JP3864138B2 - Method for forming copper wiring on substrate - Google Patents

Method for forming copper wiring on substrate Download PDF

Info

Publication number
JP3864138B2
JP3864138B2 JP2002367469A JP2002367469A JP3864138B2 JP 3864138 B2 JP3864138 B2 JP 3864138B2 JP 2002367469 A JP2002367469 A JP 2002367469A JP 2002367469 A JP2002367469 A JP 2002367469A JP 3864138 B2 JP3864138 B2 JP 3864138B2
Authority
JP
Japan
Prior art keywords
substrate
copper
wiring
forming
polymer component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002367469A
Other languages
Japanese (ja)
Other versions
JP2004197169A (en
Inventor
明 福永
寛二 大野
亮一 君塚
守治 松本
秀美 縄舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
JCU Corp
Original Assignee
Ebara Corp
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, JCU Corp filed Critical Ebara Corp
Priority to JP2002367469A priority Critical patent/JP3864138B2/en
Publication of JP2004197169A publication Critical patent/JP2004197169A/en
Application granted granted Critical
Publication of JP3864138B2 publication Critical patent/JP3864138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、基板の銅配線形成方法に関する。さらに詳しくは、微細な配線溝で回路パターンが形成された半導体ウェハなどの電子回路用基板に対し、配線溝の底面から銅を析出、堆積せしめて埋め込むことにより、電気的信頼性が高い微細回路配線を形成することができる銅配線の形成方法に関する。
【0002】
【従来の技術】
従来より、半導体ウェハなどの微細な回路パターンを有する電子回路用基板に対して、金属として電気抵抗が低く電気信頼性の高い銅を用いて回路配線を形成する検討がされている。
【0003】
金属銅を用いて回路配線を形成する方法としては、例えば、配線用の溝を予め形成した電子回路基板表面を銅めっきすることにより溝の中に銅を埋め込み、その後表面の余分な銅を化学機械研磨(Chemical Mechanical Polishing:CMP)により除去するという方法が用いられている。この方法におけるめっき手段としては、主として化学的プロセスを用いる無電解めっきと、電気化学的プロセスを用いる電解めっきとがあるが、必要とする設備や作業が簡便であるという点で、無電解銅めっきが広く用いられていた。一般的に、電解めっきに先立っては、電解めっき時の給電層となる銅薄膜がスパッタリング法等によって形成されているが、近年においては配線の微細化が進むに従って、この給電層が溝底部付近で膜厚が薄くなったり、不連続になったりして、電解めっきによる埋め込みでの欠陥の原因となっていた。このような問題の解決策として、電流分布の影響を受けない無電解めっきによる配線形成が提案されている。
【0004】
しかしながら、従来の無電解銅めっきでは、微細な配線溝の側壁や底面から金属銅が等方成長していくため、側壁から析出した銅が配線溝の入口を覆ってしまうことがあり、溝の内部にシームボイド等の欠陥が形成されやすいという問題があった。そして、溝内部にこのような欠陥が残ると、高電流を流した場合の熱応力や温度上昇によって、ストレスマイグレーションやエレクトロマイグレーションが生じ、当該欠陥から断線して、回路配線の電気特性に悪影響を与えることがあった。
【0005】
【発明が解決しようとする課題】
従って、微細な回路パターンが設けられたシリコンウェハ等の電子回路用基板に対し、無電解銅めっきにより溝内部にシームボイド等の欠陥が生じることがなく、優れた銅の埋め込み性と高い電気信頼性を有する微細回路配線を形成することができる技術の提供が求められていた。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、被めっき体である電子回路用基板を無電解銅めっきするに先立ち、ポリマー成分の含有する処理液に浸漬させて基板表面にポリマーの層を形成させ、その後に無電解銅めっきを行えば、電子回路用基板上の回路パターンの溝の底面部から銅が析出、堆積せしめて埋め込みを行うことができるため、シームボイド等の欠陥を形成することなく、電気的信頼性の高い微細回路配線が形成できることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、微細な回路パターンが設けられ、金属シード層が形成された電子回路用基板に銅配線を形成する方法であって、該基板をポリマー成分を含有する溶液に浸漬した後、無電解銅めっきを行うことを特徴とする基板の銅配線形成方法を提供するものである。
【0008】
【発明の実施の形態】
本発明である基板の銅配線形成方法を実施するには、まず、埋め込み配線構造を有する基板に対して、金属シード層を形成する。
【0009】
本発明方法の対象となる基板は、その表面に埋め込み配線構造が設けられた、シリコンウェハ等の半導体基板などである。この基板上の埋め込み配線構造は、例えば、微細な溝等(以下、「配線溝」ということもある)により形成されるものであり、この配線溝が金属銅で埋められることにより、回路配線となる。本発明の銅配線形成方法の対象となる電子回路用基板としては、例えば、幅が0.01〜1.0μm程度、深さが0.1〜2.0μm程度(アスペクト比として1〜5程度)の配線溝を有しているものが挙げられる。
【0010】
この基板に対する金属シード層の形成は、必要により、あらかじめ常法で前処理された後実施される。この前処理の例としては、例えば、シリコンウェハ等のシリコン基板の場合は、バリア層の形成が挙げられる。このバリア層は、例えば、TaN、TiN、WN、SiTiN等の金属窒化物やCoWP、CoWB等により形成されたものであることが好ましい。
【0011】
金属シード層は、酸性銅めっきを行う前に、基板に対して給電層となるものであり、種々の導電化処理により形成される。この導電化処理の具体例としては、例えば、スパッタリング、化学蒸着法(chemical vapor deposition:CVD)、物理蒸着法(Physical vapor deposition:PVD)等の方法を用いて行うことができる。
【0012】
この金属シード層は、一般に、5〜100nm程度の厚さで形成すればよい。また、本発明の方法においては、上記の金属シード層は、溝内全体に完全に形成させる必要はなく、例えば、電子回路用基板の表面及び配線溝の底面部に形成されていればよい。
【0013】
上記の導電化処理により金属シード層が形成された電子回路用基板は、次いで、ポリマー成分を含有した処理液に浸漬される。
【0014】
上記処理液に含有されるポリマー成分は、基板表面に吸着して、無電解銅めっきを行った際に該基板表面上での銅めっき層の形成を抑制できる作用を有するものであれば特に制限なく使用することができる。
【0015】
このポリマー成分の例としては、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイド付加物、プロピレンオキサイド付加物またはエチレンオキサイド付加物−プロピレンオキサイド付加物等が挙げられる。このうち、エチレンオキサイド付加物としては、下記(I)式で表されるものが、プロピレンオキサイド付加物としては、式(II)で表されるものをそれぞれ例示することができる。これらのポリマー成分は、1種を単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
【0016】
(エチレンオキサイド付加物)
【化1】

Figure 0003864138
(式中、Rは炭素数8〜25の高級アルコール残基 炭素数1〜25のアルキル基を有するアルキルフェノール残基、炭素数1〜25のアルキル基を有するアルキルナフトール残基、炭素数3〜22の脂肪族アミドの残基、炭素数2〜4のアルキルアミンの残基又は水酸基を示す。また、mは1〜100の整数を示す)
【0017】
(プロピレンオキサイド付加物)
【化2】
Figure 0003864138
(式中、Rおよびmは前記と同じ意味を有する)
【0018】
上記のポリマー成分は、処理液に電子回路用基板を浸漬させた場合に、該基板の表面だけに優先的に吸着させるため、分子量が比較的大きいものを使用することが好ましい。例えば、ポリマー成分としてポリエチレングリコールを使用した場合には、分子量が4000〜40000のものを用いることが好ましく、ポリプロピレングリコールを使用した場合には、分子量が600〜1000のものを用いることが好ましい。また、(I)式で表されるエチレンオキサイド付加物、(II)式で表されるプロピレンオキサイド付加物またはそれらの混合物を使用した場合には、分子量が1000〜5000のものを用いることが好ましい。
【0019】
また、この処理液においてポリマー成分を溶解ないしは懸濁させるための溶媒としては、ポリマー成分の特性に影響を与えないものであれば特に制限なく使用することができ、例えば、水、硫酸水溶液、硫酸銅水溶液等を用いることができる。なお、この次に行う無電解めっきで使用するめっき浴を溶媒として用いれば、溶媒成分によるめっき浴の希釈、pH変動及び汚染を防止することができるという点で好ましい。
【0020】
更に、上記処理液中のポリマー成分の濃度は、被めっき体である電子回路用基板の種類や面積及び基板上の配線溝の大きさ、処理液中のポリマー成分以外の成分の種類等によって適宜決定されるが、一般に、0.1mg/L〜10g/Lであればよく、10mg/L〜1g/Lが好ましい。
【0021】
上記の処理液の調製方法は、ポリマー成分を適切な溶媒に混合させる等、通常の方法で調製すればよい。また、電子回路基板を処理液に浸漬する条件についても特に制限はなく、処理液の成分等により適宜決定すればよいが、一般には、液温を 室温(20℃)〜60℃程度で、5秒〜30分程度浸漬すればよい。
【0022】
以上のようにして、ポリマー成分を含有する溶液に浸漬された基板は、以後常法に従い、無電解銅めっき浴が行われる。
【0023】
この無電解銅めっき浴としては、特に制限なく、室温浴、高温浴いずれのタイプの銅めっきを使用することができ、例えば、公知の無電解銅めっき浴の硫酸銅を含有しためっき浴や、硝酸銅を含有しためっき浴等の銅めっき浴を使用することができる。また、かかるめっき浴には、EDTA、酒石酸、クアドロール、くえん酸、エチレンジアミン等の錯化剤や、ホルマリン、グリオキシル酸、ジメチルアミンボラン、次亜リン酸、コバルトイオン等の還元剤を添加することが好ましい。なお、無電解銅めっき浴としては、水素ガスの発生反応を伴わないめっき浴、例えば、2価のコバルトイオンを還元剤として用いた浴等を使用することが好ましい。
【0024】
上記の無電解銅めっきを行なう条件も、それぞれの無電解銅めっき浴での通常の条件に従えばよい。すなわち、錯化剤をEDTA、還元剤にホルマリンとした硫酸銅めっき浴を使用し、シリコンウェハ上の幅0.25μm、深さ1μmの配線溝を完全に埋めるためには、浴温を50〜70℃程度、浴のpHを13程度として、30分程度無電解銅めっきを行えばよい。
【0025】
以上説明した本発明の方法において、好ましい態様の一つとしては、例えば、まずはポリマー成分としてポリエチレングリコール(分子量4000)を含有する後記組成の無電解銅めっき浴(液温:25℃、pH:12.5)を処理液としてこれに1分程度浸漬し、その後、当該浴からポリエチレングリコール成分を除いた無電解銅めっき浴(浴温:60℃、pH:12.5)を用いて、30分間程度無電解銅めっきする方法が挙げられる。
【0026】
無電解銅めっき浴組成:
硫酸銅 0.04mol/L
EDTA・4Na 0.1mol/L
HCHO 0.3mol/L
ポリエチレングリコール(分子量4000) 500mg/L
pH 12.5(水酸化ナトリウムにて調整)
【0027】
【作用】
本発明の銅配線形成方法は、微細溝を有する電子回路用基板の表面にポリマー成分を吸着させた後に無電解銅めっきを施すことにより、溝の底面部から銅を堆積させ埋め込みを行うという方法である。このような方法が可能となるのは、以下の理由による。すなわち、シード層が形成された電子回路用基板を処理液に浸漬させた場合、処理液中のポリマー成分は、基板の表面部に吸着する一方、比較的高分子量であるため配線溝の内部には浸入しにくくほとんど吸着しない。
【0028】
従って、基板の表面部を中心にポリマー成分層が形成されることになるが、このような基板に無電解銅めっきを行った場合には、ポリマー成分が吸着した基板表面部では、ポリマー成分が銅の析出を抑制することになるのに対し、配線溝の内部では、ポリマー成分の吸着が少ないため、金属シード層が形成されている溝の底面部から銅が析出することになる。このように、配線溝の底面部から基板表面に向かって銅めっきが進行することとなるため、銅めっき内にシームボイドなどの欠陥が生じることもなく、溝の内部への銅の埋め込みが良好に達成されるのである。
【0029】
【実施例】
次に、実施例および参考例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例等になんら制約されるものではない
【0030】
参 考 例 1
微細回路基板サンプルの調製:
微細回路基板サンプルとして、幅0.3μm、深さ1μmの配線溝が存在する直径200mmのシリコンウェハを用意した。この基板サンプルに対し、まず、TaNのバリア層を20nmの厚さで形成し、さらに、スパッリタングにて、銅シード層を50nmの厚さで形成した。なお、銅シード層は、主として基板サンプルの表面及び配線溝の底面部に形成した。
【0031】
実 施 例 1
参考例1で得た基板サンプルを、ポリマー成分であるポリエチレングリコールを含有した下記組成の処理液(pH6.6)に、液温25℃の条件で1分間浸漬し、基板サンプルを処理した。
【0032】
( 処理液の組成 )
Figure 0003864138
【0033】
次に、このサンプル基板に対して、下記組成の銅めっき浴を用い、浴温50℃、pH6.6の条件で30分間無電解銅めっきを行った。
【0034】
( 銅めっき浴の組成 )
1. 硝酸銅 0.05mol/L
2. 硝酸コバルト 0.15mol/L
3. エチレンジアミン 0.60mol/L
4. 2,2’−ビピリジル 20mg/L
5. アスコルビン酸 0.01mol/L
6. 塩化水素 0.005mol/L
【0035】
無電解銅めっき後のサンプル基板の配線溝について、電界放射型走査電子顕微鏡(FE−SEM)を用いて断面を観察したところ、銅は配線溝の底面部から堆積され、溝内に隙間なく銅が埋め込まれている様子が確認できた。このように、本発明の銅配線形成方法を用いれば、配線溝内にはシームボイド等の欠陥が残る心配がないため、電気的信頼性の高い配線を形成することが可能となる。
【0036】
【発明の効果】
本発明の基板の銅配線形成方法は、主に配線溝の底面から銅を析出、堆積せしめるため、配線溝内にはシームボイド等の欠陥が残ることもなく、電気的信頼性の高い配線を形成することができるものである。
【0037】
従って、本発明の基板の銅配線形成方法は、シリコンウェハ等の電子回路用基板の微細回路配線の形成に有利に利用することができるものである。
以 上[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a copper wiring on a substrate. More specifically, a fine circuit with high electrical reliability can be obtained by depositing, depositing and embedding copper from the bottom of the wiring groove in an electronic circuit substrate such as a semiconductor wafer in which a circuit pattern is formed with fine wiring grooves. The present invention relates to a method for forming a copper wiring capable of forming a wiring.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, studies have been made on forming circuit wiring using copper having low electrical resistance and high electrical reliability as a metal for an electronic circuit substrate having a fine circuit pattern such as a semiconductor wafer.
[0003]
As a method of forming circuit wiring using metallic copper, for example, the surface of an electronic circuit board on which wiring grooves are formed in advance is plated with copper to bury copper in the grooves, and then the excess copper on the surface is chemically treated. The method of removing by mechanical polishing (CMP) is used. As plating means in this method, there are mainly electroless plating using a chemical process and electrolytic plating using an electrochemical process, but the electroless copper plating is required in that the necessary facilities and operations are simple. Was widely used. In general, prior to electroplating, a copper thin film that serves as a power feeding layer during electroplating is formed by sputtering or the like. However, in recent years, as the wiring becomes finer, this power feeding layer is near the groove bottom. As a result, the film thickness becomes thin or discontinuous, which causes defects in embedding by electrolytic plating. As a solution to such a problem, wiring formation by electroless plating that is not affected by current distribution has been proposed.
[0004]
However, in the conventional electroless copper plating, metal copper isotropically grows from the side wall and bottom surface of the fine wiring groove, so that the copper deposited from the side wall may cover the wiring groove entrance. There was a problem that defects such as seam voids were easily formed inside. If such defects remain inside the trench, stress migration and electromigration occur due to thermal stress and temperature rise when a high current is passed, and disconnection from the defects will adversely affect the electrical characteristics of the circuit wiring. There was to give.
[0005]
[Problems to be solved by the invention]
Therefore, it is possible to prevent defects such as seam voids inside the groove due to electroless copper plating on an electronic circuit substrate such as a silicon wafer provided with a fine circuit pattern, and excellent copper embedding and high electrical reliability. There has been a demand for providing a technique capable of forming a fine circuit wiring having the following.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have immersed the substrate for electronic circuit, which is the object to be plated, into the treatment liquid containing the polymer component before electroless copper plating, and the substrate surface. If a polymer layer is formed on the substrate, and then electroless copper plating is performed, copper can be deposited and deposited from the bottom surface of the groove of the circuit pattern on the electronic circuit board. The inventors have found that a fine circuit wiring with high electrical reliability can be formed without forming defects, and completed the present invention.
[0007]
That is, the present invention is a method of forming a copper wiring on an electronic circuit board provided with a fine circuit pattern and having a metal seed layer formed thereon, and after immersing the board in a solution containing a polymer component, The present invention provides a method for forming a copper wiring on a substrate, characterized by performing electroless copper plating.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to implement the copper wiring formation method for a substrate according to the present invention, first, a metal seed layer is formed on a substrate having a buried wiring structure.
[0009]
The substrate that is the object of the method of the present invention is a semiconductor substrate such as a silicon wafer having a buried wiring structure on its surface. The embedded wiring structure on the substrate is formed by, for example, a fine groove or the like (hereinafter sometimes referred to as “wiring groove”). By filling the wiring groove with metal copper, circuit wiring and Become. As a substrate for electronic circuits which is a target of the copper wiring forming method of the present invention, for example, the width is about 0.01 to 1.0 μm and the depth is about 0.1 to 2.0 μm (the aspect ratio is about 1 to 5). ) Having a wiring groove.
[0010]
The formation of the metal seed layer on the substrate is carried out after pretreatment by a conventional method if necessary. As an example of this pretreatment, for example, in the case of a silicon substrate such as a silicon wafer, formation of a barrier layer may be mentioned. This barrier layer is preferably formed of, for example, a metal nitride such as TaN, TiN, WN, or SiTiN, CoWP, CoWB, or the like.
[0011]
The metal seed layer serves as a power feeding layer for the substrate before the acidic copper plating, and is formed by various conductive treatments. Specific examples of the conductive treatment can be performed using a method such as sputtering, chemical vapor deposition (CVD), or physical vapor deposition (PVD).
[0012]
This metal seed layer may generally be formed with a thickness of about 5 to 100 nm. In the method of the present invention, the metal seed layer does not need to be completely formed in the entire groove, and may be formed, for example, on the surface of the electronic circuit board and the bottom surface of the wiring groove.
[0013]
The electronic circuit substrate on which the metal seed layer has been formed by the above-described conductive treatment is then immersed in a treatment liquid containing a polymer component.
[0014]
The polymer component contained in the treatment liquid is not particularly limited as long as it has an action capable of suppressing the formation of a copper plating layer on the substrate surface when adsorbed on the substrate surface and electroless copper plating is performed. It can be used without.
[0015]
Examples of the polymer component include polyethylene glycol, polypropylene glycol, ethylene oxide adduct, propylene oxide adduct or ethylene oxide adduct-propylene oxide adduct. Of these, examples of the ethylene oxide adduct include those represented by the following formula (I), and examples of the propylene oxide adduct include those represented by the formula (II). These polymer components may be used individually by 1 type, and may be used in combination of 2 or more type.
[0016]
(Ethylene oxide adduct)
[Chemical 1]
Figure 0003864138
(In the formula, R is a higher alcohol residue having 8 to 25 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 25 carbon atoms, an alkyl naphthol residue having an alkyl group having 1 to 25 carbon atoms, or 3 to 22 carbon atoms. An aliphatic amide residue, an alkylamine residue having 2 to 4 carbon atoms or a hydroxyl group, and m represents an integer of 1 to 100)
[0017]
(Propylene oxide adduct)
[Chemical 2]
Figure 0003864138
(Wherein R and m have the same meaning as described above)
[0018]
When the above-mentioned polymer component is preferentially adsorbed only on the surface of the substrate when the substrate for an electronic circuit is immersed in the treatment liquid, it is preferable to use a polymer component having a relatively large molecular weight. For example, when polyethylene glycol is used as the polymer component, those having a molecular weight of 4000 to 40,000 are preferably used, and when polypropylene glycol is used, those having a molecular weight of 600 to 1000 are preferably used. Moreover, when the ethylene oxide adduct represented by the formula (I), the propylene oxide adduct represented by the formula (II) or a mixture thereof is used, it is preferable to use one having a molecular weight of 1000 to 5000. .
[0019]
The solvent for dissolving or suspending the polymer component in this treatment liquid can be used without particular limitation as long as it does not affect the properties of the polymer component. For example, water, sulfuric acid aqueous solution, sulfuric acid A copper aqueous solution or the like can be used. The use of a plating bath used in the subsequent electroless plating as a solvent is preferable in that the plating bath can be diluted by a solvent component, pH fluctuation and contamination can be prevented.
[0020]
Further, the concentration of the polymer component in the treatment liquid is appropriately determined depending on the type and area of the electronic circuit substrate that is the object to be plated, the size of the wiring groove on the substrate, the type of component other than the polymer component in the treatment liquid, and the like. In general, it may be 0.1 mg / L to 10 g / L, preferably 10 mg / L to 1 g / L.
[0021]
What is necessary is just to prepare the preparation method of said process liquid by a normal method, such as mixing a polymer component with a suitable solvent. The conditions for immersing the electronic circuit board in the processing liquid are not particularly limited and may be appropriately determined depending on the components of the processing liquid. What is necessary is just to immerse for about 2 to 30 minutes.
[0022]
As described above, the substrate immersed in the solution containing the polymer component is thereafter subjected to an electroless copper plating bath according to a conventional method.
[0023]
As this electroless copper plating bath, there is no particular limitation, and any type of copper plating at room temperature bath or high temperature bath can be used, for example, a plating bath containing copper sulfate of a known electroless copper plating bath, A copper plating bath such as a plating bath containing copper nitrate can be used. In addition, a complexing agent such as EDTA, tartaric acid, quadrol, citric acid, and ethylenediamine, and a reducing agent such as formalin, glyoxylic acid, dimethylamine borane, hypophosphorous acid, and cobalt ions may be added to the plating bath. preferable. As the electroless copper plating bath, it is preferable to use a plating bath that does not involve a hydrogen gas generation reaction, such as a bath using divalent cobalt ions as a reducing agent.
[0024]
The conditions for performing the above electroless copper plating may also follow the normal conditions in each electroless copper plating bath. That is, in order to completely fill a wiring groove having a width of 0.25 μm and a depth of 1 μm on a silicon wafer using a copper sulfate plating bath in which the complexing agent is EDTA and the reducing agent is formalin, the bath temperature is 50 to 50 μm. The electroless copper plating may be performed for about 30 minutes at a temperature of about 70 ° C. and a bath pH of about 13.
[0025]
In the method of the present invention described above, as one preferred embodiment, for example, an electroless copper plating bath (liquid temperature: 25 ° C., pH: 12) having the composition described below, which first contains polyethylene glycol (molecular weight 4000) as a polymer component. .5) as a treatment solution for about 1 minute, and then using an electroless copper plating bath (bath temperature: 60 ° C., pH: 12.5) obtained by removing the polyethylene glycol component from the bath for 30 minutes. A method of electroless copper plating is mentioned.
[0026]
Electroless copper plating bath composition:
Copper sulfate 0.04mol / L
EDTA · 4Na 0.1 mol / L
HCHO 0.3 mol / L
Polyethylene glycol (molecular weight 4000) 500mg / L
pH 12.5 (adjusted with sodium hydroxide)
[0027]
[Action]
The copper wiring forming method of the present invention is a method of depositing and embedding copper from the bottom surface of a groove by applying electroless copper plating after adsorbing a polymer component on the surface of an electronic circuit substrate having fine grooves. It is. Such a method is possible for the following reason. That is, when an electronic circuit substrate on which a seed layer is formed is immersed in a processing solution, the polymer component in the processing solution is adsorbed on the surface portion of the substrate, but has a relatively high molecular weight, so that it is inside the wiring groove. Hardly penetrates and hardly adsorbs.
[0028]
Accordingly, a polymer component layer is formed mainly on the surface portion of the substrate. However, when electroless copper plating is performed on such a substrate, the polymer component is adsorbed on the substrate surface portion where the polymer component is adsorbed. In contrast to the copper precipitation being suppressed, the polymer component is hardly adsorbed inside the wiring groove, so that the copper is deposited from the bottom surface of the groove where the metal seed layer is formed. As described above, since copper plating proceeds from the bottom surface of the wiring groove toward the substrate surface, defects such as seam voids do not occur in the copper plating, and the copper is satisfactorily embedded in the groove. It is achieved.
[0029]
【Example】
Next, the present invention will be described in more detail with reference to examples and reference examples, but the present invention is not limited to these examples and the like.
Reference example 1
Fine circuit board sample preparation:
As a fine circuit board sample, a silicon wafer having a diameter of 200 mm in which a wiring groove having a width of 0.3 μm and a depth of 1 μm was prepared. For this substrate sample, a TaN barrier layer was first formed to a thickness of 20 nm, and a copper seed layer was formed to a thickness of 50 nm by sputtering. The copper seed layer was formed mainly on the surface of the substrate sample and the bottom surface of the wiring groove.
[0031]
Example 1
The substrate sample obtained in Reference Example 1 was immersed in a treatment liquid (pH 6.6) having the following composition containing polyethylene glycol as a polymer component at a liquid temperature of 25 ° C. for 1 minute to treat the substrate sample.
[0032]
(Composition of treatment liquid)
Figure 0003864138
[0033]
Next, this sample substrate was subjected to electroless copper plating for 30 minutes under the conditions of a bath temperature of 50 ° C. and a pH of 6.6 using a copper plating bath having the following composition.
[0034]
(Composition of copper plating bath)
1. Copper nitrate 0.05 mol / L
2. Cobalt nitrate 0.15 mol / L
3. Ethylenediamine 0.60 mol / L
4). 2,2'-bipyridyl 20mg / L
5). Ascorbic acid 0.01mol / L
6). Hydrogen chloride 0.005 mol / L
[0035]
When the cross section of the wiring groove of the sample substrate after electroless copper plating was observed using a field emission scanning electron microscope (FE-SEM), copper was deposited from the bottom of the wiring groove, and there was no gap in the groove. It was confirmed that was embedded. As described above, when the copper wiring forming method of the present invention is used, there is no fear that a defect such as a seam void remains in the wiring groove, so that a wiring with high electrical reliability can be formed.
[0036]
【The invention's effect】
The copper wiring formation method of the substrate of the present invention mainly deposits and deposits copper from the bottom surface of the wiring groove, so that no defects such as seam voids remain in the wiring groove, and highly reliable wiring is formed. Is something that can be done.
[0037]
Therefore, the method for forming a copper wiring of a substrate according to the present invention can be advantageously used for forming a fine circuit wiring of an electronic circuit substrate such as a silicon wafer.
more than

Claims (2)

微細な回路パターンが設けられ、金属シード層が形成された電子回路用基板に銅配線を形成する方法であって、該基板を、分子量が4000〜40000のポリエチレングリコール、分子量が600〜1000のポリプロピレングリコール、又は分子量が1000〜5000のエチレンオキサイド付加物、プロピレンオキサイド付加物若しくはそれらの混合物よりなる群から選ばれる1種または2種以上のポリマー成分を含有する処理液に浸漬した後、無電解銅めっきを行うことにより配線溝内に銅を充填させることを特徴とする基板の銅配線形成方法。A method of forming a copper wiring on an electronic circuit board on which a fine circuit pattern is provided and a metal seed layer is formed, wherein the board is made of polyethylene glycol having a molecular weight of 4000 to 40000, and polypropylene having a molecular weight of 600 to 1000 After immersing in a treatment liquid containing one or more polymer components selected from the group consisting of glycol, or ethylene oxide adduct having a molecular weight of 1000 to 5000, propylene oxide adduct or a mixture thereof , electroless copper A method of forming a copper wiring on a substrate, wherein the wiring trench is filled with copper by plating. 処理液中のポリマー成分の濃度が、0.1mg/L〜10g/Lである請求項第1項記載の基板の銅配線形成方法。  The method for forming a copper wiring on a substrate according to claim 1, wherein the concentration of the polymer component in the treatment liquid is 0.1 mg / L to 10 g / L.
JP2002367469A 2002-12-19 2002-12-19 Method for forming copper wiring on substrate Expired - Fee Related JP3864138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367469A JP3864138B2 (en) 2002-12-19 2002-12-19 Method for forming copper wiring on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367469A JP3864138B2 (en) 2002-12-19 2002-12-19 Method for forming copper wiring on substrate

Publications (2)

Publication Number Publication Date
JP2004197169A JP2004197169A (en) 2004-07-15
JP3864138B2 true JP3864138B2 (en) 2006-12-27

Family

ID=32764339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367469A Expired - Fee Related JP3864138B2 (en) 2002-12-19 2002-12-19 Method for forming copper wiring on substrate

Country Status (1)

Country Link
JP (1) JP3864138B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048447A1 (en) * 2005-08-31 2007-03-01 Alan Lee System and method for forming patterned copper lines through electroless copper plating

Also Published As

Publication number Publication date
JP2004197169A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4771945B2 (en) Multi-step electrodeposition method for direct copper plating on barrier metal
US6824665B2 (en) Seed layer deposition
US20060283716A1 (en) Method of direct plating of copper on a ruthenium alloy
JP5346215B2 (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
US7998859B2 (en) Surface preparation process for damascene copper deposition
US7968455B2 (en) Copper deposition for filling features in manufacture of microelectronic devices
US7285494B2 (en) Multiple stage electroless deposition of a metal layer
JP5203602B2 (en) Method for direct electroplating of copper onto a non-copper plateable layer
US20070125657A1 (en) Method of direct plating of copper on a substrate structure
US8138084B2 (en) Electroless Cu plating for enhanced self-forming barrier layers
US20020123220A1 (en) Method for forming Co-W-P-Au films
KR101170560B1 (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
US6398855B1 (en) Method for depositing copper or a copper alloy
US6495453B1 (en) Method for improving the quality of a metal layer deposited from a plating bath
KR20080100223A (en) Copper electrodeposition in microelectronics
US20050170650A1 (en) Electroless palladium nitrate activation prior to cobalt-alloy deposition
JP3864138B2 (en) Method for forming copper wiring on substrate
EP1063696A1 (en) A method for improving the quality of a metal-containing layer deposited from a plating bath
JP4343366B2 (en) Copper deposition on substrate active surface
KR100858873B1 (en) A method for forming damscene metal wire using copper electroless plating
Cui et al. Characterization of electroless-deposited ternary M1M2-R (M1= Co, Ni, M2= W, Mo, R= P, B) nano thin film for optical-sensor interconnects
van der Veen et al. Conformal Cu electroless seed on Co and Ru liners enables Cu fill by plating for advanced interconnects
EP1022355B1 (en) Deposition of copper on an activated surface of a substrate
JP2007246978A (en) Electroless plating liquid
JP2005154851A (en) Electroless copper plating liquid and electroless copper plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees