JP4022929B2 - Method for producing 3,5-bis (trifluoromethyl) nitrobenzene - Google Patents

Method for producing 3,5-bis (trifluoromethyl) nitrobenzene Download PDF

Info

Publication number
JP4022929B2
JP4022929B2 JP18696095A JP18696095A JP4022929B2 JP 4022929 B2 JP4022929 B2 JP 4022929B2 JP 18696095 A JP18696095 A JP 18696095A JP 18696095 A JP18696095 A JP 18696095A JP 4022929 B2 JP4022929 B2 JP 4022929B2
Authority
JP
Japan
Prior art keywords
reaction
trifluoromethyl
bis
sulfuric acid
btfb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18696095A
Other languages
Japanese (ja)
Other versions
JPH0931030A (en
Inventor
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP18696095A priority Critical patent/JP4022929B2/en
Publication of JPH0931030A publication Critical patent/JPH0931030A/en
Application granted granted Critical
Publication of JP4022929B2 publication Critical patent/JP4022929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、以下の反応で示される3,5−ビス(トリフルオロメチル)ニトロベンゼンの製造法に関する。
【0002】
【化1】

Figure 0004022929
【0003】
3,5−ビス(トリフルオロメチル)ニトロベンゼン(以下、BTFNBと略記する。)は、近年医薬・農薬等に代表される有機化学品の中間体として重要になって来ている。
【0004】
【従来の技術】
これまでの文献(ジャーナル・オブ・ザ・アメリカン・ケミカル・ソサイヤティー 75巻 4967頁 1953年)で知られている方法は、1,3−ビス(トリフルオロメチル)ベンゼン(以下、BTFBと略記する。)は、反応性が極めて低いために、24%発煙硫酸という強酸を溶媒として、100%硝酸をBTFBに対し6.7当量用いて90〜105℃で反応を行いBTFNB收率66.5%の結果であった。この方法は、まず、原料中に硫酸を滴下し、その混合液中に硝酸を滴下するために、混酸生成時に生じる高い発熱によって原料のニトロ化及び副反応を誘発しさらにその反応熱も加わって、反応規模が増大する実用場面では、反応制御がむずかしい欠点を有している。
【0005】
また、20%以上の発煙硫酸を100℃付近で用いることによるスルホン化等の副反応が大きくなりBTFB收率を低下させている。
さらに100℃以上まで昇温させることによる硝酸の飛散により、使用する硝酸量は、原料BTFBに対し6.7当量にも及び、工業的には、問題が多い。
【0006】
【発明が解決しようとする課題】
反応温度制御をしながら、低硝酸量で高BTFNB收率を得る反応条件の探索を課題として研究の結果本発明を完成した。本発明の目的は1,3−ビス(トリフルオロメチル)ベンゼン(BTFB)より高収率で得る3,5−ビス(トリフルオロメチル)ニトロベンゼン(BTFNB)の製造法の提供にある。
【0007】
【課題を解決するための手段】
本発明は、1,3−ビス(トリフルオロメチル)ベンゼンの硝酸によるニトロ化方法に於て、溶媒として91%以上の濃度の硫酸又は、三酸化硫黄濃度が20%以下の発煙硫酸を用いて、反応温度50〜100℃の温度範囲で反応させることを特徴とする3,5−ビス(トリフルオロメチル)ニトロベンゼンの製造法に関する。
【0008】
以下、本発明を詳細に説明する。
【0009】
【発明の実施形態】
原料の1,3−ビス(トリフルオロメチル)ベンゼンは、通常入手できる純度のものをそのまま使用できる。
本発明の第1の特徴は溶媒の選択にある。本反応を促進させるためには強酸性溶媒が必須である。又、同時に加水分解等の副反応を抑制するために含水量が少ないことが好ましい。従って、硝酸によるニトロ化で副生する水を強酸の硫酸に変えてくれる三酸化硫黄を含有する発煙硫酸が、ふさわしい溶媒として挙げることができる。
【0010】
しかし、本発明者は、この三酸化硫黄含有濃度について詳細に検討した結果、高濃度になるとスルホン化物の副生が多くなることを見出した。従って発煙硫酸中の三酸化硫黄の好ましい濃度は20%以下であり、より好ましくは10%以下が、高いBTFNB收率を与えることを見出した。
さらに、フリーの三酸化硫黄を含まない濃硫酸のみを溶媒として使用しても充分高收率でBTFNBが得られることを、新たに見出した。
【0011】
硫酸濃度は、91%以上100%以下が好ましく、取扱い容易な市販の97%濃硫酸そのものでも可能である。91%未満の濃度になると反応が急激に遅くなる。
その使用量は、原料BTFBに対し1〜20重量倍が好ましく、特には、2〜10重量倍が望ましい。原料BTFBのこれらの溶媒への溶解度は、小さいことから溶媒量が多い方が反応は促進される。
【0012】
一方、ニトロ化剤としての硝酸は、前述の理由から含水量ができるだけ少ない方が好ましい。ただし含水品の場合も、三酸化硫黄又は発煙硫酸の添加量を増加させれば同様に使用することができる。一般に入手できる94%又は98%の発煙硝酸をそのまま使用することができる。硝酸量は、原料BTFBの反応性が低いところから、転化率を上げるためには、原料に対し当量以上を使用する必要がある。
【0013】
硝酸量が多ければ、反応が速くなるが、反応後の余剰硝酸の回収の煩雑さから原料BTFBに対し5倍当量以下好ましくは4倍当量以内で行うのが好ましい。本発明では、各反応資材の仕込み順序及び最適反応温度の検討により、硝酸量が1.5〜2倍当量程度でも高いBTFNB收率が得られることを見出した。(文献例:6.7倍)
本発明の第2の特徴は、最適反応温度にある。発煙硫酸又は濃硫酸を溶媒としてニトロ化する場合、基質によって高温ではスルホン化が併発する。BTFBは、90℃付近からスルホン化物が副生する。
【0014】
従って、高濃度の発煙硫酸を溶媒とする場合は、低温領域で反応させる必要がある。発煙硫酸及び濃硫酸溶媒で、目的生成物BTFNB反応收率80%以上の温度範囲を詳細に検討した結果好ましくは50℃〜100℃,特には、60〜95℃間であることを見出した。
本発明の第3の特徴は、各反応資材の仕込み方法である。反応制御の操作性及び目的生成物の選択性の面から混酸合成で生じる発熱とニトロ化反応で生成する発熱を分離し温度制御することが好ましい。
【0015】
BTFBは、モノニトロ化の後、ジニトロ化の心配がないところから、あらかじめ合成した混酸中に、反応させながらBTFBを時間をかけて滴下又は分割投入する方法が好ましい。この方法により、ニトロ化反応の発熱のみの除熱又は、保温の操作で良いことになり反応温度制御が容易になる。
BTFBの滴下時間又は分割回数は、反応規模や反応装置によって異なる。本反応では、前述の無機強酸性溶媒に加え有機溶媒を使用することもできる。使用できる溶媒としては、1,2−ジクロルエタン及び1,1,2,2−テトラクロルエタン等に代表されるハロゲン化脂肪族炭化水素類やn−ヘキサン及びn−ヘプタン等に代表される脂肪族炭化水素類等が挙げられる。
【0016】
その使用量は、原料BTFBに対し0.5〜20重量倍、特には1〜10重量倍が好ましい。
本反応は2層反応であるところからジ(2−エチルヘキシル)スルホコハク酸ナトリウムに代表される各種のアルキルスルホコハク酸塩、ポリオキシエチレンノニルフェニルエーテルに代表されるポリオキシエチレンアルキルアリルエーテル等の界面活性剤やテトラブチルアンモニウムクロライド及びテトラメチルアンモニウムハイドロジェンサルフェート等に代表される相間移動触媒等を使用し、反応を促進させることもできる。
【0017】
その使用量は、原料BTFBに対し0.1〜10モル%が適当である。
反応時間は、反応条件によって異なりガスクロマトグラフィー又は液体クロマトグラフィー等により反応液を分析することによって決定できる。
反応後は、冷却し室温に戻すと生成物は油層として分離する。これをそのまま分離することができる。又有機溶媒で抽出することもできる。これらを水洗後、アルカリ水溶液で洗浄し、もう一度水洗すると、スルホン化物や分解物等の副生物は、除去される。
【0018】
さらにこの粗物を蒸留することにより目的とするBTFBの高純度品が得られる。
以下実施例をもって本発明を更に具体的に説明するが、これらによって本発明は限定されるものではない。
【0019】
【実施例】
実施例1
97%硫酸160gを四口反応フラスコに仕込み、その氷冷撹拌下に、94%発煙硝酸20.1gを1時間かけて滴下した。続いて反応器を85℃迄昇温させた後、その撹拌下に1,3−ビス(トリフルオロメチル)ベンゼン(BTFB)32.1g(0.15ml)を2時間かけて滴下した。その後同じ温度で3時間撹拌を継続し反応を停止し冷却した。
【0020】
続いて、1,2−ジクロルエタン(EDC)32g2回で生成物を抽出した。
この有機層を水洗、10%水酸化ナトリウム水溶液洗浄さらに水洗と繰り返した後濃縮・蒸留した。主留分として沸点71〜72℃/933Paの油状物質31.1gを得た。
この留分をガスクロマトグラフィーで分析すると99%の純度であった。さらにMASS,1 H−NMR及び13C−NMRから目的とする3,5−ビス(トリフルオロメチル)ニトロベンゼン(BTFNB)であることが判明した。
【0021】
上記EDC溶液を定量した結果BTFNB反応收率は85.1%であった。
【0022】
実施例2〜7,比較例1〜5
実施例1に於て、溶媒、温度、時間を換えた他は、同様に反応を行い、反応終了後、EDC抽出した有機層について定量した結果を次表に示す。
【0023】
【表1】
Figure 0004022929
【0024】
比較例5
実施例1に於てBTFB32.1gを一括仕込み、反応を開始したところ、約10分後に発熱が見られ反応温度は、93℃以上に昇温した。そこで油浴をはずし、水浴で冷却した。
85℃に戻ったところで、水浴をはずし、空冷下撹拌を続けた。しばらく発熱が続いた後85℃以下になって来たところで再び油浴につけ、85℃を保った。合計4時間撹拌し反応を終了させた。反応液を冷却後EDCで抽出し、定量を行った結果、BTFNB收率は、66.2%であった。
【0025】
【発明の効果】
表に示すように本発明方法によると3,5−ビス(トリフルオロメチル)ニトロベンゼン( BTFNB)の収率が高い。[0001]
[Industrial application fields]
The present invention relates to a method for producing 3,5-bis (trifluoromethyl) nitrobenzene represented by the following reaction.
[0002]
[Chemical 1]
Figure 0004022929
[0003]
3,5-bis (trifluoromethyl) nitrobenzene (hereinafter abbreviated as BTFNB) has recently become important as an intermediate for organic chemicals represented by pharmaceuticals and agricultural chemicals.
[0004]
[Prior art]
The method known in the previous literature (Journal of the American Chemical Society 75, 4967, 1953) is abbreviated as 1,3-bis (trifluoromethyl) benzene (hereinafter referred to as BTFB). ) Is extremely low in reactivity, and the reaction was carried out at 90 to 105 ° C. using 6.7 equivalents of 100% nitric acid with respect to BTFB using a strong acid of 24% fuming sulfuric acid as a solvent, and a BTFNB yield of 66.5%. It was a result. In this method, first, sulfuric acid is dropped into the raw material, and nitric acid is dropped into the mixed solution. Therefore, nitration and side reactions of the raw material are induced by the high exotherm generated when the mixed acid is generated, and the heat of reaction is also added. In practical situations where the reaction scale increases, reaction control is difficult.
[0005]
Further, side reactions such as sulfonation due to the use of 20% or more of fuming sulfuric acid at around 100 ° C. are increased, and the BTFB yield is reduced.
Furthermore, due to the scattering of nitric acid by raising the temperature to 100 ° C. or higher, the amount of nitric acid used is 6.7 equivalents relative to the raw material BTFB, and there are many problems in the industry.
[0006]
[Problems to be solved by the invention]
The present invention was completed as a result of research on the search of reaction conditions for obtaining a high BTFNB yield with a low amount of nitric acid while controlling the reaction temperature. An object of the present invention is to provide a process for producing 3,5-bis (trifluoromethyl) nitrobenzene (BTNFNB) obtained in a higher yield than 1,3-bis (trifluoromethyl) benzene (BTFB).
[0007]
[Means for Solving the Problems]
The present invention relates to a method for nitration of 1,3-bis (trifluoromethyl) benzene with nitric acid, using sulfuric acid having a concentration of 91% or more or fuming sulfuric acid having a sulfur trioxide concentration of 20% or less as a solvent. The present invention relates to a process for producing 3,5-bis (trifluoromethyl) nitrobenzene, characterized by reacting in a temperature range of 50 to 100 ° C.
[0008]
Hereinafter, the present invention will be described in detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The raw material 1,3-bis (trifluoromethyl) benzene can be used as it is with a normally available purity.
The first feature of the present invention is the selection of a solvent. In order to promote this reaction, a strongly acidic solvent is essential. At the same time, it is preferable that the water content is low in order to suppress side reactions such as hydrolysis. Therefore, fuming sulfuric acid containing sulfur trioxide that converts water by-produced by nitration with nitric acid into sulfuric acid of strong acid can be mentioned as a suitable solvent.
[0010]
However, as a result of detailed examination of the concentration of sulfur trioxide, the present inventor has found that by-products of sulfonated products increase at high concentrations. Accordingly, it has been found that the preferred concentration of sulfur trioxide in the fuming sulfuric acid is 20% or less, more preferably 10% or less provides a high BTFNB yield.
Furthermore, it has been newly found that BTFNB can be obtained at a sufficiently high yield even when only concentrated sulfuric acid containing no free sulfur trioxide is used as a solvent.
[0011]
The sulfuric acid concentration is preferably 91% or more and 100% or less, and it is possible to use commercially available 97% concentrated sulfuric acid which is easy to handle. When the concentration is less than 91%, the reaction is rapidly slowed down.
The amount used is preferably 1 to 20 times by weight, particularly 2 to 10 times by weight, relative to the raw material BTFB. Since the solubility of the raw material BTFB in these solvents is small, the reaction is promoted when the amount of the solvent is large.
[0012]
On the other hand, nitric acid as a nitrating agent is preferably as low in water content as possible for the reasons described above. However, in the case of a water-containing product, it can be similarly used if the amount of sulfur trioxide or fuming sulfuric acid is increased. Generally available 94% or 98% fuming nitric acid can be used as is. The amount of nitric acid must be equal to or greater than that of the raw material in order to increase the conversion rate because the raw material BTFB has low reactivity.
[0013]
If the amount of nitric acid is large, the reaction becomes faster, but it is preferable to carry out within 5 times equivalent, preferably within 4 times equivalent to the raw material BTFB because of the complicated recovery of excess nitric acid after the reaction. In the present invention, it has been found that a high BTFNB yield can be obtained even when the amount of nitric acid is about 1.5 to 2 times equivalent by examining the order of charging each reaction material and the optimum reaction temperature. (Reference example: 6.7 times)
The second feature of the present invention is the optimum reaction temperature. When nitration is performed using fuming sulfuric acid or concentrated sulfuric acid as a solvent, sulfonation occurs at a high temperature depending on the substrate. In BTFB, a sulfonated product is produced as a by-product from around 90 ° C.
[0014]
Therefore, when a high concentration fuming sulfuric acid is used as a solvent, it is necessary to react in a low temperature region. As a result of detailed examination of the temperature range of the target product BTFNB reaction yield of 80% or more with fuming sulfuric acid and concentrated sulfuric acid solvent, it was found that the temperature is preferably 50 to 100 ° C., particularly 60 to 95 ° C.
A third feature of the present invention is a method for charging each reaction material. It is preferable to control the temperature by separating the exotherm generated by the mixed acid synthesis and the exotherm generated by the nitration reaction from the viewpoint of the operability of reaction control and the selectivity of the target product.
[0015]
Since BTFB is not a concern for dinitration after mononitration, a method in which BTFB is dropped or dividedly added over time while reacting in a previously synthesized mixed acid is preferable. By this method, it is sufficient to remove heat only by the exothermic reaction of the nitration reaction or to maintain the temperature, and the reaction temperature can be easily controlled.
The dropping time or the number of divisions of BTFB varies depending on the reaction scale and the reaction apparatus. In this reaction, an organic solvent can be used in addition to the above-mentioned inorganic strong acidic solvent. Solvents that can be used include halogenated aliphatic hydrocarbons such as 1,2-dichloroethane and 1,1,2,2-tetrachloroethane, and aliphatics such as n-hexane and n-heptane. And hydrocarbons.
[0016]
The amount used is preferably 0.5 to 20 times by weight, particularly 1 to 10 times by weight, relative to the raw material BTFB.
Since this reaction is a two-layer reaction, various alkylsulfosuccinates represented by sodium di (2-ethylhexyl) sulfosuccinate, polyoxyethylene alkylallyl ethers represented by polyoxyethylene nonylphenyl ether, etc. The reaction can also be promoted by using a phase transfer catalyst such as an agent, tetrabutylammonium chloride and tetramethylammonium hydrogen sulfate.
[0017]
The amount used is suitably 0.1 to 10 mol% with respect to the raw material BTFB.
The reaction time varies depending on the reaction conditions and can be determined by analyzing the reaction solution by gas chromatography or liquid chromatography.
After the reaction, the product is separated as an oil layer when cooled to room temperature. This can be separated as it is. It can also be extracted with an organic solvent. When these are washed with water, washed with an alkaline aqueous solution, and washed again with water, by-products such as sulfonated products and decomposed products are removed.
[0018]
Further, by distilling this crude product, a target BTFB high-purity product can be obtained.
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0019]
【Example】
Example 1
160 g of 97% sulfuric acid was charged into a four-neck reaction flask, and 20.1 g of 94% fuming nitric acid was added dropwise over 1 hour with stirring under ice cooling. Subsequently, after raising the temperature of the reactor to 85 ° C., 32.1 g (0.15 ml) of 1,3-bis (trifluoromethyl) benzene (BTFB) was added dropwise over 2 hours with stirring. Thereafter, stirring was continued for 3 hours at the same temperature to stop the reaction and to cool.
[0020]
Subsequently, the product was extracted with 2 times 32 g of 1,2-dichloroethane (EDC).
This organic layer was washed with water, washed with a 10% aqueous sodium hydroxide solution and further washed with water, and then concentrated and distilled. As a main fraction, 31.1 g of an oily substance having a boiling point of 71 to 72 ° C./933 Pa was obtained.
This fraction was analyzed by gas chromatography and found to be 99% pure. Further, from MASS, 1 H-NMR and 13 C-NMR, it was found to be the desired 3,5-bis (trifluoromethyl) nitrobenzene (BTNFNB).
[0021]
As a result of quantitative determination of the EDC solution, the BTFNB reaction yield was 85.1%.
[0022]
Examples 2-7, Comparative Examples 1-5
The reaction was carried out in the same manner as in Example 1 except that the solvent, temperature and time were changed. After the reaction was completed, the results of quantification of the organic layer extracted by EDC are shown in the following table.
[0023]
[Table 1]
Figure 0004022929
[0024]
Comparative Example 5
In Example 1, 32.1 g of BTFB was charged all at once and the reaction was started. After about 10 minutes, an exotherm was observed and the reaction temperature rose to 93 ° C. or higher. Therefore, the oil bath was removed and cooled in a water bath.
When the temperature returned to 85 ° C., the water bath was removed and stirring was continued under air cooling. After the heat generation continued for a while, when it became 85 ° C. or lower, it was put again in an oil bath and maintained at 85 ° C. The reaction was terminated by stirring for a total of 4 hours. The reaction solution was cooled, extracted with EDC, and quantified. As a result, the BTFNB yield was 66.2%.
[0025]
【The invention's effect】
As shown in the table, according to the method of the present invention, the yield of 3,5-bis (trifluoromethyl) nitrobenzene (BTFNB) is high.

Claims (2)

1,3−ビス(トリフルオロメチル)ベンゼンを硝酸でニトロ化する際に、溶媒として三酸化硫黄濃度が20%以下の発煙硫酸を用いて、反応温度60〜95℃の温度範囲で行うことを特徴とする3,5−ビス(トリフルオロメチル)ニトロベンゼンの製造法。When nitration of 1,3-bis (trifluoromethyl) benzene with nitric acid, fuming sulfuric acid having a sulfur trioxide concentration of 20% or less is used as a solvent, and the reaction temperature is 60 to 95 ° C. A method for producing 3,5-bis (trifluoromethyl) nitrobenzene, which is characterized. 三酸化硫黄濃度が20%以下の発煙硫酸と硝酸の混合液中に、原料の1,3−ビス(トリフルオロメチル)ベンゼンを滴下又は分割して加えることを特徴とする請求項1記載の3,5−ビス(トリフルオロメチル)ニトロベンゼンの製造法。3. The raw material 1,3-bis (trifluoromethyl) benzene is added dropwise or dividedly into a mixture of fuming sulfuric acid and nitric acid having a sulfur trioxide concentration of 20% or less. , 5-bis (trifluoromethyl) nitrobenzene production method.
JP18696095A 1995-07-24 1995-07-24 Method for producing 3,5-bis (trifluoromethyl) nitrobenzene Expired - Fee Related JP4022929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18696095A JP4022929B2 (en) 1995-07-24 1995-07-24 Method for producing 3,5-bis (trifluoromethyl) nitrobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18696095A JP4022929B2 (en) 1995-07-24 1995-07-24 Method for producing 3,5-bis (trifluoromethyl) nitrobenzene

Publications (2)

Publication Number Publication Date
JPH0931030A JPH0931030A (en) 1997-02-04
JP4022929B2 true JP4022929B2 (en) 2007-12-19

Family

ID=16197745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18696095A Expired - Fee Related JP4022929B2 (en) 1995-07-24 1995-07-24 Method for producing 3,5-bis (trifluoromethyl) nitrobenzene

Country Status (1)

Country Link
JP (1) JP4022929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1468983T3 (en) * 2002-01-25 2008-01-07 Asahi Glass Co Ltd Process for the preparation of 2,5-bis (trifluoromethyl) nitrobenzene
US7786325B2 (en) 2006-02-10 2010-08-31 Mitsui Chemicals, Inc. Process for producing O-methyl-N-nitroisourea

Also Published As

Publication number Publication date
JPH0931030A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3480825B2 (en) Purification method of 1,1,1,5,5,5-hexafluoroacetylacetone
JP4022929B2 (en) Method for producing 3,5-bis (trifluoromethyl) nitrobenzene
JPH08277240A (en) Production of alpha-chloroalkyl aryl ketone
EP1468983B1 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
JP4922181B2 (en) Process for the preparation of 1,2,2,2-tetrafluoroethyl difluoromethyl ether
JPH0390057A (en) Chlorofluorobenzonitrile and production thereof
JPS6121455B2 (en)
EP0140783B1 (en) Process for the preparation of meta-substituted anilines
JPH0827054A (en) Method for brominating aromatic compounds
US4603222A (en) Method for the preparation of nitrodiphenyl ethers
JP3998076B2 (en) Demethylation of podophyllotoxin
JPS62223140A (en) Production of 2-chloro-4-fluorophenol
JP2001031684A (en) Method for producing fluorine-containing organosilicon compound
JP2988856B2 (en) Method for producing 1,2-indanediols
CN111548258A (en) Use of sulfonyl type compounds as chlorination reagents
JPH0149338B2 (en)
JP2807780B2 (en) Method for producing aromatic fluorine compound
JP2637202B2 (en) Method for producing 3-trifluoromethylbenzenesulfonyl chlorides
JPS60169435A (en) Production of 1-acetylnaphthalene
JPH05221890A (en) Method for treating carbon tetrachloride
JPH06135856A (en) New process for producing fluorinated aromatic compound
JPH06293691A (en) Highly fluorinated phenylpropyl ether and its production
JPS58128339A (en) Preparation of beta-aroylacrylic acid
JPS6314693B2 (en)
JPS621938B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees