JP3838618B2 - Graphite carbon powder, production method and apparatus thereof - Google Patents

Graphite carbon powder, production method and apparatus thereof Download PDF

Info

Publication number
JP3838618B2
JP3838618B2 JP2000188948A JP2000188948A JP3838618B2 JP 3838618 B2 JP3838618 B2 JP 3838618B2 JP 2000188948 A JP2000188948 A JP 2000188948A JP 2000188948 A JP2000188948 A JP 2000188948A JP 3838618 B2 JP3838618 B2 JP 3838618B2
Authority
JP
Japan
Prior art keywords
container
carbon powder
carbon
heating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000188948A
Other languages
Japanese (ja)
Other versions
JP2001114506A (en
Inventor
邦夫 西村
繁 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000188948A priority Critical patent/JP3838618B2/en
Priority to US09/634,461 priority patent/US6783747B1/en
Publication of JP2001114506A publication Critical patent/JP2001114506A/en
Application granted granted Critical
Publication of JP3838618B2 publication Critical patent/JP3838618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂の導電性、熱伝導性等の物性改良のために複合材として添加されるフィラー材としての炭素、あるいは最近のLiイオン電池をはじめとする各種電池に使用される炭素材料を製造する際の熱処理装置ならびに熱処理方法に関する。
【0002】
【従来の技術】
近年、小型の携帯電話、ビデオカメラ、ノート型パソコン等のポータブル電子機器の発展が著しく、それにつれ高性能、小型の2次電池の需要が盛んになっている。特に、Liイオン2次電池は、エネルギー密度が高く、長寿命であることから、各種携帯用電子機器の電源として最適であり、近年急激な伸びを示しており、今後も増加が期待されている。
Liイオン2次電池の負極には、黒鉛材料が使用されており、電池の需要増加に伴い黒鉛粉末の需要が急増している。
【0003】
この電池材料や複合材用フィラーとして、易黒鉛化性の炭素材料が注目されており、種々研究されてきた。
例えば、この電池としての容量特性を上げるためには、黒鉛の結晶性を向上する必要があり、そのためにはまず、2500℃以上での熱処理での黒鉛化が必須である。
【0004】
通常、粉末状の黒鉛微粉を大量に造る方法としては、
1)易黒鉛化性材料を、高温処理して黒鉛化した材料を、粉砕して粉末とする方法。
2)易黒鉛化性材料を、予め粉砕した後、高温熱処理する方法。
の2通りが考えられる。
1)の方法は、各種のコークスを始めとする易黒鉛化性炭素材料を、電気を流した炭素詰粉中で詰粉の抵抗発熱により加熱処理する、いわゆるアチソン炉による黒鉛化、あるいは黒鉛ヒーターによる加熱炉等で黒鉛化する。その後、得られた黒鉛を粉砕して、黒鉛粉末を得る方法であり、現状は、この方法が主流となっている。しかしこの方法の欠点は、黒鉛化が進んだ炭素は、潤滑剤に使用されている如く、滑り易く、更に粉砕時に、鱗片状になりやすく、例えば電極板にしたときに表面に鱗片が配列し、表面が鏡面化し、電解液の浸透性が悪くなり、電池性能を低下させる原因になる。従って、1)の方法の黒鉛化後に粉砕する方法では、電池や各種複合材に適した良好な特性を満足する材料が得られない。
【0005】
2)の方法は、熱処理すべき原料のコークス等の易黒鉛化性炭素材料を予め、最適な粒度に粉砕しておいて、炭素製のるつぼ等に封入した後、黒鉛化のための炉に入れ、粉末状で黒鉛化する方法である。
この方法は、コークスが黒鉛に比較して粉砕が容易であり、なおかつ黒鉛品に比べ粉砕時に、鱗片状になり難いので、好ましい。
従って2)の方法が、Liイオン2次電池用負極材の炭素粉末として好適であるが、その熱処理に関しては、以下のような問題があった。
【0006】
熱処理の炭素材が粉体であるため、材料をるつぼ等の耐熱容器に詰めて熱処理する必要がある。このるつぼ等容器に入った材料を熱処理する装置、方法としては、種々考えられている。
例えば、前述したようなアチソン炉形式の詰粉コークス等の中にるつぼを埋め込み、この詰粉コークスに電流を流し、その発熱によりるつぼ内の炭素材を加熱、黒鉛化する方法がある。この方法の問題は、バッチ式であるため、炉の昇温、均熱、冷却のサイクル時間が長く、かつ詰粉の炉詰め作業、熱処理終了後の炉出し作業に手間がかかることで、生産性が著しく悪く、量産向きでない。
【0007】
更に、詰粉自体からの硫黄、金属等の発生ガスが被加熱物に混入し汚染する可能性が大きく、このようなガスの混入は、炭素粒子の特性を悪化させ、電池特性を低下させる原因となる。
また、詰粉の詰め具合等により、炉内の位置による温度分布がかなり変化するので、各るつぼのセット位置を極力、温度均一になるよう配置する必要があり、管理が難しい難点がある。また、これを補足するため比較的長時間かけて均熱化する必要があり、その結果炭素粉同士の固着が起こりやすく、再粉砕を要することもある。
【0008】
一方、ヒーターを使用した抵抗炉あるいは高周波誘導炉等がある。これらは管状の発熱帯を設け、管内径に合ったるつぼを連続して一方向から通し加熱できるようになったものである。これらは、炉からの発生ガスは無く、また連続して材料を熱処理することが可能である。
しかし、例えば、黒鉛等をヒーターとし、黒鉛管等の管体を加熱する方式では、管体からの伝熱及び輻射でるつぼ及びその中の粉体を加熱するため、被加熱物の温度を3000℃近くまで上げるには、ヒーター自体を3000℃よりかなり高い温度に上げる必要がある。しかしながら、3000℃以上になるとヒーターの消耗が激しく、ヒーターの寿命も短い。また、処理量を上げるためには、るつぼ自体を大きくする必要があり、それにともなって管体を大きくせねばならず、またヒーター本数を増す等で設備コストが嵩むこととなる。従って工業的には難しい。
【0009】
高周波を用い、誘導電流により加熱を行う方式もある。この方法も黒鉛管内にるつぼ等の容器にいれた材料を連続に送れる点では、効率が良い。しかし、材料が粉体であるため、被加熱物自体の誘導加熱を利用するには、抵抗が大きく、るつぼあるいは、管体自身の誘導発熱に頼らざるを得ない。
従って、管体からの放熱加熱が主となるため、3000℃以上の加熱には、管体の消耗、劣化が激しく、また管体は高価である。また、誘導コイル、高周波発振器等装置が大掛かりになり、処理量を増やすためには、膨大な装置となり、装置費用、保守管理も大変である。
【0010】
なお、粉末を入れたるつぼ等を使用した熱処理の問題は、いずれの装置においても、嵩密度が小さく、充填率が低いので、粉末自体の導電、伝熱が悪いため、るつぼ自体を大きくできない点が共通の問題であり、このことから大型化ができなかった。
【0011】
【発明が解決しようとする課題】
本発明は、易黒鉛化性材料をあらかじめ粉体あるいは粒体にしたものを高温、例えば2500℃以上で黒鉛化するにあたって、
1)短時間に効率よく多量に安価に黒鉛化する方法、装置。
2)短時間の熱処理で極力焼結を防止する。
3)黒鉛化時に不純物ガスの混入がなく電池用使用特性に影響の無いようにする。
4)装置の部品交換、等ランニング費用があまりかからない。
などを解決課題とした。
【0012】
これらの問題を解決するために種々検討を重ねた結果、容器自体に通電し発熱させることにより良好な黒鉛粉末を得ることが出来た。即ち、本発明は基本的には以下の発明からなる。
1)炭素製の容器に炭素粉末を充填し、容器自体に電流を流して加熱昇温することを特徴とする炭素粉末の加熱方法であり、これを2)加熱室内に炭素粉末を充填した炭素容器の送入部と、通電加熱用ターミナル電極を備えた加熱部と加熱後の炭素容器の取出し部を備え、前記炭素容器を加熱室内の送入部、加熱部、取出し部の順に移動させ、加熱部において通電加熱することからなる炭素粉末の加熱装置、として装置化したものである。この方法を使用することにより、結晶のC軸方向の層間距離(C0)が6.730以下の黒鉛化された炭素粉末が得られる。さらに、この粉末を材料として例えばポリビニリデンフルオライド粉末を数%添加しN−メチルピロリドン(NMP)等にて混練、銅メッシュ上に圧着、乾燥させリチウムイオン2次電池用の負極電極とすることができる。
【0013】
【発明の実施の形態】
さらに詳細に本発明について説明すれば、
るつぼに相当する容器を発熱体とすることが本発明のポイントである。発熱体として用いる容器は、長さ方向に垂直な方向に少なくとも1ヶ所以上切断分割されており、分割された各容器部分が組み立てられて容器形状をなしているために、通電加熱時に、各容器部分間の接触抵抗が主たる抵抗発熱部となっている。このため、急速発熱、急速冷却が可能であり、生産性が高い。
また、切断されていない数個のるつぼを並べて、はさんで通電することによって切断された構造のものと同等の効果をだすこともできる。
【0014】
容器は、発熱体であるため導電性のある抵抗体で、不純物の発生の少なく、また3000℃以上の耐熱性のあること等が必要であり、この意味で炭素製、好ましくは黒鉛製が適している。
図1に容器の概念図を示す。容器断面は、丸でも角でも良いが、内部の加熱を均一にするためには、丸のほうが好ましい。容器へ粉末を挿入後、一端にねじ込み等で密着する蓋9となるようなものを付け、両端から通電する。
図中の開口部10は、後述するように、通電加熱を行う前に、不活性ガスによる置換を行うことが好ましいため、これを容易にするための通気孔である。
図中14の各容器部分の接触部は、クリアランスの大きなバカねじ等にしておく方法、あるいは接触部にカーボン製のリング状物等を嵌めこむ方法などにより通電加熱に必要十分な接触抵抗を確保できる。
また、切断された1個1個の部分を単独のるつぼとして積み上げ、同等の効果を発揮させることもできる。
【0015】
実用面から考えると、容器の大きさは、大きいほど1回の処理量は多くなり、生産しやすくなる。しかし、伝熱の悪い粉末部分の厚さが厚くなるため、伝熱に時間がかかる。あるいは加熱装置自体等が大きくなり、設備投資額が大きくなる。そのため、容器サイズは、製品コストを勘案し、生産量見合いのサイズとすることが望ましい。
【0016】
本発明は、容器自体が発熱体となり、容器内の粉末を加熱するため、容器の外周は、断熱材の壁を設けるだけでよい。
【0017】
次に前述したように、加熱時にカーボン粉末自身から金属不純物ガスが発生するので、これが容器内でトラップされることを避けるために、加熱時に発生する該不純物がるつぼから外へ出易いように図1の10に示したごとく穴を開けておく。
【0018】
更に、通電中の昇温加熱時及びその後の冷却まで不活性ガスを流し続け、発生ガス、不純物を不活性ガスとともに追い出すことにより、従来法よりより高純度の材料を製造することができる。不活性ガスは、ヘリウム、アルゴン、クリプトン、ネオン等いずれのガスでもよいが、価格的にはアルゴンが好ましい。
【0019】
炭素粉末の加熱処理は、黒鉛化での結晶性を上げるためには、2500℃以上での熱処理が必要である。ただし、あまり熱処理温度が高すぎると、容器自体の損耗が起き、また被加熱炭素粉末自体の黒鉛化効果も限界となるため、上限は3300℃である。
【0020】
なお、これらるつぼ及び炭素粉末を真空にしガス置換を行う工程、不活性ガスを流しながら通電加熱を行う工程、通電停止後、冷却を行う工程等をすべて一つの断熱室内で行うことも出来る。その場合、容器は1つでも良いし、通電装置を数個置けば複数個同時に処理できる。更に、この容器を多数準備し、連続的に順次、容器の導入、容器の真空吸引、不活性ガス供給、通電、容器取出しを行う装置を設置し、大量生産を可能とすることも本発明の主旨である。
【実施例】
【0021】
図2に本発明の装置の例を示し、説明する。図2は、連続熱処理装置の一例で、中央に通電加熱用のターミナル電極1、1‘を備えた連通した断熱室からなっている。容器2に詰められた粉末3はるつぼの入口aから順次真空、ガス置換室bから炉室cへ送られ、通電加熱ゾーンd、冷却ゾーンeを経て外気から閉鎖された冷却室fを通り出口gを通って排出されていく。
移動方法は、滑りやすくしたレール形状のスライド部を有する板、又はローラーコンベヤー等の床上をプッシャーあるいはコンベヤー等の搬送手段により、横、縦方向へ容器を移動させる。真空及びガス置換のための真空、ガス置換室bの入口、出口にはシャッター5、5‘により外気を遮断できるようになっている。
【0022】
ガス置換室b内に容器を入れる場合、出口シャッター5‘は閉じてある。容器は、入口シャッター5を開け押し入れられ、入口シャッター5が閉められた後、一旦室内を真空に引いた後、アルゴンガスを導入することによりガス置換される。
【0023】
その後、ガス置換室bの出口シャッターを開き、予めアルゴンガスが流されている加熱用の室cへ入る。
連続して容器を多数加熱するため、加熱用の室cは入り側である程度の温度が保たれているが、通電後の容器は冷却が必要であるため、冷却室は内壁がカーボン製の断熱材で覆われ、外壁が水冷ジャケット6‘で覆われている。
【0024】
容器を通電するためのターミナル電極1、1‘を介して電流が流されるが、容器の移動時に邪魔にならないよう、片側のターミナル電極1は、例えば容器受入時に通電方向に移動できるようになっている。
容器が定位置に来た後、容器を挟み込むようにしてターミナル電極がセットされ、通電される。
なお、図には示されていないが、必要に応じてターミナル電極は複数個設置しても良い。
【0025】
通電開始後、中心まで実質的に温度が均一になるまで一定時間保持し、所定の熱処理が終了するまで加熱する。
【0026】
その後、ターミナル電極から、るつぼを外し冷却ゾーンへ移動し、断熱材と水冷ジャケットからなる冷却帯を通す。最終的には、アルゴンガスで満たされ、外壁が水冷ジャケットで冷却された排出室fへ送られシャッター7、7‘の閉まった状態で一定時間冷却され、所定温度に冷却された後、シャッター7’が開けられ、出口から外部に排出される。
【0027】
容器排出後、室fは再度シャッター7‘が閉められ、一旦真空に引かれた後、再度アルゴンガスが満たされ、次の容器を待つ。
【0028】
次に、この装置を用い、本発明方法により黒鉛化を行った例を示す。
(実施例1) 図1の概念図に示すような外径200cm、肉厚20mm、分割個数6個、分割された各容器部分が接する各面に炭素繊維シートを嵌めこんだ全体長さ70mmの円筒形の黒鉛るつぼ状の容器にねじ込みの黒鉛製蓋を付け、蓋には20mm径の通気孔を2個開けた。
【0029】
該るつぼへ、あらかじめ平均粒径20μmに破砕分級した新日鉄化学製コークス粉を挿入し、蓋をした。このるつぼを真空室に入れ、真空ポンプにより、室を真空度で20mmHg以下にした。真空バルブを閉じ、アルゴンガスを入れ、室内を常圧に戻した。その時点で、アルゴン雰囲気の加熱室へ移動し、るつぼ両端に電極をセットし、直流電源にて徐々に通電を行った。
【0030】
約2hr後、3100℃に達したことを確認し、そのまま20分保持した。その後、電流を切り、冷却し400℃になった時点で、装置から出し、大気中に放置し、るつぼ内の粉末を回収した。
【0031】
得られた、粉末の黒鉛化度を計るため、結晶性をX線回折法で分析したところ、C0=6.728 Åであり、アチソン炉でバッチ黒鉛化したものと同等であり、負極材用黒鉛として使用に耐えるものであった。また、不純物としてのFe,Nd等は、50ppm以下であった。
【0032】
(比較例1)実施例1と同様の材料、条件にて加熱処理を行った。ただし、るつぼは通気のための開口部を付けなかった。
(比較例2)実施例1と同様の容器、材料、条件にて加熱処理を行った。ただし、加熱前に真空、アルゴンガス置換を行わず、加熱中もアルゴン雰囲気でなかった。
上記の比較例1、2では、不純物としてのFe,Ndは、各々150、420ppmとなり増加した。
(比較例3)実施例1と同様の容器、材料、にて加熱処理を行った。加熱は、2400℃に達した時点で、2hr保持後、実施例1と同様冷却、処理した。この粉末の結晶性を測定した結果、C0=6.738Åで黒鉛化がやや劣っていた。
【0033】
【発明の効果】
本発明によれば、Liイオン電池用の炭素材料をあらかじめ粉体あるいは粒体にしたものを2500℃以上の高温で黒鉛化するにあたり、粉体あるいは粒体の容器を直接通電し加熱することにより、またその複数の容器の加熱を連続に処理できるように装置化することにより、比較的簡単な装置により、不純物の混入の無い該電池用として最適な黒鉛粉末を、効率良く多量に、また短時間に製造できる。
また、装置、容器の消耗が殆どないのでコスト的にも安価に製造が可能である。更に、本法は、ボロン等の黒鉛化触媒を混合した炭素粉末を黒鉛化するときには、短時間の黒鉛化処理のため燒結せず、しかも黒鉛化を効率的に達成でき、すぐれた方法であった。
【図面の簡単な説明】
【図1】本発明に使用する容器の例の断面図である。
【図2】本発明の容器を連続に熱処理する装置の例である。
【符号の説明】
1、1‘ 通電用電極
2 容器
3 被加熱物(炭素粉末)
4 真空ポンプ
5、5‘ 遮断弁
6、6‘ 冷却ジャケット
7、7‘ 遮断弁
8 炭素容器
9 容器蓋
10 開口部
11 成型体(炭素)
a るつぼ投入口
b ガス置換室
c 炉室
d 通電加熱ゾーン
e 冷却ゾーン
f ガス置換室
g るつぼ出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to carbon as a filler material added as a composite material for improving physical properties such as resin conductivity and thermal conductivity, or carbon materials used in various batteries including recent Li-ion batteries. The present invention relates to a heat treatment apparatus and a heat treatment method for manufacturing.
[0002]
[Prior art]
In recent years, portable electronic devices such as small mobile phones, video cameras, and notebook computers have been remarkably developed, and accordingly, demand for high-performance, small-sized secondary batteries has been increasing. In particular, Li-ion secondary batteries have a high energy density and a long life, so that they are optimal as power sources for various portable electronic devices, have shown rapid growth in recent years, and are expected to increase in the future. .
A graphite material is used for the negative electrode of the Li ion secondary battery, and the demand for graphite powder is rapidly increasing as the demand for batteries increases.
[0003]
As the battery material and the filler for composite materials, an easily graphitizable carbon material has attracted attention and has been studied in various ways.
For example, in order to improve the capacity characteristics of this battery, it is necessary to improve the crystallinity of graphite. For this purpose, first, graphitization by heat treatment at 2500 ° C. or higher is essential.
[0004]
Usually, as a method of making a large amount of powdery graphite fine powder,
1) A method in which a graphitized material obtained by subjecting an easily graphitizable material to high temperature treatment is pulverized into a powder.
2) A method in which a graphitizable material is pulverized in advance and then heat-treated at a high temperature.
There are two possible ways.
In the method 1), a graphitizable carbon material such as various cokes is heat-treated by resistance heating of the filling powder in a carbon filling with electricity, or graphitization using a so-called Atchison furnace, or a graphite heater. Graphitize in a heating furnace or the like. Thereafter, the obtained graphite is pulverized to obtain a graphite powder. At present, this method is mainly used. However, the disadvantage of this method is that graphitized carbon is slippery, as used in lubricants, and more likely to be scaly when pulverized. For example, when it is made into an electrode plate, scaly is arranged on the surface. The surface becomes a mirror surface, the permeability of the electrolytic solution is deteriorated, and the battery performance is deteriorated. Therefore, in the method of pulverizing after graphitization in the method 1), a material satisfying good characteristics suitable for batteries and various composite materials cannot be obtained.
[0005]
In the method 2), an easily graphitizable carbon material such as coke as a raw material to be heat-treated is pulverized to an optimum particle size in advance and sealed in a carbon crucible or the like and then placed in a furnace for graphitization. It is a method of putting and graphitizing in powder form.
This method is preferable because coke is easier to pulverize than graphite and is less likely to be scale-like when pulverized compared to graphite.
Therefore, the method 2) is suitable as the carbon powder of the negative electrode material for a Li ion secondary battery, but the heat treatment has the following problems.
[0006]
Since the carbon material to be heat-treated is powder, it is necessary to heat-treat the material in a heat-resistant container such as a crucible. Various apparatuses and methods for heat-treating materials contained in containers such as crucibles have been considered.
For example, there is a method of embedding a crucible in the above-described Atchison furnace-type filling coke, passing a current through the filling coke, and heating and graphitizing the carbon material in the crucible by the heat generation. The problem with this method is that it is a batch type, so the cycle time of furnace heating, soaking, and cooling is long, and it takes time to fill the furnace and fill the furnace after heat treatment. It is not very suitable for mass production.
[0007]
Furthermore, there is a high possibility that gas generated from the filling powder itself, such as sulfur and metal, will be contaminated by being mixed with the object to be heated. Such gas contamination will deteriorate the characteristics of the carbon particles and reduce the battery characteristics. It becomes.
In addition, since the temperature distribution depending on the position in the furnace changes considerably depending on the filling condition of the packing powder, it is necessary to arrange the crucibles at the set positions so that the temperature is as uniform as possible, which is difficult to manage. Moreover, in order to supplement this, it is necessary to perform soaking over a relatively long period of time. As a result, the carbon powders tend to stick together and may require re-grinding.
[0008]
On the other hand, there are a resistance furnace using a heater or a high frequency induction furnace. These are provided with a tubular tropics and can be heated continuously through a crucible matching the inner diameter of the tube from one direction. These are free of gas generated from the furnace and can continuously heat treat the material.
However, for example, in a system in which graphite or the like is used as a heater and a tube body such as a graphite tube is heated, the temperature of the object to be heated is 3000 because the crucible and the powder therein are heated by heat transfer and radiation from the tube body. In order to raise it to near 0 ° C., it is necessary to raise the heater itself to a temperature considerably higher than 3000 ° C. However, when the temperature is higher than 3000 ° C., the heater is consumed rapidly and the life of the heater is short. Further, in order to increase the processing amount, it is necessary to enlarge the crucible itself, and accordingly, the pipe body must be enlarged, and the equipment cost increases due to an increase in the number of heaters. Therefore, it is difficult industrially.
[0009]
There is also a method of heating by induction current using high frequency. This method is also efficient in that the material contained in a container such as a crucible can be continuously fed into the graphite tube. However, since the material is powder, in order to use induction heating of the object to be heated, the resistance is large, and it is necessary to rely on induction heat generation from the crucible or the tube itself.
Accordingly, heat radiation from the tube is mainly used, so that the tube is heated and heated at 3000 ° C. or more. In addition, an induction coil, a high-frequency oscillator, and the like become large-scale, and in order to increase the processing amount, the apparatus becomes enormous, and the apparatus cost and maintenance management are difficult.
[0010]
In addition, the problem of heat treatment using a crucible containing powder is that the crucible itself cannot be enlarged because the bulk density is low and the filling rate is low in any apparatus, because the powder itself has poor conductivity and heat transfer. Is a common problem, and it was not possible to increase the size.
[0011]
[Problems to be solved by the invention]
In the present invention, when graphitizing an easily graphitizable material previously powdered or granulated at a high temperature, for example, 2500 ° C. or higher,
1) A method and apparatus for efficiently graphitizing a large quantity efficiently in a short time.
2) Sintering is prevented as much as possible by a short heat treatment.
3) Impurity gas is not mixed at the time of graphitization so that the battery use characteristics are not affected.
4) There is not much running cost such as replacement of equipment parts.
And so on.
[0012]
As a result of various studies to solve these problems, it was possible to obtain a good graphite powder by energizing the container itself to generate heat. That is, the present invention basically includes the following inventions.
1) A carbon powder heating method characterized in that a carbon container is filled with carbon powder, and an electric current is supplied to the container itself to raise the temperature by heating, and this is 2) carbon filled with carbon powder in the heating chamber. A container feeding section, a heating section equipped with a terminal electrode for energization heating and a carbon container take-out section after heating, moving the carbon container in the order of the feeding section in the heating chamber, the heating section, and the take-out section; The apparatus is an apparatus for heating carbon powder, which consists of conducting heating in the heating section. By using this method, carbon powder C axis direction of the interlayer distance of the crystal (C0) has been graphitized below 6.730 Å are obtained. Furthermore, using this powder as a material, for example, adding a few percent of polyvinylidene fluoride powder, kneading with N-methylpyrrolidone (NMP), etc., pressing on a copper mesh, and drying to form a negative electrode for a lithium ion secondary battery Can do.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
If the present invention is described in more detail,
The point of the present invention is to use a container corresponding to the crucible as a heating element. A container used as a heating element is cut and divided in at least one place in a direction perpendicular to the length direction, and each divided container part is assembled into a container shape. The contact resistance between the parts is the main resistance heating part. For this reason, rapid heat generation and rapid cooling are possible, and productivity is high.
In addition, by arranging several crucibles that are not cut and energizing them, the same effect as that of the cut structure can be produced.
[0014]
Since the container is a heating element, it is a conductive resistor, needs to generate less impurities, and has a heat resistance of 3000 ° C. or higher. In this sense, it is made of carbon, preferably made of graphite. ing.
FIG. 1 shows a conceptual diagram of the container. The cross section of the container may be round or square, but a round shape is preferred in order to make the internal heating uniform. After the powder is inserted into the container, a lid 9 is attached to one end by screwing or the like, and energized from both ends.
As will be described later, the opening 10 in the figure is a ventilation hole for facilitating this because it is preferable to perform replacement with an inert gas before conducting heating with electricity.
The contact part of each container part 14 in the figure secures sufficient contact resistance necessary for energization heating by using a method such as a loose screw with a large clearance, or a method of fitting a carbon ring or the like into the contact part. it can.
Moreover, the cut | disconnected part can be piled up as a single crucible, and the same effect can also be exhibited.
[0015]
From a practical point of view, the larger the container size, the greater the amount of processing at one time, making it easier to produce. However, since the thickness of the powder part with poor heat transfer becomes thick, heat transfer takes time. Or the heating apparatus itself etc. will become large, and the amount of capital investment will become large. Therefore, it is desirable that the container size is a size that is commensurate with the production amount in consideration of the product cost.
[0016]
In the present invention, since the container itself becomes a heating element and heats the powder in the container, the outer periphery of the container only needs to be provided with a wall of a heat insulating material.
[0017]
Next, as described above, since metal impurity gas is generated from the carbon powder itself during heating, in order to avoid the trapping of this in the container, the impurities generated during the heating are easily removed from the crucible. Make holes as shown in 1 of 10.
[0018]
Furthermore, a material having higher purity than that of the conventional method can be manufactured by continuously flowing an inert gas during heating and heating during energization and subsequent cooling to drive out generated gas and impurities together with the inert gas. The inert gas may be any gas such as helium, argon, krypton, or neon, but argon is preferable in terms of price.
[0019]
The heat treatment of the carbon powder requires a heat treatment at 2500 ° C. or higher in order to increase the crystallinity during graphitization. However, if the heat treatment temperature is too high, the container itself is worn and the graphitization effect of the heated carbon powder itself is also limited, so the upper limit is 3300 ° C.
[0020]
It should be noted that the steps of performing gas replacement by evacuating the crucible and the carbon powder, the step of conducting heating while flowing an inert gas, the step of cooling after stopping energization, etc. can all be performed in one heat insulating chamber. In that case, the number of containers may be one, or a plurality of current-carrying devices can be simultaneously processed. Furthermore, it is also possible to prepare a large number of these containers and install a device for sequentially introducing the containers, vacuuming the containers, supplying inert gas, energizing, and taking out the containers to enable mass production. The main point.
【Example】
[0021]
FIG. 2 shows and describes an example of the apparatus of the present invention. FIG. 2 shows an example of a continuous heat treatment apparatus, which is composed of a continuous heat insulating chamber provided with terminal electrodes 1 and 1 ′ for electric heating at the center. The powder 3 packed in the container 2 is sequentially sent from the crucible inlet a to the vacuum, from the gas replacement chamber b to the furnace chamber c, through the energizing heating zone d and the cooling zone e, through the cooling chamber f closed from the outside air, and then exited. It is discharged through g.
In the moving method, a container is moved in the horizontal and vertical directions on a plate having a rail-shaped slide portion made easy to slide, or on a floor such as a roller conveyor, by a transporting means such as a pusher or a conveyor. The outside air can be shut off by shutters 5 and 5 ′ at the vacuum and the vacuum for gas replacement and at the inlet and outlet of the gas replacement chamber b.
[0022]
When the container is placed in the gas replacement chamber b, the exit shutter 5 ′ is closed. The container is purged by opening the inlet shutter 5 and closing the inlet shutter 5, and then evacuating the chamber once and then introducing argon gas.
[0023]
Thereafter, the outlet shutter of the gas replacement chamber b is opened, and the gas replacement chamber b enters the heating chamber c in which argon gas is flowed in advance.
In order to heat many containers continuously, the heating chamber c is kept at a certain temperature on the entrance side, but since the energized container needs to be cooled, the cooling chamber has an inner wall made of carbon. The outer wall is covered with a water cooling jacket 6 '.
[0024]
An electric current is passed through the terminal electrodes 1 and 1 'for energizing the container, but the terminal electrode 1 on one side can be moved in the energizing direction when receiving the container, for example, so as not to disturb the movement of the container. Yes.
After the container reaches a fixed position, the terminal electrode is set and energized so as to sandwich the container.
Although not shown in the figure, a plurality of terminal electrodes may be provided as necessary.
[0025]
After energization is started, the temperature is maintained for a certain time until the temperature becomes substantially uniform until the center, and heating is performed until a predetermined heat treatment is completed.
[0026]
Then, remove the crucible from the terminal electrode, move to the cooling zone, and pass the cooling zone consisting of the heat insulating material and the water cooling jacket. Finally, it is sent to the discharge chamber f filled with argon gas, and the outer wall is cooled by a water cooling jacket, cooled for a predetermined time with the shutters 7 and 7 'closed, and cooled to a predetermined temperature, and then the shutter 7 'Is opened and discharged from the exit.
[0027]
After the container is discharged, the shutter 7 'is closed again in the chamber f, and after being evacuated, the chamber is filled with argon gas and waits for the next container.
[0028]
Next, an example in which this apparatus is used for graphitization by the method of the present invention will be described.
(Example 1) As shown in the conceptual diagram of FIG. 1, the outer diameter is 200 cm, the wall thickness is 20 mm, the number of divisions is 6, and the total length of 70 mm is obtained by fitting a carbon fiber sheet to each surface that comes into contact with each divided container part. A cylindrical graphite crucible-like container was provided with a screwed graphite lid, and two 20 mm diameter vent holes were formed in the lid.
[0029]
Coke powder made by Nippon Steel Chemical, which had been crushed and classified to an average particle size of 20 μm in advance, was inserted into the crucible and covered. This crucible was put into a vacuum chamber, and the chamber was adjusted to a vacuum degree of 20 mmHg or less by a vacuum pump. The vacuum valve was closed, argon gas was introduced, and the room was returned to normal pressure. At that time, it moved to the heating chamber of argon atmosphere, the electrode was set in the both ends of the crucible, and it energized gradually with DC power supply.
[0030]
After about 2 hours, it was confirmed that the temperature reached 3100 ° C., and was maintained for 20 minutes. Thereafter, the current was turned off, and after cooling to 400 ° C., the product was taken out from the apparatus and left in the atmosphere to collect the powder in the crucible.
[0031]
In order to measure the degree of graphitization of the obtained powder, the crystallinity was analyzed by X-ray diffractometry. As a result, C0 = 6.7286, which is equivalent to that obtained by batch graphitization in an Atchison furnace, It can withstand use as graphite. Moreover, Fe, Nd, etc. as impurities were 50 ppm or less.
[0032]
(Comparative Example 1) Heat treatment was performed under the same materials and conditions as in Example 1. However, the crucible did not have an opening for ventilation.
(Comparative Example 2) Heat treatment was performed in the same container, material and conditions as in Example 1. However, vacuum and argon gas replacement were not performed before heating, and the atmosphere was not argon even during heating.
In Comparative Examples 1 and 2, Fe and Nd as impurities increased to 150 and 420 ppm, respectively.
(Comparative Example 3) Heat treatment was performed in the same container and material as in Example 1. When the temperature reached 2400 ° C., it was cooled and treated in the same manner as in Example 1 after being held for 2 hours. As a result of measuring the crystallinity of this powder, graphitization was slightly inferior at C0 = 6.738%.
[0033]
【The invention's effect】
According to the present invention, in order to graphitize a carbon material for a Li-ion battery that has been powdered or granulated in advance at a high temperature of 2500 ° C. or higher, the powder or granule container is directly energized and heated. In addition, by adopting an apparatus so that the heating of the plurality of containers can be processed continuously, a relatively simple apparatus can be used to efficiently and quickly produce a graphite powder that is optimal for the battery free of impurities. Can be manufactured on time.
Further, since the apparatus and the container are hardly consumed, the production can be made at low cost. Furthermore, this method is an excellent method for graphitizing carbon powder mixed with a graphitization catalyst such as boron, because it does not cause sintering due to a short-time graphitization treatment, and can achieve graphitization efficiently. It was.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a container used in the present invention.
FIG. 2 is an example of an apparatus for continuously heat-treating the container of the present invention.
[Explanation of symbols]
1, 1 'Electrode for energization 2 Container 3 Object to be heated (carbon powder)
4 Vacuum pump 5, 5 ′ shutoff valve 6, 6 ′ cooling jacket 7, 7 ′ shutoff valve 8 carbon container 9 container lid 10 opening 11 molded body (carbon)
a crucible inlet b gas replacement chamber c furnace chamber d current heating zone e cooling zone f gas replacement chamber g crucible outlet

Claims (7)

炭素材料を予め粉砕し炭素粉末としたものを炭素製の容器に充填し、該容器が複数個積重ねられた状態で、積重ねた容器の両端から電流を流し、積重ねた容器の接触面の抵抗を主たる抵抗発熱源として容器の抵抗発熱により該炭素粉末を加熱昇温し黒鉛化することを特徴とする黒鉛炭素粉末の製造方法。The carbon material is pulverized and filled with carbon powder in a carbon container. In a state where a plurality of the containers are stacked, a current is passed from both ends of the stacked containers to reduce the resistance of the contact surfaces of the stacked containers. A method for producing graphitic carbon powder, characterized in that the carbon powder is heated and heated to graphitize by resistance heat generation in a container as a main resistance heat source. 容器が長さ方向に対し垂直方向に切断分割されており、分割された各容器部分は組み立てられて一つの容器形状を構成する炭素製の容器に、炭素材料を予め粉砕し炭素粉末としたものを充填し、該容器に電流を流して該容器の抵抗発熱により該炭素粉末を加熱昇温し黒鉛化することを特徴とする黒鉛炭素粉末の製造方法。  The container is cut and divided in a direction perpendicular to the length direction, and each divided container part is assembled into a carbon container that forms one container shape, and a carbon material is pulverized in advance into a carbon powder. The carbon powder is graphitized by heating and heating the carbon powder by resistance heat generation of the container by flowing an electric current through the container. 容器が長さ方向に対し垂直方向に切断分割されており、分割された各容器部分は組み立てられて一つの容器形状を構成する炭素製の容器に、炭素材料を予め粉砕し炭素粉末としたものを充填し、該容器が複数個積み重ねられた状態で、積重ねた容器の両端から電流を流し、積み重ねた容器の接触面の抵抗を主たる抵抗発熱源として容器の抵抗発熱により該炭素粉末を加熱昇温し黒鉛化することを特徴とする黒鉛炭素粉末の製造方法。The container is cut and divided in a direction perpendicular to the length direction, and each divided container part is assembled into a carbon container that forms one container shape, and a carbon material is pulverized in advance into a carbon powder. In a state where a plurality of the containers are stacked, current is passed from both ends of the stacked containers, and the resistance of the contact surfaces of the stacked containers is used as the main resistance heat source to heat up the carbon powder by the resistance heat generation of the containers. A method for producing graphitic carbon powder, characterized by heating and graphitizing. 加熱時に前記容器及び被加熱粉末を不活性ガス雰囲気下におくことを特徴とする請求項1乃至3のいずれかに記載の黒鉛炭素粉末の製造方法。  The method for producing a graphitic carbon powder according to any one of claims 1 to 3, wherein the container and the powder to be heated are placed in an inert gas atmosphere during heating. 前記容器に、ガス置換可能な開口部を有し、この開口部からガス置換を行うことを特徴とする請求項1乃至4のいずれかに記載の黒鉛炭素粉末の製造方法。  The method for producing graphite carbon powder according to any one of claims 1 to 4, wherein the container has an opening capable of gas replacement, and gas replacement is performed from the opening. 炭素粉末を2500〜3300℃に加熱処理することを特徴とする請求項1乃至5のいずれかに記載の黒鉛炭素粉末の製造方法。  The method for producing graphitic carbon powder according to any one of claims 1 to 5, wherein the carbon powder is heat-treated at 2500 to 3300 ° C. 黒鉛炭素粉末の結晶層面間隔C0=6.730Å以下であることを特徴とする請求項6に記載の黒鉛炭素粉末の製造方法。  7. The method for producing a graphite carbon powder according to claim 6, wherein the crystal layer spacing C0 of the graphite carbon powder is 6.730 mm or less.
JP2000188948A 1999-08-06 2000-06-23 Graphite carbon powder, production method and apparatus thereof Expired - Fee Related JP3838618B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000188948A JP3838618B2 (en) 1999-08-06 2000-06-23 Graphite carbon powder, production method and apparatus thereof
US09/634,461 US6783747B1 (en) 1999-08-06 2000-08-07 Graphite carbon powder, and method and apparatus for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22356599 1999-08-06
JP11-223565 1999-08-06
JP2000188948A JP3838618B2 (en) 1999-08-06 2000-06-23 Graphite carbon powder, production method and apparatus thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006184150A Division JP2006306724A (en) 1999-08-06 2006-07-04 Graphite carbon powder and method and apparatus for producing the same

Publications (2)

Publication Number Publication Date
JP2001114506A JP2001114506A (en) 2001-04-24
JP3838618B2 true JP3838618B2 (en) 2006-10-25

Family

ID=26525552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188948A Expired - Fee Related JP3838618B2 (en) 1999-08-06 2000-06-23 Graphite carbon powder, production method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP3838618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059467B2 (en) 2011-10-21 2015-06-16 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
US9284192B2 (en) 2011-10-21 2016-03-15 Showa Denko K.K. Method for producing electrode material for lithium ion batteries

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204596A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Raw material calcination method and raw material calcination device
KR101617255B1 (en) * 2010-09-30 2016-05-02 가부시키가이샤 아이에이치아이 Graphitization furnace and method for producing graphite
EP3144276A4 (en) * 2014-05-12 2017-12-13 IHI Corporation Graphitization furnace
JP5778364B1 (en) * 2015-01-21 2015-09-16 Secカーボン株式会社 Crucible and method for producing carbon material using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059467B2 (en) 2011-10-21 2015-06-16 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
US9284192B2 (en) 2011-10-21 2016-03-15 Showa Denko K.K. Method for producing electrode material for lithium ion batteries

Also Published As

Publication number Publication date
JP2001114506A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
Chen et al. Ultrafast sintering for ceramic‐based all‐solid‐state lithium‐metal batteries
KR101495583B1 (en) Graphitization furnace and method for producing graphite
JP6652487B2 (en) Process for the preparation of SiOx with nanoscale filament structure and its use as anode material in lithium ion batteries
US6783747B1 (en) Graphite carbon powder, and method and apparatus for producing the same
CN107326155B (en) A kind of rare earth permanent magnet vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN104386682B (en) Graphitization furnace and method for heat treatment of graphite powder by virtue of graphitization furnace
JP3838618B2 (en) Graphite carbon powder, production method and apparatus thereof
US20170222260A1 (en) Solid electrolyte powder, all-solid-state lithium ion secondary battery, and method of manufacturing solid electrolyte powder
US10611644B2 (en) Equipment and process for preparing silicon oxides
CN108172791B (en) Composite negative electrode material, preparation method thereof and lithium ion battery
JP2006306724A (en) Graphite carbon powder and method and apparatus for producing the same
CN107326156B (en) A kind of Nd-Fe-B permanent magnetic vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN101570321A (en) Method for preparing BixSbyTe(3-z) thermoelectric material with high performance and nano structure
JP3787241B2 (en) Graphite production equipment
TWI546253B (en) A method for the preparation of carbonaceous materials
CN209974308U (en) Microwave reduction puffing equipment for continuous preparation of graphene
CN104711444B (en) A kind of method of quick preparation high-performance SiGe high temperature thermoelectric alloy materials
CN115196687A (en) System and method for recycling aged cation disordered lithium-rich cathode material
JP3600640B2 (en) Heat treatment method of vapor grown carbon fiber
CN113574015A (en) Heating furnace and method for producing graphite
KR101322595B1 (en) Method of manufacturing for indium tin oxide target thereof and indium tin oxide target by using the same
CN209113495U (en) A kind of graphitizing furnace
CN117242312A (en) Apparatus and method for preparing anode material
CN220276916U (en) Silica material preparation facilities
US20210403328A1 (en) Graphite production method and production device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150811

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees