JP3877809B2 - Proton conductive ceramics - Google Patents
Proton conductive ceramics Download PDFInfo
- Publication number
- JP3877809B2 JP3877809B2 JP22665396A JP22665396A JP3877809B2 JP 3877809 B2 JP3877809 B2 JP 3877809B2 JP 22665396 A JP22665396 A JP 22665396A JP 22665396 A JP22665396 A JP 22665396A JP 3877809 B2 JP3877809 B2 JP 3877809B2
- Authority
- JP
- Japan
- Prior art keywords
- conductivity
- oxide
- crystal structure
- proton
- proton conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 26
- 239000013078 crystal Substances 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 16
- 239000011777 magnesium Substances 0.000 claims description 12
- 229910052712 strontium Inorganic materials 0.000 claims description 9
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 9
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 23
- 229910052739 hydrogen Inorganic materials 0.000 description 23
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910052706 scandium Inorganic materials 0.000 description 8
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 8
- 239000007784 solid electrolyte Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 5
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- GCINVRQFQBAGKN-UHFFFAOYSA-N [O-2].[Ce+3].[Sr+2] Chemical compound [O-2].[Ce+3].[Sr+2] GCINVRQFQBAGKN-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Conductive Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はプロトン伝導性セラミックスに関し、特に高温において良好なプロトン伝導性を示し、また、水素濃淡電池を形成したときに良好な起電力を発生するペロブスカイト型結晶構造を有する複酸化物からなるプロトン伝導性セラミックスに関するものである。
【0002】
【従来の技術】
近年、固体電解質燃料電池の研究が盛んになり、合わせて新規材料が開発されている。なかでも、化学式ABO3 で表される複酸化物に見られる図1に示すペロブスカイト型結晶構造をもつセラミックスは、その耐高温性、良好な電子伝導性、酸素イオン伝導性などの優れた特性に起因して、多種類のアルカリ土類金属元素と希土類元素と遷移金属元素とを組み合わせた各種の複酸化物が実用化されている。例えば、プロトン伝導性を持つペロブスカイト型結晶構造のセラミックスに関する先行技術としては、特開昭58−50458号公報に、『ストロンチウムとセリウムの酸化物を母体とし、これに、イットリウム、スカンジウム、イッテルビウム、ネオジム、マグネシウム、プラセオジム及び亜鉛の中の少なくとも1種の金属の酸化物を含むプロトン導電性固体電解質』に関する発明が開示されている。
【0003】
また、特開昭63−201051号公報には、『ストロンチウムとセリウムの酸化物を母体とし、さらにセリウムより酸素とのイオン結合力が弱い金属元素の酸化物と、イットリウム、スカンジウム、イッテルビウム、ネオジム、マグネシウム、プラセオジム及び亜鉛の中から選ばれた少なくとも1種の金属元素の酸化物を含むプロトン導電性固体電解質』に関する発明が開示されている。
【0004】
さらに、特開昭64−87545号公報には、『ストロンチウムとセリウムの酸化物を基本成分とし、イットリウム、スカンジウム、イッテルビウム、ネオジム、マグネシウム、プラセオジム及び亜鉛の中から選ばれた少なくとも1種の金属の酸化物を含む固体電解質であって、ストロンチウムの一部をストロンチウムよりイオン半径の大きい金属元素で置換させたプロトン導電性固体電解質』に関する発明が開示されている。
【0005】
【発明が解決しようとする課題】
しかし、上記各公報に記載されたプロトン導電性固体電解質はセリウムを母体としているため、700℃以上の高温において水素雰囲気に曝されると、セリウムが4価から3価に還元され、イオン半径が変化するので、ペロブスカイト型結晶構造が維持できず、結晶が崩壊してしまう。また、崩壊しないまでも電子伝導性が生じ、プロトン伝導性が消失してしまう。さらに、水素濃淡電池起電力性も消失してしまう。
【0006】
また、セリウム系以外のペロブスカイト型結晶構造を持つセラミックスでも、遷移金属系複酸化物は、700℃以上の高温において原子価数変化を生じ、電子伝導性となり、プロトン伝導性および水素濃淡電池起電力性は生じない。
【0007】
本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、700℃以上の高温においてもペロブスカイト型結晶構造が安定であり、イオン価数が変化せずに、良好なプロトン伝導性および水素濃淡電池起電力性を有するプロトン伝導性セラミックスを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、化学式ABO3 で表されるペロブスカイト型結晶構造のAサイトの元素として3価希土類元素を用い、Bサイトの元素として3価イオンとなる希土類元素中最小イオン半径のScを採用し、Aサイトおよび/またはBサイトの元素の一部を低原子価のカチオンで置換して酸化物イオン空孔を生じさせることによって、プロトン伝導性を付与することができる。
【0009】
【発明の実施形態】
すなわち、本発明は、以下の化学式で表されるペロブスカイト型結晶構造を有する複酸化物からなるプロトン伝導性セラミックスを第一の発明とする。
【0010】
【化3】
【0011】
ここで、Rはランタン、ネオジム、サマリウム、ガドリニウムより成る群から選択される少なくとも1種の元素を示し、Aはストロンチウム、カルシウム、バリウムより成る群から選択される少なくとも1種の元素を示し、0<X<0.5であり、0<α<0.25である。
【0012】
また、以下の化学式で表されるペロブスカイト型結晶構造を有する複酸化物からなるプロトン伝導性セラミックスを第二の発明とする。
【0013】
【化4】
【0014】
ここで、Rはランタン、ネオジム、サマリウム、ガドリニウムより成る群から選択される少なくとも1種の元素を示し、Aはストロンチウム、カルシウム、バリウムより成る群から選択される少なくとも1種の元素を示し、Mはマグネシウム、亜鉛より成る群から選択される少なくとも1種の元素を示し、0≦X<0.5であり、0<Y<0.5であり、0<α<0.25である。
【0015】
以下に、本発明をなし得た経緯について詳述する。
まず、安定なペロブスカイト型結晶構造が形成されるための要件として、トレランスファクター(以下『t値』ともいう)がある。このt値は、ペロブスカイト型結晶構造を構成するABO3 のA元素とB元素のイオン半径の比を表し、以下の式で示される。
【0016】
t=(γA+γX)/21/2(γB+γX)
γA :A元素のイオン半径、γB :B元素のイオン半径、γX :酸素のイオン半径
このt値は、0.75≦t≦1を満足する必要があると言われている。ここで基準となるBサイトの元素として3価イオンとなる希土類元素中最小イオン半径のScを採用し、Aサイトの元素として安定な3価希土類元素を用いた場合、以下の表1のように、トレランスファクターが満足される。
【0017】
【表1】
【0018】
しかし、希土類スカンジウム複酸化物は完全定比酸化物であり、プロトン伝導性は生じない。そこで、AサイトおよびBサイトの元素を低原子価のカチオンで置換して酸化物イオン空孔を生じさせることによってプロトン伝導性を付与することができる。そのメカニズムは次式で表される。
【0019】
M2+→M’LnorSc+Vo
M:置換されるカチオン、M’LnorSc:希土類元素またはスカンジウムの位置に入ったカチオン、Vo:酸化物イオン空孔
また、プロトン伝導体のプロトン生成は、以下の▲1▼〜▲4▼の化学式に示す平衡反応により生じる。
【0020】
【化5】
【0021】
Oo:ノーマルサイトにある酸化物イオン、H:酸化物中のプロトン、h:ホール
従って、Aサイトの希土類元素をストロンチウム、カルシウム、バリウムより成るアルカリ土類金属元素の1または2以上で置換することによって酸化物イオン空孔を生じさせることができる。その置換比率Xは、原子比にして、0<X<0.5にするのが好ましく、0<X≦0.2とするのがさらに好ましい。というのは、その置換量が少ない場合、酸素欠陥が少なく、プロトン伝導性が低いからであり、一方、その置換量が多すぎると、ペロブスカイト型以外の他の結晶構造物が析出してくるからである。
【0022】
αは酸素欠陥数であり、αが大きくなるほどプロトン伝導性は大きくなるが、安定なペロブスカイト型結晶構造をとるためには、αは一定値以下にするのが好ましく、このような点から、0<α<0.25とするのが好ましい。
【0023】
また、上記したようなAサイトの希土類元素の置換に加えて、Bサイトのスカンジウムをマグネシウム、亜鉛で置換することもできる。その置換比率Yは、同上の理由により、原子比にして、0<Y<0.5にするのが好ましく、0<Y≦0.2とするのがさらに好ましい。
【0024】
なお、Bサイトのスカンジウムをマグネシウムまたは亜鉛に置換する場合、Aサイトの希土類元素を置換しなくてもよい。
【0025】
本発明のプロトン伝導性セラミックスの製造方法は、特に限定されるものでなく、公知のセラミックス製造方法に従って製造できる。例えば、酸化物粉末混合加圧成形焼結法、共沈殿物焼結法、噴霧乾燥焼成法、溶液混合ゾルゲル焼成法などを適用できる。例えば、その製造方法の一例を示せば、所定の組成となるように各元素の酸化物を計量して混合粉砕し、次に1100〜1400℃で1〜10時間仮焼し、再度粉砕した後成形プレスに充填し、静水圧0.5〜20t/cm2 の圧力で加圧成形し、電気炉にて1400〜1700℃で1〜24時間焼結することによりプロトン伝導性を有するペロブスカイト型結晶構造の複酸化物が得られる。所定の結晶構造であるかどうかは、通常のX線回折装置により判定することができる。
【0026】
【実施例】
以下に本発明の実施例を順次説明する。
【0027】
〔実施例1〕
高純度酸化ランタン(三徳金属工業社製の純度5Nのもの)の粉末9.7gと、炭酸ストロンチウムの粉末0.977gと、高純度スカンジウム(三徳金属工業社製の純度5Nのもの)の粉末4.561gを乳鉢で混合粉砕した後、電気炉に入れ、1300℃で10時間仮焼した。次いで、この仮焼物をボールミルで粉砕後、1t/cm2 の静水圧を付加して直径18mmのディスク状に成形した。このディスク状成形物を大気雰囲気下の電気炉で1600℃×10時間焼結した。この焼結体をX線回折装置で測定したところ、化学式
【0028】
【化6】
【0029】
で表されるペロブスカイト型単一の結晶構造からなる複酸化物であることが判明した。この焼結体を0.5mmの厚さのディスク状に加工し、両面に白金ペーストを塗布後、図2(a)に示すような構造の水素濃淡電池測定セルに設置し、アノード側1、カソード側2にそれぞれ水素分圧の異なる水素ガスを導入し(一方を1atm 、他方を1atm 以下)、700℃、1000℃、1300℃の3温度水準でエレクトロメーター(北斗電工社製)により起電力を測定した。図2において、3は起電力測定用の試料、4は白金ワイヤ、5は電気炉、6はアルミナチューブ、7はセラミックチューブ、8はパッキン、9は熱電対である。
【0030】
なお、比較のために、炭酸バリウムと酸化セリウムと高純度イットリウムを原料として、公知のプロトン導電性固体電解質である
【0031】
【化7】
【0032】
の焼結体を実施例1と同様の方法で得、この比較例の焼結体についても、同上方法で水素濃淡電池起電力を測定した。
【0033】
上記のようにして測定した起電力の測定結果を図3、図4に示す。図3に明らかなように、温度が高くなるほど得られる起電力は大きくなることが分かる。図4において、記号○は比較例を示し、この比較例のものからはほとんど起電力が得られないことが分かる。
【0034】
また、上記のようにして得られた実施例1の複酸化物焼結体の湿潤水素中での導電率を、図2(b)に示すような構造の導電率測定セルに設置し、電気化学インピーダンス測定器(Solartron社製)を用いて、湿潤水素雰囲気において交流二端子法による複素インピーダンス法により測定した。その導電率測定結果を図5に示す。図5の横軸のKは絶対温度である。図5に明らかなように、本発明のセラミックスの導電率は温度が高くなるほど向上している。
【0035】
〔実施例2〕
化学式
【0036】
【化8】
【0037】
(Ln=La、Nd、Sm又はGd)で表される複酸化物が約20g得られるように、Ln2O3、Sc2O3およびCaCO3 の各粉末を適正量配合し、この原料粉末を乳鉢中で混合粉砕した後電気炉に入れ、1400℃で10時間仮焼した。次いで、この4種類の仮焼物をボールミルで再粉砕後、1t/cm2 の静水圧を付加してディスク状に成形した。そして、この4種類のディスク状成形物を大気雰囲気下の電気炉で1650℃×10時間焼結した。この4種類の焼結体の1つをX線回折装置で測定したところ、図6に示すように、ペロブスカイト型単一の結晶構造からなる複酸化物であることが判明した。なお、図示は省略するが、他の3種類の焼結体も、ペロブスカイト型単一の結晶構造からなる複酸化物であった。次いで、この焼結体を図2(b)に示す構造の導電率測定セルに設置し、湿潤水素雰囲気下(●)または湿潤空気雰囲気下(○)における1000℃での導電率を測定した。その導電率測定結果を図7に示す。図7に明らかなように、いずれのセラミックスも高い導電率を有している。
【0038】
〔実施例3〕
化学式
【0039】
【化9】
【0040】
(Y=0.05、0.10、0.15又は0.20)で表される複酸化物が約20g得られるように、La2O3の粉末とSc2 O3 の粉末とMgOの粉末を原料として、実施例1と同じ条件でペロブスカイト型単一の結晶構造からなる複酸化物の焼結体を得た。この焼結体について、実施例1と同じ方法で水素濃淡電池起電力と湿潤水素雰囲気での導電率を測定した。その結果をそれぞれ、図8、図9に示す。図8に明らかなように、温度が高くなるほど得られる起電力の値は大きくなることが分かる。図9において、□はLaSc0.95Mg0.0503を示し、◇はLaSc0.90Mg0.10O3を示し、△はLaSc0.85Mg0.15O3を示し、▽はLaSc0.80Mg0.2003 を示す。図9に明らかなように、Scの一部をMgで置換した本発明のセラミックス(□、◇、△、▽)は、700℃以上の高温において優れた導電率を有している。
【0041】
【発明の効果】
本発明のセラミックスは、高温において良好なプロトン伝導性を示し、高温になるほど水素濃淡電池起電力は大きくなるという特性を有するので、水素センサー素子、水素ポンプデバイス、プロトン伝導性固体電解質燃料電池等の材料として好適に使用できる。
【図面の簡単な説明】
【図1】ペロブスカイト型の結晶構造を示す図である。
【図2】図2(a)は水素濃淡電池測定セルの概念図、図2(b)は導電率測定セルの概念図である。
【図3】本発明のセラミックスの一実施例の水素濃淡電池の起電力の変化を示す図である。
【図4】本発明のセラミックスの一実施例と比較例のセラミックスの水素濃淡電池の起電力を比較する図である。
【図5】本発明のセラミックスの一実施例の湿潤水素中での導電率の変化を示す図である。
【図6】本発明のセラミックスの別の実施例のX線回折パターンを示す図である。
【図7】本発明のセラミックスの別の実施例の湿潤水素雰囲気または湿潤空気雰囲気での導電率を示す図である。
【図8】本発明のセラミックスのさらに別の実施例の水素濃淡電池の起電力の変化を示す図である。
【図9】本発明のセラミックスのさらに別の実施例の湿潤水素雰囲気での導電率の変化を示す図である。
【符号の説明】
1…アノード側
2…カソード側
3…試料
4…白金ワイヤ
5…電気炉
6…アルミナチューブ
7…セラミックチューブ
8…パッキン
9…熱電対[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proton-conducting ceramic, and more particularly, proton conductivity comprising a double oxide having a perovskite crystal structure that exhibits good proton conductivity at high temperatures and generates good electromotive force when a hydrogen concentration cell is formed. It is related to the ceramics.
[0002]
[Prior art]
In recent years, research on solid electrolyte fuel cells has become active, and new materials have been developed. Among these, the ceramics having the perovskite crystal structure shown in FIG. 1 that are found in the double oxide represented by the chemical formula ABO 3 have excellent properties such as high temperature resistance, good electron conductivity, and oxygen ion conductivity. As a result, various types of double oxides in which various kinds of alkaline earth metal elements, rare earth elements, and transition metal elements are combined have been put into practical use. For example, as a prior art relating to ceramics having a perovskite crystal structure having proton conductivity, Japanese Patent Laid-Open No. 58-50458 discloses, as a matrix, an oxide of strontium and cerium, which includes yttrium, scandium, ytterbium, neodymium. , A proton conductive solid electrolyte containing an oxide of at least one metal selected from magnesium, praseodymium and zinc.
[0003]
Further, JP-A-63-201051 discloses “a strontium-cerium oxide as a base, and an oxide of a metal element having an ionic bond strength with oxygen lower than that of cerium, yttrium, scandium, ytterbium, neodymium, An invention relating to a proton conductive solid electrolyte containing an oxide of at least one metal element selected from magnesium, praseodymium and zinc is disclosed.
[0004]
Further, Japanese Patent Application Laid-Open No. 64-87545 discloses that “at least one metal selected from yttrium, scandium, ytterbium, neodymium, magnesium, praseodymium, and zinc, which contains strontium and cerium oxides as basic components. An invention relating to a proton-conducting solid electrolyte that is an oxide-containing solid electrolyte in which a part of strontium is replaced with a metal element having an ionic radius larger than that of strontium is disclosed.
[0005]
[Problems to be solved by the invention]
However, since the proton conductive solid electrolytes described in the above publications are based on cerium, when exposed to a hydrogen atmosphere at a high temperature of 700 ° C. or higher, cerium is reduced from tetravalent to trivalent, and the ionic radius is reduced. Since it changes, the perovskite crystal structure cannot be maintained and the crystal collapses. Moreover, even if it does not decay | disintegrate, electronic conductivity will arise and proton conductivity will lose | disappear. Furthermore, the hydrogen concentration cell electromotive force is also lost.
[0006]
Even in ceramics having a perovskite crystal structure other than cerium, transition metal complex oxides change in valence at a high temperature of 700 ° C. or higher, become electron conductive, proton conductivity, and hydrogen concentration cell electromotive force. Sex does not occur.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and its purpose is that the perovskite crystal structure is stable even at a high temperature of 700 ° C. or higher, and the ionic valence does not change. Another object is to provide a proton conductive ceramic having good proton conductivity and hydrogen concentration cell electromotive force.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses a trivalent rare earth element as an A site element of a perovskite crystal structure represented by the chemical formula ABO 3 , and a minimum ion in a rare earth element that becomes a trivalent ion as a B site element. Proton conductivity can be imparted by adopting Sc of the radius and substituting a part of the elements at the A site and / or the B site with low-valent cations to generate oxide ion vacancies.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
That is, the first aspect of the present invention is a proton conductive ceramic made of a double oxide having a perovskite crystal structure represented by the following chemical formula.
[0010]
[Chemical 3]
[0011]
Here, R represents at least one element selected from the group consisting of lanthanum, neodymium, samarium and gadolinium, A represents at least one element selected from the group consisting of strontium, calcium and barium, and 0 <X <0.5 and 0 <α <0.25.
[0012]
A proton conductive ceramic made of a double oxide having a perovskite crystal structure represented by the following chemical formula is a second invention.
[0013]
[Formula 4]
[0014]
Here, R represents at least one element selected from the group consisting of lanthanum, neodymium, samarium and gadolinium, A represents at least one element selected from the group consisting of strontium, calcium and barium, and M Represents at least one element selected from the group consisting of magnesium and zinc, 0 ≦ X <0.5, 0 <Y <0.5, and 0 <α <0.25.
[0015]
The details of the present invention can be described in detail below.
First, as a requirement for forming a stable perovskite crystal structure, there is a tolerance factor (hereinafter also referred to as “t value”). This t value represents the ratio of the ionic radii of the A and B elements of ABO 3 constituting the perovskite crystal structure, and is represented by the following equation.
[0016]
t = (γ A + γ X ) / 2 1/2 (γ B + γ X )
γ A : ionic radius of A element, γ B : ionic radius of B element, γ X : ionic radius of oxygen It is said that this t value needs to satisfy 0.75 ≦ t ≦ 1. When Sc having the smallest ionic radius in the rare earth element to be a trivalent ion is used as the reference B-site element and a stable trivalent rare-earth element is used as the A-site element, as shown in Table 1 below. The tolerance factor is satisfied.
[0017]
[Table 1]
[0018]
However, rare earth scandium double oxide is a perfect stoichiometric oxide and does not produce proton conductivity. Thus, proton conductivity can be imparted by substituting the elements at the A site and B site with low-valent cations to generate oxide ion vacancies. The mechanism is expressed by the following equation.
[0019]
M 2+ → M ' LnorSc + Vo
M: Cation to be substituted, M ′ LnorSc : Cation entering the position of rare earth element or scandium, Vo: Oxide ion vacancy In addition, proton production of the proton conductor is represented by the following chemical formulas (1) to (4) This is caused by the equilibrium reaction shown in FIG.
[0020]
[Chemical formula 5]
[0021]
Oo: oxide ion at normal site, H: proton in oxide, h: hole Therefore, the rare earth element at A site is replaced with one or more of alkaline earth metal elements composed of strontium, calcium and barium Can generate oxide ion vacancies. The substitution ratio X is preferably an atomic ratio of 0 <X <0.5, and more preferably 0 <X ≦ 0.2. This is because, when the substitution amount is small, oxygen defects are few and proton conductivity is low. On the other hand, when the substitution amount is too large, other crystal structures other than the perovskite type precipitate. It is.
[0022]
α is the number of oxygen defects, and proton conductivity increases as α increases. However, in order to obtain a stable perovskite crystal structure, α is preferably set to a certain value or less. It is preferable that <α <0.25.
[0023]
Further, in addition to the substitution of the rare earth element at the A site as described above, the scandium at the B site can be substituted with magnesium or zinc. The substitution ratio Y is preferably 0 <Y <0.5, more preferably 0 <Y ≦ 0.2, in terms of atomic ratio, for the same reason as above.
[0024]
When the scandium at the B site is replaced with magnesium or zinc, the rare earth element at the A site may not be replaced.
[0025]
The production method of the proton conductive ceramic of the present invention is not particularly limited, and can be produced according to a known ceramic production method. For example, oxide powder mixed pressure molding sintering method, coprecipitate sintering method, spray drying firing method, solution mixed sol-gel firing method and the like can be applied. For example, if an example of the manufacturing method is shown, the oxide of each element is measured and mixed and pulverized so as to have a predetermined composition, then calcined at 1100 to 1400 ° C. for 1 to 10 hours, and pulverized again. A perovskite type crystal having proton conductivity by filling into a forming press, press-molding at a hydrostatic pressure of 0.5 to 20 t / cm 2 , and sintering in an electric furnace at 1400 to 1700 ° C. for 1 to 24 hours. A double oxide of structure is obtained. Whether or not it has a predetermined crystal structure can be determined by a normal X-ray diffractometer.
[0026]
【Example】
Examples of the present invention will be sequentially described below.
[0027]
[Example 1]
9.7 g of high-purity lanthanum oxide (Santoku Metal Industry, 5N purity) powder, 0.977 g of strontium carbonate powder, and high-purity scandium (Santoku Metal Industry, 5N purity)
[Chemical 6]
[0029]
It was found that this was a double oxide consisting of a perovskite single crystal structure represented by This sintered body was processed into a disk having a thickness of 0.5 mm, and after applying a platinum paste on both sides, it was placed in a hydrogen concentration cell measuring cell having a structure as shown in FIG. Hydrogen gas with different hydrogen partial pressures was introduced into the cathode side 2 (one at 1 atm and the other at 1 atm or less), and electromotive force was generated by an electrometer (made by Hokuto Denko) at three temperature levels of 700 ° C, 1000 ° C and 1300 ° C. Was measured. In FIG. 2, 3 is a sample for measuring electromotive force, 4 is a platinum wire, 5 is an electric furnace, 6 is an alumina tube, 7 is a ceramic tube, 8 is a packing, and 9 is a thermocouple.
[0030]
For comparison, it is a known proton conductive solid electrolyte using barium carbonate, cerium oxide and high-purity yttrium as raw materials.
[Chemical 7]
[0032]
This sintered body was obtained by the same method as in Example 1, and the hydrogen concentration cell electromotive force was also measured for the sintered body of this comparative example by the same method.
[0033]
The measurement results of the electromotive force measured as described above are shown in FIGS. As can be seen from FIG. 3, the higher the temperature, the greater the electromotive force obtained. In FIG. 4, the symbol ◯ indicates a comparative example, and it can be seen that almost no electromotive force can be obtained from this comparative example.
[0034]
Further, the conductivity in wet hydrogen of the double oxide sintered body of Example 1 obtained as described above was installed in a conductivity measuring cell having a structure as shown in FIG. Using a chemical impedance measuring device (manufactured by Solartron), measurement was performed by a complex impedance method using an alternating current two-terminal method in a wet hydrogen atmosphere. The conductivity measurement result is shown in FIG. K on the horizontal axis in FIG. 5 is the absolute temperature. As is apparent from FIG. 5, the electrical conductivity of the ceramic of the present invention increases as the temperature increases.
[0035]
[Example 2]
Chemical formula [0036]
[Chemical 8]
[0037]
An appropriate amount of each powder of Ln 2 O 3 , Sc 2 O 3 and CaCO 3 is blended so that about 20 g of a double oxide represented by (Ln = La, Nd, Sm or Gd) is obtained, and this raw material powder Was mixed and ground in a mortar and then placed in an electric furnace and calcined at 1400 ° C. for 10 hours. Next, these four types of calcined products were re-ground with a ball mill and then formed into a disk shape by applying a hydrostatic pressure of 1 t / cm 2 . Then, these four types of disk-shaped molded products were sintered at 1650 ° C. for 10 hours in an electric furnace in an air atmosphere. When one of these four types of sintered bodies was measured with an X-ray diffractometer, it was found to be a double oxide having a single perovskite type crystal structure as shown in FIG. In addition, although illustration is abbreviate | omitted, other three types of sintered compacts were also a double oxide which consists of a perovskite type single crystal structure. Next, this sintered body was placed in a conductivity measuring cell having a structure shown in FIG. 2B, and the conductivity at 1000 ° C. in a wet hydrogen atmosphere (●) or a wet air atmosphere (◯) was measured. The conductivity measurement results are shown in FIG. As is apparent from FIG. 7, all ceramics have high conductivity.
[0038]
Example 3
Chemical formula [0039]
[Chemical 9]
[0040]
In order to obtain about 20 g of a double oxide represented by (Y = 0.05, 0.10, 0.15 or 0.20), La 2 O 3 powder, Sc 2 O 3 powder and MgO A double oxide sintered body having a single perovskite crystal structure was obtained under the same conditions as in Example 1, using powder as a raw material. With respect to this sintered body, the hydrogen concentration cell electromotive force and the conductivity in a wet hydrogen atmosphere were measured in the same manner as in Example 1. The results are shown in FIGS. 8 and 9, respectively. As is apparent from FIG. 8, the value of the electromotive force obtained increases as the temperature increases. In FIG. 9, □ indicates LaSc 0.95 Mg 0.05 0 3 , L indicates LaSc 0.90 Mg 0.10 O 3 , Δ indicates LaSc 0.85 Mg 0.15 O 3 , and ▽ indicates LaSc 0.80 Mg 0.20 0 3 . As is apparent from FIG. 9, the ceramics (□, ◇, Δ, ▽) of the present invention in which a part of Sc is replaced with Mg have excellent conductivity at a high temperature of 700 ° C. or higher.
[0041]
【The invention's effect】
The ceramic according to the present invention has good proton conductivity at high temperatures, and has a characteristic that the electromotive force of the hydrogen concentration cell increases as the temperature increases, such as a hydrogen sensor element, a hydrogen pump device, a proton conductive solid electrolyte fuel cell, etc. It can be suitably used as a material.
[Brief description of the drawings]
FIG. 1 is a diagram showing a perovskite crystal structure.
FIG. 2 (a) is a conceptual diagram of a hydrogen concentration battery measuring cell, and FIG. 2 (b) is a conceptual diagram of a conductivity measuring cell.
FIG. 3 is a graph showing a change in electromotive force of a hydrogen concentration battery according to an embodiment of the ceramic of the present invention.
FIG. 4 is a diagram comparing the electromotive force of a hydrogen concentration cell of ceramics according to an example of the present invention and a comparative example.
FIG. 5 is a graph showing a change in conductivity in wet hydrogen of one embodiment of the ceramic of the present invention.
FIG. 6 is a diagram showing an X-ray diffraction pattern of another example of the ceramic of the present invention.
FIG. 7 is a graph showing the electrical conductivity of another example of the ceramic of the present invention in a wet hydrogen atmosphere or a wet air atmosphere.
FIG. 8 is a graph showing a change in electromotive force of a hydrogen concentration battery of still another example of the ceramic of the present invention.
FIG. 9 is a graph showing a change in conductivity in a wet hydrogen atmosphere of still another example of the ceramic of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22665396A JP3877809B2 (en) | 1996-08-28 | 1996-08-28 | Proton conductive ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22665396A JP3877809B2 (en) | 1996-08-28 | 1996-08-28 | Proton conductive ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1067558A JPH1067558A (en) | 1998-03-10 |
JP3877809B2 true JP3877809B2 (en) | 2007-02-07 |
Family
ID=16848559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22665396A Expired - Fee Related JP3877809B2 (en) | 1996-08-28 | 1996-08-28 | Proton conductive ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3877809B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4909600B2 (en) * | 2005-03-14 | 2012-04-04 | 日本碍子株式会社 | Hydrogen separator and method for producing the same |
EP1953765A4 (en) * | 2005-11-22 | 2010-03-17 | Nippon Sheet Glass Co Ltd | Proton conductive material, process for producing the same, hydrogen concentration cell, hydrogen sensor and fuel cell |
CN111018526B (en) * | 2019-12-24 | 2022-02-01 | 东北大学 | Neodymium oxide-based high-temperature proton conductor and preparation method thereof |
-
1996
- 1996-08-28 JP JP22665396A patent/JP3877809B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1067558A (en) | 1998-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3733030B2 (en) | Ionic conductor | |
JP4608506B2 (en) | Mixed ionic conductor and device using the same | |
JP4608047B2 (en) | Mixed ionic conductor and device using the same | |
KR100352099B1 (en) | Mixed ions containing conductor and device using the same | |
KR101808387B1 (en) | Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same | |
KR20150003364A (en) | Sensor employing internal reference electrode | |
EP1864955A1 (en) | Ion conductor | |
CA2516809C (en) | Mixed ionic conductor | |
JP3877809B2 (en) | Proton conductive ceramics | |
JP3121982B2 (en) | Conductive ceramics | |
JP4158966B2 (en) | Composite oxide, oxide ion conductor, oxide ion conductive membrane and electrochemical cell | |
JP4589683B2 (en) | Mixed ionic conductor | |
US20230357045A1 (en) | Perovskite structure, method for producing and application in electrodes and solid oxide cells | |
EP1081782B1 (en) | Solid electrolyte, method of producing same and fuel cell using same | |
KR20170124114A (en) | Zirconia-bismuth oxide sintered compound and manufacturing methods thereof | |
JP4038628B2 (en) | Oxide ion conductor, method for producing the same, and solid oxide fuel cell | |
JP3446649B2 (en) | Method for producing oxide ion conductor | |
JP3300077B2 (en) | Ion conductor material | |
JP3325378B2 (en) | Conductive ceramics and fuel cell using the same | |
JP2000348533A (en) | Oxygen ion conductor | |
JPH08253363A (en) | Baceo3-based ionically conductive ceramics and its production | |
JP2025042768A (en) | Solid electrolyte, laminate, and fuel cell | |
JP3370446B2 (en) | Method for producing conductive ceramics | |
CN116745923A (en) | Perovskite structure, preparation method thereof and application of perovskite structure in electrode and solid oxide battery | |
JPH0458414B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091110 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |