JP4107889B2 - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
JP4107889B2
JP4107889B2 JP2002178478A JP2002178478A JP4107889B2 JP 4107889 B2 JP4107889 B2 JP 4107889B2 JP 2002178478 A JP2002178478 A JP 2002178478A JP 2002178478 A JP2002178478 A JP 2002178478A JP 4107889 B2 JP4107889 B2 JP 4107889B2
Authority
JP
Japan
Prior art keywords
type
layer
group
type semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002178478A
Other languages
English (en)
Other versions
JP2004022962A (ja
Inventor
智彦 柴田
光浩 田中
義孝 倉岡
修 小田
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002178478A priority Critical patent/JP4107889B2/ja
Publication of JP2004022962A publication Critical patent/JP2004022962A/ja
Application granted granted Critical
Publication of JP4107889B2 publication Critical patent/JP4107889B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、好ましくは、半導体発光素子などとして使用することのできる半導体素子に関する。
【0002】
【従来の技術】
III族窒化物膜は、半導体発光素子を構成する半導体膜として用いられており、近年においては、特に緑色光から青色光用の高輝度光源、さらには、紫外光及び白色光用の光源としての半導体発光素子における半導体膜としても期待されている。
【0003】
図1は、従来のいわゆるPIN型の半導体発光素子の一例を示す構成図である。
【0004】
図1に示す半導体発光素子10においては、主としてサファイア単結晶からなる基板1上において、GaNからなるバッファ層2、Siドープのn−GaNからなる下地層3、Siドープのn−AlGaNからなるn型導電層4、InGaNからなる多重量子井戸(MQW)構造の発光層5、Mgドープのp−AlGaNからなるp型クラッド層6、Mgドープのp−GaNからなるp型導電層7がこの順に形成されている。図1に示す半導体発光素子10においては、下地層3及びn型導電層4がn型半導体層群を構成し、p型クラッド層6及びp型導電層7がp型半導体層群を構成する。
【0005】
n型導電層4の一部は露出しており、この露出した部分にAl/Tiなどのn型電極8が形成されるとともに、p型導電層7上にはAu/Niなどのp型電極9が形成されている。
【0006】
そして、n型電極8及びp型電極9間に所定の電圧を印加することにより、発光層5内でキャリアの再結合が生じ、所定の波長の光を発光する。なお、前記波長は、発光層の構造及び組成などによって決定される。
【0007】
図1に示す半導体発光素子10を実用に供するためには、半導体発光素子10を水素を含まない雰囲気中に配置した後、400℃以上の温度で加熱処理を行い、p型クラッド層6及びp型導電層7からなるp型半導体層群を活性化処理することが必要である(特許第25407991号)。しかしながら、このような比較的高い温度の活性化処理は、半導体発光素子10全体の製造工程を煩雑にし、製造コスト増大の原因にもなっていた。また、現在の省エネルギーの要請にも反するものである。
【0008】
【発明が解決しようとする課題】
一方で、図1に示すような半導体発光素子において、p型半導体層群を下側に配置し、n型半導体層群を上側に配置した構成のものが考えられる。しかしながら、このような構成の半導体発光素子においては、上述のような条件でp型半導体層群の活性化処理を行っても前記p型半導体層群を十分に活性化することができず、実用に供するものを製造できないでいた。
【0009】
本発明は、所定の基板上において、p型半導体層群が少なくともAlを含む高品質なIII族窒化物下地層の上方の積層された構成を呈する実用的な半導体素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成すべく、本発明の半導体素子の製造方法は、所定の基材上において、少なくともAlを含み、転位密度が1×1011/cm以下であり、(002)面のX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層と、このIII族窒化物下地層の上方に形成されたp型半導体層群およびその上のn型半導体層群とを具える半導体素子の製造方法において、前記III族窒化物下地層を、MOCVD法により1100℃以上の温度で形成したことを特徴とする。
【0011】
なお、本発明における「上方」とは、前記p型半導体層群が前記基材上に直接的に形成されている場合のみならず、他の層、例えばn型半導体層群などを介して形成されている場合をも含むものである。
【0012】
本発明者らは、上記目的を達成するべく鋭意検討を実施した。その結果、所定の基板上において、上述したような高結晶品質のAl含有III族窒化物下地層を設けることにより、上述したような活性化処理を行うことによって前記p型半導体層群を十分に活性化処理することができ、所定の基板上にp型半導体層群及びn型半導体層群が順次に形成された、基板/p型半導体層群/n型半導体層群なる構成の半導体素子が得られることを見出した。
【0013】
なお、本発明によれば、上述したようにp型半導体層群を直接的に基材上に形成することは要求されないため、従来のような基板/n型半導体層群/p型半導体層群なる構成の半導体素子に対しても十分な活性化処理を行うことができる。
【0014】
また、本発明の半導体素子によれば、上記活性化処理の温度を380℃以下にまで低減することができ、さらには前記III族窒化物下地層の結晶品質を上記要件を満たす範囲内でさらに向上させるなどの手段によって、上記活性化処理を省略することもできる。
【0015】
さらに、図1に示す半導体発光素子10において、バッファ層2は、基板1と下地層3との格子定数差を補完して、基板1上方に形成されるべき下地層3などのエピタキシャル成長を可能とすべく、緩衝層としての作用を果たすものである。したがって、通常はその結晶性を無視して500〜700℃の低温において形成される。
【0016】
この結果、バッファ層2中には比較的多量の転位が含有されてしまい、この転位の一部が貫通転位として下地層3、n型導電層4、発光層5、p型クラッド層6、及びp型導電層7中に伝搬し、これら層中の結晶品質が劣化してしまっていた。この結果、n型電極8及びp型電極9間の抵抗が増加してしまい、十分な電流を流すことができないために、十分な発光効率を得ることができないでいた。
【0017】
これに対して、本発明の半導体素子では、上述したようなバッファ層を有することなく、基板上に形成した高結晶品質のAl含有III族窒化物下地層上方にp型半導体層群を形成している。したがって、このp型半導体層群の結晶品質も向上する。この結果、本発明の半導体素子を半導体発光素子として使用した場合に、電極間の抵抗が減少するために発光効率も十分に改善される。
【0018】
なお、本発明において「半導体層群」とは、必ずしも複数の半導体層から構成されている場合のみならず、単一の半導体層から構成されている場合をも含むものである。
【0019】
【発明の実施の形態】
以下、本発明を発明の実施の形態に即して詳細に説明する。
図2は、本発明の半導体素子の一例を示す構成図である。図2に示す半導体素子20は、基板11上において、下地層13、p型導電層14、発光層15、n型クラッド層16、及びn型導電層17を順次具えている。そして、p型導電層14の一部は露出しており、この露出したp型導電層14上には、例えばAu/Niからなるp型電極18が形成され、n型導電層17上には例えばAl/Tiからなるn型電極19が形成されて、いわゆるPIN型の半導体発光素子を構成している。
【0020】
図2において、p型導電層14がp型半導体層群を構成し、n型クラッド層16及びn型導電層17がn型半導体層群を構成している。なお、n型クラッド層16は必要に応じて省略することもできる。
【0021】
下地層13は、本発明にしたがって、Alを含み、転位密度が1×1011/cm以下、(002)面におけるX線ロッキングカーブにおける半値幅が200秒以下のIII族窒化物から構成されていることが必要である。これによって、p型導電層14に対して水素を含有しない雰囲気内で加熱処理を行って活性化処理を実施することにより、実用に供することのできる半導体素子20を提供することができる。
【0022】
なお、上記転位密度は5×1010/cm以下であることが好ましく、さらには1×1010/cm以下であることが好ましい。また、前記半値幅は100秒以下であることが好ましく、さらには60秒以下であることが好ましい。この場合、上記活性化処理における加熱温度を380℃以下にすることができ、さらには活性化処理自体を省略することもできる。
【0023】
また、表面粗さRaは2Å以下であることが好ましい。本測定は、AFMを用いて5μm角の範囲で測定する。
【0024】
下地層13を構成するIII族窒化物中のAl含有量が多いほど、基板11に起因した転位が基板11と下地層13との界面で絡み、下地層13中に伝搬する割合が減少する。その結果、下地層13中の転位密度が減少し、下地層13の結晶品質がさらに向上する。このため、下地層13を構成する前記III族窒化物はできるだけ多くのAlを含むことが好ましく、具体的には全III族元素に対して50原子%以上の割合でAlを含むことが好ましく、さらには総てのIII族元素がAlからなり、下地層13がAlNから構成されていることが好ましい。
【0025】
なお、下地層13の膜厚は大きい方が好ましく、具体的には0.1μm以上、さらには0.5μm以上の厚さに形成することが好ましい。下地層13の厚さの上限値は特に限定されるものではなく、クラックの発生や用途などを考慮して適宜選択し、設定する。
【0026】
また、下地層13は、Alの他に、Ga及びInなどのIII族元素、B、Si、Ge、Zn、Be及びMgなどの添加元素を含むこともできる。さらに、意識的に添加した元素に限らず、成膜条件などに依存して必然的に取り込まれる微量元素、並びに原料、反応管材質に含まれる微量不純物を含むこともできる。
【0027】
下地層13は、上記要件を満足する限り公知の成膜手段を用いて形成することができる。しかしながら、MOCVD法を用い、その成膜温度を1100℃以上に設定することによって簡易に得ることができる。なお、本特許の成膜温度は、基板11の設定温度を意味する。なお、下地層13の表面の粗れなどを抑制する観点より、前記成膜温度は1250℃以下であることが好ましい。
【0028】
なお、p型導電層14、発光層15、n型クラッド層16、及びn型導電層17は、Al、Ga、及びInなどを少なくとも一つ含むIII族窒化物から構成することができる。そして、p型導電層14はZn、Be及びMgなどの添加元素を含み、n型クラッド層16及びn型導電層17は、B、Si、Geの添加元素を含む。これらの各層は所定の公知の成膜方法によって形成することができ、上記同様にMOCVD法によって簡易に形成することができる。さらには、LPE法又はMBE法によっても形成することができる。
【0029】
発光層15は単一の窒化物半導体層から構成することもできるが、多重量子井戸構造などのような多層膜から構成することもできる。
【0030】
基板11は、サファイア単結晶、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgAl単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶などのIV族あるいはIV−IV族単結晶、GaAs単結晶、AlN単結晶、GaN単結晶、及びAlGaN単結晶などのIII−V族単結晶、ZrBなどのホウ化物単結晶などの、公知の基板材料から構成することができる。
【0031】
【実施例】
(実施例)
本実施例においては、図2に示すPIN型の半導体発光素子20を作製した。基板11として2インチ径の厚さ500μmのC面サファイア単結晶を用い、これをMOCVD装置の中に設置した。MOCVD装置には、ガス系としてH2、N2、TMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)、Cp2Mg、NH3、SiH4が取り付けてある。圧力を100Torrに設定した後、H2を平均流速1m/secで流しながら、基板11を1100℃まで昇温した。
【0032】
その後、TMAとNH3とを、所定量供給して、下地層13としてのAlN層を厚さ1μmまで成長させた。この際、成膜速度を0.3μm/hrとなるように、TMA及びNHの供給量を設定した。このAlN層中の転位密度をTEMによって観察したところ、1×1010/cmであった。AlNの(002)面のX線ロッキングカーブを測定したところ、その半値幅は60秒であり、表面粗さ(Ra)は1.5Å以下と良好な結晶品質を有することが確認された。
【0033】
次いで、基板温度を1080℃に設定した後、圧力を常圧にし、TMG、NH、及びCp2Mgを全ガス平均流速1m/secで流して、p型導電層14としてMgをドープしたp−GaN層を厚さ3μm成長させた。原料供給量は成膜速度が3μm/hrとなるように設定した。なお、Cp2Mgはキャリア濃度が1.0×1018/cmとなるように供給した。
【0034】
次いで、各原料ガスの供給を停止し、キャリアガスをNに変更した後、基板温度を700℃とした。そして、前記p−GaN層上に、TMI、TMG、NHを全ガス流速1m/secで流して、発光層15としてのi−InGaN層をMQW構造として形成した。その後、TMIをTMAに切り替えると共にSiHをキャリア濃度が1×1018/cmとなるようにして供給し、n型クラッド層16としてのn−AlGaN層を厚さ20nmに成長させた。その後、TMAを停止して基板温度を1000℃に上昇した後TMG、NH、SiHを供給し、n型導電層17としてのSiをドープしたn−GaN層を厚さ0.2μmに形成した。
【0035】
その後、得られた半導体発光素子を水素を含まない窒素雰囲気中に配置し、350℃に加熱して5時間保持して活性化処理を実施した。次いで、これらの各層を部分的にエッチング除去することによって、p型導電層14を構成するp−GaN層の一部を露出させ、この露出部分に対してAu/Niからなるp型電極18を形成した。また、n型導電層17を構成するn−GaN層上にAl/Tiからなるn型電極19を形成した。
【0036】
Au/Ni電極及びAl/Ti電極間に電圧を印加して駆動させ、その発光効率を調べたところ、30(lm/W)なる値が得られた。
【0037】
(比較例1)
AlN下地層に代えて、600℃の低温でGaN下地層を厚さ0.03μmに形成した以外は、実施例と同様にして半導体発光素子を作製した。この場合においては、前記半導体発光素子中を電流が流れず、発光しなかった。
【0038】
(比較例2)
本比較例においては、図1に示すPIN型の半導体発光素子を作製した。
基板1としてのサファイア単結晶基板を用い、実施例と同様のMOCVD装置内に設置した。基板1を400℃に加熱した後、TMG及びNHを供給してバッファ層2としてのGaN層を厚さ0.03μmに形成した。
【0039】
その後、一旦、TMG及びNHの供給を中断し、基板温度を1120℃に設定して、TMG、NH、及びSiHを供給し、下地層3としてのn−GaN層を、成膜速度3μm/hrで厚さ3μmに形成した。次いで、実施例と同様にして、n型導電層4からp型導電層7までを形成した。その後、得られた半導体発光素子を水素を含まない窒素雰囲気中に配置して800℃に加熱し、1時間保持して活性化処理を実施した。
【0040】
そして、Al/Tiのn型電極8、Au/Niのp型電極9を形成し、Au/Ni電極及びAl/Ti電極間に電圧を印加して駆動させ、その発光効率を調べたところ、30(lm/W)なる値が得られた。
【0041】
以上、実施例及び比較例1より、本発明にしたがって高結晶品質のAlN下地膜を形成し、このAlN下地膜上にp−GaN、n−AlGaN及びn−GaNを形成して得た基板/p型半導体層群/n型半導体層群なる構成の半導体発光素子は、低結晶品質のGaN下地膜を形成し、このGaN下地膜上に形成した前記構成の半導体発光素子に比べて、素子全体が低抵抗化され、発光効率が向上していることが分かる。
【0042】
また、実施例及び比較例2より、実施例で得た上記基板/p型半導体層群/n型半導体層群なる構成の半導体発光素子は、従来の基板/n型半導体層群/p型半導体層群なる構成の従来の半導体発光素子と比較した場合においても、十分な発光効率を呈することが分かる。
【0043】
以上、具体例を挙げながら、本発明を発明の実施の形態に即して詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
【0044】
例えば、基板に窒化処理を加えたり、III族原料による基板の前処理などを行なうこともできる。また、下地層の組成を連続的に変化させたり、成膜条件を段階に分けて変化させたりすることも可能である。さらに、導電層や発光層などの結晶性をさらに向上させる目的で、下地層と導電層との間などにバッファ層やひずみ超格子などの多層積層構造を温度、流量、圧力、原料供給量、及び添加ガスなどの成長条件を変化させることにより、挿入することもできる。
【0045】
また、上記半導体発光素子において、p型半導体層群はp型導電層のみから構成しているが、このp型導電層上にp型クラッド層を設け、前記p型半導体層群を前記p型導電層及び前記p型クラッド層から構成することもできる。
【0046】
さらに、上記発明の実施の形態においては、本発明の半導体素子として半導体発光素子を中心に説明してきたが、本発明は基板/p型半導体層群/n型半導体層群なる積層構造を有する他の素子に対しても適用することができる。例えば、HBT素子及びPINタイプの受光素子を挙げることができる。この場合においても各素子の低抵抗化に伴って、素子効率などの特性が向上する。
【0047】
また、p型半導体層群に対する活性化処理において、活性化処理を行うべき雰囲気をプラズマ化したり、前記雰囲気に対して高周波を印加したりすることによって、前記活性化処理を促進させることもできる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、所定の基板上において、高結晶品質のAl含有III族窒化物下地膜を介して、p型半導体層群及びn型半導体層群をこの順に積層するようにしているので、基板/p型半導体層群/n型半導体層群なる構成の実用的な半導体素子を提供することができる。
【図面の簡単な説明】
【図1】従来の半導体発光素子の一例を示す構成図である。
【図2】本発明の半導体発光素子の一例を示す構成図である。
【符号の説明】
1,11 基板、2 バッファ層、3,13 下地層、4 n型導電層、5,15 発光層、6 p型クラッド層、7 p型導電層、8 n型電極、9 p型電極、10,20 半導体発光素子、14 p型導電層、16 n型クラッド層、17 n型導電層、18 p型電極、19 n型電極

Claims (5)

  1. 所定の基材上において、少なくともAlを含み、転位密度が1×1011/cm以下であり、(002)面のX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層と、このIII族窒化物下地層の上方に形成されたp型半導体層群およびその上のn型半導体層群とを具える半導体素子の製造方法において、前記III族窒化物下地層を、MOCVD法により1100℃以上の温度で形成したことを特徴とする、半導体素子の製造方法。
  2. 前記III族窒化物下地層中の、全III族元素に対するAl含有量が50原子%以上であることを特徴とする、請求項1に記載の半導体素子の製造方法。
  3. 前記III族窒化物下地層は、AlNからなることを特徴とする、請求項に記載の半導体素子の製造方法。
  4. 前記p型半導体層群を、水素を含まない雰囲気下において380℃以下の温度で加熱し、前記p型半導体層群に対して活性化処理を行うことを特徴とする、請求項1〜のいずれか一に記載の半導体素子の製造方法。
  5. 前記p型半導体層群に対して、前記活性化処理を行わないことを特徴とする、請求項1〜のいずれか一に記載の半導体素子の製造方法。
JP2002178478A 2002-06-19 2002-06-19 半導体素子の製造方法 Expired - Lifetime JP4107889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178478A JP4107889B2 (ja) 2002-06-19 2002-06-19 半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178478A JP4107889B2 (ja) 2002-06-19 2002-06-19 半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004022962A JP2004022962A (ja) 2004-01-22
JP4107889B2 true JP4107889B2 (ja) 2008-06-25

Family

ID=31176190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178478A Expired - Lifetime JP4107889B2 (ja) 2002-06-19 2002-06-19 半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP4107889B2 (ja)

Also Published As

Publication number Publication date
JP2004022962A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4063548B2 (ja) 半導体発光素子
USRE40163E1 (en) Semiconductor light-emitting element
EP2164115A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US7172956B2 (en) Substrate for semiconductor light-emitting element, semiconductor light-emitting element and semiconductor light-emitting element fabrication method
JP2010080955A (ja) 半導体装置
JP2013016711A (ja) 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
JP2007134507A (ja) 半導体発光素子、および半導体発光素子を作製する方法
JP4377600B2 (ja) 3族窒化物半導体の積層構造、その製造方法、及び3族窒化物半導体装置
JP2009021638A (ja) 窒化ガリウム系化合物半導体発光素子
JP4063838B2 (ja) 半導体発光素子の転位密度低減方法
JP4457691B2 (ja) GaN系半導体素子の製造方法
JP2007200933A (ja) 窒化物系半導体素子の製造方法
JP2003086840A (ja) GaN系半導体発光ダイオード
JP2004014587A (ja) 窒化物系化合物半導体エピタキシャルウエハ及び発光素子
JP3831322B2 (ja) Iii族窒化物膜の製造方法、エピタキシャル成長用基板、iii族窒化物膜、iii族窒化物素子用エピタキシャル基板、及びiii族窒化物素子
JP4900336B2 (ja) Iii族窒化物発光素子を製造する方法、及びiii族窒化物発光素子
JP3753369B2 (ja) 窒化物系半導体発光素子
JP2004047867A (ja) 窒化物系半導体発光素子の製造方法
JP4107889B2 (ja) 半導体素子の製造方法
JP2001024223A (ja) 窒化物半導体発光ダイオード
JP4794799B2 (ja) エピタキシャル基板及び半導体積層構造
JP2004165469A (ja) 半導体素子用基板、半導体素子、及び半導体素子の製造方法
JP4514727B2 (ja) Iii族窒化物膜の製造方法、iii族窒化物膜、iii族窒化物素子用エピタキシャル基板、及びiii族窒化物素子
JP2001085735A (ja) 窒化物系化合物半導体発光素子およびその製造方法
CN114664985A (zh) 氮化物半导体发光元件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

EXPY Cancellation because of completion of term