JP3959930B2 - A method to determine the formulation to improve the physical properties of construction generated residual soil - Google Patents

A method to determine the formulation to improve the physical properties of construction generated residual soil Download PDF

Info

Publication number
JP3959930B2
JP3959930B2 JP2000143458A JP2000143458A JP3959930B2 JP 3959930 B2 JP3959930 B2 JP 3959930B2 JP 2000143458 A JP2000143458 A JP 2000143458A JP 2000143458 A JP2000143458 A JP 2000143458A JP 3959930 B2 JP3959930 B2 JP 3959930B2
Authority
JP
Japan
Prior art keywords
soil
physical properties
construction
generated residual
residual soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000143458A
Other languages
Japanese (ja)
Other versions
JP2001321759A (en
Inventor
栄造 深沢
寛昌 五十嵐
秀和 穴井
智 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2000143458A priority Critical patent/JP3959930B2/en
Publication of JP2001321759A publication Critical patent/JP2001321759A/en
Application granted granted Critical
Publication of JP3959930B2 publication Critical patent/JP3959930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は工事現場で発生する建設発生残土に固化剤及び水を配合して物性改良土を製造して建設発生残土のリサイクルを図る際の建設発生残土と固化剤及び水の配合を決定する決定方法に関するものである。
【0002】
【従来の技術】
工事現場で発生する建設発生残土の廃棄量の低減や再利用のために、残土を流動化処理して物性改良土を製造し、この物性改良土を各種の埋戻し土として再利用することは従来より行われている。この物性改良土の配合決定に際しては、対象となる建設発生残土の1部を事前に試験用として採取し、その含水比を測定し、この試験用建設発生残土に固化剤(主としてセメントが使用される。)及び水を、その配合量を数段階に変化させて試験用の数種類の試験用物性改良土を製造し、製造された多種類の試験用物性改良土について、比重、フロー値、ブリージング、1軸圧縮強度を測定し、所定の品質を満足する試験用物性改良土の配合を基本配合とするのが一般的であり、日々、新たな建設発生残土の含水比を測定して、その値が試験用建設発生残土と大差なければ基本配合を踏襲し、差があれば水の配合量によって調整するという方法が採られている。
【0003】
【発明が解決しようとする課題】
ところで、新たな建設発生残土の含水比が試験用建設発生残土の含水比と同じであっても、その他の物性が試験用建設発生残土(試験用建設発生残土として数箇所のものを採取して場合も含めて)の物性と異なる場合が多く、その場合に従来の方法で配合を決定すると製造される物性改良土の品質のばらつきが大きくなる。
【0004】
そのため、新たな建設発生残土と試験用建設発生残土との物性に差異があると考えられる場合には、その都度、最初の配合試験からやり直して配合を検討し直す必要があり、配合決定に多大の時間と労力を要していた。
【0005】
【課題を解決するための手段】
本発明者らは、従来の日常の配合管理方法が、簡便さを偏重するためか、採取される試験用建設発生残土は数箇所から採取されるといっても改良対象となる建設発生残土と物性が類似した1種類のみであり、しかも、改良対象となる建設発生残土の物性の測定項目が含水比のみである点に注目した。
【0006】
物性の異なる複数の試験用建設発生残土を使用して、各種配合の試験用物性改良土を製造し、試験用建設発生残土の物性と試験用物性改良土の物性との関連性を把握しておけば、試験は多くなるが、配合決定に要する全体としての時間や労力は逆に減少すると考えた。
【0007】
一方、土砂と固化剤及び水の配合物の強度の発現には、細骨材に相当する土砂中の微細土粒子の含有量が関連し、配合物の流動性は土砂の持つ液性限界値に支配される、ことが知られている。この知見からすると、配合決定に際しての建設発生残土の物性の測定項目が含水比のみでは不十分であろうことに着目し、測定項目として土砂中の微細土粒子の含有割合、つまり、土粒子の粒度分布、及び土砂の持つ液性限界値を追加すれば、実際の物性改良土に製造に適用し得る配合を決定することができるであろうと考え、検討した結果、建設発生残土の物性の測定項目を含水比、微細土粒子の含有割合、液性限界値の3項目とした結果、同じ物性の建設発生残土を使用した場合の物性改良土の品質のばらつきは殆どなく、この考え方が正しいことが立証され、本発明に到達した。
【0008】
即ち、本願発明は「(A)予め、複数種類の建設発生残土の物性、及び、この建設発生残土に固化剤及び水などの添加材を種々の配合で混合して製造した多種類の試験用処理土の物性、の両者を測定し、目標値としての良好な品質の物性改良土を製造し得る添加材の添加量との関係について、両者の特性の関連性を示すデータを蓄積する過程と、(B)改良対象とする建設発生残土の物性を測定し、その物性を上記の蓄積されたデータと対照することにより建設発生残土の物性を改良する配合を決定する過程、とからなることを特徴とする建設発生残土の物性を改良する配合を決定する方法であって、改良対象となる建設発生残土の物性測定項目が、(1)含水比、(2) 沈降中土スラリーの比重測定による75μm アンダーの微細土粒子の含有割合、(3) フォールコーン試験による液性限界値の3項目であり、上記(2)の測定結果により、建設発生残土が砂質土と判定された場合は上記(3) の測定を省略することを特徴とする請求項1記載の建設発生残土の物性を改良する配合を決定する方法。」である。
【0009】
本願発明において、物性を測定した多種類の試験用建設発生残土を使用して多数の物性改良土配合試験を行ない、大量の配合試験結果を作成・蓄積しておき、対象とする建設発生残土の物性を蓄積されたデータと対照して物性改良土の配合を決定するという手法は、多数の実験などにより蓄積された過去の大量のデータを利用して新たな課題を解決するための手法として、科学(特に化学)の分野で一般的であるかもしれないが、建設発生残土に関しては新しい手法である。
【0010】
また、建設発生残土の物性の測定項目を、(1) 含水比、(2) 沈降中土スラリーの比重測定による75μm アンダーの微細土粒子の含有割合、(3) フォールコーン試験による液性限界値の3項目であり、(2) の測定結果により、建設発生残土が砂質土と判定された場合は(3) の測定を省略する点が本発明の特に大きな特徴である。勿論、測定項目が多ければ多い程配合試験の精度は向上するが、一方、測定項目の増加とともに配合試験の数量は幾何級数的に増大し、それに要する時間と労力は膨大になる。本発明では比較的少ない配合試験で試験の精度を向上させるため、建設発生残土の物性の測定項目は上記の(1) (2) (3) の3項目とした。
【0011】
この測定項目は従来法の含水比のみの場合に比して、砂質土の場合は1項目、粘性土の場合は2項目増加し、測定や配合試験がそれだけ増加することになる。しかし、従来法では上述したように、物性の異なる建設発生残土を使用する度に最初の配合試験から繰返すことが必要であり、全体としての測定や配合試験に要する時間や労力は、かえって本発明の方が小さくなる場合が多い。
【0012】
本発明において、含水比、沈降中土スラリーの比重測定による75μm アンダーの微細土粒子の含有割合、フォールコーン試験による液性限界値の3項目の測定には下記のように、JIS またはそれに準拠した簡便な測定法が採用される。
【0013】
(a) 含水比
JIS A 1203
(b) 沈降中土スラリーの比重測定による75μm アンダーの微細土粒子の含有割合
以下に説明する簡便な測定法(以下簡易沈降法という。)が採用される。
【0014】
簡易沈降法の概要。
(1)試料の建設発生残土を計量し、適量の水を入れた容器に投入し、攪拌して、残土を十分に水に分散させる。
【0015】
(2)残土の水スラリーを水の入ったメスシリンダーに入れ、蓋をしてこぼれないない様に注意しながら、メスシリンダーの底を中心にしてメスシリンダーを前後左右に振とうする。メスシリンダーは容量1l程度のものが使用され、水(分散のための水との合計)と残土との混合比率は予備実験により決定されるが、水900 〜980cc 、残土60〜200gの範囲で一定の値が選定される。
【0016】
(3)メスシリンダーを一定時間(通常は1分)静置した後、メスシリンダー内に比重計を静かに挿入し、比重計挿入後一定時間(通常は5分)経過した時点で比重計を読み、その値と予め作成してある検量線とにより、土中の75μm アンダーの微細土粒子の含有割合を判定する。(JIS A 1204の土の粒度試験方法による試験によって粒度分布が判明しており、75μm アンダーの微細土粒子の含有割合が異なる数種の試料について、同じ操作の測定を行ない、比重計の読み−75μm アンダーの微細土粒子の含有割合の関係の検量線を予め作成しておく。)
配合試験用の建設発生残土、対象とする建設発生残土の何れについても、同一条件で比重が測定されるのは当然である。この比重の値が残土の土粒子の精密な粒度分布に代わる指標とされる。定量的ではないが定性的には測定される比重の値が高い程土粒子中の微細粒子の含有割合が多い。通常のように、75μm アンダーの微細土粒子の含有割合が15〜50%のものを砂質土、50%以上のものを粘性土とする。この簡易沈降法の採用により、長時間を要していた土粒子の粒度分布の測定が10分以内の短時間で完了し、続いて直ちに物性改良土の製造に移ることが可能となる。
【0017】
(c) フォールコーン試験による液性限界値 地盤工学会JSF T 141-1990
なお、フォールコーン試験による液性限界値の測定にあたっては試料の調製時に含水比が変化する場合が多い。そして、測定される液性限界値は当然含水比と相関関係がある。従って、正確な液性限界値を測定するためには、試料の調製時の含水比の変化を極力避ける必要があるが、現場での試料調製時に含水比の変化を完全に避けることは至難であり、現実的ではない。そのため、現場での試料調製時に対象土に水を加えて一定の含水比(例えば100 %)として、この試料について液性限界値を測定し、既知の液性限界値と含水比と相関関係を利用して実際の含水比の土の液性限界値を推定するのが、現実的であり、簡便である。
【0018】
本発明における試験用建設発生残土としては、種々の物性の土が採取され、配合試験に供される。天然に採取される土の種類が少なく、今後発生するであろうと想定される建設発生残土をカバーし切れない場合が多い。これに対処するためには、天然に採取された土、例えば、微細粒子の含有割合が小さい砂質土と微細粒子の含有割合が大きい砂質土とを混合して、天然に採取されたものとは土粒子の粒度分布が異なる土を人工的に合成し、この合成土を配合試験に供する必要がある。
【0019】
対象とする建設発生残土の物性の測定により、残土が砂質土と判定される場合には、フォールコーン試験による液性限界値の測定を待たずに、蓄積した配合試験結果から直ちに物性改良土の配合が決定されるが、対象とする建設発生残土が粘性土と判定される場合には、フォールコーン試験による液性限界値の測定を待ち、蓄積した配合試験結果を参照して物性改良土の配合が決定される。
【0020】
また、対象とする建設発生残土の物性が試験に供した土の物性と完全に一致する場合は蓄積した配合試験結果から直ちに物性改良土の配合が決定されるが、対象とする建設発生残土の物性が配合試験に供した土の物性と完全には一致しない場合が多い。この場合には、微細土粒子の含有割合、液性限界値の順に一致または類似する試験用土を使用した配合試験結果を参照して配合を決定し、最後に含水比の測定結果から配合水分量を調整する。
【0021】
配合する水に廃棄泥水を使用する場合、泥水中に含まれている分散剤が物性改良土の品質に悪影響を及ぼさないことは確認されているが、当然、配合前にpH、粘性(ファンネル粘性)、比重などを測定して、配合試験で使用した泥水と一致することや配合量の限界の有無などを確認する必要がある。
【0022】
本発明においては多数の配合試験により蓄積されたデータはコンピュータで管理し、対象とする建設発生残土の測定結果の入力により、直ぐに必要とする情報が出力されるシステムとしておくことが好ましいことは言うまでもない。また、配合試験結果をグラフ化しておき、対象とする建設発生残土の測定結果から、配合をグラフ上で決定する方法は簡便かつ短時間で行える好ましい方法である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0024】
図1は本発明の物性改良土の配合決定のフローチャートであり、図2は試験用建設発生残土の物性と、それを使用して良好な品質の物性改良土を製造し得る添加材(固化材及び水)の添加量との関係についての過去の蓄積されたデータを、試験用建設発生残土の75μm アンダーの微細土粒子の含有割合について纏めたグラフであり、図3は同様に過去の蓄積されたデータを建設発生残土の液性限界値について纏めたグラフである。
【0025】
種類の建設発生残土(以下、この3種類の建設発生残土を、それぞれ「試料1」、「試料2」、「試料3」という。)を対象として、本発明の物性改良土の配合決定方法の適合性を試験する手順を説明する。
【0026】
試料1、試料2、試料3における 75μm アンダーの微細土粒子の含有割合は、それぞれ、28 %、 86 %、 98 %の場合、試料1は砂質土、試料2、試料3は粘性土と判定され
【0027】
砂質土と判定される試料1について図2のグラフの75μm アンダーの微細土粒子の含有割合が28%である位置にはめ込むことで、発生残土、セメント、水の配合量を、それぞれ約 940kg/m 3 、約 620kg/m 3 、約 150kg/m 3 の値で決定することができる。
【0028】
試料2、試料3は粘性土と判定されので、さらに、フォールコーン試験による液性限界値を測定する。測定値として、それぞれ、65.5%、103.0 %が得られたとすると、その測定値を図3のグラフのそれぞれの液性限界値の位置にはめ込むことで、発生残土、セメント、水の配合量を、試料2については、それぞれ約 520kg/m 3 、約 790kg/m 3 、約 150kg/m 3 の値で決定することができ、試料3については、それぞれ約 280kg/m 3 、約 830kg/m 3 、約 150kg/m 3 の値で決定することができる。
【0030】
【発明の効果】
本発明では、試験用建設発生残土の種類が増え、建設発生残土の測定項目が従来法に比し1〜2項目増加するが、従来法のように物性の異なる建設発生残土を使用する度に最初の配合試験から繰返す必要はなく、信頼性の高い配合が決定できる。また、発生残土の粒度分布を厳密な試験法で測定しなくとも、簡易沈降法により75μm アンダーの微細土粒子の含有割合を把握できればよいので、現場作業として短時間で物性改良土の配合を決定することができる。
【図面の簡単な説明】
【図1】本発明の物性改良土の配合決定のフローチャートである。
【図2】試験用建設発生残土の物性と、それを使用して良好な品質の物性改良土を製造し得る添加材(固化材及び水)の添加量との関係についての過去の蓄積されたデータを、試験用建設発生残土の75μm アンダーの微細土粒子の含有割合について纏めたグラフである。
【図3】試験用建設発生残土の物性と、それを使用して良好な品質の物性改良土を製造し得る添加材(固化材及び水)の添加量との関係についての過去の蓄積されたデータを、建設発生残土の液性限界値について纏めたグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention determines the composition of the construction generated residual soil, the solidifying agent and water when the construction generated residual soil generated at the construction site is mixed with the solidifying agent and water to produce the physical property improved soil and the construction generated residual soil is recycled. It is about the method.
[0002]
[Prior art]
In order to reduce or reuse the amount of construction waste generated at construction sites, it is necessary to fluidize the remaining soil to produce physical property improved soil, and to reuse this physical property improved soil as various backfill soils. It has been done conventionally. When determining the formulation of the soil with improved physical properties, a part of the construction generated residual soil is sampled in advance for testing, the water content ratio is measured, and a solidifying agent (mainly cement is used in the construction generated residual soil for testing. ) And water are mixed in several stages to produce several types of test property-improved soils for testing, and the specific gravity, flow value and breathing of the various types of test property-modified soils produced. It is common to measure the uniaxial compressive strength and use the blend of the test property-improving soil that satisfies the specified quality as the basic blend. If the value is not significantly different from the test construction residual soil, the basic formulation is followed, and if there is a difference, the method is adjusted by the amount of water.
[0003]
[Problems to be solved by the invention]
By the way, even if the water content ratio of the new construction generated residual soil is the same as the water content ratio of the test construction generated residual soil, other physical properties are collected from the test construction generated residual soil (several construction construction residual soils are collected. In many cases, when the blending is determined by a conventional method, the quality of the improved physical property improving soil is increased.
[0004]
For this reason, if it is considered that there is a difference in the physical properties between the new construction generated residue and the test construction generated residue, it is necessary to re-examine the combination from the first combination test, which is very important in determining the combination. Time and effort.
[0005]
[Means for Solving the Problems]
The inventors of the present invention, because the conventional daily composition management method emphasizes simplicity, even if the construction construction residual soil to be collected is collected from several places, the construction generated residual soil to be improved We paid attention to the fact that there is only one kind of similar physical properties, and that only the moisture content is the measurement item of the physical properties of the construction generated residual soil to be improved.
[0006]
Using several test construction residual soils with different physical properties, manufacture test property improvement soils of various formulations, and grasp the relationship between the physical properties of the test construction residual soils and the physical property improvement soils of the test If so, the number of tests will increase, but the overall time and labor required to determine the formulation will conversely decrease.
[0007]
On the other hand, the expression of strength of the combination of earth and sand, solidifying agent and water is related to the content of fine soil particles in the earth and sand corresponding to fine aggregate, and the fluidity of the mixture is the liquid limit value of the earth and sand. It is known to be dominated by. Based on this knowledge, we focused on the fact that the water content ratio alone would not be sufficient to measure the physical properties of the construction-generated residual soil at the time of formulation determination, and as a measurement item, the content of fine soil particles in the soil, that is, the soil particles The addition of the particle size distribution and the liquid limit value of the earth and sand will determine the formulation that can be applied to the actual physical property improved soil, and as a result of the study, measurement of the physical properties of the construction generated residual soil As a result of the three items of moisture content, fine soil particle content ratio, and liquid limit value, there is almost no variation in the quality of the physical property improved soil when construction residual soil with the same physical properties is used. Has been proved and the present invention has been achieved.
[0008]
That is, the invention of the present application is “(A) physical properties of a plurality of types of construction-generated residual soil, and various types of test materials manufactured by mixing the construction-generated residual soil with additives such as a solidifying agent and water in various formulations. The process of accumulating data showing the relevance of the characteristics of the treated soil, measuring the physical properties of the treated soil, and the relationship with the amount of additive that can be used to produce good quality improved soil as the target value , (B) measuring the physical properties of the construction generated residual soil to be improved, and comparing the physical properties with the above accumulated data to determine the composition for improving the physical properties of the generated construction residual soil. This is a method for determining the composition that improves the physical properties of construction-generated residual soil, and the measurement items of physical properties of construction-generated residual soil to be improved are based on (1) moisture content and (2) specific gravity measurement of submerged soil slurry. Content ratio of fine soil particles under 75μm, (3) It is the three items of the liquid limit value by the fall cone test, and the measurement of the above (3) is omitted when the construction generated residual soil is judged to be sandy soil from the measurement result of the above (2). A method for determining a composition for improving the physical properties of the construction generated residual soil according to claim 1.
[0009]
In the present invention, performs numerous properties improved soil formulation tested using a wide variety of test construction generated waste soil was measured objects properties, previously created and accumulate large amounts of compounding test results, construction waste waste soil of interest The method of determining the composition of the soil with improved physical properties by comparing the physical properties of the soil with the accumulated data is a method for solving new problems using a large amount of past data accumulated by many experiments. Although it may be common in the field of science (especially chemistry), it is a new technique for construction generated residual soil.
[0010]
Further, the measurement item of the physical properties of construction設発raw surplus soil, (1) water content, (2) the content of 75μm under the fine soil particles by density determination of the sedimentation Nakatsuchi slurry, (3) liquid limit by Fall cone test This is a particularly significant feature of the present invention in that the measurement of (3) is omitted when the construction generated residual soil is determined to be sandy soil based on the measurement result of (2). Of course, the more measurement items, the better the accuracy of the blending test. On the other hand, as the number of measurement items increases, the number of blending tests increases geometrically, and the time and labor required for this increase. In the present invention, in order to improve the accuracy of the test with relatively few compounding tests, the measurement items of the physical properties of the construction generated residual soil are the above three items (1), (2) and (3).
[0011]
This measurement item increases by one item in the case of sandy soil and two items in the case of cohesive soil as compared with the case of only the water content ratio of the conventional method, and the measurement and blending test increase accordingly. However, as described above, in the conventional method, it is necessary to repeat from the first mixing test every time the construction generated residual soil having different physical properties is used, and the time and labor required for the measurement and the mixing test as a whole are rather the present invention. Is often smaller.
[0012]
In the present invention, JIS or the following conformity to the measurement of the water content, the content ratio of fine soil particles under 75 μm by measuring the specific gravity of the submerged soil slurry, and the liquid limit value by the fall cone test are as follows: A simple measurement method is employed.
[0013]
(a) Moisture content
JIS A 1203
(b) Content ratio of fine soil particles under 75 μm by specific gravity measurement of subsidence medium soil slurry A simple measurement method (hereinafter referred to as simple sedimentation method) described below is adopted.
[0014]
Outline of simple sedimentation method.
(1) Weigh the residual soil generated from the construction of the sample, put it into a container with an appropriate amount of water, and stir to disperse the residual soil sufficiently in water.
[0015]
(2) Put the water slurry of the remaining soil into a graduated cylinder containing water, and shake the graduated cylinder back and forth around the bottom of the graduated cylinder, taking care not to spill the lid. A measuring cylinder with a capacity of about 1 liter is used, and the mixing ratio of water (total with water for dispersion) and residual soil is determined by preliminary experiments, but in the range of 900 to 980 cc of water and 60 to 200 g of residual soil A certain value is selected.
[0016]
(3) After leaving the graduated cylinder for a certain period of time (usually 1 minute), gently insert the hydrometer into the graduated cylinder, and when the fixed period of time (usually 5 minutes) has elapsed after inserting the hydrometer, Read and determine the content ratio of fine soil particles under 75 μm in the soil based on the value and a calibration curve prepared in advance. (Measurement of the same operation was carried out on several types of samples whose particle size distributions were found by the JIS A 1204 soil particle size test method and the content of fine soil particles under 75 μm was different. Create a calibration curve for the content ratio of fine soil particles under 75μm in advance.)
Naturally, the specific gravity is measured under the same conditions for both the construction generated residual soil for the blending test and the target construction generated residual soil. The value of this specific gravity is used as an index to replace the precise particle size distribution of the remaining soil particles. Although not quantitative, qualitatively, the higher the specific gravity value measured, the greater the content of fine particles in the soil particles. As usual, sandy soil is 75 to 50% fine soil particles, and clay soil is 50% or more. By adopting this simple sedimentation method, the measurement of the particle size distribution of the soil particles, which took a long time, can be completed in a short time within 10 minutes, and then it is possible to immediately move on to the production of the soil with improved physical properties.
[0017]
(c) Liquid limit value by fall cone test JSF T 141-1990
In measuring the liquid limit value by the fall cone test, the water content ratio often changes during sample preparation. And the liquid limit value measured naturally has a correlation with a water content ratio. Therefore, in order to accurately measure the liquid limit value, it is necessary to avoid changes in the water content during sample preparation as much as possible, but it is difficult to completely avoid changes in the water content during on-site sample preparation. Yes, not realistic. Therefore, when preparing the sample at the site, water is added to the target soil and the liquid limit value is measured for this sample as a constant water content ratio (for example, 100%), and the correlation between the known liquid limit value and the water content ratio is correlated. It is realistic and simple to estimate the liquid limit value of soil having an actual water content ratio by using it.
[0018]
As the construction generated residual soil for testing in the present invention, soils having various physical properties are collected and subjected to a blending test. There are few types of soil that is collected naturally, and it is often not possible to cover the remaining construction generated soil that is expected to be generated in the future. In order to cope with this, naturally collected soil, for example, sand collected with a small content of fine particles and sandy soil with a high content of fine particles, is collected naturally It is necessary to artificially synthesize soil with different soil particle size distribution and to use this synthetic soil for a blending test.
[0019]
If it is determined that the remaining soil is sandy by measuring the physical properties of the construction generated residual soil, the soil is immediately improved from the accumulated compounding test results without waiting for the measurement of the liquid limit value by the fall cone test. However, if the target construction residual soil is determined to be viscous, wait for measurement of the liquid limit value by the fall cone test, and refer to the accumulated test results to improve the physical properties. Is determined.
[0020]
In addition, if the physical properties of the target construction-generated residual soil completely match the physical properties of the soil subjected to the test, the formulation of the physical property-improved soil is immediately determined from the accumulated formulation test results. In many cases, the physical properties do not completely match the physical properties of the soil subjected to the compounding test. In this case, the blending is determined with reference to the blending test result using the test soil that matches or is similar in order of the content ratio of fine soil particles and the liquid limit value, and finally the blended moisture content from the measurement result of the moisture content Adjust.
[0021]
When waste muddy water is used as the mixing water, it has been confirmed that the dispersant contained in the muddy water does not adversely affect the quality of the soil with improved physical properties. ), It is necessary to measure the specific gravity, etc., to confirm that it matches the mud used in the blending test, and whether there is a limit on the blending amount.
[0022]
In the present invention, it is preferable to set a system in which data accumulated by a large number of blending tests is managed by a computer, and necessary information is output immediately by inputting measurement results of the target construction generated residual soil. Yes. In addition, a method of graphing the blending test result and determining the blending on the graph from the measurement result of the target construction generated residual soil is a preferable method that can be performed simply and in a short time.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0024]
FIG. 1 is a flow chart for determining the blending of the physical property-improving soil of the present invention, and FIG. Fig. 3 is a graph summarizing the past accumulated data on the relationship with the addition amount of water and water) with respect to the content ratio of fine soil particles under 75 µm in the test construction generated residual soil. It is a graph that summarizes the data on the liquid limit value of construction generated residual soil.
[0025]
3 types of construction generated residual soil (hereinafter referred to as “sample 1”, “sample 2”, and “sample 3”). The procedure for testing the suitability of is described.
[0026]
Content of the sample 1, sample 2, the 7 5 [mu] m under the sample 3 fine soil particles, respectively, 28%, 86%, when 98% Sample 1 is sandy soil, sample 2, sample 3 and cohesive soil Ru is determined.
[0027]
Samples 1 that will be determined to sandy soil, with snaps Mukoto to position the content of the fine soil particles 75μm under the graph of FIG. 2 is 28%, generation surplus soil, cement, the amount of water, respectively It can be determined by values of about 940 kg / m 3 , about 620 kg / m 3 , and about 150 kg / m 3 .
[0028]
Sample 2, the sample 3 Ru is determined that cohesive soil, further measures the liquid limit value by Fall cone test. As measured values, respectively 65.5% and a 103.0% was obtained, the measurement of its inset Mukoto the position of each of the liquid limit value in the graph of FIG. 3, generated surplus soil, cement, water The blending amount can be determined for Sample 2 with values of about 520 kg / m 3 , about 790 kg / m 3 , and about 150 kg / m 3 , respectively, and for Sample 3 about 280 kg / m 3 and about 830 kg , respectively. / m 3 , which can be determined at a value of about 150 kg / m 3 .
[0030]
【The invention's effect】
In the present invention, the types of construction generated residual soil for testing increase, and the measurement items of construction generated residual soil increase by 1 to 2 items compared to the conventional method, but every time construction generated residual soil with different physical properties is used as in the conventional method. It is not necessary to repeat from the first blending test, and a highly reliable blend can be determined. Moreover, it is only necessary to be able to grasp the content of fine soil particles under 75μm by the simple sedimentation method without measuring the particle size distribution of the generated residual soil by a rigorous test method. can do.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a flowchart for determining the blending of physical property-improving soils of the present invention.
[Fig. 2] Fig. 2 shows the past accumulation of the relationship between the physical properties of residual soil generated from test construction and the amount of additive (solidification material and water) that can be used to produce improved quality physical property improved soil. The data is a graph summarizing the content ratio of fine soil particles under 75 μm of the residual soil generated from the test construction.
[Fig. 3] Fig. 3 shows the past accumulation of the relationship between the physical properties of the residual soil generated from the test construction and the amount of additives (solidification material and water) that can be used to produce improved quality physical property improved soil. It is the graph which summarized data about the liquid limit value of construction generated residual soil.

Claims (1)

(A)予め、複数種類の建設発生残土の物性、及び、この建設発生残土に固化剤及び水などの添加材を種々の配合で混合して製造した多種類の試験用処理土の物性、の両者を測定し、目標値としての良好な品質の物性改良土を製造し得る添加材の添加量との関係について、両者の特性の関連性を示すデータを蓄積する過程と、(B)改良対象とする建設発生残土の物性を測定し、その物性を上記の蓄積されたデータと対照することにより建設発生残土の物性を改良する配合を決定する過程、とからなる建設発生残土の物性を改良する配合を決定する方法であって、改良対象となる建設発生残土の物性測定項目が、(1) 含水比、(2) 沈降中土スラリーの比重測定による75μm アンダーの微細土粒子の含有割合、(3) フォールコーン試験による液性限界値の3項目であり、上記(2) の測定結果により、建設発生残土が砂質土と判定された場合は上記(3) の測定を省略することを特徴とする建設発生残土の物性を改良する配合を決定する方法。(A) The physical properties of a plurality of types of construction-generated residual soil, and the physical properties of a variety of test-treated soils prepared by mixing the construction-generated residual soil with additives such as a solidifying agent and water in various formulations. The process of accumulating data indicating the relevance of the characteristics of the two, measuring both, and regarding the relationship with the amount of additive that can produce good quality physical properties improved soil as the target value , and (B) improvement target Measure the physical properties of the construction generated residual soil and compare the physical properties with the above accumulated data to determine the composition for improving the physical properties of the construction generated residual soil, and improve the physical properties of the construction generated residual soil This is a method of determining the composition, and the physical property measurement items of the construction generated residual soil to be improved are (1) moisture content, (2) the content of fine soil particles under 75 μm by measuring the specific gravity of the submerged soil slurry, ( 3) Liquid limit by fall cone test The physical property of the construction generated residual soil is characterized by omitting the measurement of the above (3) when the construction generated residual soil is determined to be sandy soil based on the measurement result of (2) above. How to determine the recipe.
JP2000143458A 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil Expired - Fee Related JP3959930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143458A JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143458A JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Publications (2)

Publication Number Publication Date
JP2001321759A JP2001321759A (en) 2001-11-20
JP3959930B2 true JP3959930B2 (en) 2007-08-15

Family

ID=18650276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143458A Expired - Fee Related JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Country Status (1)

Country Link
JP (1) JP3959930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191866B2 (en) * 2013-09-27 2017-09-06 三菱マテリアル株式会社 Manufacturing method of filling material
JP6651945B2 (en) * 2016-03-30 2020-02-19 株式会社大林組 Soil classification device and soil classification method

Also Published As

Publication number Publication date
JP2001321759A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
Ahuja et al. Effect of soil slope and rainfall characteristics on phosphorus in runoff
Koehler et al. Development of a portable rheometer for fresh portland cement concrete
Fwa et al. Laboratory evaluation of clogging potential of porous asphalt mixtures
CN103063558A (en) Machine-made particle-shaped evaluation method
Centeri et al. Comparison of particle-size analyzing laboratory methods.
Tayebali et al. Effect of mineral filler type and amount on design and performance of asphalt concrete mixtures
JP5753242B2 (en) Soil wet density test method
Al-Hashemi et al. The validity of laser diffraction system to reproduce hydrometer results for grain size analysis in geotechnical applications
JP3959930B2 (en) A method to determine the formulation to improve the physical properties of construction generated residual soil
JP2012220229A (en) Method for measuring content rate of fine-grained fraction of displaced soil and method for manufacturing raw material soil for earthwork material
Konkol et al. The use of fractal geometry for the assessment of the diversification of macro-pores in concrete
JP3491205B2 (en) Simple particle size test method by sedimentation analysis of soil
JP4228301B2 (en) Quality control test method for cement improved ground
CN108508045A (en) The lossless detection method of fine grained soil cluster harmfulness in a kind of high ferro roadbed filling
JP3595969B2 (en) Simple blending method for fluidized soil
Stewart et al. Influence of microfine aggregate characteristics on concrete performance
JP2957939B2 (en) Simple compounding method of wet ground improvement material
JPH09274034A (en) Evaluation of water/cement ratio of fresh concrete
Shen et al. Prediction model of minimum void ratio for various sizes/shapes of sandy binary mixture
Serafin Measurement of Maximum Theoretical Specific Gravity of a Bituminous Mixture by Solvent Immersion
JPH08211045A (en) Method for estimating strength of soil cement
JPH07197444A (en) Development method of solidified soil
Dascalu et al. The Influence of Dispersing Agents on Soil Particle Size Analysis
JP2023009992A (en) Quality management method of fluidization treated soil
Rezaei Investigation of the Effect and Mixing of Nano-clay on the Severity of Dispersion on Samples of Loess Soils in Golestan Province

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3959930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160525

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees