JP4152678B2 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP4152678B2
JP4152678B2 JP2002173461A JP2002173461A JP4152678B2 JP 4152678 B2 JP4152678 B2 JP 4152678B2 JP 2002173461 A JP2002173461 A JP 2002173461A JP 2002173461 A JP2002173461 A JP 2002173461A JP 4152678 B2 JP4152678 B2 JP 4152678B2
Authority
JP
Japan
Prior art keywords
swirling
pressure space
oil
space
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002173461A
Other languages
Japanese (ja)
Other versions
JP2004019499A (en
Inventor
登 飯田
晃 鶸田
義幸 二上
清 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002173461A priority Critical patent/JP4152678B2/en
Priority to CNB03142497XA priority patent/CN100366912C/en
Publication of JP2004019499A publication Critical patent/JP2004019499A/en
Application granted granted Critical
Publication of JP4152678B2 publication Critical patent/JP4152678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクル装置等に用いられるスクロール圧縮機の潤滑油を圧縮空間に適正量供給する技術に係わり、吐出圧力が高圧となる冷媒、例えば二酸化炭素(以下、CO2)を冷媒として用いるスクロール圧縮機に関する。
【0002】
【従来の技術】
スクロール圧縮機は、低振動・低騒音特性を備え、圧縮流体の流れが一方向であるため高速運転時の流体抵抗が小さく圧縮効率が高いことから普及している。従来のスクロール圧縮機としては、図7に構成されているものが知られている。すなわち、スクロール圧縮機55は、密閉容器1とその内部に配置された圧縮機構部2及び電動機3を含み構成され、電動機3はステータ4とロータ5からなり、ロータ5に駆動軸6が貫通結合している。圧縮機構部2は固定渦巻き部材10と旋回渦巻き部材11とを噛み合わせて複数の圧縮空間31を形成し、駆動軸6の先端にあるクランク軸9により旋回運動させられる旋回渦巻き部材11が、圧縮空間31を渦巻きの中心に向かって移動しつつその容積を漸次減少することによって、空調用の冷媒ガス等を吸入圧縮している。
また、旋回渦巻き部材11の旋回渦巻き羽根面の反対側には、圧縮機構部2の一部を構成する軸受部材7、該軸受部材7に固定されている旋回軸受13、軸受8を潤滑冷却する上部潤滑油溜り21及び潤滑油溜り22が設けられている。一方、旋回渦巻き部材11の自転を防止する自転拘束部品12が配置された背圧室28が設けられ、この背圧室28は上部潤滑油溜り21に給油通路40を介して連通されている。
そして、上部潤滑油溜り21の潤滑油は、給油通路40で減圧され、高圧空間としての上部潤滑油溜り21から中間圧空間としての背圧室28に供給されて、自転拘束部品12の潤滑を行っている。さらに潤滑油は、この背圧室28から圧力調整機構33を介して低圧空間としての吸入空間32及び圧縮空間31に供給され、圧縮中の冷媒ガス等の漏れを防ぐ役割と、固定渦巻き部材10と旋回渦巻き部材11の摺動面を潤滑する役割を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のスクロール圧縮機の給油構成では、高圧側と低圧側との差圧が大きくなると、潤滑油量の供給も多くなり、特に、冷凍サイクル装置等に使用しているHFC(フッ素化合物)冷媒等を、例えばCO2の冷媒に代えた場合は吐出圧力がCO2の超臨界圧力に相当する15メガパスカル位の非常な高圧となり、高圧側と低圧側との差圧がHFC冷媒の約3倍から5倍と大きくなるため、潤滑油の供給過多になり、更にその潤滑油を圧縮することにもなり、スクロール圧縮機の高い圧縮効率に影響を及ぼすという問題が生じる。
【0004】
したがって、本発明の目的は、高圧側と低圧側との差圧が大きくても、背圧室や圧縮空間に潤滑油を適正量供給して、高効率な運転ができるスクロール圧縮機を提供することにある。
また、他の目的は、CO2冷媒を用いて超臨界圧力まで圧縮しても、給油の適正化が図られ、高効率な運転ができるスクロール圧縮機を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するための、請求項1記載の本発明によるスクロール圧縮機は、固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材と、旋回渦巻き羽根と旋回鏡板とを有し当該旋回渦巻き羽根と前記固定渦巻き羽根とを噛み合わせて形成した圧縮空間に冷媒ガスを吸入し旋回運動によって吐出圧力まで圧縮する旋回渦巻き部材と、前記旋回渦巻き部材の前記旋回渦巻き羽根面と反対側に設けられた軸受部材と、前記軸受部材の中央内部に位置し前記吐出圧力の下で潤滑油を溜める高圧空間と、前記軸受部材の外周内部に位置させた中間圧空間と、前記高圧空間と前記中間圧空間とを区画する環状シール部材と、前記旋回渦巻き部材に設けた給油通路とを備え、前記給油通路を用いて前記高圧空間と前記中間圧空間の圧力差によって前記潤滑油を給油するスクロール圧縮機であって、前記給油通路の油出口部を前記中間圧空間に開口する位置に配設し、前記給油通路の油入口部を、前記旋回渦巻き部材の旋回運動によって前記環状シール部材を跨いで往復し、前記高圧空間と前記中間圧空間に交互に開口する位置に配設したことを特徴とする。
また、請求項2記載の本発明によるスクロール圧縮機は、固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材と、旋回渦巻き羽根と旋回鏡板とを有し当該旋回渦巻き羽根と前記固定渦巻き羽根とを噛み合わせて形成した圧縮空間に冷媒ガスを吸入し旋回運動によって吐出圧力まで圧縮する旋回渦巻き部材と、前記旋回渦巻き部材の前記旋回渦巻き羽根面と反対側に設けられた軸受部材と、前記軸受部材の中央内部に位置し前記吐出圧力の下で潤滑油を溜める高圧空間と、前記軸受部材の外周内部に位置させた中間圧空間と、前記高圧空間と前記中間圧空間とを区画する環状シール部材と、前記旋回渦巻き部材に設けた給油通路とを備え、前記給油通路を用いて前記高圧空間と前記中間圧空間の圧力差によって前記潤滑油を給油するスクロール圧縮機であって、前記給油通路の油入口部を前記高圧空間に開口する位置に配設し、前記給油通路の油出口部を、前記旋回渦巻き部材の旋回運動によって前記環状シール部材を跨いで往復し、前記高圧空間と前記中間圧空間に交互に開口する位置に配設したことを特徴とする。
また、請求項3記載の本発明は、請求項1から請求項2のいずれかに記載のスクロール圧縮機において、前記環状シール部材を跨いで往復する前記油入口部または前記油出口部の直径をφ0.2mmからφ0.5mmの範囲とすることを特徴とする。
また、請求項4記載の本発明は、請求項1から請求項3のいずれかに記載のスクロール圧縮機において、前記冷媒ガスとして二酸化炭素を用い、超臨界圧力まで圧縮することを特徴とする。
【0006】
【発明の実施の形態】
本発明の第1の実施の形態は、固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材と、旋回渦巻き羽根と旋回鏡板とを有し当該旋回渦巻き羽根と固定渦巻き羽根とを噛み合わせて形成した圧縮空間に冷媒ガスを吸入し旋回運動によって吐出圧力まで圧縮する旋回渦巻き部材と、旋回渦巻き部材の旋回渦巻き羽根面と反対側に設けられた軸受部材と、軸受部材の中央内部に位置し吐出圧力の下で潤滑油を溜める高圧空間と、軸受部材の外周内部に位置させた中間圧空間と、高圧空間と中間圧空間とを区画する環状シール部材と、旋回渦巻き部材に設けた給油通路とを備え、給油通路を用いて高圧空間と中間圧空間の圧力差によって潤滑油を給油するスクロール圧縮機において、給油通路の油出口部を中間圧空間に開口する位置に配設し、給油通路の油入口部を、旋回渦巻き部材の旋回運動によって環状シール部材を跨いで往復し、高圧空間と中間圧空間に交互に開口する位置に配設するものである。本実施の形態によれば、高圧側と低圧側との差圧が大きくても、油入口部が高圧空間に開口したときのみ潤滑油を供給する間欠給油により、有効に減圧調節が行えるので、給油量の適正化が図られて高効率のスクロール圧縮機を実現できる。
【0007】
また、本発明の第2の実施の形態によるスクロール圧縮機は、給油通路を用いて高圧空間と中間圧空間の圧力差によって潤滑油を給油するに、給油通路の油入口部を高圧空間に開口する位置に配設し、給油通路の油出口部を、旋回渦巻き部材の旋回運動によって環状シール部材を跨いで往復し、高圧空間と中間圧空間に交互に開口する位置に配設して実行するものである。本実施の形態によれば、高圧側と低圧側との差圧が大きくても、油出口部が中間圧空間に開口したときのみ潤滑油を供給する間欠給油により、有効に減圧調節が行えるので、給油量の適正化が図られて高性能のスクロール圧縮機を提供できる。
【0008】
また、本発明の第3の実施の形態は、第1の実施の形態または第2の実施の形態によるスクロール圧縮機において、環状シール部材を跨いで往復する油入口部または油出口部の直径をφ0.2mmからφ0.5mmとするものである。本実施の形態によれば、油入口部または油出口部の開口径下限寸法を、d=0.2mmに抑えることにより、塵埃に対する耐閉塞性が向上し、開口径上限寸法を、d=0.5mmに抑えることにより、開口縁による環状シール部材への加傷が防止できるため、信頼性のある間欠給油ができ、且つ、高効率な運転が維持できるスクロール圧縮機を提供することができる。
【0009】
また、本発明の第4の実施の形態は、第1から第3の実施の形態によるスクロール圧縮機において、冷媒ガスとして二酸化炭素を用い、超臨界圧力まで圧縮するものである。冷媒ガスとして二酸化炭素を用いると、吐出圧力が超臨界圧力相当となり吸入圧力との差圧が過大になるが、本実施の形態によれば、第1から第3の実施の形態によって、減圧率の高い効果的な減圧調節が行えて、潤滑油の供給過多が回避されるので、高効率な運転が十分に確保できるスクロール圧縮機を提供することができる。
【0010】
【実施例】
(実施例1)
図1は、本発明による一実施例のスクロール圧縮機を示す断面図である。図示のスクロール圧縮機50には、密閉容器1の内部に、圧縮機構部2と電動機3とが配設されている。圧縮機構部2は、固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材10と、旋回渦巻き羽根と旋回鏡板とを有する旋回渦巻き部材11と、旋回渦巻き部材11の旋回渦巻き羽根面と反対側に設けられた軸受部材7等から構成される。電動機3は、密閉容器1の内側に固定されたステータ4と、このステータ4の内側に回転自在に支持されたロータ5とからなり、このロータ5には、駆動軸6が貫通状態で結合されている。上記駆動軸6の一端は圧縮機構部2の一部を構成する軸受部材7に固定されている軸受8に回転自在に支持されている。軸受8により支持されている駆動軸6の先端には駆動軸6に対して偏心運動を行うクランク軸9が備えられている。
一方、固定渦巻き部材10の固定渦巻き羽根と旋回渦巻き部材11の旋回渦巻き羽根とを噛み合わせることにより複数の圧縮空間31を形成している。旋回渦巻き部材11は自転拘束部品12により自転が防止され、クランク軸9によって旋回渦巻き部材11が旋回軸受13を介して旋回運動のみをする。旋回渦巻き部材11が圧縮空間31を渦巻きの中心に向かって漸次容積を減少させながら移動し、吸入管45から吸入ポート14を経て冷媒ガスとして、例えばCO2ガスを吸入し中心に向かって圧縮する。吐出圧力に高められたCO2ガスは、吐出ポート15を通り容器内部空間16を経て吐出管46から吐出される。
【0011】
また、駆動軸6の他端側は底部軸受17によって支持されており、その先端には容積型ポンプ18を備えている。密閉容器1の下部に設けられた底部潤滑油溜り19に溜まっている潤滑油が、容積型ポンプ18によって、駆動軸6の軸中心に設けられた給油経路20を経て、クランク軸9の上部の上部潤滑油溜り21に供給される。この潤滑油は、旋回軸受13を潤滑、冷却した後、軸受部材7の中央内部の位置に設けられた潤滑油溜り22に溜まり、潤滑油溜り22を経て軸受け8を潤滑し、底部潤滑油溜り19に戻る。
旋回渦巻き部材11の一部を構成する旋回鏡板23の下面は、軸受部材7の内部上面24と所定隙間を有して離間しており、軸受部材7の内部上面24(の溝)に設けた環状シール部材25によってシールされている。即ち、軸受部材7は旋回運動を可能にする隙間を有した離間状態で旋回渦巻き部材11を内包している。
【0012】
軸受部材7には窪み26が設けられ、自転拘束部品12が配置されている。さらに、窪み26の上部には固定渦巻き部材10の固定鏡板27と旋回鏡板23および軸受部材7とによって形成される背圧室28が、軸受部材7の外周内部の位置に設けられている。潤滑油溜り22と背圧室28とは、旋回渦巻き部材11(の旋回鏡板23)の内部に設けられた給油通路(としての細孔29及び長穴30)によって連通できるように構成されている。そして、上記所定隙間の潤滑油溜り22に連通する高圧空間と、背圧室28に連通する中間圧空間とは、環状シール部材25によって区画されている。
更に、容器内部空間16と潤滑油溜り22及び上部潤滑油溜り21は、軸受8および旋回軸受13を介して連通しており、潤滑油溜り22および上部潤滑油溜り21は、吐出圧力とほぼ同圧状態下の高圧空間を形成し、窪み26及び背圧室28は、中間圧空間を形成している。すなわち、潤滑油溜り22に供給された潤滑油の一部は、絞り効果を持つ給油通路(細孔29及び長穴30)を経由して、中間圧力に減圧されながら窪み26と背圧室28に供給されて、窪み26に配置された自転拘束部品12などの潤滑を行っている。言い換えれば、本実施例のスクロール圧縮機では、吐出圧力と中間圧力の第1差圧を利用して、即ち高圧空間と中間圧空間の圧力差によって、給油通路を介した潤滑油の給油がなされている。
【0013】
背圧室28に供給された潤滑油が溜まるに従い、背圧室28の圧力が上昇する。背圧室28の圧力を一定に保つために、中間圧空間を形成する背圧室28と、圧縮空間31の低圧空間を形成する吸入空間32との間に、圧力調整機構33を設けている。背圧室28の圧力が設定された圧力より高くなると圧力調整機構33が作動して、背圧室28内の潤滑油は、吸入空間32に供給され、背圧室28内の圧力はほぼ一定に保たれる。すなわち、中間圧空間としての背圧室28に供給された潤滑油は、圧力調整機構33を含む第2給油通路を経て、低圧空間としての吸入空間32に供給される。言い換えれば、中間圧力と吸入圧力の第2差圧によって、中間圧空間の潤滑油が第2給油通路を介して低圧空間に圧送される。そして、吸入空間32に供給された潤滑油は、圧縮空間31に導かれて、圧縮中の冷媒ガス等の漏れを防ぎシールする役割と、固定渦巻き部材10、旋回渦巻き部材11、軸受部材7などの摺動面を潤滑する役割を果たしている。
【0014】
圧縮機及び潤滑油溜り22の吐出圧力、背圧室28の中間圧力、吸入空間32の吸入圧力は適宜設定されるが、特に背圧室28の圧力は旋回渦巻き部材11を固定渦巻き部材10に押し付けるために、吸入空間32の圧力よりも所定圧力だけ高めて設定されている。所定圧力を得るために、潤滑油溜り22と背圧室28を連通させる絞り効果を持つ細孔29と長穴30の寸法と、圧力調整機構33とによって調整している。
ところで、旋回渦巻き部材11を固定渦巻き部材10に押し付けるための背圧は、前述の第2差圧であるが、この背圧が大きくなると摺動部の異常磨耗や摩擦損失の増加に繋がるので、第2差圧を大きくすることは好ましくない。すなわち、背圧は適正値に設定されかつ常に一定に保たれる。一方、吐出圧力が高くなる場合は、全体の差圧(吐出圧力と吸入圧力の差)が大きくなるので、第2差圧が一定値であれば、前述の第1差圧が大になる。従って、第1差圧が過大になるCO2冷媒の場合は、特に給油過剰になる。この給油過剰に対して、本発明の給油通路による間欠給油が有効に作用することになり、以下、これについて説明する。
【0015】
図2は、図1に示す給油通路の部分拡大断面図である。図2に示す旋回渦巻き部材11は、その内部が連通した細孔29と長穴30とからなる給油通路を有し、その給油通路は、潤滑油を減圧・供給するために、高圧空間としての潤滑油溜り22と中間圧空間としての背圧室28を連通している。そして、給油通路の細孔29の油入口部29aは、旋回鏡板下面23aに開口し、この細孔29の油入口部29aが、圧縮機の一回転の間に、即ち旋回渦巻き部材11の一旋回運動の間に、環状シール部材25を跨いで往復し、高圧空間としての潤滑油溜り22に間欠的に開口する位置に配設されている。
【0016】
上記給油機構の動作について図3を用いて説明する。図3は、図1に示す細孔と環状シール部材の、旋回渦巻き部材の一旋回運動に伴う位置関係の変化を示す平面図であり、旋回渦巻き部材11の旋回鏡板23を下面側から見た状態を示している。図において、最外周部の円は背圧室28を囲む外壁としての軸受部材7の外周線35を示し、中心部の円は駆動軸6に設けられた給油経路20を示し、最外周部の円と中心部の円の間に二本の一点鎖線で環状シール部材25を示している。更に、旋回鏡板23に設けられた自転拘束部品12のガイド溝34、旋回鏡板23に設けられて潤滑油溜り22と背圧室28を連通する給油通路としての油入口部29aと長穴30と油出口部30a、旋回軸受13を保持する旋回渦巻き部材11の鍔部36が示されている。
【0017】
図には、旋回渦巻き部材11の旋回運動に対する細孔29の開口端としての油入口部29aと、軸受部材7に設けられた環状シール部材25との相対的位置関係を示している。すなわち、図3の(a)〜(d)の順番に矢印に示すように、旋回渦巻き部材11は、背圧室28の外周線35に対して偏心した状態で旋回運動をする。この時、環状シール部材25の内周部が高圧空間を形成し、その外周部は中間圧空間を形成している。したがって細孔29の油入口部29aが、環状シール部材25の内周部に位置するときのみ、高圧空間の潤滑油溜り22と中間圧空間である背圧室28が連通され、潤滑油溜り22の潤滑油が油入口部29aから油出口部30aを経て背圧室28に供給される。したがって、潤滑油が供給可能となるのは、図3(b)の状態の油入口部が高圧空間に開口したときのみである。言い換えれば、油出口部は、中間圧空間に常に開口する位置に、油入口部は、旋回運動の間に環状シール部材を跨いで往復し、高圧空間と中間圧空間に交互に開口する位置に配設されている。
上記給油通路の間欠的連通は、潤滑油の間欠給油となり、減圧すると共に潤滑油量の実質的な供給を制御する働きを有する。また、細孔29は絞り効果を持つ細い通路から構成されており、図3(b)の状態時に、高圧空間である潤滑油溜り22から中間圧空間である背圧室28に供給される潤滑油量を抑制する働き(即ち、減圧制御機能)を有する。
【0018】
このように、本実施例のスクロール圧縮機では、潤滑油の供給が間欠的になされ、かつ絞り効果を持つ細孔を通して行われるために、従来例のスクロール圧縮機に比べ、潤滑油の供給量を抑えて適正に供給することが可能になる。その上に、中間圧空間から低圧空間への潤滑油供給量も抑制される。したがって、本実施例のスクロール圧縮機を、差圧が大きくなる冷媒ガスと組み合わせて用いても、有効に減圧調節が行え、給油の増加が防止される。すなわち、吸入部での冷媒加熱による閉じ込み冷媒量の減少を防ぎ、潤滑油を圧縮するという無駄が防止されて、圧縮効率を高く維持し、安定した運転が行えるスクロール圧縮機を提供することができる。
【0019】
(実施例2)
図4は、本発明による他の実施例のスクロール圧縮機を示す断面図である。図5は、図4に示す給油通路の部分拡大断面図である。本実施例2は、前述の実施例1と次の構成に関して異なる。すなわち、図4および図5に示すように、本実施例の給油通路は、高圧空間としての上部潤滑油溜り21と中間圧空間としての背圧室28を連通するための、油入口部37aを有する長穴37と油出口部38aを有する細孔38とから構成され、細孔38の油出口部38aが環状シール部材25を跨いで、背圧室28に間欠的に開口する位置関係で構成されている。
【0020】
上記給油機構の動作について図6を用いて説明する。図6は、図4に示す細孔と環状シール部材の、旋回渦巻き部材の一旋回運動に伴う位置関係の変化を示す平面図であり、旋回渦巻き部材11の旋回鏡板23を下面側から見た状態を示している。図において、最外周円は軸受部材7の背圧室28の外周線35を示し、中心円は駆動軸6に設けられた給油経路20を示し、最外周円と中心円の間に二本の一点鎖線で環状シール部材25を示している。さらに、ガイド溝34は、自転拘束部品12を案内するために旋回鏡板23に設けられた溝であり、鍔部36は、旋回軸受13を保持する旋回渦巻き部材11のフランジである。そして、長穴37と長穴37の油入口部37aと細孔38の油出口部38aは、旋回鏡板23に設けられて上部潤滑油溜り21と背圧室28を連通する給油通路である。
【0021】
図6では、旋回渦巻き部材11の旋回運動に対する細孔38の開口端としての油出口部38aと、軸受部材7に設けられた環状シール部材25との相対的位置関係を示している。旋回渦巻き部材11は、図6の(a)〜(d)の矢印に示すように、背圧室28の外周線35に対して偏心した状態で旋回運動をする。この時、環状シール部材25の内周部が高圧空間を形成し、その外周部は中間圧空間を形成している。したがって細孔38の油出口部38aが、環状シール部材25の外周部に位置する場合のみ、高圧空間としての上部潤滑油溜り21と中間圧空間としての背圧室28が連通され、上部潤滑油溜り21の潤滑油が油入口部37aから油出口部38aを経て背圧室28に減圧・供給される。すなわち、油入口部37aは、常に高圧空間に開口し、油出口部38aは、図6(d)の状態時のみ、中間圧空間に開口することになる。したがって、潤滑油が供給可能となるのは、図6(d)の状態の油出口部が中間圧空間に開口したときのみという、いわゆる間欠給油が実行される。
すなわち、上記給油機構は、旋回渦巻き部材の一旋回運動の間に、図6(d)の状態時のみに潤滑油を供給するオンオフ制御を行って、潤滑油量の供給を制御する働きを有する。また、給油機構は絞り効果を持つ細孔38を有する構成であり、図6(d)の状態の時に、高圧空間の上部潤滑油溜り21から中間圧空間の背圧室28に供給される潤滑油量を抑制する働きを有する。
【0022】
このように、間欠的連通によって潤滑油が適正に減圧・供給され、かつ絞り効果を持つ細孔を通るため、従来例に比べ、供給量を抑えることが可能となり、この中間圧空間から吸入空間への潤滑油供給量も抑制される。したがって、圧縮効率が高く、安定した運転が可能なスクロール圧縮機を提供できる。
なお、本実施例2の実施例1と比べた構成上の違いは、高圧空間から中間圧空間への通路構成の違いのみであり、実施例1では高圧空間である潤滑油溜り22に開口する細孔29を間欠的に開口する構成としていたが、本実施例2では中間圧空間である背圧室28に開口する細孔38を間欠的に開口する構成である。また、他の構成は同様であるので説明を省略する。
【0023】
(実施例3)
実施例3では、図3を参照して、油入口部の開口位置や、開口位置変更による給油と減圧の間欠制御、換言すればオンオフ・デユーティ制御について説明する。
図3(d)において、「X」は環状シール部材25の直径、「Y」は駆動軸6に対するクランク軸9の偏心量、「Z」は旋回渦巻き部材11の中心から細孔29の油入口部29aの中心までの距離を示している。なお、偏心量「Y」は、環状シール部材25が往復する量(往復幅)と同じである。
上記X、Y、Zで示される油入口部29aの位置は、すなわち油入口部29aが環状シール部材25の上を跨いで往復し、高圧空間に間欠的に開口する配置は、次の関係式から定められる。
Z=(X/2)+m (1)
Y/2≧m≧−(Y/2) (2)
【0024】
そして、実施例1のスクロール圧縮機50では、上記(2)式において、m=0(ゼロ)とした場合の油入口部29aの開口位置を示している。すなわち、実施例1の場合、旋回渦巻き部材11の中心から細孔29の油入口部29aの中心までの距離「Z」は、環状シール部材25の直径「X」の半分としている。なお、油入口部29aは、旋回渦巻き部材11の中心が左右移動する方向の該中心の延長線上(またはクランク軸9の偏心方向の延長線上)に位置している。
そして、m=0の場合は、油入口部29aが高圧空間に開口し給油する状態(給油状態)と、中間圧空間に開口し給油しない状態(非給油状態)との割合が、およそ50対50になる開口位置である。
また、Y/2≧m>0(ゼロ)の場合は、非給油状態の割合が給油状態よりも大となる開口位置の範囲であり、給油量を減少できると共に、高圧を低圧に減ずる割合としての減圧率を高くできる制御範囲である。さらに、0(ゼロ)>m≧−(Y/2)の場合は、給油状態の割合が非給油状態よりも大となる開口位置の範囲であり、給油量を増加できると共に、高圧を低圧に減ずる割合としての減圧率を低くできる制御範囲である。
換言すれば、油入口部29aの開口位置を変えることによって、オンオフ・デユーティ制御が行えることになり、潤滑油量の供給と減圧を幅広く且つ有効に制御することができる。特に、Y/2≧m>0(ゼロ)の場合であれば、減圧率が高く効果的に減圧調節ができるので、CO2のような冷媒ガスを用いて高い超臨界圧力まで圧縮し吐出圧力が非常に大きくなっても、給油の適正化を図ることができる。
なお、m>Yの場合は、全く給油しない状態に、−Y>mの場合は、給油しっぱなしの状態になり、発明の目的に合わないことになる。
【0025】
一方、実施例2のスクロール圧縮機50においても、油出口部の開口位置や、開口位置変更による給油及び減圧の制御については、上述の実施例1と同様である。即ち、環状シール部材25の直径「X」、駆動軸6に対するクランク軸9の偏心量「Y」、旋回渦巻き部材11の中心から細孔38の油出口部38aの中心までの距離「Z」とすれば、油出口部38aが環状シール部材25の上を跨いで往復し、中間圧空間に間欠的に開口する油出口部38aの位置は、前述の(1)及び(2)の関係式から同様に定められる。そして実施例2で示したスクロール圧縮機50でも、m=0(ゼロ)の場合を例示している。なお、油出口部38aの開口位置変更による減圧制御等の内容は、上述の実施例1の説明と同様であり、他の内容を含めてその詳細説明を省略する。
【0026】
(実施例4)
実施例4では、図2及び図5を参照して、給油通路の細孔寸法ならびにその寸法による絞り減圧調節について説明する。前述の給油通路の細孔29,38は、絞り効果を持ち潤滑油量を抑制する働きを有している。そして、この絞り効果としての減圧は流路抵抗によって生じるものであり、細孔の断面積としての内径「d」の二乗に反比例し、細孔の長さ「l」に比例する。したがって、適正に潤滑油量を抑制するために絞り効果を調節する場合は、図示した細孔の内径d及び長さlを適宜に設定して行うことになる。
【0027】
ところで、上記実施例1及び実施例2で示したスクロール圧縮機50の大きさは、その押除量が1回転当たり、4.0cm3位としている。この押除量を持つ圧縮機であれば、旋回渦巻き部材11の大きさは、図3(c)及び図6(c)に示す直径「D0」は、7.6cm位になる。また、環状シール部材25の寸法は、直径3.8Ccm、幅0.18cm位になる。そして、CO2冷媒における吐出圧力は、15メガパスカル位になるので、潤滑油量を適正に抑制するための細孔寸法は、内径d=0.2〜0.5mm、長さl=1.5〜4.5mm位が望ましいものとなる。
そして、細孔の内径d及び長さlを設定するに当たり、次の点に留意する必要がある。すなわち、(1)長さ「l」による絞り減圧調節幅は、内径「d」の二乗に反比例する内径dの絞り減圧調節幅よりも小さいこと、(2)図2及び図5に示すように、長さ「l」は、比較的薄い旋回鏡板23の厚さ寸法によって依存されるので、その寸法が狭い範囲に限定されることから、長さ「l」による絞り減圧調節の自由度は小さい点に留意する。
また、内径「d」に対しても留意点があり、(1)細孔の塵埃に対する耐閉塞性から、または細孔の穴あけ加工容易性から、細孔(即ち、油入口部29aまたは油出口部38a)の開口寸法の下限は、直径d=0.2mm位が望ましいこと、(2)細孔の加傷性(即ち、環状シール部材を跨いで往復する油入口部29aまたは油出口部38aの開口縁が環状シール部材を傷つける加傷性)から、または絞り調節限界(減圧率が低くなり過ぎる点)から、開口寸法の上限は、直径d=0.5mm位が望ましいことである。
【0028】
上記の実施例1、実施例2、実施例3及び実施例4から、間欠給油による減圧制御(含む開口位置変更による減圧制御)と、細孔による絞り減圧制御との相乗効果を図ることが、高圧側と低圧側との差圧が大きくなるスクロール圧縮機に、有効で且つ幅広い減圧・給油制御が行え、特に冷媒としてCO2を用いるスクロール圧縮機においては、効果的に減圧・給油制御が行えるので望ましいと言える。しかしながら、間欠給油による減圧制御(含む開口位置変更による減圧制御)のみであっても、有効な減圧・給油制御は可能である。
【0029】
【発明の効果】
以上のように、本発明のスクロール圧縮機では、旋回渦巻き部材の旋回運動の間に、高圧空間の潤滑油溜りと中間圧空間の背圧室をつなぐ給油通路の油入口部が環状シール部材上を往復し間欠的に高圧空間に開口することにより、または給油通路の油出口部が環状シール部材上を往復し間欠的に中間圧空間に開口することにより、減圧しつつ潤滑油量の実質的な供給を制御する。また、給油通路の細孔が持つ絞り効果で潤滑油量を抑制する相乗効果が得られる。
このような、間欠的連通による減圧・給油制御により、または間欠的連通による減圧・給油制御及び細孔による減圧制御により、CO2を冷媒とする冷凍システムでの差圧の大きい状況下においても、潤滑油を背圧室や吸入空間へ適切に且つ効果的に供給することが可能となり、圧縮効率の高い運転が可能なスクロール圧縮機を提供できる効果が得られる。
また、細孔内径の下限寸法をd=0.2mmにすることにより、塵埃に対する耐閉塞性や穴あけ加工容易性の向上効果が得られる。さらに、細孔内径の上限寸法をd=0.5mmにすることにより、環状シール部材への加傷や抑制不足の防止が図られる。
【図面の簡単な説明】
【図1】 本発明による一実施例のスクロール圧縮機を示す断面図
【図2】 図1に示す給油通路の部分拡大断面図
【図3】 図1に示す細孔と環状シール部材の、旋回渦巻き部材の一旋回運動に伴う位置関係の変化を示す平面図
【図4】 本発明による他の実施例のスクロール圧縮機を示す断面図
【図5】 図4に示す給油通路の部分拡大断面図
【図6】 図4に示す細孔と環状シール部材の、旋回渦巻き部材の一旋回運動に伴う位置関係の変化を示す平面図
【図7】 従来のスクロール圧縮機を示す断面図
【符号の説明】
1 密閉容器
2 圧縮機構部
3 電動機
4 ステータ
5 ロータ
6 駆動軸
7 軸受部材
8 軸受
9 クランク軸
10 固定渦巻き部材
11 旋回渦巻き部材
12 自転拘束部品
13 旋回軸受
14 吸入ポート
15 吐出ポート
16 容器内部空間
17 底部軸受
18 容積型ポンプ
19 底部潤滑油溜り
20 給油経路
21 上部潤滑油溜り
22 潤滑油溜り
23 旋回鏡板
24 内部上面
25 環状シール部材
26 窪み
27 固定鏡板
28 背圧室
29,38 細孔(給油通路の一部)
30,37 長穴(給油通路の一部)
31 圧縮空間
32 吸入空間
33 圧力調整機構
34 ガイド溝
35 外周線
36 鍔部
40 給油通路
45 吸入管
46 吐出管
50,55 スクロール圧縮機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for supplying an appropriate amount of lubricating oil for a scroll compressor used in a refrigeration cycle apparatus or the like to a compression space, and a refrigerant having a high discharge pressure, such as carbon dioxide (hereinafter referred to as CO 2). 2 ) As a refrigerant.
[0002]
[Prior art]
Scroll compressors are popular because they have low vibration and low noise characteristics, and the flow of compressed fluid is unidirectional, so the fluid resistance during high-speed operation is small and the compression efficiency is high. As a conventional scroll compressor, the one configured in FIG. 7 is known. That is, the scroll compressor 55 is configured to include the hermetic container 1, the compression mechanism portion 2 and the electric motor 3 disposed therein, and the electric motor 3 includes the stator 4 and the rotor 5. is doing. The compression mechanism unit 2 meshes the fixed spiral member 10 and the swirl spiral member 11 to form a plurality of compression spaces 31, and the swirl spiral member 11 that is swung by the crankshaft 9 at the tip of the drive shaft 6 is compressed. By moving the space 31 toward the center of the spiral and gradually reducing its volume, the refrigerant gas for air conditioning is sucked and compressed.
Further, on the opposite side of the swirl spiral member 11 from the swirl spiral blade surface, the bearing member 7 constituting a part of the compression mechanism 2, the swivel bearing 13 fixed to the bearing member 7, and the bearing 8 are lubricated and cooled. An upper lubricating oil reservoir 21 and a lubricating oil reservoir 22 are provided. On the other hand, a back pressure chamber 28 in which a rotation restraining component 12 for preventing the rotation of the swirling spiral member 11 is provided, and the back pressure chamber 28 is communicated with the upper lubricating oil reservoir 21 through an oil supply passage 40.
The lubricating oil in the upper lubricating oil reservoir 21 is depressurized in the oil supply passage 40 and is supplied from the upper lubricating oil reservoir 21 as the high pressure space to the back pressure chamber 28 as the intermediate pressure space to lubricate the rotation restraint component 12. Is going. Further, the lubricating oil is supplied from the back pressure chamber 28 to the suction space 32 and the compression space 31 as the low pressure space via the pressure adjusting mechanism 33, and prevents the leakage of refrigerant gas and the like during compression, and the fixed spiral member 10 The sliding surface of the swirl spiral member 11 is lubricated.
[0003]
[Problems to be solved by the invention]
However, in the oil supply configuration of the conventional scroll compressor, when the differential pressure between the high pressure side and the low pressure side increases, the amount of lubricating oil supplied increases, and in particular, the HFC (fluorine compound) used in the refrigeration cycle apparatus and the like Refrigerant etc., for example CO 2 When the refrigerant is replaced with a refrigerant, the discharge pressure is CO. 2 This is a very high pressure of 15 megapascals corresponding to the supercritical pressure of the oil, and the pressure difference between the high pressure side and the low pressure side is about 3 to 5 times that of the HFC refrigerant. The lubricating oil is also compressed, which causes a problem of affecting the high compression efficiency of the scroll compressor.
[0004]
Accordingly, an object of the present invention is to provide a scroll compressor that can supply a proper amount of lubricating oil to a back pressure chamber or a compression space and perform highly efficient operation even when the differential pressure between the high pressure side and the low pressure side is large. There is.
The other purpose is CO 2 It is an object of the present invention to provide a scroll compressor that can optimize oil supply even when compressed to a supercritical pressure using a refrigerant and can perform highly efficient operation.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a scroll compressor according to the present invention as set forth in claim 1 includes a fixed spiral member having a fixed spiral blade and a fixed end plate, a swirl spiral blade and a swirl end plate, and the swirl spiral blade. A swirl spiral member that sucks refrigerant gas into a compression space formed by meshing with the fixed swirl blade and compresses it to a discharge pressure by a swirl motion, and a bearing provided on the opposite side of the swirl swirl blade surface of the swirl swirl member A member, a high-pressure space that is located in the center of the bearing member and accumulates lubricating oil under the discharge pressure, an intermediate-pressure space that is located inside the outer periphery of the bearing member, the high-pressure space, and the intermediate-pressure space And an oil supply passage provided in the swirl spiral member, and the lubrication is performed by the pressure difference between the high pressure space and the intermediate pressure space using the oil supply passage. The oil outlet portion of the oil supply passage is disposed at a position that opens to the intermediate pressure space, and the oil inlet portion of the oil supply passage is formed into the annular shape by the swirling motion of the swirl spiral member. It reciprocates across the sealing member, and is arranged at a position where the high pressure space and the intermediate pressure space are alternately opened.
According to a second aspect of the present invention, there is provided a scroll compressor according to the present invention, comprising: a fixed spiral member having a fixed spiral blade and a fixed end plate; a swirl spiral blade and a rotary end plate; and the swirl spiral blade and the fixed spiral blade. A swirl spiral member that sucks refrigerant gas into a compression space formed by meshing and compresses it to a discharge pressure by a swirl motion, a bearing member provided on the opposite side of the swirl spiral blade surface of the swirl spiral member, and the bearing member A high pressure space that is located in the center of the cylinder and stores lubricating oil under the discharge pressure, an intermediate pressure space that is positioned inside the outer periphery of the bearing member, and an annular seal member that partitions the high pressure space and the intermediate pressure space And a refueling passage provided in the swirling spiral member, and the lubricating oil is refueled by a pressure difference between the high pressure space and the intermediate pressure space using the refueling passage. In the compressor, an oil inlet portion of the oil supply passage is disposed at a position that opens to the high-pressure space, and an oil outlet portion of the oil supply passage is straddled across the annular seal member by a swirling motion of the swirl spiral member. It reciprocates and is arrange | positioned in the position opened alternately to the said high pressure space and the said intermediate pressure space.
Further, the present invention according to claim 3 is the scroll compressor according to any one of claims 1 to 2, wherein the diameter of the oil inlet portion or the oil outlet portion that reciprocates across the annular seal member is set. The range is from φ0.2 mm to φ0.5 mm.
According to a fourth aspect of the present invention, in the scroll compressor according to any one of the first to third aspects, the refrigerant gas is compressed to a supercritical pressure using carbon dioxide as the refrigerant gas.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment of the present invention has a fixed spiral member having a fixed spiral blade and a fixed end plate, a swirl spiral blade and a swing end plate, and is formed by meshing the swirl spiral blade and the fixed spiral blade. A swirling spiral member that sucks refrigerant gas into the compression space and compresses it to a discharge pressure by a swirling motion, a bearing member provided on the opposite side of the swirling spiral blade surface of the swirling spiral member, and a discharge pressure located inside the center of the bearing member A high pressure space in which lubricating oil is stored, an intermediate pressure space located inside the outer periphery of the bearing member, an annular seal member that partitions the high pressure space and the intermediate pressure space, and an oil supply passage provided in the swirl spiral member In a scroll compressor for supplying lubricating oil by a pressure difference between a high pressure space and an intermediate pressure space using an oil supply passage, an oil outlet portion of the oil supply passage is disposed at a position opening into the intermediate pressure space, The oil inlet portion of the road is reciprocated across the annular seal member by the swirling motion of the swirling spiral member, and is disposed at a position that alternately opens to the high pressure space and the intermediate pressure space. According to the present embodiment, even if the differential pressure between the high pressure side and the low pressure side is large, the depressurization can be effectively adjusted by intermittent oil supply that supplies lubricating oil only when the oil inlet portion opens into the high pressure space. A highly efficient scroll compressor can be realized by optimizing the amount of oil supplied.
[0007]
Further, the scroll compressor according to the second embodiment of the present invention supplies the lubricating oil by the pressure difference between the high pressure space and the intermediate pressure space using the oil supply passage, and opens the oil inlet portion of the oil supply passage to the high pressure space. The oil outlet portion of the oil supply passage is reciprocated across the annular seal member by the swirling motion of the swirl spiral member, and is disposed at a position where the high pressure space and the intermediate pressure space are alternately opened. Is. According to the present embodiment, even if the differential pressure between the high pressure side and the low pressure side is large, the pressure reduction can be adjusted effectively by intermittent lubrication that supplies lubricating oil only when the oil outlet portion opens into the intermediate pressure space. In addition, the amount of lubrication is optimized and a high-performance scroll compressor can be provided.
[0008]
In the third embodiment of the present invention, in the scroll compressor according to the first embodiment or the second embodiment, the diameter of the oil inlet portion or the oil outlet portion that reciprocates across the annular seal member is set. From φ0.2 mm to φ0.5 mm. According to the present embodiment, the opening diameter lower limit dimension of the oil inlet part or the oil outlet part is suppressed to d = 0.2 mm, so that the resistance to dust is improved, and the opening diameter upper limit dimension is set to d = 0. By limiting the thickness to 0.5 mm, the annular seal member can be prevented from being damaged by the opening edge, so that it is possible to provide a scroll compressor that can perform reliable intermittent lubrication and maintain high-efficiency operation.
[0009]
In the fourth embodiment of the present invention, the scroll compressor according to the first to third embodiments uses carbon dioxide as the refrigerant gas and compresses it to a supercritical pressure. When carbon dioxide is used as the refrigerant gas, the discharge pressure is equivalent to the supercritical pressure, and the differential pressure from the suction pressure becomes excessive. According to the present embodiment, the decompression rate is increased according to the first to third embodiments. Therefore, it is possible to provide a scroll compressor that can sufficiently ensure high-efficiency operation.
[0010]
【Example】
(Example 1)
FIG. 1 is a cross-sectional view showing a scroll compressor according to an embodiment of the present invention. In the illustrated scroll compressor 50, a compression mechanism section 2 and an electric motor 3 are disposed inside the sealed container 1. The compression mechanism section 2 is provided on the opposite side of the swirl swirl blade surface of the swirl swirl member 11, the swirl swirl member 11 having the swirl swirl blade and the swirl end plate, and the swirl swirl member 11 having the fixed swirl blade and the fixed end plate. It is comprised from the bearing member 7 graded. The electric motor 3 includes a stator 4 fixed inside the hermetic container 1 and a rotor 5 rotatably supported inside the stator 4, and a drive shaft 6 is coupled to the rotor 5 in a through state. ing. One end of the drive shaft 6 is rotatably supported by a bearing 8 fixed to a bearing member 7 that constitutes a part of the compression mechanism portion 2. A crankshaft 9 that performs an eccentric motion with respect to the drive shaft 6 is provided at the tip of the drive shaft 6 supported by the bearing 8.
On the other hand, the plurality of compression spaces 31 are formed by meshing the fixed spiral blades of the fixed spiral member 10 and the swirl spiral blades of the swirl spiral member 11. The rotation spiral member 11 is prevented from rotating by the rotation restraint component 12, and the rotation spiral member 11 only performs the rotation motion via the rotation bearing 13 by the crankshaft 9. The swirling spiral member 11 moves in the compression space 31 while gradually reducing the volume toward the center of the spiral, and from the suction pipe 45 through the suction port 14 as a refrigerant gas, for example, CO 2 Inhale gas and compress towards the center. CO increased to discharge pressure 2 The gas is discharged from the discharge pipe 46 through the discharge port 15 and the container internal space 16.
[0011]
Further, the other end side of the drive shaft 6 is supported by a bottom bearing 17, and a positive displacement pump 18 is provided at the tip thereof. Lubricating oil collected in a bottom lubricating oil reservoir 19 provided at the lower part of the sealed container 1 passes through an oil supply path 20 provided at the center of the drive shaft 6 by a positive displacement pump 18 and is supplied to the upper part of the crankshaft 9. It is supplied to the upper lubricating oil reservoir 21. The lubricating oil lubricates and cools the slewing bearing 13, and then accumulates in a lubricating oil reservoir 22 provided at a position inside the center of the bearing member 7, lubricates the bearing 8 through the lubricating oil reservoir 22, and collects the bottom lubricating oil reservoir. Return to 19.
The lower surface of the swivel end plate 23 constituting a part of the swirl spiral member 11 is separated from the inner upper surface 24 of the bearing member 7 with a predetermined gap, and is provided in the inner upper surface 24 (groove) of the bearing member 7. Sealed by an annular seal member 25. That is, the bearing member 7 includes the swirl spiral member 11 in a separated state having a gap that enables a swivel motion.
[0012]
The bearing member 7 is provided with a recess 26, and the rotation restraint component 12 is disposed. Further, a back pressure chamber 28 formed by the fixed end plate 27 of the fixed spiral member 10, the swivel end plate 23, and the bearing member 7 is provided at a position inside the outer periphery of the bearing member 7. The lubricating oil reservoir 22 and the back pressure chamber 28 are configured to be able to communicate with each other by an oil supply passage (as the fine holes 29 and the long holes 30) provided inside the swirling spiral member 11 (the swivel end plate 23). . The high pressure space communicating with the lubricating oil reservoir 22 having the predetermined gap and the intermediate pressure space communicating with the back pressure chamber 28 are partitioned by an annular seal member 25.
Further, the container internal space 16 and the lubricating oil reservoir 22 and the upper lubricating oil reservoir 21 communicate with each other via the bearing 8 and the swivel bearing 13, and the lubricating oil reservoir 22 and the upper lubricating oil reservoir 21 are substantially the same as the discharge pressure. A high-pressure space under pressure is formed, and the recess 26 and the back pressure chamber 28 form an intermediate pressure space. That is, a part of the lubricating oil supplied to the lubricating oil reservoir 22 passes through the oil supply passage (the fine holes 29 and the long holes 30) having a throttling effect and is reduced to the intermediate pressure while being depressed to the recess 26 and the back pressure chamber 28. To lubricate the rotation restraint component 12 and the like disposed in the recess 26. In other words, in the scroll compressor of the present embodiment, the lubricating oil is supplied through the oil supply passage by using the first differential pressure between the discharge pressure and the intermediate pressure, that is, by the pressure difference between the high pressure space and the intermediate pressure space. ing.
[0013]
As the lubricating oil supplied to the back pressure chamber 28 accumulates, the pressure in the back pressure chamber 28 increases. In order to keep the pressure in the back pressure chamber 28 constant, a pressure adjustment mechanism 33 is provided between the back pressure chamber 28 that forms the intermediate pressure space and the suction space 32 that forms the low pressure space of the compression space 31. . When the pressure in the back pressure chamber 28 becomes higher than the set pressure, the pressure adjusting mechanism 33 is activated, and the lubricating oil in the back pressure chamber 28 is supplied to the suction space 32, and the pressure in the back pressure chamber 28 is substantially constant. To be kept. That is, the lubricating oil supplied to the back pressure chamber 28 as the intermediate pressure space is supplied to the suction space 32 as the low pressure space through the second oil supply passage including the pressure adjusting mechanism 33. In other words, the lubricating oil in the intermediate pressure space is pumped to the low pressure space through the second oil supply passage by the second differential pressure between the intermediate pressure and the suction pressure. The lubricating oil supplied to the suction space 32 is guided to the compression space 31 to prevent leakage of refrigerant gas and the like during compression and to seal, and the fixed swirl member 10, the swirl swirl member 11, the bearing member 7 and the like. It plays the role of lubricating the sliding surface.
[0014]
The discharge pressure of the compressor and lubricating oil reservoir 22, the intermediate pressure of the back pressure chamber 28, and the suction pressure of the suction space 32 are set as appropriate. In particular, the pressure in the back pressure chamber 28 causes the swirling spiral member 11 to be fixed to the fixed spiral member 10. In order to press, the pressure is set higher than the pressure in the suction space 32 by a predetermined pressure. In order to obtain a predetermined pressure, the pressure adjustment mechanism 33 adjusts the size of the fine holes 29 and the long holes 30 having a throttling effect that allows the lubricating oil reservoir 22 and the back pressure chamber 28 to communicate with each other.
By the way, the back pressure for pressing the swirl spiral member 11 against the fixed spiral member 10 is the above-mentioned second differential pressure, but if this back pressure increases, it will lead to abnormal wear of the sliding portion and increase in friction loss. It is not preferable to increase the second differential pressure. That is, the back pressure is set to an appropriate value and is always kept constant. On the other hand, when the discharge pressure increases, the overall differential pressure (difference between the discharge pressure and the suction pressure) increases. Therefore, if the second differential pressure is a constant value, the first differential pressure increases. Therefore, CO in which the first differential pressure becomes excessive 2 In the case of a refrigerant, refueling is particularly excessive. Intermittent oil supply by the oil supply passage of the present invention effectively acts on this excessive oil supply, and this will be described below.
[0015]
FIG. 2 is a partially enlarged cross-sectional view of the oil supply passage shown in FIG. The swirl spiral member 11 shown in FIG. 2 has an oil supply passage composed of a fine hole 29 and an elongated hole 30 that communicate with each other. The oil supply passage serves as a high-pressure space for decompressing and supplying the lubricating oil. The lubricating oil reservoir 22 and the back pressure chamber 28 as an intermediate pressure space are communicated with each other. The oil inlet 29a of the fine hole 29 of the oil supply passage opens to the lower surface 23a of the swivel end plate, and the oil inlet 29a of the fine hole 29 is one rotation of the compressor, that is, one of the swirl spiral member 11. During the revolving motion, it is reciprocated across the annular seal member 25, and is disposed at a position where it is intermittently opened to the lubricating oil reservoir 22 as a high-pressure space.
[0016]
The operation of the oil supply mechanism will be described with reference to FIG. 3 is a plan view showing a change in the positional relationship of the swirl spiral member with one swirl movement between the fine hole and the annular seal member shown in FIG. 1, and the swivel end plate 23 of the swirl swirl member 11 is viewed from the lower surface side. Indicates the state. In the figure, the outermost circle represents the outer circumferential line 35 of the bearing member 7 as an outer wall surrounding the back pressure chamber 28, the central circle represents the oil supply path 20 provided in the drive shaft 6, and The annular seal member 25 is indicated by two alternate long and short dash lines between the circle and the circle at the center. Further, the guide groove 34 of the rotation restraint component 12 provided in the swivel end plate 23, the oil inlet 29 a as the oil supply passage provided in the swivel end plate 23 and communicating with the back pressure chamber 28 and the long hole 30. The oil outlet 30 a and the flange 36 of the swirl spiral member 11 that holds the swivel bearing 13 are shown.
[0017]
The figure shows the relative positional relationship between the oil inlet 29a serving as the open end of the pore 29 and the annular seal member 25 provided on the bearing member 7 with respect to the swirling motion of the swirling spiral member 11. That is, as shown by the arrows in the order of (a) to (d) in FIG. 3, the swirl spiral member 11 swirls while being eccentric with respect to the outer circumferential line 35 of the back pressure chamber 28. At this time, the inner peripheral portion of the annular seal member 25 forms a high pressure space, and the outer peripheral portion forms an intermediate pressure space. Accordingly, only when the oil inlet portion 29a of the pore 29 is located at the inner peripheral portion of the annular seal member 25, the lubricating oil reservoir 22 in the high pressure space and the back pressure chamber 28 as the intermediate pressure space are communicated with each other, and the lubricating oil reservoir 22 The lubricating oil is supplied from the oil inlet 29a to the back pressure chamber 28 through the oil outlet 30a. Therefore, the lubricating oil can be supplied only when the oil inlet portion in the state of FIG. 3B is opened to the high-pressure space. In other words, the oil outlet part is in a position that always opens in the intermediate pressure space, and the oil inlet part reciprocates across the annular seal member during the swiveling motion, and in a position that alternately opens in the high pressure space and the intermediate pressure space. It is arranged.
The intermittent communication of the oil supply passage serves as intermittent oil supply of the lubricating oil, and has a function of reducing the pressure and controlling the substantial supply of the lubricating oil amount. The fine holes 29 are constituted by narrow passages having a throttling effect, and in the state of FIG. 3B, lubrication supplied from the lubricating oil reservoir 22 that is a high pressure space to the back pressure chamber 28 that is an intermediate pressure space. It has a function of suppressing the amount of oil (that is, a pressure reduction control function).
[0018]
As described above, in the scroll compressor of this embodiment, the supply of the lubricating oil is intermittently performed through the fine holes having a squeezing effect. Therefore, the supply amount of the lubricating oil is larger than that of the conventional scroll compressor. This makes it possible to supply properly while suppressing this. In addition, the amount of lubricating oil supplied from the intermediate pressure space to the low pressure space is also suppressed. Therefore, even if the scroll compressor of this embodiment is used in combination with the refrigerant gas that increases the differential pressure, the pressure reduction can be adjusted effectively, and an increase in fueling can be prevented. That is, it is possible to provide a scroll compressor that prevents a decrease in the amount of confined refrigerant due to refrigerant heating at the suction portion, prevents waste of compressing lubricating oil, maintains high compression efficiency, and can perform stable operation. it can.
[0019]
(Example 2)
FIG. 4 is a cross-sectional view illustrating a scroll compressor according to another embodiment of the present invention. FIG. 5 is a partially enlarged sectional view of the oil supply passage shown in FIG. The second embodiment is different from the first embodiment in the following configuration. That is, as shown in FIGS. 4 and 5, the oil supply passage of this embodiment has an oil inlet portion 37 a for communicating the upper lubricating oil reservoir 21 as a high pressure space and the back pressure chamber 28 as an intermediate pressure space. It is constituted by a long hole 37 having a pore 38 having an oil outlet portion 38 a, and the oil outlet portion 38 a of the pore 38 straddles the annular seal member 25 and is configured in a positional relationship that opens intermittently into the back pressure chamber 28. Has been.
[0020]
The operation of the oil supply mechanism will be described with reference to FIG. FIG. 6 is a plan view showing a change in the positional relationship of the fine swirl member and the annular seal member shown in FIG. 4 due to one swirl movement of the swirl spiral member. Indicates the state. In the figure, the outermost circle represents the outer circumferential line 35 of the back pressure chamber 28 of the bearing member 7, the center circle represents the oil supply path 20 provided in the drive shaft 6, and two lines are provided between the outermost circle and the center circle. An annular seal member 25 is indicated by a one-dot chain line. Further, the guide groove 34 is a groove provided in the swivel end plate 23 for guiding the rotation restraint component 12, and the flange portion 36 is a flange of the swirl spiral member 11 that holds the swivel bearing 13. The elongated hole 37, the oil inlet portion 37 a of the elongated hole 37, and the oil outlet portion 38 a of the pore 38 are oil supply passages that are provided in the swivel end plate 23 and communicate with the upper lubricating oil reservoir 21 and the back pressure chamber 28.
[0021]
FIG. 6 shows the relative positional relationship between the oil outlet portion 38 a serving as the opening end of the pore 38 and the annular seal member 25 provided on the bearing member 7 with respect to the swirling motion of the swirling spiral member 11. As shown by the arrows in FIGS. 6A to 6D, the swirling spiral member 11 swirls while being eccentric with respect to the outer circumferential line 35 of the back pressure chamber 28. At this time, the inner peripheral portion of the annular seal member 25 forms a high pressure space, and the outer peripheral portion forms an intermediate pressure space. Therefore, only when the oil outlet portion 38a of the pore 38 is located on the outer peripheral portion of the annular seal member 25, the upper lubricating oil reservoir 21 as the high pressure space and the back pressure chamber 28 as the intermediate pressure space are communicated, and the upper lubricating oil The lubricating oil in the reservoir 21 is depressurized and supplied from the oil inlet portion 37a to the back pressure chamber 28 via the oil outlet portion 38a. That is, the oil inlet portion 37a always opens into the high pressure space, and the oil outlet portion 38a opens into the intermediate pressure space only in the state of FIG. 6 (d). Accordingly, the so-called intermittent oil supply is executed only when the oil outlet portion in the state of FIG. 6D is opened to the intermediate pressure space so that the lubricating oil can be supplied.
That is, the oil supply mechanism has a function of controlling the supply of the amount of lubricating oil by performing on / off control for supplying the lubricating oil only in the state of FIG. . Further, the oil supply mechanism is configured to have a narrow hole 38 having a throttling effect, and in the state of FIG. 6D, lubrication supplied from the upper lubricating oil reservoir 21 in the high pressure space to the back pressure chamber 28 in the intermediate pressure space. Has the function of suppressing the amount of oil.
[0022]
As described above, since the lubricating oil is properly depressurized and supplied by intermittent communication and passes through the pores having a throttling effect, the supply amount can be suppressed compared to the conventional example, and the suction space can be reduced from this intermediate pressure space. The amount of lubricating oil supplied to is also suppressed. Therefore, it is possible to provide a scroll compressor having high compression efficiency and capable of stable operation.
The only difference in configuration of the second embodiment from the first embodiment is the difference in the passage configuration from the high pressure space to the intermediate pressure space. In the first embodiment, the lubricant oil reservoir 22 that is the high pressure space is opened. Although the pores 29 are configured to open intermittently, the second embodiment is configured to intermittently open the pores 38 that open to the back pressure chamber 28 that is an intermediate pressure space. Further, since the other configuration is the same, the description thereof is omitted.
[0023]
(Example 3)
In the third embodiment, with reference to FIG. 3, the opening position of the oil inlet portion, intermittent control of oil supply and pressure reduction by changing the opening position, in other words, on / off / duty control will be described.
In FIG. 3D, “X” is the diameter of the annular seal member 25, “Y” is the amount of eccentricity of the crankshaft 9 with respect to the drive shaft 6, and “Z” is the oil inlet of the pore 29 from the center of the swirling spiral member 11. The distance to the center of the part 29a is shown. The eccentric amount “Y” is the same as the amount of reciprocation of the annular seal member 25 (reciprocation width).
The position of the oil inlet portion 29a indicated by X, Y, and Z, that is, the arrangement in which the oil inlet portion 29a reciprocates over the annular seal member 25 and intermittently opens to the high-pressure space is expressed by the following relational expression: It is determined from.
Z = (X / 2) + m (1)
Y / 2 ≧ m ≧ − (Y / 2) (2)
[0024]
And in the scroll compressor 50 of Example 1, the opening position of the oil inlet part 29a when m = 0 (zero) is shown in the above equation (2). That is, in the case of the first embodiment, the distance “Z” from the center of the swirl spiral member 11 to the center of the oil inlet portion 29 a of the pore 29 is half of the diameter “X” of the annular seal member 25. The oil inlet portion 29a is located on an extension line of the center of the swirling spiral member 11 in the direction in which the center of the swirl spiral member 11 moves left or right (or on an extension line in the eccentric direction of the crankshaft 9).
When m = 0, the ratio of the state in which the oil inlet 29a opens to the high pressure space and supplies oil (oil supply state) and the state in which the oil inlet 29a opens to the intermediate pressure space and does not supply oil (non-oil supply state) is approximately 50 pairs. The opening position is 50.
In addition, when Y / 2 ≧ m> 0 (zero), the ratio of the non-oiled state is the range of the opening position where it is larger than the oiled state, and the amount of oiling can be reduced and the ratio of reducing the high pressure to the low pressure This is a control range in which the decompression rate can be increased. Further, in the case of 0 (zero)> m ≧ − (Y / 2), the range of the opening position where the ratio of the oil supply state becomes larger than that in the non-oil supply state, the amount of oil supply can be increased, and the high pressure is reduced to the low pressure. This is a control range in which the decompression rate as a decreasing ratio can be lowered.
In other words, the on / off duty control can be performed by changing the opening position of the oil inlet portion 29a, and the supply and pressure reduction of the lubricating oil amount can be controlled widely and effectively. In particular, if Y / 2 ≧ m> 0 (zero), the decompression rate is high and the decompression can be adjusted effectively. 2 Even when the refrigerant gas is compressed to a high supercritical pressure and the discharge pressure becomes very large, the refueling can be optimized.
If m> Y, no oil is supplied, and if -Y> m, the oil remains supplied, which does not meet the object of the invention.
[0025]
On the other hand, also in the scroll compressor 50 of the second embodiment, the opening position of the oil outlet portion and the control of oil supply and pressure reduction by changing the opening position are the same as in the first embodiment. That is, the diameter “X” of the annular seal member 25, the eccentric amount “Y” of the crankshaft 9 with respect to the drive shaft 6, and the distance “Z” from the center of the swirling spiral member 11 to the center of the oil outlet portion 38 a of the pore 38. Then, the position of the oil outlet portion 38a that the oil outlet portion 38a reciprocates over the annular seal member 25 and intermittently opens to the intermediate pressure space is obtained from the relational expressions (1) and (2) described above. It is determined similarly. And also in the scroll compressor 50 shown in Example 2, the case where m = 0 (zero) is illustrated. The contents such as pressure reduction control by changing the opening position of the oil outlet portion 38a are the same as those described in the first embodiment, and the detailed description including other contents is omitted.
[0026]
Example 4
In the fourth embodiment, referring to FIG. 2 and FIG. 5, the pore size of the oil supply passage and the throttle pressure reduction adjustment based on the size will be described. The above-mentioned fine holes 29 and 38 of the oil supply passage have a throttling effect and have a function of suppressing the amount of lubricating oil. The pressure reduction as the throttling effect is caused by the flow path resistance, and is inversely proportional to the square of the inner diameter “d” as the cross-sectional area of the pore and proportional to the length “l” of the pore. Therefore, when adjusting the throttling effect in order to appropriately suppress the amount of lubricating oil, the illustrated inner diameter d and length l of the pores are appropriately set.
[0027]
By the way, the size of the scroll compressor 50 shown in Example 1 and Example 2 is 4.0 cm per one rotation. Three Is ranked. In the case of a compressor having this amount of pushing, the swirl spiral member 11 has a diameter “D0” shown in FIGS. 3C and 6C of about 7.6 cm. Further, the dimensions of the annular seal member 25 are about 3.8 Ccm in diameter and about 0.18 cm in width. And CO 2 Since the discharge pressure in the refrigerant is about 15 megapascals, the pore dimensions for appropriately suppressing the amount of lubricating oil are the inner diameter d = 0.2 to 0.5 mm and the length l = 1.5 to 4.4. About 5 mm is desirable.
In setting the inner diameter d and the length l of the pores, it is necessary to pay attention to the following points. That is, (1) the throttle pressure reduction adjustment width by the length “l” is smaller than the throttle pressure reduction adjustment width of the inner diameter d that is inversely proportional to the square of the inner diameter “d”, and (2) as shown in FIGS. Since the length “l” depends on the thickness dimension of the relatively thin swivel end plate 23, the dimension is limited to a narrow range, so that the degree of freedom in adjusting the diaphragm pressure reduction by the length “l” is small. Keep this in mind.
In addition, there is a point to be noted with respect to the inner diameter “d”, and (1) pores (that is, the oil inlet portion 29a or the oil outlet) from the resistance to blockage of dust in the pores or the ease of drilling the pores. The lower limit of the opening size of the portion 38a) is preferably about a diameter d = 0.2 mm, and (2) the damageability of the pores (that is, the oil inlet portion 29a or the oil outlet portion 38a reciprocating across the annular seal member) The upper limit of the opening size is preferably about a diameter d = 0.5 mm, from the viewpoint of the opening edge of (a scratching property that damages the annular seal member) or from the limit of restricting the throttle (the pressure reduction rate becomes too low).
[0028]
From Example 1, Example 2, Example 3 and Example 4 above, it is possible to achieve a synergistic effect between pressure reduction control by intermittent fueling (including pressure reduction control by changing the opening position) and throttle pressure reduction control by pores. Effective and wide range of pressure reduction and oil supply control can be performed for scroll compressors where the differential pressure between the high pressure side and the low pressure side is large. 2 It can be said that a scroll compressor using the above is desirable because it can effectively perform pressure reduction / oil supply control. However, effective decompression / oil supply control is possible even with only decompression control by intermittent lubrication (including decompression control by changing the opening position).
[0029]
【The invention's effect】
As described above, in the scroll compressor of the present invention, the oil inlet portion of the oil supply passage connecting the lubricating oil reservoir in the high pressure space and the back pressure chamber in the intermediate pressure space is on the annular seal member during the swiveling motion of the swirling spiral member. By reciprocating and intermittently opening to the high pressure space, or the oil outlet portion of the oil supply passage reciprocating on the annular seal member and intermittently opening to the intermediate pressure space, thereby reducing the amount of lubricating oil substantially while reducing pressure. Control the supply. Moreover, the synergistic effect which suppresses the amount of lubricating oil with the throttle effect which the fine hole of an oil supply path has is acquired.
By such pressure reduction / oil supply control by intermittent communication, or by pressure reduction / oil supply control by intermittent communication and pressure reduction control by pores, 2 Scroll compression that makes it possible to supply lubricating oil to the back pressure chamber and suction space appropriately and effectively even under high refrigeration systems that use refrigerant as a refrigerant, enabling operation with high compression efficiency. The effect which can provide a machine is acquired.
Further, by setting the lower limit dimension of the pore inner diameter to d = 0.2 mm, the effect of improving the blocking resistance against dust and the ease of drilling can be obtained. Furthermore, by setting the upper limit dimension of the pore inner diameter to d = 0.5 mm, it is possible to prevent damage to the annular seal member and insufficient suppression.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a scroll compressor according to an embodiment of the present invention.
FIG. 2 is a partially enlarged sectional view of the oil supply passage shown in FIG.
FIG. 3 is a plan view showing a change in the positional relationship of the swirling spiral member with one swirling motion between the fine hole and the annular seal member shown in FIG. 1;
FIG. 4 is a sectional view showing a scroll compressor according to another embodiment of the present invention.
5 is a partially enlarged sectional view of the oil supply passage shown in FIG. 4;
6 is a plan view showing a change in the positional relationship of the fine spiral and the annular seal member shown in FIG.
FIG. 7 is a cross-sectional view showing a conventional scroll compressor
[Explanation of symbols]
1 Airtight container
2 Compression mechanism
3 Electric motor
4 Stator
5 Rotor
6 Drive shaft
7 Bearing members
8 Bearing
9 Crankshaft
10 Fixed spiral member
11 Swirl spiral member
12 Rotation restraint parts
13 Slewing bearing
14 Suction port
15 Discharge port
16 Container interior space
17 Bottom bearing
18 positive displacement pump
19 Bottom oil sump
20 Refueling route
21 Upper lubricant reservoir
22 Lubricant reservoir
23 Rotating end plate
24 Internal top surface
25 Annular seal member
26 Dimple
27 Fixed end plate
28 Back pressure chamber
29,38 pores (part of oil supply passage)
30, 37 long hole (part of oil supply passage)
31 Compression space
32 Inhalation space
33 Pressure adjustment mechanism
34 Guide groove
35 Perimeter line
36
40 Refueling passage
45 Suction tube
46 Discharge pipe
50,55 scroll compressor

Claims (4)

固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材と、旋回渦巻き羽根と旋回鏡板とを有し当該旋回渦巻き羽根と前記固定渦巻き羽根とを噛み合わせて形成した圧縮空間に冷媒ガスを吸入し旋回運動によって吐出圧力まで圧縮する旋回渦巻き部材と、前記旋回渦巻き部材の前記旋回渦巻き羽根面と反対側に設けられた軸受部材と、前記軸受部材の中央内部に位置し前記吐出圧力の下で潤滑油を溜める高圧空間と、前記軸受部材の外周内部に位置させた中間圧空間と、前記高圧空間と前記中間圧空間とを区画する環状シール部材と、前記旋回渦巻き部材に設けた給油通路とを備え、前記給油通路を用いて前記高圧空間と前記中間圧空間の圧力差によって前記潤滑油を給油するスクロール圧縮機であって、
前記給油通路の油出口部を前記中間圧空間に開口する位置に配設し、前記給油通路の油入口部を、前記旋回渦巻き部材の旋回運動によって前記環状シール部材を跨いで往復し、前記高圧空間と前記中間圧空間に交互に開口する位置に配設したことを特徴とするスクロール圧縮機。
A swirling motion by sucking refrigerant gas into a compression space having a fixed swirling member having a fixed swirling blade and a fixed end plate, a swirling swirl blade and a swirling end plate, and formed by meshing the swirling swirl blade and the fixed swirling blade A swirling spiral member that compresses to a discharge pressure by means of, a bearing member provided on the opposite side of the swirling spiral blade surface of the swirling spiral member, and a lubricating oil that is located inside the center of the bearing member and is under the discharge pressure. A high-pressure space to be accumulated, an intermediate pressure space located inside the outer periphery of the bearing member, an annular seal member that partitions the high-pressure space and the intermediate pressure space, and an oil supply passage provided in the swirl spiral member, A scroll compressor that supplies the lubricating oil by a pressure difference between the high pressure space and the intermediate pressure space using the oil supply passage;
An oil outlet portion of the oil supply passage is disposed at a position that opens to the intermediate pressure space, and the oil inlet portion of the oil supply passage is reciprocated across the annular seal member by a revolving motion of the swirl spiral member, and the high pressure A scroll compressor, wherein the scroll compressor is disposed at a position alternately opening in the space and the intermediate pressure space.
固定渦巻き羽根と固定鏡板とを有する固定渦巻き部材と、旋回渦巻き羽根と旋回鏡板とを有し当該旋回渦巻き羽根と前記固定渦巻き羽根とを噛み合わせて形成した圧縮空間に冷媒ガスを吸入し旋回運動によって吐出圧力まで圧縮する旋回渦巻き部材と、前記旋回渦巻き部材の前記旋回渦巻き羽根面と反対側に設けられた軸受部材と、前記軸受部材の中央内部に位置し前記吐出圧力の下で潤滑油を溜める高圧空間と、前記軸受部材の外周内部に位置させた中間圧空間と、前記高圧空間と前記中間圧空間とを区画する環状シール部材と、前記旋回渦巻き部材に設けた給油通路とを備え、前記給油通路を用いて前記高圧空間と前記中間圧空間の圧力差によって前記潤滑油を給油するスクロール圧縮機であって、
前記給油通路の油入口部を前記高圧空間に開口する位置に配設し、前記給油通路の油出口部を、前記旋回渦巻き部材の旋回運動によって前記環状シール部材を跨いで往復し、前記高圧空間と前記中間圧空間に交互に開口する位置に配設したことを特徴とするスクロール圧縮機。
A swirling motion by sucking refrigerant gas into a compression space having a fixed swirling member having a fixed swirling blade and a fixed end plate, a swirling swirl blade and a swirling end plate, and formed by meshing the swirling swirl blade and the fixed swirling blade A swirling spiral member that compresses to a discharge pressure by means of, a bearing member provided on the opposite side of the swirling spiral blade surface of the swirling spiral member, and a lubricating oil that is located inside the center of the bearing member and is under the discharge pressure. A high-pressure space to be accumulated, an intermediate pressure space located inside the outer periphery of the bearing member, an annular seal member that partitions the high-pressure space and the intermediate pressure space, and an oil supply passage provided in the swirl spiral member, A scroll compressor that supplies the lubricating oil by a pressure difference between the high pressure space and the intermediate pressure space using the oil supply passage;
An oil inlet portion of the oil supply passage is disposed at a position that opens to the high-pressure space, and an oil outlet portion of the oil supply passage is reciprocated across the annular seal member by a revolving motion of the swirl spiral member, And a scroll compressor, wherein the scroll compressor is disposed at a position alternately opening in the intermediate pressure space.
前記環状シール部材を跨いで往復する前記油入口部または前記油出口部の直径をφ0.2mmからφ0.5mmの範囲とすることを特徴とする請求項1または請求項2記載のスクロール圧縮機。3. The scroll compressor according to claim 1, wherein a diameter of the oil inlet portion or the oil outlet portion that reciprocates across the annular seal member is in a range of φ0.2 mm to φ0.5 mm. 前記冷媒ガスとして二酸化炭素を用い、超臨界圧力まで圧縮することを特徴する請求項1から請求項3のいずれかに記載のスクロール圧縮機。The scroll compressor according to any one of claims 1 to 3, wherein carbon dioxide is used as the refrigerant gas and the refrigerant gas is compressed to a supercritical pressure.
JP2002173461A 2002-06-13 2002-06-13 Scroll compressor Expired - Lifetime JP4152678B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002173461A JP4152678B2 (en) 2002-06-13 2002-06-13 Scroll compressor
CNB03142497XA CN100366912C (en) 2002-06-13 2003-06-12 Vortex type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173461A JP4152678B2 (en) 2002-06-13 2002-06-13 Scroll compressor

Publications (2)

Publication Number Publication Date
JP2004019499A JP2004019499A (en) 2004-01-22
JP4152678B2 true JP4152678B2 (en) 2008-09-17

Family

ID=29996469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173461A Expired - Lifetime JP4152678B2 (en) 2002-06-13 2002-06-13 Scroll compressor

Country Status (2)

Country Link
JP (1) JP4152678B2 (en)
CN (1) CN100366912C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351098A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Scroll compressor
JP2007023915A (en) * 2005-07-19 2007-02-01 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2007170226A (en) * 2005-12-20 2007-07-05 Sanden Corp Scroll type fluid machine
US7878777B2 (en) 2006-08-25 2011-02-01 Denso Corporation Scroll compressor having grooved thrust bearing
JP4805063B2 (en) * 2006-08-25 2011-11-02 株式会社デンソー Scroll compressor
JP2008101559A (en) * 2006-10-20 2008-05-01 Hitachi Appliances Inc Scroll compressor and refrigeration cycle using the same
CN102245903B (en) * 2008-12-15 2015-02-25 松下电器产业株式会社 Scroll compressor
JP5178668B2 (en) * 2009-09-11 2013-04-10 日立アプライアンス株式会社 Scroll compressor
CN102477981B (en) * 2010-11-24 2015-11-04 株式会社丰田自动织机 Vane compressor
CN103195714A (en) * 2012-01-06 2013-07-10 艾默生环境优化技术有限公司 Compressor having flexible thrust bearing structure
JP5527349B2 (en) * 2012-04-09 2014-06-18 株式会社豊田自動織機 Vane type compressor
JP6302813B2 (en) * 2014-09-30 2018-03-28 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigeration cycle apparatus using the same
JP6896569B2 (en) * 2017-08-29 2021-06-30 三菱重工サーマルシステムズ株式会社 Scroll compressor and its control method and air conditioner
JP7075407B2 (en) * 2017-08-31 2022-05-25 株式会社ヴァレオジャパン Scroll compressor
CN207795583U (en) 2017-12-27 2018-08-31 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism and horizontal compressor with same
WO2022021644A1 (en) * 2020-07-27 2022-02-03 艾默生环境优化技术(苏州)有限公司 Scroll compressor
JP2023130601A (en) * 2022-03-08 2023-09-21 サンデン株式会社 Scroll-type compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073974A (en) * 1999-09-03 2001-03-21 Sanden Corp Scroll compressor
JP2001304152A (en) * 2000-04-21 2001-10-31 Yamaha Motor Co Ltd Scroll compressor
JP2002048078A (en) * 2000-07-31 2002-02-15 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2002161873A (en) * 2000-11-30 2002-06-07 Matsushita Electric Ind Co Ltd Scroll compressor

Also Published As

Publication number Publication date
CN100366912C (en) 2008-02-06
JP2004019499A (en) 2004-01-22
CN1467378A (en) 2004-01-14

Similar Documents

Publication Publication Date Title
JP4152678B2 (en) Scroll compressor
JP5655850B2 (en) Scroll compressor
JP5178668B2 (en) Scroll compressor
KR20030091681A (en) Scroll compressor
JP3658831B2 (en) Scroll compressor
JPWO2002061285A1 (en) Scroll compressor
JP2002168183A (en) Scroll compressor
KR100971578B1 (en) Scroll compressor
JP4376554B2 (en) Scroll compressor
KR100635817B1 (en) Apparatus for supplying oil on a slider of an orbiting vane compressor
JP2018188986A (en) Internal intermediate pressure-type two-stage compression compressor
JP4013554B2 (en) Compressor
KR20090102081A (en) Scroll type compressor
JP4188142B2 (en) Scroll compressor
JP2005048666A (en) Scroll compressor
JP3961176B2 (en) Scroll compressor
JP2004225578A (en) Rotary compressor
JP2010261353A (en) Scroll compressor
JP4407253B2 (en) Scroll compressor
JP5429138B2 (en) Scroll compressor
JP2009127517A (en) Enclosed compressor
CN217462551U (en) Rotor compressor and refrigeration equipment
KR20050028217A (en) Sealing typed scroll compressor
CN218494014U (en) Crankshaft for compressor, compressor and refrigeration equipment
JP2003239878A (en) Scroll compressor and method for driving the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Ref document number: 4152678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

EXPY Cancellation because of completion of term