JP 4202067B2
Authority
JP
Japan
Prior art keywords
delay line
electromagnetic wave
line type
frequency selection
type electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002224152A
Other languages
Japanese (ja)
Other versions
JP2004062104A (en
Inventor
浩治 山田
哲史 荘司
博文 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002224152A priority Critical patent/JP4202067B2/en
Publication of JP2004062104A publication Critical patent/JP2004062104A/en
Application granted granted Critical
Publication of JP4202067B2 publication Critical patent/JP4202067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遅延線型電磁波周波数選択フィルタに関し、より詳細には、波長多重光通信などに必要な光通信用光周波数選択フィルタに適用可能な遅延線型電磁波周波数選択フィルタに関する。
【0002】
【従来の技術】
従来、光通信用の電磁波周波数選択フィルタには、導波路格子アレイ(肥田 他、NTTR&D,vol.50, p.265)や誘電体多層膜が利用されている。これらの周波数フィルタの帯域特性は、波長多重通信に適したものであるが、今後の波長多重通信の普及に伴う波長(又は周波数)選択素子の集積化には適していない。
【0003】
まず、導波路格子アレイは、屈曲した多数の導波路が必要であるため、面状にセンチメートル単位の大きさを有し、さらにその構造は非常に複雑であるため集積化は困難である。また、誘電体多層膜は、多層膜片を機械的に精密配置するため集積化は困難である。
【0004】
これに対して、集積化の可能性がある電磁波周波数選択フィルタとして、インターリーバフィルタ(鬼頭 他、NTTR&D,vol.50, p.282)のような遅延線型のフィルタが考えられている。遅延線型電磁波周波数選択フィルタは、2本の誘電体導波路を、それぞれ異なる経路を経て周期的に近接と離反を繰り返すことにより構成されるため、構造は単純かつ線状である。すなわち、小さな領域に畳み込むことが可能であるため、集積化できる可能性がある。
【0005】
【発明が解決しようとする課題】
図1は、従来の遅延線型電磁波周波数選択フィルタを示す構成図で、図中符号1は直線部(直線誘電体導波路)、2は遅延線部(曲線及び直線誘電体導波路)、3は石英系導波路(コアとクラッドの比屈折率差が略1%)を示している。この遅延線型電磁波周波数選択フィルタは、2本の石英系導波路3からなり、この石英系導波路3は、1本の直線誘電体導波路1に沿って、周期的に近接と離反を繰り返す曲線を有する遅延線部2で構成された曲線及び直線誘電体導波路が遅延線として存在している。
【0006】
ここで具体的な構成例として、波長1550nm帯の電磁波を用いた波長多重通信に、遅延線型電磁波周波数フィルタを適用する場合について考える。波長1550nm帯は周波数に換算すれば、193THzを中心に約12THzの帯域を有する。波長多重通信では、この周波数帯域にて単一の周波数を選択する必要がある。これに対して、遅延線型電磁波周波数フィルタは、フィルタ1周期あたりの直線部と遅延線部との光伝搬時間の差の逆数で規定される周波数間隔毎に周波数選択特性がある(K.Jinguji 他,Journal of Lightwave Technology, vol.13, p.73)。
【0007】
従って、遅延線型電磁波周波数選択フィルタでは、図2に示すように、この周波数間隔が使用する周波数帯域よりも大きい必要がある。上述したように波長1550nm帯では、12THzの周波数帯域を確保する必要があるので、直線部と遅延線部の1周期当たりの光伝搬時間の差ΔtはΔt≦83fsでなければならない。この時間差を生成するに必要な直線部と遅延線部の導波路の長さLは、L=cΔt/nで表される。ただし、cは真空中の光速、nは導波路の群屈折率である。石英系導波路の場合、群屈折率は約1.45なので、Lは約17μmである。
【0008】
石英系導波路を使用した場合、この導波路長の差を確保しつつ、さらに直線部と遅延線部が最も離れた場所では両導波路の干渉を避けるため、100μ程度の距離を隔てる必要がある。フィルタ全体の大きさ小さくするためには、遅延線部の導波路の曲げ半径が小さい方が良いが、現状の石英系導波路では、比屈折率差が約1%程度と小さいため、損失が無視できる最小の曲げ半径は1mm程度である。そこで、この最小曲げ半径1mmの遅延線部に適用すると、詳しい計算は省略するが、石英系導波路では本フィルタ1周期あたり約1.2mmの長さが必要となる。
【0009】
周波数選択フィルタとして動作するには、数周期から10周期程度の周期構造が必要であるので、全長はセンチメートル程度となってしまい、従来型の石英系導波路を使用した場合、遅延線型電磁波周波数選択フィルタといえども集積化は困難である。
【0010】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、波長多重光通信等に必要な電磁波周波数選択フィルタを、半導体微細加工技術などを用いて作製可能とした遅延線型電磁波周波数選択フィルタを提供することにある。
【0011】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、コア部がクラッド部よりも大きな誘電率を有する物質によって構成される2本の誘電体導波路を有し、それぞれ異なる経路を経て周期的に近接と離反を繰り返す構造を備えた遅延線型電磁波周波数選択フィルタにおいて、前記各周期における前記2本の誘電体導波路の長さの差が、選択対象の電磁波が存在する周波数帯域の周波数幅の逆数により規定される時間中に電磁波が当該誘電体導波路を伝播する距離よりも短く、前記コア部の屈折率が3.0〜4.5の間にあり、かつ前記クラッド部の屈折率が1.0〜1.7の間にあることを特徴とする。
【0012】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記コア部が、珪素、ゲルマニウム、ガリウム・砒素系化合物、インジウム・燐系化合物、インジウム・アンチモン系化合物のいずれかにより構成され、かつ前記クラッド部が、二酸化珪素、ポリイミド系有機化合物、エポキシ系有機化合物、アクリル系有機化合物、空気、真空のいずれかであることを特徴とする。
【0013】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記誘電体導波路の断面形状が方形または台形であり、その高さ及び幅がそれぞれ0.1〜0.5μmであることを特徴とする。
【0014】
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記誘電体導波路が最も近接する場所での、各誘電体導波路の側壁間の距離が、50〜200nmであることを特徴とする。
【0015】
また、請求項5に記載の発明は、請求項1乃至4いずれかに記載の発明において、前記誘電体導波路の円弧部分の半径が、2〜30μmであることを特徴とする。なお、好ましくは、円弧部分の半径が2〜10μmであることが望ましい。
【0016】
また、請求項6に記載の発明は、請求項1乃至5いずれかに記載の発明において、前記誘電体導波路の一方は直線により構成され、他方の誘電体導波路は半円形及び直線により構成されていることを特徴とする。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
本発明では、遅延線型電磁波周波数選択フィルタの誘電体導波路のコア部の屈折率を大幅に増加させることにより、導波路の最小曲げ半径を小さく、かつ直線部と遅延線部との相互干渉を避けるために必要な距離を小さくし、遅延線型電磁波周波数選択フィルタを大幅に小型化できるようにしたものである。
【0018】
ここでは、コア部の屈折率がクラッド部に比べ非常に大きい導波路の材料として、コア部を珪素とし、クラッド部を二酸化珪素として、その特性について説明する。これらの材料は、既存の半導体集積回路に利用されているため、微細加工を伴うこの種の誘電体導波路の作製に適したものである。ここで、それぞれの部分の屈折率は、その典型的な値としてコア部をn=3.48、クラッド部をn=1.44とする。また、誘電体導波路の断面形状は導波路が単一モード条件を満たす範囲内にある必要がある。ここではこの条件を満たす値として幅w=0.4μm、高さh=0.2μmの方形断面とする。
【0019】
我々の実験によれば、この誘電体導波路は、半径2μmにて90度偏向を24回繰り返しても、有意な減衰は観測されず、従って、本誘電体導波路の最小曲げ半径としては、r=2μmとして良い。また、3次元時間領域有限差分法(FDTD法:宇野 亨著、FDTD法による電磁界及びアンテナ解析、コロナ社(1998))によれば、この導波路は導波路幅の5倍程度の距離、すなわち、2μm以上のクラッド層を挟めば、有意な干渉を起こすことは無いことが判明している。これらの値は、いずれも従来型の石英型導波路に比べ非常に小さく、遅延線型電磁波周波数選択フィルタの小型化が可能であることを意味する。
【0020】
図3は、本発明の遅延線型電磁波周波数選択フィルタの一実施例を説明するための構成図で、図中符号11は直線部(直線誘電体導波路)、12は遅延線部(半円形及び直線誘電体導波路)、12aは遅延線部半円形導波路(半径約2.5μm)、12bは遅延調整用直線導波路、13は高比屈折率差型誘電体導波路(コアの屈折率n1=3.48、クラッド屈折率n2=1.44)を示している。
【0021】
本発明の遅延線型電磁波周波数選択フィルタの形状は、石英型導波路を用いた場合と同じく、直線部11と遅延線部12とから構成される遅延構造を有し、ここでは8周期の構造を有すると仮定する。また、直線部11と遅延線部12の最近接部における両者の側壁面間の距離は、両者に充分な相互作用を生じさせるため、ここでは150nmとしている。但し、3D−FDTD法による計算によれば、距離は50nmから200nmの間で有効な結合度を与えることが判明している。
【0022】
周波数帯域から要請される伝搬時間差は、遅延線部半円形導波路12aと遅延調整用直線導波路12bとから構成される遅延線部12により生成される。ここで遅延線部半円形導波路12aの半径を2.5μmとする。また、本発明の実施例では、議論の単純化のため伝搬時間差は、遅延調整用直線導波路12bの長さにより調整可能とする。以上の構成により形成された遅延線型電磁波周波数選択フィルタの全長は80μmである。
【0023】
ここで用いた遅延線部半円形導波路12aの半径は、上述した最小半径よりも大きいため、使用に耐えうる値である。また、直線部11と遅延線部12との最大離反距離は4.6μmであり、上述の条件を満たす。また、1周期当たりの遅延線部12と直線部11の導波路長さの差は、遅延調整用直線導波路12bの長さが0nmの場合で約5.7μm、遅延調整用直線導波路12bの長さ50nmの場合で5.8μmである。ここで、この導波路の群屈折率は、波長1550nm周辺で約4.2であることを考慮すると、伝搬時間差は80〜81fsとなり、上述した周波数帯域に関する条件を満たす。
【0024】
図4は、本発明の遅延線型電磁波周波数選択フィルタについて、電磁波電磁波の入出力の比、すなわち、周波数選択特性の周波数依存性を示す図である。この周波数選択特性は、3次元FDTD法により計算された。実線は遅延調整用直線導波路12bの長さが0nmの場合、点線は同じく50nmの場合の周波数特性を示す。どちらの場合も選択周波数の繰り返し間隔は、周波数帯域から要請される12THzを確保している。また、遅延調整用直線導波路12bの長さの調整により、選択周波数を調整可能であることも判る。
【0025】
すなわち、本発明により従来、センチメートル程度の大きさが必要であった遅延線型電磁波周波数選択フィルタの大きさを、100μm程度あるいはそれ以下の大きさにまで小型化することが可能となる。
【0026】
ここで、本発明の遅延線型電磁波周波数選択フィルタの誘電体導波路に用いられる材料に関しては、動作波長を波長1550nm近傍の通信用赤外線領域とした場合、コア部には高屈折率で赤外線を通過でき、かつ加工性や安定性に問題が少ない材料として、珪素、ゲルマニウム、ガリウム・砒素系化合物、インジウム・燐系化合物、インジウム・アンチモン系化合物等を材料として用いることができる。これらの材料の屈折率は、ほぼ3.0〜4.5の間にある。またクラッド部には、低屈折率で赤外線を透過でき、かつ加工性や安定性に問題が少ない材料として、二酸化珪素、ポリイミド系有機化合物、エポキシ系有機化合物、アクリル系有機化合物、空気、真空等が材料として用いることができる。これらの材料の屈折率はほぼ1.0〜1.7の間にある。
【0027】
また、遅延線型電磁波周波数選択フィルタの基本動作原理は、2本の誘電体導波路を周期的に、異なる経路を経て、近接結合させることが本質的であるため、コア部自体の断面形状は任意の形状で構わないことは明らかである。
【0028】
ただし、製造の容易さの観点からは、導波路の断面形状は、方形または台形が適していると考えられる。また、導波路断面の大きさは単一モード条件を満たす範囲に制限する必要があるが、平面波展開法(R.D.Meade et al., Physical Review B 48, 8434(1996))による計算等によれば、この値は上述した材料等を使用した場合、導波路の高さ、幅とも0.5μm以下であることが判明している。
【0029】
また、遅延線部12における曲線の曲率半径の下限は、導波路の曲げによる損失により決まり、上述した材料等にて単一モード導波路を形成した場合、図3に示した実施例で説明したように、約2μmである。曲率半径の上限は、遅延線型電磁波周波数フィルタの動作原理上はいくら大きくても良いが、集積化の観点からフィルタ全体の大きさを1mm以下にすべきである。そこで、図3に示した実施例の構成が、1mmの長さに対応するとすると、最大半径は約30μである。ただし、より好ましくは、フィルタ全体の大きさを100μm以下にすべく、最大半径を3μmとすべきである。
【0030】
[実施例1]
本発明の遅延線型電磁波周波数選択フィルタの実施例1を上述した図3に基づいて説明する。コア部が、クラッド部よりも大きな誘電率を有する物質によって構成される2本の誘電体導波路13を有し、それぞれ異なる経路を経て周期的に近接と離反を繰り返す構造を備えた遅延線型電磁波周波数選択フィルタであって、各周期における前記誘電体導波路による電磁波の伝搬時間の差が、選択対象の電磁波が存在する周波数帯域の周波数幅の逆数により規定される時間よりも短く、コア部の屈折率が3.0〜4.5の間にあり、かつクラッド部の屈折率が1.0〜1.7の間にある。
【0031】
[実施例2]
本発明の遅延線型電磁波周波数選択フィルタの実施例2を、実施例1と同様に図3に基づいて説明する。上述した実施例1の遅延線型電磁波周波数選択フィルタにおいて、1本の誘電体導波路は直線により構成され、残る1本の誘電体導波路は半円形(円弧)及び直線により構成されている。
【0032】
[実施例3]
図示はしないが、上述した実施例1及び2の遅延線型電磁波周波数選択フィルタにおいて、誘電体導波路のコア部の材料に、珪素、ゲルマニウム、ガリウム・砒素系化合物、インジウム・燐系化合物、インジウム・アンチモン系化合物等を用い、かつクラッド部に、二酸化珪素、ポリイミド系有機化合物、エポキシ系有機化合物、アクリル系有機化合物、空気、真空等のいずれかを用いている。
【0033】
[実施例4]
図示はしないが、上述した実施例1,2又は3の遅延線型電磁波周波数選択フィルタにおいて、誘電体導波路の断面形状が方形または台形であり、その高さ及び幅がそれぞれ0.1〜0.5μmである。
【0034】
[実施例5]
上述した請求項1乃至4いずれかに記載の遅延線型電磁波周波数選択フィルタにおいて、2本の誘電体導波路が最も近接する場合での、各誘電体導波路の側壁間の距離が50nm〜200nmである。
【0035】
[実施例6]
図示はしないが、上述した実施例1乃至5いずれかに記載の遅延線型電磁波周波数選択フィルタにおいて、誘電体導波路の円弧部分の半径が2〜30μmで、好ましくは2〜10μmがよい。
【0036】
【発明の効果】
以上説明したように本発明によれば、各周期における誘電体導波路による電磁波の伝搬時間の差が、選択対象の電磁波が存在する周波数帯域の周波数幅の逆数により規定される時間よりも短く、コア部の屈折率が3.0〜4.5の間にあり、かつクラッド部の屈折率が1.0〜1.7の間にあるので、波長多重光通信等に必要な電磁波周波数選択フィルタを、従来の半導体微細加工技術等を用いて、安価かつ大量に提供することができる。
【図面の簡単な説明】
【図1】従来の遅延線型電磁波周波数選択フィルタを示す構成図である。
【図2】従来の遅延線型電磁波周波数選択フィルタの動作特性を説明するための図である。
【図3】本発明の遅延線型電磁波周波数選択フィルタの一実施例を説明するための構成図である。
【図4】本発明の遅延線型電磁波周波数選択フィルタの動作特性を説明するための図である。
【符号の説明】
1 直線部(直線誘電体導波路)
2 遅延線部(曲線及び直線誘電体導波路)
3 石英系導波路
11 直線部(直線誘電体導波路)
12 遅延線部(半円形及び直線誘電体導波路)
12a 遅延線部半円形導波路
12b 遅延調整用直線導波路
13 高比屈折率差型誘電体導波路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a delay line type electromagnetic wave frequency selection filter, and more particularly to a delay line type electromagnetic wave frequency selection filter applicable to an optical frequency selection filter for optical communication required for wavelength division multiplexing optical communication.
[0002]
[Prior art]
Conventionally, waveguide grating arrays (Hita et al., NTTR & D, vol. 50, p. 265) and dielectric multilayer films have been used for electromagnetic wave frequency selection filters for optical communication. The band characteristics of these frequency filters are suitable for wavelength multiplex communication, but are not suitable for integration of wavelength (or frequency) selection elements accompanying the spread of future wavelength multiplex communication.
[0003]
First, since the waveguide grating array requires a large number of bent waveguides, the waveguide grating array has a planar size of centimeter units, and the structure is very complicated, so that integration is difficult. Further, the dielectric multilayer film is difficult to integrate because the multilayer film pieces are mechanically arranged precisely.
[0004]
On the other hand, a delay line type filter such as an interleaver filter (Kito et al., NTTR & D, vol. 50, p. 282) is considered as an electromagnetic wave frequency selection filter that can be integrated. Since the delay line type electromagnetic wave frequency selection filter is configured by repeating the approach and separation of two dielectric waveguides periodically through different paths, the structure is simple and linear. That is, since it can be folded into a small area, it may be integrated.
[0005]
[Problems to be solved by the invention]
FIG. 1 is a block diagram showing a conventional delay line type electromagnetic wave frequency selection filter. In FIG. 1, reference numeral 1 is a straight line portion (straight dielectric waveguide), 2 is a delay line portion (curved and straight dielectric waveguide), and 3 is A quartz waveguide (the relative refractive index difference between the core and the clad is approximately 1%) is shown. This delay line type electromagnetic wave frequency selection filter is composed of two quartz-based waveguides 3, and this quartz-based waveguide 3 is a curve that repeats proximity and separation periodically along one linear dielectric waveguide 1. There are a curved line and a linear dielectric waveguide constituted by the delay line part 2 having a delay line.
[0006]
Here, as a specific configuration example, consider a case where a delay line type electromagnetic wave frequency filter is applied to wavelength division multiplexing communication using an electromagnetic wave having a wavelength of 1550 nm. When converted to a frequency, the wavelength 1550 nm band has a band of about 12 THz centering on 193 THz. In wavelength multiplexing communication, it is necessary to select a single frequency in this frequency band. On the other hand, the delay line type electromagnetic wave frequency filter has frequency selection characteristics for each frequency interval defined by the reciprocal of the difference in light propagation time between the straight line portion and the delay line portion per one filter period (K. Jinguji et al. , Journal of Lightwave Technology, vol.13, p.73).
[0007]
Therefore, in the delay line type electromagnetic wave frequency selection filter, as shown in FIG. 2, this frequency interval needs to be larger than the frequency band to be used. As described above, in the wavelength 1550 nm band, it is necessary to secure a frequency band of 12 THz, and therefore, the difference Δt in light propagation time per cycle between the straight line portion and the delay line portion must be Δt ≦ 83 fs. The length L C of the waveguide between the straight line portion and the delay line portion necessary for generating this time difference is expressed as L C = cΔt / ng . Where c is the speed of light in vacuum and ng is the group index of the waveguide. For silica-based waveguides, the group index is so about 1.45, L C is about 17 .mu.m.
[0008]
When a quartz-based waveguide is used, it is necessary to keep a distance of about 100 μm in order to avoid interference between the two waveguides in a place where the straight line portion and the delay line portion are farthest apart while ensuring the difference in the waveguide length. is there. In order to reduce the overall size of the filter, it is preferable that the bending radius of the waveguide of the delay line portion is small. However, in the current quartz-based waveguide, the relative refractive index difference is as small as about 1%, so that the loss is small. The minimum bend radius that can be ignored is about 1 mm. Therefore, when applied to this delay line portion having a minimum bending radius of 1 mm, although detailed calculation is omitted, a length of about 1.2 mm per one cycle of the present filter is required in the quartz waveguide.
[0009]
In order to operate as a frequency selective filter, a periodic structure of several cycles to about 10 cycles is required, so the total length is about centimeters, and when a conventional quartz waveguide is used, a delay line type electromagnetic wave frequency is used. Even a selection filter is difficult to integrate.
[0010]
The present invention has been made in view of such a problem, and an object of the present invention is to make it possible to manufacture an electromagnetic frequency selection filter necessary for wavelength multiplexing optical communication or the like using a semiconductor microfabrication technology or the like. The object is to provide a linear electromagnetic frequency selection filter.
[0011]
[Means for Solving the Problems]
In order to achieve such an object, the present invention according to claim 1 includes two dielectric waveguides each having a core portion made of a material having a dielectric constant larger than that of the cladding portion. In the delay line type electromagnetic wave frequency selection filter having a structure that repeats proximity and separation periodically through different paths, the difference between the lengths of the two dielectric waveguides in each period is the electromagnetic wave to be selected. The electromagnetic wave is shorter than the distance that the electromagnetic wave propagates through the dielectric waveguide during the time defined by the reciprocal of the frequency width of the existing frequency band, and the refractive index of the core part is between 3.0 and 4.5, And the refractive index of the said cladding part exists in 1.0-1.7, It is characterized by the above-mentioned.
[0012]
The invention according to claim 2 is the invention according to claim 1, wherein the core portion is made of any one of silicon, germanium, a gallium / arsenic compound, an indium / phosphorus compound, and an indium / antimony compound. The clad portion is composed of silicon dioxide, polyimide organic compound, epoxy organic compound, acrylic organic compound, air, or vacuum.
[0013]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the dielectric waveguide has a square or trapezoidal cross-sectional shape, and has a height and width of 0.1 to 0. 0, respectively. It is characterized by being 5 μm.
[0014]
According to a fourth aspect of the present invention, in the invention according to the first, second, or third aspect, the distance between the side walls of each dielectric waveguide at the place where the dielectric waveguide is closest is 50. It is -200 nm.
[0015]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the radius of the arc portion of the dielectric waveguide is 2 to 30 μm. In addition, Preferably, it is desirable that the radius of a circular arc part is 2-10 micrometers.
[0016]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein one of the dielectric waveguides is constituted by a straight line, and the other dielectric waveguide is constituted by a semicircle and a straight line. It is characterized by being.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, by greatly increasing the refractive index of the core portion of the dielectric waveguide of the delay line type electromagnetic wave frequency selection filter, the minimum bending radius of the waveguide is reduced, and the mutual interference between the linear portion and the delay line portion is reduced. The distance required for avoiding this is reduced, and the delay line type electromagnetic wave frequency selection filter can be greatly reduced in size.
[0018]
Here, as a waveguide material whose refractive index of the core part is much larger than that of the clad part, the core part is made of silicon and the clad part is made of silicon dioxide. Since these materials are used in existing semiconductor integrated circuits, they are suitable for the production of this kind of dielectric waveguide accompanied by microfabrication. Here, as the typical values of the refractive indexes of the respective portions, the core portion is n 1 = 3.48, and the cladding portion is n 2 = 1.44. In addition, the cross-sectional shape of the dielectric waveguide needs to be within a range where the waveguide satisfies the single mode condition. Here, a value satisfying this condition is a square cross section having a width w = 0.4 μm and a height h = 0.2 μm.
[0019]
According to our experiments, this dielectric waveguide does not show any significant attenuation even after repeating 90 degrees of deflection at a radius of 2 μm 24 times. Therefore, the minimum bending radius of this dielectric waveguide is r = 2 μm is acceptable. Further, according to the three-dimensional time domain finite difference method (FDTD method: Uno Satoshi, electromagnetic field and antenna analysis by FDTD method, Corona (1998)), this waveguide has a distance of about 5 times the waveguide width, That is, it has been found that if a clad layer of 2 μm or more is sandwiched, no significant interference occurs. These values are all very small compared to the conventional quartz waveguide, which means that the delay line type electromagnetic frequency selection filter can be miniaturized.
[0020]
FIG. 3 is a block diagram for explaining an embodiment of the delay line type electromagnetic wave frequency selection filter of the present invention. In FIG. 3, reference numeral 11 is a straight line portion (straight dielectric waveguide), and 12 is a delay line portion (semi-circular and Linear dielectric waveguide), 12a is a delay line semicircular waveguide (radius of about 2.5 μm), 12b is a delay adjusting linear waveguide, and 13 is a high relative refractive index difference type dielectric waveguide (core refractive index). n1 = 3.48 and cladding refractive index n2 = 1.44).
[0021]
The shape of the delay line type electromagnetic wave frequency selection filter of the present invention has a delay structure composed of a straight line portion 11 and a delay line portion 12 as in the case of using a quartz type waveguide, and here, a structure of 8 periods is used. Assume that In addition, the distance between the side wall surfaces at the closest portion of the straight line portion 11 and the delay line portion 12 is set to 150 nm in order to cause sufficient interaction between the both. However, according to the calculation by the 3D-FDTD method, it has been found that the distance gives an effective degree of coupling between 50 nm and 200 nm.
[0022]
The propagation time difference required from the frequency band is generated by the delay line unit 12 including the delay line unit semicircular waveguide 12a and the delay adjusting linear waveguide 12b. Here, the radius of the delay line portion semicircular waveguide 12a is set to 2.5 μm. In the embodiment of the present invention, the propagation time difference can be adjusted by the length of the delay adjusting linear waveguide 12b in order to simplify the discussion. The total length of the delay line type electromagnetic frequency selection filter formed by the above configuration is 80 μm.
[0023]
Since the radius of the delay line part semicircular waveguide 12a used here is larger than the above-mentioned minimum radius, it is a value that can be used. The maximum separation distance between the straight line portion 11 and the delay line portion 12 is 4.6 μm, which satisfies the above-described condition. The difference in the waveguide length between the delay line portion 12 and the straight portion 11 per cycle is about 5.7 μm when the length of the delay adjustment linear waveguide 12b is 0 nm, and the delay adjustment linear waveguide 12b. In the case of the length of 50 nm, it is 5.8 μm. Here, considering that the group refractive index of this waveguide is about 4.2 around the wavelength of 1550 nm, the propagation time difference is 80 to 81 fs, which satisfies the above-described condition regarding the frequency band.
[0024]
FIG. 4 is a diagram showing the input / output ratio of the electromagnetic wave, that is, the frequency dependency of the frequency selection characteristic, for the delay line type electromagnetic frequency selection filter of the present invention. This frequency selective characteristic was calculated by the three-dimensional FDTD method. The solid line indicates the frequency characteristic when the length of the delay adjusting straight waveguide 12b is 0 nm, and the dotted line indicates the frequency characteristic when the length is also 50 nm. In both cases, the repetition frequency of the selected frequency is 12 THz required from the frequency band. It can also be seen that the selection frequency can be adjusted by adjusting the length of the delay adjusting linear waveguide 12b.
[0025]
That is, according to the present invention, it is possible to reduce the size of the delay line type electromagnetic wave frequency selection filter, which conventionally required a size of about centimeters, to a size of about 100 μm or less.
[0026]
Here, regarding the material used for the dielectric waveguide of the delay line type electromagnetic wave frequency selection filter of the present invention, when the operating wavelength is the infrared region for communication near the wavelength of 1550 nm, the core portion passes infrared rays with a high refractive index. Silicon, germanium, gallium / arsenic compounds, indium / phosphorus compounds, indium / antimony compounds, and the like can be used as materials that can be processed and have few problems with stability. The refractive index of these materials is approximately between 3.0 and 4.5. In addition, the cladding part can transmit infrared rays with a low refractive index and has few problems in workability and stability. Silicon dioxide, polyimide organic compounds, epoxy organic compounds, acrylic organic compounds, air, vacuum, etc. Can be used as a material. The refractive index of these materials is approximately between 1.0 and 1.7.
[0027]
The basic principle of operation of the delay line type electromagnetic frequency selection filter is that the two dielectric waveguides are essentially closely coupled via different paths periodically, so that the cross-sectional shape of the core itself is arbitrary. It is clear that the shape may be any.
[0028]
However, from the viewpoint of ease of manufacture, it is considered that a rectangular or trapezoidal shape is suitable for the cross-sectional shape of the waveguide. In addition, the size of the waveguide cross section must be limited to a range satisfying the single mode condition, but the calculation by the plane wave expansion method (RD Meade et al., Physical Review B 48, 8434 (1996)), etc. According to the above, it has been found that this value is 0.5 μm or less in both the height and width of the waveguide when the above-described materials are used.
[0029]
Further, the lower limit of the radius of curvature of the curve in the delay line portion 12 is determined by the loss due to the bending of the waveguide. When the single mode waveguide is formed of the above-described materials, the embodiment shown in FIG. Thus, it is about 2 μm. The upper limit of the radius of curvature may be as large as possible on the operating principle of the delay line type electromagnetic frequency filter, but the size of the entire filter should be 1 mm or less from the viewpoint of integration. Therefore, if the configuration of the embodiment shown in FIG. 3 corresponds to a length of 1 mm, the maximum radius is about 30 μm. However, more preferably, the maximum radius should be 3 μm so that the size of the entire filter is 100 μm or less.
[0030]
[Example 1]
A delay line type electromagnetic wave frequency selection filter according to a first embodiment of the present invention will be described with reference to FIG. A delay line type electromagnetic wave having a structure in which the core portion includes two dielectric waveguides 13 made of a material having a dielectric constant larger than that of the cladding portion, and periodically repeats proximity and separation via different paths. A frequency selective filter, wherein a difference in propagation time of electromagnetic waves by the dielectric waveguide in each period is shorter than a time defined by a reciprocal of a frequency width of a frequency band in which an electromagnetic wave to be selected exists, The refractive index is between 3.0 and 4.5, and the refractive index of the cladding is between 1.0 and 1.7.
[0031]
[Example 2]
A delay line type electromagnetic frequency selection filter according to a second embodiment of the present invention will be described with reference to FIG. In the delay line type electromagnetic wave frequency selection filter of the first embodiment described above, one dielectric waveguide is constituted by a straight line, and the remaining one dielectric waveguide is constituted by a semicircle (arc) and a straight line.
[0032]
[Example 3]
Although not shown, in the delay line type electromagnetic wave frequency selection filter of the first and second embodiments described above, the material of the core portion of the dielectric waveguide is silicon, germanium, gallium / arsenic compound, indium / phosphorus compound, indium / phosphorus compound, An antimony compound or the like is used, and silicon dioxide, a polyimide organic compound, an epoxy organic compound, an acrylic organic compound, air, vacuum, or the like is used for the cladding.
[0033]
[Example 4]
Although not shown, in the delay line type electromagnetic wave frequency selection filter of the first, second, or third embodiment described above, the dielectric waveguide has a square or trapezoidal cross-sectional shape, and its height and width are 0.1 to 0.3 mm, respectively. 5 μm.
[0034]
[Example 5]
5. The delay line type electromagnetic wave frequency selection filter according to claim 1, wherein the distance between the sidewalls of each dielectric waveguide is 50 nm to 200 nm when the two dielectric waveguides are closest to each other. is there.
[0035]
[Example 6]
Although not shown, in the delay line type electromagnetic wave frequency selection filter according to any one of the first to fifth embodiments described above, the radius of the arc portion of the dielectric waveguide is 2 to 30 μm, preferably 2 to 10 μm.
[0036]
【The invention's effect】
As described above, according to the present invention, the difference in propagation time of the electromagnetic wave by the dielectric waveguide in each period is shorter than the time defined by the reciprocal of the frequency width of the frequency band in which the electromagnetic wave to be selected exists, Since the refractive index of the core portion is between 3.0 and 4.5 and the refractive index of the cladding portion is between 1.0 and 1.7, the electromagnetic wave frequency selective filter required for wavelength multiplexing optical communication or the like Can be provided at low cost and in large quantities using conventional semiconductor microfabrication technology or the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a conventional delay line type electromagnetic frequency selection filter.
FIG. 2 is a diagram for explaining operating characteristics of a conventional delay line type electromagnetic frequency selection filter;
FIG. 3 is a configuration diagram for explaining one embodiment of a delay line type electromagnetic frequency selection filter of the present invention.
FIG. 4 is a diagram for explaining operating characteristics of the delay line type electromagnetic frequency selection filter of the present invention.
[Explanation of symbols]
1 Straight section (straight dielectric waveguide)
2 Delay line (curved and linear dielectric waveguide)
3 Silica-based waveguide 11 Linear part (linear dielectric waveguide)
12 Delay line (semi-circular and linear dielectric waveguide)
12a Delay line portion semicircular waveguide 12b Delay adjusting linear waveguide 13 High relative refractive index difference type dielectric waveguide

Claims (6)

コア部がクラッド部よりも大きな誘電率を有する物質によって構成される2本の誘電体導波路を有し、それぞれ異なる経路を経て周期的に近接と離反を繰り返す構造を備えた遅延線型電磁波周波数選択フィルタにおいて、
前記各周期における前記2本の誘電体導波路の長さの差が、選択対象の電磁波が存在する周波数帯域の周波数幅の逆数により規定される時間中に電磁波が当該誘電体導波路を伝播する距離よりも短く、前記コア部の屈折率が3.0〜4.5の間にあり、かつ前記クラッド部の屈折率が1.0〜1.7の間にあることを特徴とする遅延線型電磁波周波数選択フィルタ。
Delay line type electromagnetic wave frequency selection with a structure in which the core part has two dielectric waveguides made of a material having a dielectric constant larger than that of the cladding part, and repeats proximity and separation periodically through different paths. In the filter,
The electromagnetic wave propagates through the dielectric waveguide during the time defined by the reciprocal of the frequency width of the frequency band in which the electromagnetic wave to be selected is present as the difference in length between the two dielectric waveguides in each period. A delay line type characterized in that the refractive index of the core part is shorter than the distance , the refractive index of the core part is between 3.0 and 4.5, and the refractive index of the cladding part is between 1.0 and 1.7. Electromagnetic frequency selection filter.
前記コア部が、珪素、ゲルマニウム、ガリウム・砒素系化合物、インジウム・燐系化合物、インジウム・アンチモン系化合物のいずれかにより構成され、かつ前記クラッド部が、二酸化珪素、ポリイミド系有機化合物、エポキシ系有機化合物、アクリル系有機化合物、空気、真空のいずれかであることを特徴とする請求項1に記載の遅延線型電磁波周波数選択フィルタ。  The core part is composed of any one of silicon, germanium, gallium / arsenic compound, indium / phosphorus compound, indium / antimony compound, and the clad part is silicon dioxide, polyimide organic compound, epoxy organic 2. The delay line type electromagnetic wave frequency selection filter according to claim 1, wherein the delay line type electromagnetic wave frequency selection filter is one of a compound, an acrylic organic compound, air, and vacuum. 前記誘電体導波路の断面形状が方形または台形であり、その高さ及び幅がそれぞれ0.1〜0.5μmであることを特徴とする請求項1又は2に記載の遅延線型電磁波周波数選択フィルタ。  The delay line type electromagnetic wave frequency selective filter according to claim 1 or 2, wherein the dielectric waveguide has a square or trapezoidal cross-sectional shape and a height and a width of 0.1 to 0.5 µm, respectively. . 前記誘電体導波路が最も近接する場所での、各誘電体導波路の側壁間の距離が、50〜200nmであることを特徴とする請求項1,2又は3に記載の遅延線型電磁波周波数選択フィルタ。  The delay line type electromagnetic wave frequency selection according to claim 1, 2 or 3, wherein a distance between side walls of each dielectric waveguide at a place where the dielectric waveguide is closest is 50 to 200 nm. filter. 前記誘電体導波路の円弧部分の半径が、2〜30μmであることを特徴とする請求項1乃至4いずれかに記載の遅延線型電磁波周波数選択フィルタ。  The delay line type electromagnetic wave frequency selection filter according to any one of claims 1 to 4, wherein a radius of an arc portion of the dielectric waveguide is 2 to 30 µm. 前記誘電体導波路の一方は直線により構成され、他方の誘電体導波路は半円形及び直線により構成されていることを特徴とする請求項1乃至5いずれかに記載の遅延線型電磁波周波数選択フィルタ。  6. The delay line type electromagnetic wave frequency selection filter according to claim 1, wherein one of the dielectric waveguides is constituted by a straight line, and the other dielectric waveguide is constituted by a semicircle and a straight line. .
JP2002224152A 2002-07-31 2002-07-31 Delay line type electromagnetic frequency selection filter Expired - Fee Related JP4202067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224152A JP4202067B2 (en) 2002-07-31 2002-07-31 Delay line type electromagnetic frequency selection filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224152A JP4202067B2 (en) 2002-07-31 2002-07-31 Delay line type electromagnetic frequency selection filter

Publications (2)

Publication Number Publication Date
JP2004062104A JP2004062104A (en) 2004-02-26
JP4202067B2 true JP4202067B2 (en) 2008-12-24

Family

ID=31943723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224152A Expired - Fee Related JP4202067B2 (en) 2002-07-31 2002-07-31 Delay line type electromagnetic frequency selection filter

Country Status (1)

Country Link
JP (1) JP4202067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671642B2 (en) 2006-12-13 2010-03-02 Atmel Corporation Amplitude controlled sawtooth generator

Also Published As

Publication number Publication date
JP2004062104A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US10088628B1 (en) Optical waveguide element and receiving circuit
KR100739522B1 (en) Electromagnetic wave frequency filter
Niemi et al. Wavelength-division demultiplexing using photonic crystal waveguides
JP4448199B2 (en) Substrate-type optical waveguide device, chromatic dispersion compensation device, optical filter and optical resonator, and design methods thereof
JP4500886B2 (en) Optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
US20110142396A1 (en) Athermal silicon photonics array waveguide grating (awg) employing different core geometries in the array waveguides
CN104204880A (en) Optical element, light transmitting element, light receiving element, hybrid laser, and light transmitting apparatus
WO2009107812A1 (en) Substrate type light waveguide element, wavelength dispersion compensating element, optical filter, optical resonator and method for designing the light waveguide element, the wavelength dispersion compensating element, the filter and the resonator
JP3794327B2 (en) Optical coupler and manufacturing method thereof
JP2002333536A (en) Compensator for wavelength dispersion and light transmission system using the same
CA2329382A1 (en) Optical arrayed waveguide grating devices
JP4190733B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
CN108508539B (en) Silicon fundamental wave division multiplexer based on conical asymmetric directional coupler
US6539150B2 (en) Segmented waveguide flattening the passband of a phasar
CN110095841B (en) Mode selective attenuator based on sub-wavelength grating waveguide
JP2002228863A (en) Optical coupling structure
EP3203282B1 (en) Rib type optical waveguide and optical multiplexer/demultiplexer using same
US11048045B1 (en) Integrated lens mode size converter
JP6397862B2 (en) Optical waveguide device
JP4202067B2 (en) Delay line type electromagnetic frequency selection filter
US20130183440A1 (en) Optical waveguide-type wavelength dispersion compensation device and manufacturing method thereof
KR101023254B1 (en) Plasmon transmission filter
JP2007072133A (en) Waveguide type band rejection filter
JP2005301301A (en) Optical coupler
JPH11133253A (en) Array waveguide type wavelength multiplexer/ demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R151 Written notification of patent or utility model registration

Ref document number: 4202067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees