JP3959902B2 - Constant identification device and control device for induction motor - Google Patents

Constant identification device and control device for induction motor Download PDF

Info

Publication number
JP3959902B2
JP3959902B2 JP27489299A JP27489299A JP3959902B2 JP 3959902 B2 JP3959902 B2 JP 3959902B2 JP 27489299 A JP27489299 A JP 27489299A JP 27489299 A JP27489299 A JP 27489299A JP 3959902 B2 JP3959902 B2 JP 3959902B2
Authority
JP
Japan
Prior art keywords
axis
current
component
test
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27489299A
Other languages
Japanese (ja)
Other versions
JP2001103798A (en
Inventor
耕三 井手
秋一 藤井
幾磨 室北
英昭 井浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP27489299A priority Critical patent/JP3959902B2/en
Publication of JP2001103798A publication Critical patent/JP2001103798A/en
Application granted granted Critical
Publication of JP3959902B2 publication Critical patent/JP3959902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機を停止させたまま電動機定数(又は、モータ定数)を同定する装置に関するものである。
【0002】
【従来の技術】
従来、ベクトル制御により誘導電動機を制御するに際して、制御対象となる誘導電動機のモータ定数(例えば、1次、2次抵抗、漏れインダクタンス、2次回路時定数等)から演算によって、速度、磁束、滑り角速度などを求める必要があるが、これらのモータ定数を、誘導電動機を停止させたまま同定する方法としては、特開平6−273496号公報に開示されたものがある。これらの手法によれば、モータを停止させるためにトルクを発生させる指令電圧あるいは電流を0とし直流励磁された状態で、高周波あるいは交流信号を界磁成分の指令電圧あるいは電流に重畳して、重畳信号とそのときのモータ電圧あるいは電流を用いてモータ定数を同定する手法である。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来例において、高周波信号をモータ電圧指令値に重畳してモータ電流からモータ定数を測定する手法を用いた場合、重畳する周波数や重畳する場所によって表皮効果や磁気飽和の状態によってモータ定数の値が変化するため、通常駆動周波数領域で用いるモータ定数とは大きく異なる値が同定されるといった問題があった。
そこで、本発明は、誘導電動機が停止した状態でモータ定数を同定する際に、同定のための重畳信号が周波数や場所によって表皮効果や磁気飽和を生じることによってモータ定数の値が変化することを考慮し、正確に電動機定数を同定できる誘導電動機の定数同定装置および制御装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の誘導電動機の定数同定装置は、電動機電流を磁束成分(d 軸成分)とトルク成分(q 軸成分)とに分離し、それぞれを独立に制御することによって直流機相当の応答を得るベクトル制御の誘導電動機の定数同定装置において、電動機の制御磁束軸(γ軸)から任意の角度(テスト角)に位置する定数測定軸(X軸)に任意の周波数を含む電圧信号を発生するテスト電圧信号発生器と、前記電圧発生器の出力を制御磁束軸(γ軸)と制御トルク軸(δ軸)に分配するテスト電圧信号分配器と、前記テスト電圧信号分配器の出力をγ軸電圧指令値とδ軸電圧指令値のそれぞれに加算する電圧加算器と、電動機の入力電流を制御基準座標上に磁束成分γ電流とトルク成分δ電流に変換する第1の座標変換器と、電動機の入力電流を定数測定軸上に変換する第2の座標変換器と、前記第1の座標変換器の出力であるγ、δ電流から高周波分を除去する高周波成分除去器と、高周波成分除去器の出力電流を電流指令値に一致させるように制御する電流制御器と、前記第2の座標変換器の出力である電流から前記テスト電圧信号と同周波数成分を抽出するテスト周波数成分抽出器と、前記テスト周波数抽出器からの出力電流と前記高周波テスト電圧からテスト角度に対するインピーダンスを同定するインピーダンス同定器と、前記テスト角度に対して変化するインピーダンスから最適値を求めるインピーダンス最適値演算器と、前記第2の座標変換器の出力である電流と前記高周波電圧から力率を演算する力率演算器と、前記インピーダンス同定器出力と力率演算器出力から抵抗分とインダクタンス分とを分離する定数同定器を備えている。
また、請求項2記載の発明は、請求項1記載の誘導電動機の定数同定装置によって同定された誘導電動機定数を用いることを特徴としている。
この誘導電動機の定数同定装置およ制御装置によれば、任意の周波数を含むテスト用電圧信号を制御磁束軸から任意の角度に位置する定数測定軸(X軸)に発生させ、誘導電動機の検出電流からテスト用信号周波数成分を抽出して、テスト用信号成分の(電圧実効値/電流実効値)としてインピーダンスを同定し、力率を計算して電動機の抵抗分とインダクタンス分を分離・同定する際に、テスト用信号の周波数は単一周波数ではなく広い範囲の周波数を含み、その発生位置も特定位置だけではなく、例えば、制御磁束軸(γ軸)から0±90°といった範囲に発生させるので、表皮効果又は磁気飽和に影響されない最適なインピーダンスを同定し選択して設定することができる。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照し説明する。
図1は本発明の実施の形態に係る誘導電動機の定数同定装置の制御ブロック線図である。
図2は図1に示す誘導電動機の等価回路図である。
図3は図2に示す誘導電動機の等価回路の簡略回路図である。
図4は図1に示すインピーダンス同定器による同定結果を示す図である。
図5は図1に示す力率演算器のブロック図である。
図1において、1は誘導電動機、2は誘導電動機1に印加する3相電流を発生する電圧形PWMインバータである。
3は2相電圧を3相電圧に変換する2/3相座標変換器、4はテスト信号出力を任意の角度に座標変換するテスト電圧分配器、5はテスト信号として高周波fxの電圧を発生するテスト信号発生器、6は電流制御器の出力にテスト電圧分配器4の出力を加算する加算器、7は電流指令iγ* 、iδ* から電圧指令Vγ *、Vδ* を生成する電流制御器、9は電流検出器16からの3相検出電流を2相電流に変換する第1の座標変換器、8は座標変換器9の出力からLPF等によりテスト用高周波成分を除去して2相電流iγ、iδをフィードバック出力する高周波成分除去器である。
10は電流検出器9の検出電流値を定数測定軸(X軸)に変換する第2の座標変換器、11はBPF等により重畳周波数fxの成分を抽出するテスト周波数成分抽出器、12は抽出したテスト周波数成分からインピーダンスZxを求めるインピーダンス同定器、13はインピーダンス同定器12の出力から力率φを計算する力率演算器、14はインピーダンス値を選択するインピーダンス最適値演算器、15はR、L分離・同定する定数同定器である。
【0006】
つぎに動作について説明する。
テスト信号発生器5は、任意の高周波数 fx の成分である電圧指令値を発生する。電流制御器7の出力である電圧指令値のγ成分(磁束成分)と、電圧指令値のδ成分(トルク成分)に、次の数式(1)に示すような、
【数1】

Figure 0003959902
テスト信号発生器出力VX をテスト電圧分配器4から任意の角度θt によって数式(1)の電圧指令値に対して、次の数式(2)に示すような、
【数2】
Figure 0003959902
X γ とVX δに座標変換したものを、加算器6にて加算する。
任意の角θt は、γ軸を中心に0 度とし、−90度から90度まで一定サンプル時間一定角度で変化させる。
電流検出器1 6で検出された電流は、第1の座標変換器9で制御座標軸に座標変換し、高周波成分除去器8にて重畳周波数fxと同じ周波数成分を除去してフィードバックし、各々の指令値との偏差をとって、電流制御器7で電流制御を実施する。電動機定数同定時は、適当なiγ* を指令し、iδ* はトルクを発生させないように0電流指令とする。
一方、第2の座標変換器10では、電流検出器16にて検出される電流を制御座標から任意の角度θt に位置する定数測定軸(X軸)へ変換し、テスト周波数成分抽出器11にて重畳周波数fxと同じ周波数成分を抽出する。テスト電圧を数式(1)とすれば、ここで抽出される重畳周波数成分の電流iX は数式(3)として展開できる。
【数3】
Figure 0003959902
なお、式中のIX は(電圧VX )/(インピーダンス)、
R、L、φはそれぞれ、
X = VX /{R2 +(2πfX t)2 1/2
φ =tan- 1 (2πfL/R)
R =RS +Rr
L =LlS +Llr ・・・(4)
である。ここで,X軸上であらわされる誘導電動機の等価回路は、テスト周波数が適当な高周波の場合、図2から図3のように励磁回路を通らず2次回路のほうへ電流が流れることとなる。従って、X軸上では抵抗分として、Rs+Rr (一次抵抗と二次抵抗の和)、インダクタンス分として、Llr+Lls(一次漏れインダクタンス+二次漏れインダクタンスの和)を検出することができる。
次に、抽出分はインピーダンス同定器12へ入力され、インピーダンス同定器12では、その実効値|VX |/|iX |よりテスト角度θt 毎にインピーダンスZxを出力する。この結果、主磁束による飽和の影響を受ける場所と受けない場所でのインピーダンスを検出できる。検出されたインピーダンスの結果の一例を、図4に示す。図中、下段はテスト角度θt 、右欄が重畳する各周波数fx、左欄がインピーダンスZxとなる。
【0007】
図4のように、重畳周波数fxを変えた場合のインピーダンスも検出できる。重畳周波数とテスト角度θt を考慮することによってモータ駆動時に用いる最適なインピーダンス値を、インピーダンス同定器12からの出力Zx中からインピーダンス最適値演算器14が演算決定する。
力率演算器13では、図5に示すような回路で力率を演算する。
これにsin(2πfX t)を乗算してローパスフィルタ(LPF )を通し直流分iX A を抽出し、一方、これにcos(2πfX t)を乗算してローパスフィルタ(LPF )を通し直流分iX B を抽出し、力率φを数式(5)のように計算する。
(ここで、インピーダンス同定器12の出力Zxは、
iX の実効値=(iX A 2 +iX B 2 1 / 2
として、この値で電圧VX の実効値を除算して、求めてもよい)
φ=π/2+tan- 1 X B /iX A ・・・(5)
定数同定器15では、力率演算器13で得られたφを用いて、次の数式(6)のようにR、Lを分離・計算する。
R=Zxcosφ、L=Zxsinφ、 ・・・(6)
なお、1次抵抗Rsと2次抵抗Rrの分離については、1次Rsが例えば特開平6−34724の手法のように、既に設定済みであり補償回路等により補正するようになっていて、予め同定されている場合にはRから1次抵抗Rsを差し引いて2次抵抗Rrを同定できる。
このような定数同定装置を、速度検出器、励磁電流指令器、滑り角周波数制御器、非干渉制御器などを備えて構成される誘導電動機のベクトル制御装置と組合わせれば、1次抵抗、2次抵抗、漏れインダクタンス等のモータ定数を定数同定装置により同定する、正確なオートチューニングが可能になり、高精度なベクトル制御が可能になる。
【0008】
【発明の効果】
以上説明したように、本発明によれば、高周波信号をモータ電圧指令値に重畳してモータ電流から電動機定数を同定する際に、トルクを発生する指令電圧または電流を0とし、同定のための重畳信号が周波数や場所によって表皮効果あるいは磁気飽和を生じることによって電動機定数の値が変化することを考慮して広範囲にとっているので、誘導電動機が停止した状態で電動機定数を同定することが可能であり、且つ、正確に電動機定数を同定することができる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る誘導電動機の定数同定装置の制御ブロック線図である。
【図2】図1に示す誘導電動機の等価回路図である。
【図3】図2に示す誘導電動機の等価回路の簡略図である。
【図4】図1に示すインピーダンス同定器による同定結果を示す図である。
【図5】図1に示す力率演算器のブロック図である。
【符号の説明】
1 誘導電動機
2 PWM 電圧形インバータ装置
3 2相3相変換器
4 テスト電圧分配器
5 テスト信号発生器
6 電圧加算器
7 電流制御器
8 高周波成分除去器
9 第1座標変換器
10 第2座標変換器
11 テスト周波数成分抽出器
12 インピーダンス同定器
13 力率演算器
14 インピーダンス最適値演算器
15 定数同定器
16 電流検出器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for identifying a motor constant (or a motor constant) while stopping an induction motor.
[0002]
[Prior art]
Conventionally, when controlling an induction motor by vector control, speed, magnetic flux, and slip are calculated by calculating from motor constants (for example, primary, secondary resistance, leakage inductance, secondary circuit time constant, etc.) of the induction motor to be controlled. An angular velocity or the like needs to be obtained. As a method for identifying these motor constants while the induction motor is stopped, there is one disclosed in Japanese Patent Laid-Open No. Hei 6-27396. According to these methods, a command voltage or current for generating torque to stop the motor is set to 0 and DC excitation is performed, and a high frequency or AC signal is superimposed on the command voltage or current of the field component. This is a technique for identifying a motor constant using a signal and a motor voltage or current at that time.
[0003]
[Problems to be solved by the invention]
However, in the above conventional example, when the method of measuring the motor constant from the motor current by superimposing the high frequency signal on the motor voltage command value, the motor constant depends on the skin effect or the state of magnetic saturation depending on the frequency to be superimposed and the place to be superimposed. Therefore, there is a problem that a value greatly different from the motor constant used in the normal driving frequency region is identified.
Therefore, according to the present invention, when the motor constant is identified in a state where the induction motor is stopped, the superposition signal for identification causes the skin effect or magnetic saturation depending on the frequency or location, so that the value of the motor constant changes. In view of the above, an object of the present invention is to provide a constant identification device and a control device for an induction motor that can accurately identify a motor constant.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the constant identification device for an induction motor according to the present invention separates the motor current into a magnetic flux component (d-axis component) and a torque component (q-axis component), and controls each of them independently. In a constant identification device for a vector-controlled induction motor that obtains a response equivalent to a machine, the constant measurement axis (X axis) located at an arbitrary angle (test angle) from the control magnetic flux axis (γ axis) of the motor includes an arbitrary frequency. A test voltage signal generator for generating a voltage signal; a test voltage signal distributor for distributing the output of the voltage generator to a control magnetic flux axis (γ axis) and a control torque axis (δ axis); and the test voltage signal distributor A voltage adder for adding the output of the motor to the γ-axis voltage command value and the δ-axis voltage command value, and a first coordinate for converting the input current of the motor into a magnetic flux component γ current and a torque component δ current on the control reference coordinates Converter and electric motor A second coordinate converter that converts a force current onto a constant measurement axis, a high-frequency component remover that removes a high-frequency component from the γ and δ currents output from the first coordinate converter, and a high-frequency component remover A current controller that controls the output current to match a current command value; a test frequency component extractor that extracts the same frequency component as the test voltage signal from the current that is the output of the second coordinate converter; An impedance identifier for identifying an impedance with respect to a test angle from an output current from the test frequency extractor and the high-frequency test voltage; an impedance optimum value calculator for obtaining an optimum value from an impedance changing with respect to the test angle; A power factor calculator that calculates the power factor from the current and the high-frequency voltage that are the outputs of the coordinate converter, the impedance identifier output and the power factor calculator output And a constant identifying unit for separating the resistance component and the inductance from.
The invention described in claim 2 is characterized in that the induction motor constant identified by the constant identification device for induction motor described in claim 1 is used.
According to this constant identification device and control device for an induction motor, a test voltage signal including an arbitrary frequency is generated on a constant measurement axis (X axis) located at an arbitrary angle from the control magnetic flux axis, and the induction motor is detected. Extract the test signal frequency component from the current, identify the impedance as the test signal component (effective voltage value / effective current value), calculate the power factor, and separate and identify the resistance and inductance components of the motor In this case, the frequency of the test signal is not a single frequency but includes a wide range of frequencies, and the generation position is not limited to a specific position, for example, it is generated within a range of 0 ± 90 ° from the control magnetic flux axis (γ axis). Therefore, an optimum impedance that is not affected by the skin effect or magnetic saturation can be identified, selected, and set.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a control block diagram of a constant identification device for an induction motor according to an embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram of the induction motor shown in FIG.
FIG. 3 is a simplified circuit diagram of an equivalent circuit of the induction motor shown in FIG.
FIG. 4 is a diagram showing an identification result by the impedance identifier shown in FIG.
FIG. 5 is a block diagram of the power factor calculator shown in FIG.
In FIG. 1, 1 is an induction motor, and 2 is a voltage-type PWM inverter that generates a three-phase current to be applied to the induction motor 1.
3 is a 2 / 3-phase coordinate converter that converts a 2-phase voltage into a 3-phase voltage, 4 is a test voltage distributor that converts a test signal output into an arbitrary angle, and 5 is a test signal that generates a high-frequency fx voltage. test signal generator, 6 denotes an adder for adding the output of the test voltage divider 4 to the output of the current controller 7 is a current command i? *, the voltage command from the i? * V.gamma *, a current controller for generating a V8 *, Reference numeral 9 denotes a first coordinate converter that converts the three-phase detection current from the current detector 16 into a two-phase current. Reference numeral 8 denotes a two-phase current iγ by removing high-frequency components for testing from the output of the coordinate converter 9 by LPF or the like. , Iδ is a high-frequency component remover that outputs the feedback.
10 is a second coordinate converter that converts the detected current value of the current detector 9 into a constant measurement axis (X axis), 11 is a test frequency component extractor that extracts a component of the superimposed frequency fx by BPF, and 12 is an extraction. The impedance identifier for obtaining the impedance Zx from the test frequency component obtained, 13 is a power factor calculator for calculating the power factor φ from the output of the impedance identifier 12, 14 is an impedance optimum value calculator for selecting an impedance value, 15 is R, It is a constant identifier that separates and identifies L.
[0006]
Next, the operation will be described.
The test signal generator 5 generates a voltage command value that is a component of an arbitrary high frequency fx. The γ component (magnetic flux component) of the voltage command value that is the output of the current controller 7 and the δ component (torque component) of the voltage command value are as shown in the following formula (1):
[Expression 1]
Figure 0003959902
The test signal generator output V X from the test voltage distributor 4 at an arbitrary angle θ t with respect to the voltage command value of the formula (1), as shown in the following formula (2):
[Expression 2]
Figure 0003959902
An adder 6 adds the coordinates converted to V X γ and V X δ.
The arbitrary angle θ t is set to 0 degrees around the γ axis, and is changed from −90 degrees to 90 degrees at a constant sample time at a constant angle.
The current detected by the current detector 16 is coordinate-converted to the control coordinate axis by the first coordinate converter 9, and the same frequency component as the superimposed frequency fx is removed by the high-frequency component remover 8 and fed back. Taking a deviation from the command value, the current controller 7 performs current control. When identifying the motor constant, an appropriate iγ * is commanded, and iδ * is a zero current command so as not to generate torque.
On the other hand, in the second coordinate converter 10 converts the current detected by the current detector 16 from the control coordinates constant measurement axis located at an arbitrary angle theta t to (X-axis), the test frequency component extractor 11 The same frequency component as the superimposed frequency fx is extracted at. If the test voltage is expressed by Equation (1), the current i X of the superimposed frequency component extracted here can be developed as Equation (3).
[Equation 3]
Figure 0003959902
In the formula, I X is (voltage V X ) / (impedance),
R, L, and φ are respectively
I X = V X / {R 2 + (2πf X t) 2 } 1/2
φ = tan −1 (2πfL / R)
R = R S + R r
L = Ll S + Ll r (4)
It is. Here, in the equivalent circuit of the induction motor represented on the X axis, when the test frequency is an appropriate high frequency, the current flows to the secondary circuit without passing through the excitation circuit as shown in FIGS. . Therefore, on the X axis, Rs + Rr (sum of primary resistance and secondary resistance) can be detected as the resistance component, and Llr + Lls (sum of primary leakage inductance + secondary leakage inductance) can be detected as the inductance component.
Next, the extracted part is input to the impedance identifier 12, and the impedance identifier 12 outputs the impedance Zx for each test angle θt from its effective value | V X | / | i X |. As a result, it is possible to detect the impedance in the place where the saturation due to the main magnetic flux is affected and the place where it is not affected. An example of the result of the detected impedance is shown in FIG. In the figure, the lower row is the test angle θ t , the right column is each frequency fx to be superimposed, and the left column is the impedance Zx.
[0007]
As shown in FIG. 4, the impedance when the superposition frequency fx is changed can also be detected. By considering the superposition frequency and the test angle θt, the optimum impedance value calculator 14 determines the optimum impedance value to be used when driving the motor from the output Zx from the impedance identifier 12.
The power factor calculator 13 calculates the power factor using a circuit as shown in FIG.
This is multiplied by sin (2πf X t) and passed through a low-pass filter (LPF) to extract a DC component i XA , while this is multiplied by cos (2πf X t) and passed through a low-pass filter (LPF) to obtain a DC component. i XB is extracted, and the power factor φ is calculated as shown in Equation (5).
(Here, the output Zx of the impedance identifier 12 is
iX effective value = (i XA 2 + i XB 2 ) 1/2
Or by dividing the effective value of the voltage V X by this value)
φ = π / 2 + tan −1 i XB / i XA (5)
The constant identifier 15 separates and calculates R and L using the φ obtained by the power factor calculator 13 as in the following formula (6).
R = Zxcosφ, L = Zxsinφ, (6)
Regarding the separation of the primary resistance Rs and the secondary resistance Rr, the primary Rs is already set and corrected by a compensation circuit or the like as in the method of Japanese Patent Laid-Open No. 6-34724. If it has been identified, the secondary resistance Rr can be identified by subtracting the primary resistance Rs from R.
When such a constant identification device is combined with a vector control device for an induction motor including a speed detector, an excitation current command device, a slip angle frequency controller, a non-interference controller, etc., the primary resistance, Accurate auto-tuning is possible, in which motor constants such as secondary resistance and leakage inductance are identified by a constant identification device, and highly accurate vector control is possible.
[0008]
【The invention's effect】
As described above, according to the present invention, when the motor constant is identified from the motor current by superimposing the high frequency signal on the motor voltage command value, the command voltage or current for generating torque is set to 0, and It is possible to identify the motor constant when the induction motor is stopped because the superposition signal is widely used considering that the value of the motor constant changes due to the skin effect or magnetic saturation depending on the frequency and location. In addition, there is an effect that the motor constant can be accurately identified.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a constant identification device for an induction motor according to an embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram of the induction motor shown in FIG.
FIG. 3 is a simplified diagram of an equivalent circuit of the induction motor shown in FIG. 2;
4 is a diagram showing an identification result by the impedance identifier shown in FIG. 1. FIG.
FIG. 5 is a block diagram of the power factor calculator shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Induction motor 2 PWM voltage source inverter apparatus 3 Two-phase three-phase converter 4 Test voltage distributor 5 Test signal generator 6 Voltage adder 7 Current controller 8 High frequency component remover 9 1st coordinate converter 10 2nd coordinate conversion 11 Test frequency component extractor 12 Impedance identifier 13 Power factor calculator 14 Impedance optimum value calculator 15 Constant identifier 16 Current detector

Claims (2)

電動機電流を磁束成分(d 軸成分)とトルク成分(q 軸成分)とに分離し、それぞれを独立に制御することによって直流機相当の応答を得るベクトル制御の誘導電動機の定数同定装置において、
電動機の制御磁束軸(γ軸)から任意の角度(テスト角)に位置する定数測定軸(X軸)に任意の周波数を含む電圧信号を発生するテスト電圧信号発生器と、前記電圧発生器の出力を制御磁束軸(γ軸)と制御トルク軸(δ軸)に分配するテスト電圧信号分配器と、前記テスト電圧信号分配器の出力をγ軸電圧指令値とδ軸電圧指令値のそれぞれに加算する電圧加算器と、電動機の入力電流を制御基準座標上に磁束成分γ電流とトルク成分δ電流に変換する第1の座標変換器と、電動機の入力電流を定数測定軸上に変換する第2の座標変換器と、前記第1の座標変換器の出力であるγ、δ電流から高周波分を除去する高周波成分除去器と、高周波成分除去器の出力電流を電流指令値に一致させるように制御する電流制御器と、前記第2の座標変換器の出力である電流から前記テスト電圧信号と同周波数成分を抽出するテスト周波数成分抽出器と、前記テスト周波数抽出器からの出力電流と前記高周波テスト電圧からテスト角度に対するインピーダンスを同定するインピーダンス同定器と、前記テスト角度に対して変化するインピーダンスから最適値を求めるインピーダンス最適値演算器と、前記第2の座標変換器の出力である電流と前記高周波電圧から力率を演算する力率演算器と、前記インピーダンス同定器出力と力率演算器出力から抵抗分とインダクタンス分とを分離する定数同定器を備えたことを特徴とする誘導電動機の定数同定装置。
In a constant identification device for a vector-controlled induction motor that obtains a response equivalent to a DC motor by separating the motor current into a magnetic flux component (d-axis component) and a torque component (q-axis component) and controlling each independently,
A test voltage signal generator for generating a voltage signal including an arbitrary frequency on a constant measurement axis (X axis) located at an arbitrary angle (test angle) from a control magnetic flux axis (γ axis) of the electric motor; A test voltage signal distributor that distributes output to a control magnetic flux axis (γ axis) and a control torque axis (δ axis), and outputs of the test voltage signal distributor to a γ-axis voltage command value and a δ-axis voltage command value, respectively. A voltage adder to be added; a first coordinate converter for converting the input current of the motor into a magnetic flux component γ current and a torque component δ current on control reference coordinates; and a first coordinate converter for converting the input current of the motor onto a constant measurement axis. Two coordinate converters, a high-frequency component remover that removes a high-frequency component from the γ and δ currents output from the first coordinate converter, and an output current of the high-frequency component remover so as to match the current command value A current controller for controlling the second coordinate converter; A test frequency component extractor that extracts the same frequency component as the test voltage signal from a current that is an output; an impedance identifier that identifies an impedance with respect to a test angle from the output current from the test frequency extractor and the high frequency test voltage; An impedance optimum value calculator for obtaining an optimum value from an impedance that varies with respect to the test angle; a power factor calculator for calculating a power factor from the current and the high-frequency voltage that are the outputs of the second coordinate converter; A constant identification device for an induction motor comprising a constant identifier for separating a resistance component and an inductance component from an impedance identifier output and a power factor calculator output.
請求項1記載の誘導電動機の定数同定装置によって同定された誘導電動機定数を用いることを特徴とする誘導電動機の制御装置。An induction motor control device using the induction motor constant identified by the constant identification device for an induction motor according to claim 1.
JP27489299A 1999-09-28 1999-09-28 Constant identification device and control device for induction motor Expired - Fee Related JP3959902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27489299A JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27489299A JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Publications (2)

Publication Number Publication Date
JP2001103798A JP2001103798A (en) 2001-04-13
JP3959902B2 true JP3959902B2 (en) 2007-08-15

Family

ID=17547996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27489299A Expired - Fee Related JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Country Status (1)

Country Link
JP (1) JP3959902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335699A (en) * 2001-05-09 2002-11-22 Hitachi Ltd Controller of ac motor
US7423401B2 (en) 2004-07-21 2008-09-09 Mitsubishi Denki Kabushiki Kaisha AC rotary machine constant measuring apparatus for measuring constants of stationary AC rotary machine
EP2421145B1 (en) * 2010-08-16 2015-02-11 Baumüller Nürnberg GmbH Apparatus and method for identifying equivalent circuit parameters of an alternating current asynchronous motor without using a rotary encoder

Also Published As

Publication number Publication date
JP2001103798A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
EP1312932B1 (en) Method for measuring motor constant of induction motor
EP2426814B1 (en) Power conversion device
US5796235A (en) Process and circuits for determining machine-related electro-magnetic and mechanical state variables on electrodynamic induction machines supplied via converters
JP2708408B2 (en) Control device of voltage control type vector control inverter
JP2002291283A (en) Method for estimating magnetic pole position in synchronous motor and its controller
JP3809783B2 (en) Motor control device
JPWO2016189694A1 (en) AC rotating machine control device and electric power steering control device
JP5493536B2 (en) Electric motor control device
US9331618B2 (en) Magnetic pole position detector for synchronous motor
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP3914107B2 (en) DC brushless motor control device
JP3959902B2 (en) Constant identification device and control device for induction motor
JP4419220B2 (en) Vector control device for induction motor
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
CN107615641B (en) Power conversion device, secondary time constant measurement method, and speed control method for induction motor
JP5332667B2 (en) Induction motor control device
JP4153619B2 (en) Electric motor control device
JP2008172951A (en) Controller of electric vehicle
JP3882728B2 (en) Electric motor control device
JP2017175878A (en) Method and apparatus for estimating magnet temperature
JP2008301619A (en) Motor controller and motor-constant calculation method therefor
JP5376218B2 (en) Motor control device
JP2634959B2 (en) Speed sensorless speed control method
WO2019008838A1 (en) Induction motor drive device and drive method
JP2914997B2 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees