JP3837104B2 - Composite molding method of carbon nanomaterial and metal material and composite metal product - Google Patents

Composite molding method of carbon nanomaterial and metal material and composite metal product Download PDF

Info

Publication number
JP3837104B2
JP3837104B2 JP2002242292A JP2002242292A JP3837104B2 JP 3837104 B2 JP3837104 B2 JP 3837104B2 JP 2002242292 A JP2002242292 A JP 2002242292A JP 2002242292 A JP2002242292 A JP 2002242292A JP 3837104 B2 JP3837104 B2 JP 3837104B2
Authority
JP
Japan
Prior art keywords
composite
carbon nanomaterial
injection
metal
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242292A
Other languages
Japanese (ja)
Other versions
JP2004082130A (en
Inventor
淳 小出
清登 滝澤
佳年 山極
雅資 菅沼
守 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2002242292A priority Critical patent/JP3837104B2/en
Priority to US10/645,333 priority patent/US20040067153A1/en
Publication of JP2004082130A publication Critical patent/JP2004082130A/en
Application granted granted Critical
Publication of JP3837104B2 publication Critical patent/JP3837104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2061Means for forcing the molten metal into the die using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/28Melting pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Description

【0001】
【発明の属する技術分野】
この発明は、カーボンナノ材と金属材料とを射出成形により複合化する成形方法と複合金属製品に関するものである。
【0002】
【発明が解決しようとする課題】
結晶性カーボン材の一種であるカーボンナノ材は、熱伝導率がアルミニウム(Al)、マグネシウム(Mg)等の金属の約5倍と高く、導電性も良好で、摩擦係数も低いことから摺動性にも優れるなどの特性を有する。しかし、カーボンナノ材は極めて微細なものであることから、その利用には他物質との複合化がよいとされている。
【0003】
これまでに知られている複合化は、金属粉末と混合して加圧微細化し、金属粉末の粒子径が5μm〜1nmの複合材粒子となすというものであり、その複合材粒子を加熱圧縮して複合材にホットプレス成形するというものである。このような複合手段では、ホットプレス成形により製造される複合金属製品にも限りがあるので、プレス成形では困難な電子機器の放熱部品やシールド部品、軸受などの金属製品を結晶性カーボン材との複合金属製品とするまでには至らない、という課題を有する。
【0004】
この発明は、上記従来の課題を解決するために考えられたものであって、その目的は、カーボンナノ材と金属材料との複合化を射出成形により可能となして、製品サイズや形態の制限を受けることなく、カーボンナノ材の特性を金属製品に付与し、電子機器の部品として要求される高熱伝導率、良導電性、摺動性などの機能の向上を図ることができる新たな複合成形方法と複合金属製品とを提供することにある。
【0005】
【課題を解決するための手段】
上記目的によるこの発明は、カーボンナノ材とマグネシウム(Mg)、錫(Sn)、アルミニウム(Al)、銅(Cu)、鉛(Pb)、亜鉛(Zn)の1種又は2種以上の合金による金属材料とを粉体の状態で混合し、その混合材料をホットプレスにより板状の固形材料に加熱圧縮成形したのち、チップ又はペレットの粒体に形成し、その混合粒体を射出装置により溶融・混練して金型に射出充填し、該金型によりカーボンナノ材と金属材料とによる複合金属製品に成形するというものであり、上記混合粒体の溶融・混合及び金型への射出充填は、インラインスクリュ式射出装置又はプリプラ式射出装置により行うというものである。また複合金属製品は上記成形法により成形されてなるというものである。
【0006】
上記構成によれば、カーボンナノ材と金属材料とを混合粒体に成形し、これを成形材料とすることから、複合成形に際する材料供給が容易となり、またスクリュによる溶融混練も短時間で効率よく行えるので、均質な複合製品を成形することができる。また複合金属製品は射出成形によって完成されるので成形精度が高いものとなり、製品形態及び製品サイズもプレス成形と異なって制限を受けないので、高熱伝導率、良導電性、低摩擦係数などの機能を有する製品を容易に成形することができる。
【0007】
【発明の実施の形態】
先ず、カーボンナノチューブなどとして知られているカーボンナノ材1の粉体と、マグネシウム(Mg)、錫(Sn)、アルミニウム(Al)、銅(Cu)、鉛(Pb)、亜鉛(Zn)の1種又は2種以上の合金による金属材料2の粉体を、混合装置3に投入して攪拌混合する。この混合は不活性ガス雰囲気中で行うのが好ましい。市販のものとしては、直径10nm(0.01μm)、長さ1〜10μmのカーボンナノチューブがある。
【0008】
次に、その混合材料4をホットプレス装置5に移し、加熱圧縮により板状の固形材料6に成形したのち、固形材料6をペレット又はチップ等の混合粒体7に成形し、この混合粒体7を成形材料として、射出装置8と製品の金型9とを備えた射出成形機に供給する。
【0009】
上記射出装置8は、先端にノズル81を有する加熱筒82の内部に、逆止弁付きの射出スクリュ83を回転かつ進退自在に備える。また加熱筒82の後部上に穿設した供給口の上に、ホッパー84が取り付けてある。このホッパー84から加熱筒82に供給された混合粒体7はスクリュ回転により溶融・混練されてスクリュ先端へと圧送され、内圧によるスクリュ後退により加熱筒82の先端部内に溶融状態で計量(蓄積)されたのち、スクリュ前進により溶融材料として上記製品金型9に射出充填される。なお加熱筒82の内部空間は、酸化防止のために不活性ガス雰囲気としておくのが好ましい。
【0010】
上記金型9は、図示しない型締装置の固定盤91と可動盤92とに取り付けた開閉自在な一対の分割型93からなり、その内部に二組の製品形態を形成するキャビティ94と、両キャビティ94の中央に位置して上記ノズル81が当接されたスプル95とを有する。このノズル81から射出充填された溶融材料は、スプル95から両キャビティ94に充填されて、カーボンナノ材1と金属材料2とが均一に複合化した複合金属製品10となる。
【0011】
上記実施形態では、インラインスクリュ式射出装置8を採用して、射出スクリュ83により混合粒体7の溶融・混練と金型9への射出充填を行っているが、樹脂の成形に用いられているプリプラ式射出装置を採用して効率よく行うことができる。
【0012】
図2に示すように、通常構造のプリプラ式射出装置は、溶融・混練シリンダ11内に溶融・混練スクリュ12を内装し、シリンダ後部上にホッパー13を備えた溶融・混練装置14と、射出シリンダ15内に射出プランジャ16を進退自在に内装した射出装置17とを並設し、その両方を先端部にわたり設けた開閉バルブ19を備える流通路18により互いに連通した構造からなる。
【0013】
したがって成形工程としては、溶融・混練装置14により混合粒体の溶融・混練を行い、それを射出シリンダ15の前部内に圧送して計量し、計量後に流通路18の開閉バルブ19を閉じて、射出装置17では射出プランジャ16の前進によるノズル20から金型9への射出充填を行う。溶融・混練装置14では射出充填中に、供給された混合粒体7の溶融・混練が開始される。このようなことから溶融・混練と射出の両方を行うインラインスクリュ式射出装置よりも、カーボンナノ材1と金属材料2とが均一に複合化した上記複合金属製品10の成形が効率よく行えるようになる。
【図面の簡単な説明】
【図1】 この発明に係わるカーボンナノ材と低融点金属との複合金属製品の成形方法の工程図である。
【図2】 この発明の成形方法に用いられるプリプラ式射出装置の略示断面図である。
【符号の説明】
1 カーボンナノ材
2 樹脂のバインダー
3 混合装置
4 混合材料
5 ホットプレス装置
6 固形材料
7 粒状材料
8 射出装置
9 製品金型
10 複合金属製品
14 溶融・混練装置
17 射出装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method for compounding a carbon nanomaterial and a metal material by injection molding and a composite metal product.
[0002]
[Problems to be solved by the invention]
Carbon nanomaterial, which is a kind of crystalline carbon material, slides because its thermal conductivity is about five times higher than that of metals such as aluminum (Al) and magnesium (Mg), it has good conductivity, and its coefficient of friction is low. It has characteristics such as excellent properties. However, since the carbon nanomaterial is extremely fine, it is said that the composite with other substances is good for its use.
[0003]
The compounding known so far is to mix with metal powder and pressurize and refine it to form composite particles with a metal powder particle size of 5 μm to 1 nm. The composite particles are heated and compressed. Thus, hot press molding is performed on the composite material. With such composite means, composite metal products manufactured by hot press forming are limited, so that metal products such as heat dissipation parts, shield parts, and bearings of electronic devices that are difficult to press form with crystalline carbon materials. There is a problem that it does not reach a composite metal product.
[0004]
The present invention has been conceived in order to solve the above-described conventional problems, and its purpose is to enable the composite of carbon nanomaterials and metal materials by injection molding, thereby limiting the product size and form. New composite molding that can impart the characteristics of carbon nanomaterials to metal products without being subjected to heat treatment, and improve functions such as high thermal conductivity, good electrical conductivity, and slidability required for electronic device parts It is to provide a method and a composite metal product.
[0005]
[Means for Solving the Problems]
This invention according to the above object is based on one or more alloys of carbon nanomaterials and magnesium (Mg), tin (Sn), aluminum (Al), copper (Cu), lead (Pb), and zinc (Zn). After mixing with metal material in the form of powder, the mixed material is hot-pressed into a plate-like solid material by hot pressing, then formed into chips or pellets, and the mixed particles are melted with an injection device -Kneading and injection filling into a mold, and forming into a composite metal product of carbon nanomaterial and metal material by the mold, melting and mixing of the above mixed granules and injection filling into the mold The in-line screw type injection device or the pre-plastic type injection device is used. The composite metal product is formed by the above forming method.
[0006]
According to the above configuration, since the carbon nanomaterial and the metal material are formed into a mixed granule and used as a molding material, material supply during composite molding is facilitated, and melt kneading with a screw can be performed in a short time. Since it can be performed efficiently, a homogeneous composite product can be formed. In addition, since composite metal products are completed by injection molding, the molding accuracy is high, and the product form and product size are not restricted unlike press molding, so functions such as high thermal conductivity, good conductivity, and low friction coefficient. It is possible to easily mold a product having
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, powder of carbon nanomaterial 1 known as a carbon nanotube or the like, and magnesium (Mg), tin (Sn), aluminum (Al), copper (Cu), lead (Pb), zinc (Zn) 1 The powder of the metal material 2 made of seeds or two or more kinds of alloys is put into the mixing device 3 and mixed by stirring. This mixing is preferably performed in an inert gas atmosphere. Commercially available carbon nanotubes having a diameter of 10 nm (0.01 μm) and a length of 1 to 10 μm are available.
[0008]
Next, the mixed material 4 is transferred to a hot press device 5 and formed into a plate-like solid material 6 by heating and compression, and then the solid material 6 is formed into a mixed granule 7 such as a pellet or a chip. 7 is supplied as a molding material to an injection molding machine including an injection device 8 and a product mold 9.
[0009]
The injection device 8 is provided with an injection screw 83 with a check valve inside a heating cylinder 82 having a nozzle 81 at its tip so that the injection screw 83 can rotate and advance and retract. A hopper 84 is mounted on a supply port formed on the rear portion of the heating cylinder 82. The mixed granule 7 supplied from the hopper 84 to the heating cylinder 82 is melted and kneaded by the screw rotation, and is pumped to the screw tip, and is measured (accumulated) in the molten state in the tip portion of the heating cylinder 82 by the screw retreat by the internal pressure. After that, the product mold 9 is injected and filled as a molten material by advancing the screw. The internal space of the heating cylinder 82 is preferably an inert gas atmosphere to prevent oxidation.
[0010]
The mold 9 includes a pair of openable and closable split molds 93 attached to a fixed plate 91 and a movable plate 92 of a mold clamping device (not shown), and a cavity 94 that forms two sets of product forms therein, The sprue 95 is located at the center of the cavity 94 and is in contact with the nozzle 81. The molten material injected and filled from the nozzle 81 is filled into both the cavities 94 from the sprue 95 to form the composite metal product 10 in which the carbon nanomaterial 1 and the metal material 2 are uniformly combined.
[0011]
In the above embodiment, the in-line screw type injection device 8 is adopted, and the mixed granule 7 is melted and kneaded and injected into the mold 9 by the injection screw 83, but it is used for resin molding. It can be carried out efficiently by using a pre-plastic injection device.
[0012]
As shown in FIG. 2, a pre-plastic injection device having a normal structure has a melting / kneading screw 12 in a melting / kneading cylinder 11 and a hopper 13 on the rear part of the cylinder, and an injection cylinder. 15 has an injection device 17 in which an injection plunger 16 is mounted so as to be movable back and forth, and has a structure in which both of them are communicated with each other by a flow passage 18 including an opening / closing valve 19 provided over the tip.
[0013]
Therefore, as a molding process, the mixed granule is melted and kneaded by the melting and kneading device 14, and is measured by feeding it into the front portion of the injection cylinder 15, and after the measurement, the opening and closing valve 19 of the flow passage 18 is closed, The injection device 17 performs injection filling from the nozzle 20 to the mold 9 by the advance of the injection plunger 16. In the melting / kneading device 14, melting and kneading of the supplied mixed granule 7 is started during injection filling. For this reason, the composite metal product 10 in which the carbon nanomaterial 1 and the metal material 2 are uniformly combined can be formed more efficiently than an in-line screw injection apparatus that performs both melting, kneading and injection. Become.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for forming a composite metal product of a carbon nanomaterial and a low melting point metal according to the present invention.
FIG. 2 is a schematic cross-sectional view of a pre-plastic injection device used in the molding method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Carbon nano material 2 Resin binder 3 Mixing device 4 Mixed material 5 Hot press device 6 Solid material 7 Granular material 8 Injection device 9 Product mold 10 Composite metal product 14 Melting and kneading device 17 Injection device

Claims (3)

カーボンナノ材とマグネシウム(Mg)、錫(Sn)、アルミニウム(Al)、銅(Cu)、鉛(Pb)、亜鉛(Zn)の1種又は2種以上の合金による金属材料とを粉体の状態で混合し、その混合材料をホットプレスにより板状の固形材料に加熱圧縮成形したのち、チップ又はペレットの粒体に形成し、その混合粒体を射出装置により溶融・混練して金型に射出充填し、該金型によりカーボンナノ材と金属材料とによる複合金属製品に成形することを特徴とするカーボンナノ材と金属材料の複合成形方法。Carbon nanomaterials and magnesium (Mg), tin (Sn), aluminum (Al), copper (Cu), lead (Pb), a metal material made of one or more alloys of zinc (Zn) in powder form After mixing in a state and hot-pressing the mixed material into a plate-like solid material, it is formed into chips or pellets, and the mixed granules are melted and kneaded by an injection device into a mold. A composite molding method of a carbon nanomaterial and a metal material, which is injection-filled and molded into a composite metal product of the carbon nanomaterial and the metal material by the mold. 上記混合粒体の溶融・混合及び金型への射出充填は、インラインスクリュ式射出装置又はプリプラ式射出装置により行うことを特徴とする請求項1記載のカーボンナノ材と金属材料の複合成形方法。  2. The method of composite molding of carbon nanomaterial and metal material according to claim 1, wherein the mixing and mixing of the mixed particles and injection filling into the mold are performed by an in-line screw injection apparatus or a pre-plastic injection apparatus. 上記請求項1又は2の何れかに記載の成形方法により成形された金属製品からなることを特徴とするカーボンナノ材と金属材料の複合金属製品。  A composite metal product of a carbon nanomaterial and a metal material, comprising a metal product molded by the molding method according to claim 1 or 2.
JP2002242292A 2002-08-22 2002-08-22 Composite molding method of carbon nanomaterial and metal material and composite metal product Expired - Fee Related JP3837104B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002242292A JP3837104B2 (en) 2002-08-22 2002-08-22 Composite molding method of carbon nanomaterial and metal material and composite metal product
US10/645,333 US20040067153A1 (en) 2002-08-22 2003-08-21 Method for producing composite metal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242292A JP3837104B2 (en) 2002-08-22 2002-08-22 Composite molding method of carbon nanomaterial and metal material and composite metal product

Publications (2)

Publication Number Publication Date
JP2004082130A JP2004082130A (en) 2004-03-18
JP3837104B2 true JP3837104B2 (en) 2006-10-25

Family

ID=32040354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242292A Expired - Fee Related JP3837104B2 (en) 2002-08-22 2002-08-22 Composite molding method of carbon nanomaterial and metal material and composite metal product

Country Status (2)

Country Link
US (1) US20040067153A1 (en)
JP (1) JP3837104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541677B (en) * 2007-04-27 2011-09-28 日精树脂工业株式会社 Method of manufacturing metal-carbon nanocomposite material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005058B2 (en) * 2003-07-23 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, carbon fiber composite molded article and method for producing the same
JP4325991B2 (en) * 2003-12-19 2009-09-02 日信工業株式会社 Carbon fiber composite material and method for producing the same, and method for producing carbon fiber composite metal material
JP4005018B2 (en) * 2003-12-19 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, carbon fiber composite molded article and method for producing the same
JP4224438B2 (en) 2004-07-16 2009-02-12 日信工業株式会社 Method for producing carbon fiber composite metal material
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
CN1851021A (en) * 2005-04-22 2006-10-25 鸿富锦精密工业(深圳)有限公司 Magnesium-aluminium alloy material
JP4526550B2 (en) * 2006-05-12 2010-08-18 学校法人千葉工業大学 Method for producing composite of carbon nanomaterial and metal material
JP4550782B2 (en) * 2006-08-07 2010-09-22 日信工業株式会社 Method for producing carbon fiber composite metal material, method for producing carbon fiber composite metal molded product
JP4550783B2 (en) * 2006-08-07 2010-09-22 日信工業株式会社 Method for producing carbon fiber composite metal material, method for producing carbon fiber composite metal molded product
JP4287461B2 (en) * 2006-11-17 2009-07-01 日精樹脂工業株式会社 Method for producing carbon nanocomposite metal material and method for producing carbon nanocomposite metal molded product
DE102007012426A1 (en) * 2007-03-15 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Light metal material
FR2935989A1 (en) * 2008-09-16 2010-03-19 Arkema France Preparing a masterbatch based on multi-walled carbon nanotubes, comprises contacting the nanotubes with a metal compound having a fusion point of specified value, and mechanically treating the obtained mixture
MY160373A (en) * 2010-07-21 2017-03-15 Semiconductor Components Ind Llc Bonding structure and method
KR101211134B1 (en) * 2012-02-13 2012-12-11 금호석유화학 주식회사 A method for preparing carbon nano material/polymer composites
KR101993783B1 (en) 2016-01-20 2019-06-28 주식회사 엘지화학 Apparatus for manufacturing carbon nanotube pellet

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164946A (en) * 1981-03-31 1982-10-09 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
JPS6452489A (en) * 1987-08-24 1989-02-28 Mizuno Kk Golf club head
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
JPH02213431A (en) * 1989-02-13 1990-08-24 Kobe Steel Ltd Sic whisker reinforced al alloy composite material
US5108964A (en) * 1989-02-15 1992-04-28 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US5070591A (en) * 1990-01-22 1991-12-10 Quick Nathaniel R Method for clad-coating refractory and transition metals and ceramic particles
FR2665184B1 (en) * 1990-07-24 1993-10-15 Centre Nal Recherc Scientifique ALUMINA / METAL COMPOSITE POWDERS, CERMETS PRODUCED FROM SAID POWDERS AND METHODS OF MANUFACTURE.
US5274537A (en) * 1992-04-06 1993-12-28 Richard G. Altman Decorative lighting arrangement for special events
US5366688A (en) * 1992-12-09 1994-11-22 Iowa State University Research Foundation, Inc. Heat sink and method of fabricating
JP3013226B2 (en) * 1994-04-28 2000-02-28 株式会社日本製鋼所 Manufacturing method of metal molded products
US5608994A (en) * 1994-05-03 1997-03-11 Carter; E. Ray Earth anchor for light standard apparatus
JP2976274B2 (en) * 1995-05-29 1999-11-10 株式会社日本製鋼所 Injection molding method and injection molding apparatus for low melting metal material
JP3416036B2 (en) * 1997-09-29 2003-06-16 マツダ株式会社 Mold structure for magnesium alloy injection molding and method for molding magnesium alloy parts using the mold structure
US5954426A (en) * 1997-12-04 1999-09-21 Whittington; Anderson H. Interchangeable lamp
US6000820A (en) * 1998-05-28 1999-12-14 Murray; Kenneth J. Low voltage light novelty decorations
USD418935S (en) * 1998-07-23 2000-01-11 Gilbert Steven E Landscape light
US6151198A (en) * 1998-11-18 2000-11-21 International Business Machines Corporation Overmolding of actuator E-block by thixotropic or semisolid forging
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6723279B1 (en) * 1999-03-15 2004-04-20 Materials And Electrochemical Research (Mer) Corporation Golf club and other structures, and novel methods for making such structures
US6840302B1 (en) * 1999-04-21 2005-01-11 Kobe Steel, Ltd. Method and apparatus for injection molding light metal alloy
US6261496B1 (en) * 1999-07-15 2001-07-17 Alliedsignal Inc. Continuous compounding of aqueous injection molding feedstocks
IL134892A0 (en) * 2000-03-06 2001-05-20 Yeda Res & Dev Inorganic nanoparticles and metal matrices utilizing the same
CA2347332A1 (en) * 2000-05-13 2001-11-13 Korea Carbon Black Co., Ltd. Carbon fibrils and method for producing same
US6630088B1 (en) * 2000-10-23 2003-10-07 Kimberly-Clark Worldwide, Inc. Forming media with enhanced air flow properties
CA2462977C (en) * 2001-10-16 2005-08-23 International Non-Toxic Composites Corporation Composite material containing tungsten and bronze
US6934600B2 (en) * 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
JP2004082129A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound metal product made of carbon nano material and metal with low melting point and its forming method
US6860314B1 (en) * 2002-08-22 2005-03-01 Nissei Plastic Industrial Co. Ltd. Method for producing a composite metal product
US20040154925A1 (en) * 2003-02-11 2004-08-12 Podlaha Elizabeth J. Composite metal and composite metal alloy microstructures
US6966680B2 (en) * 2003-11-28 2005-11-22 Edward Kratz Decorative lighting display with changeable shades and bulbs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541677B (en) * 2007-04-27 2011-09-28 日精树脂工业株式会社 Method of manufacturing metal-carbon nanocomposite material

Also Published As

Publication number Publication date
JP2004082130A (en) 2004-03-18
US20040067153A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3837104B2 (en) Composite molding method of carbon nanomaterial and metal material and composite metal product
JP2004082129A (en) Compound metal product made of carbon nano material and metal with low melting point and its forming method
US6860314B1 (en) Method for producing a composite metal product
EP0968782B1 (en) Method and apparatus for semi-molten metal injection molding
JP3013226B2 (en) Manufacturing method of metal molded products
JP2004136363A (en) Composite forming method for carbon nano material and low melting metallic material, and composite metallic product
CN101641173B (en) Screw design and method for metal injection molding
CN100564020C (en) Composite material and manufacture method thereof
JPS61500902A (en) Method and apparatus for injection molding polyvinyl chloride products
JPH0751827A (en) Method and apparatus for producing low melting point metal product
TWI274653B (en) Molding method, molding machine, and molded article
JP2004035961A (en) Method for manufacturing porous metallic body
JP2000015415A (en) Semi-molten metal injection molding method and apparatus therefor
CN103770302B (en) Injection molding machine
JP4320921B2 (en) Resin material supply apparatus and method
WO1992016969A1 (en) Semiconductor sealing resin tablet and its manufacture
JP2967385B2 (en) Method for manufacturing metal injection molded product and metal injection molded product
JP3761828B2 (en) Manufacturing method of resin molded products
JP3262220B2 (en) Melt injection device for metal material and method for complete melt injection molding of metal material
US11865609B2 (en) Method for manufacturing powder-modified magnesium alloy chip
JP3725802B2 (en) Injection device
JP2000280059A (en) Forging raw material and its molding method, molding device, and manufacturing method of forged member using raw material
JPH0555287B2 (en)
JP3140868B2 (en) Resol type phenolic resin molding material
JP2985832B2 (en) Resin sealing device for semiconductor device and resin sealing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees