JP3830203B2 - Method for regenerating platinum-tin catalyst - Google Patents

Method for regenerating platinum-tin catalyst Download PDF

Info

Publication number
JP3830203B2
JP3830203B2 JP12719696A JP12719696A JP3830203B2 JP 3830203 B2 JP3830203 B2 JP 3830203B2 JP 12719696 A JP12719696 A JP 12719696A JP 12719696 A JP12719696 A JP 12719696A JP 3830203 B2 JP3830203 B2 JP 3830203B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
reaction
carbonaceous material
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12719696A
Other languages
Japanese (ja)
Other versions
JPH09313952A (en
Inventor
英人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12719696A priority Critical patent/JP3830203B2/en
Publication of JPH09313952A publication Critical patent/JPH09313952A/en
Application granted granted Critical
Publication of JP3830203B2 publication Critical patent/JP3830203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、白金−スズ系触媒の再生方法に関する。詳しくは、炭化水素の脱水素反応に使用することによって炭素質物質が堆積した白金−スズ系触媒の再生方法に関する。
【0002】
【従来の技術】
アルミナ担体等に担持された白金−スズ系触媒は、炭化水素の脱水素反応或いはリフォーミング等の炭化水素転換反応に有用であることが知られている。例えば、米国特許第3,851,003号あるいは特公昭48−40322号は、炭化水素の脱水素反応において、白金−スズ系触媒にアルカリまたはアルカリ土類金属を添加した触媒が使用できることを開示している。また、特開昭61−133144号には、白金−スズ触媒にGeあるいはInを添加することが、また特開昭64−51144号および特開昭64−51145号には、白金−スズ触媒にT1等を添加することが効果的であることが開示されている。
前記の白金−スズ系触媒を用いて炭化水素の脱水素反応を行う場合、基本的な反応式は次式(I)の通りであるが、炭化水素の炭素数により反応の副生成物は異なっている。
【0003】
【化1】

Figure 0003830203
【0004】
通常、炭素数が5以下の炭化水素の脱水素反応は450〜650℃で行われ、モノオレフィンの他にジオレフィンや骨格異性化物が生成する。これに対し、炭素数が6以上の鎖状炭化水素の脱水素反応では、モノオレフィンの他に反応の副生成物としてジオレフィンやジオレフィンの環化脱水素が更に進行した芳香族化合物が生成する。それによって反応の選択性が低下するのを防ぐため、通常、350〜550℃で脱水素反応を実施する。この場合も長時間の脱水素反応を行うと触媒表面上に芳香族化合物に起因する炭素質物質が堆積するため、触媒活性は徐々に低下する。従って、1度使用して活性の低下した触媒を再使用するためには、触媒上に付着した炭素質物質を除去することが必要となる。
【0005】
炭化水素の脱水素反応に使用された白金−スズ系触媒、或いは同様の触媒成分を有するリフォーミング反応に使用された白金−スズ系触媒の再生方法は、一般に分子状酸素を含むガス雰囲気下、350〜550℃の条件下において炭素質物質を燃焼する工程、続いて白金を再分散させるために、酸素雰囲気下で、ハロゲン(例えば塩素)またはハロゲン含有化合物(例えばハロゲン化アルキル)によりオキシハロゲン化する工程を含む(米国特許第5,087,792号)。また、特開昭58−27643号は、炭素質物質の燃焼工程において酸素および二酸化炭素を含むガスを使用することを開示している。一方、炭化水素のリフォーミング触媒のハロゲンを用いない再生方法として、米国特許第5,183,789号は、炭素質物質の燃焼のためにオゾン含有ガスを20〜200℃で使用する方法を開示している。
【0006】
【発明が解決しようとする課題】
上述したような従来の触媒再生方法は、以下のような問題点を含んでいた。
例えば、触媒上の白金を再分散させる工程においては、多量のハロゲンを使用することにより触媒上の酸点を増加させている。このハロゲンを使用して再生した触媒を炭化水素の脱水素反応に用いる場合、炭化水素の骨格異性化反応或いは芳香族化反応等の副反応を誘発し、前記白金−スズ系触媒の選択性を損なうことになる。従って、ハロゲンを使用しない方法で触媒再生を行う方が好ましい。
【0007】
炭素質物質の燃焼反応は発熱反応であり、触媒表面の温度は設定温度と比較してかなり高くなることが考えられる。
Yangらは、Catal.Lett.,12(1992)267−276において、触媒の再生反応において、コークを燃焼させると局部的に温度上昇をおこし、高温では触媒の安定な表面構造が破壊され、それによりブタンの脱水素反応用のPtSn/Al2 3 触媒が不活性化することを記載しているが、不活性化を防ぐ具体的な方法は何ら開示していない。
【0008】
一方、従来のオゾンを用いる方法では200℃以下という低い温度で炭素質物質の燃焼が行われているが、オゾンは取扱いが容易ではないという問題点があった。
したがって、白金−スズ系触媒の再生方法において、ハロゲンやオゾン等を使用しない簡便な方法で、かつ、触媒の活性及び選択性を長期間高く維持することが可能な触媒の再生方法の開発が望まれていた。
【0009】
【課題を解決するための手段】
本発明者は、上記課題につき鋭意検討を重ねた結果、炭素質物質の堆積により失活した白金−スズ系触媒を再生するための、酸素含有ガスによる炭素質物質の燃焼工程において、触媒層の温度の上限を制御することによって、ハロゲンやオゾン等を使用しなくても、充分な活性と反応選択性とが回復できることを見出して本発明に到達した。
即ち、本発明の要旨は、炭化水素の脱水素反応に使用することによって白金−スズ系触媒に付着した炭素質物質を酸素含有ガスの存在下に燃焼させるに当り、触媒層の温度を200〜400℃の範囲内で、かつ炭素質物質が燃焼する際の触媒層の温度変化を100℃以内に制御することを特徴とする白金−スズ系触媒の再生方法、に存する。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において、白金−スズ系触媒に付着した炭素質物質の燃焼反応は、触媒層の温度が200〜400℃、好ましくは300〜400℃の範囲内の温度で燃焼処理中における触媒層の温度変化が100℃以内となるように温度を制御して実施する。触媒層の温度の測定は、例えば反応管内に熱電対を入れて直接測定することにより行われる。
【0011】
本発明による炭素質物質の燃焼工程では、窒素、ヘリウム或いはアルゴン等の触媒に対して不活性なガス、好ましくは窒素を酸素希釈ガスとして使用した酸素含有混合ガスを使用できる。反応器入口における混合ガス中の酸素濃度は通常0.01〜50vol%、好ましくは0.1〜20vol%である。混合ガス中の酸素濃度が少なすぎる場合、炭素質物質の燃焼に時間がかかり過ぎ、また多すぎる場合は炭素質物質の燃焼の制御が困難となる恐れがある。
【0012】
本発明で使用する白金−スズ系触媒としては、炭化水素の脱水素反応に使用するものが使用できる。例えば、アルカリまたはアルカリ土類金属、Ge、In又はTl等を添加した白金−スズ系触媒等が好ましく使用できる。さらには、これらをアルミナ、シリカ等の担体に担持したものが更に好ましい。
本発明の白金−スズ触媒系は、上述したように炭化水素の脱水素反応に使用するものであるが、本発明の方法は、好ましくは鎖状炭化水素の脱水素によるオレフィンの製造に使用した触媒に使用される。
【0013】
【実施例】
次に実施例により、本発明の具体的態様を更に詳細に説明するが、本発明は以下の実施例によって限定されるものではない。
参考例1(新触媒による炭化水素の脱水素反応)
白金−スズ系触媒は、市販のγ−アルミナを塩化白金酸および塩化第二スズの塩酸溶液に含浸し、乾燥した後、硝酸リチウム水溶液に含浸し、焼成することにより調製した。触媒中の金属組成は、元素基準で、白金0.375%、スズ0.25%、リチウム0.6%であった。続いて、原料としてn−ドデカンを用いたこと以外は米国特許第3,909,451号の実施例III と同様にして炭化水素の脱水素反応を行った。即ち、炭化水素の脱水素反応は、上記の白金−スズ系触媒を用い、原料としてn−ドデカンを使用し、モノオレフィン収率が10%となるように反応温度を450℃とし、コーキング抑制のために水素ガスを水素/n−ドデカン(モル比)=8となるように用い、反応圧力0.24MPaで実施した。その結果を表−1に示す。反応時間約300時間においても活性低下が殆ど見られなかった。
【0014】
実施例1
参考例1で調製した触媒を脱水素反応に約30日使用して炭素含有量が約9重量%となり活性の低下した触媒を、内径0.853cmの固定床流通式反応器に1.5cm3 充填し、空気(酸素濃度約21%)により炭素質物質の燃焼反応を行った。この際の触媒層の温度変化範囲が300〜390℃となるように制御した。炭素質物質の除去後、n−ドデカンの脱水素反応を参考例1と同様に行った結果を表−1に示す。その結果、反応時間300時間程度でも新触媒と比較して活性並びに選択率低下は殆ど見られなかった。
【0015】
実施例2
参考例1で調製した触媒を脱水素反応に約30日使用して炭素含有量が約9重量%となり活性の低下した触媒を、内径0.853cmの固定床流通式反応器に1.5cm3 充填し、空気を窒素により10倍に希釈した混合ガス(酸素濃度約2%)により炭素質物質の燃焼反応を行った。この際の触媒層の温度変化範囲は300〜380℃であった。炭素質物質の除去後、n−ドデカンの脱水素反応を参考例1と同様に行った結果を表−1に示す。その結果、反応時間200時間程度でも新触媒と比較して活性並びに選択率低下は殆ど見られなかった。
【0016】
比較例1
実施例2において、炭素質物質の燃焼反応を温度変化範囲300〜450℃で行ったこと以外は同様に行い、評価した。その結果を表−1に示す。表−1から分かるように、反応時間300時間程度から選択率が低下し、新触媒と大きく性能が異なった。
【0017】
【表1】
Figure 0003830203
【0018】
【発明の効果】
本発明方法によって、白金−スズ系触媒の再生を行うことにより、ハロゲンやオゾン等を使用する従来法に比べて、簡便で、かつ、触媒の活性及び選択率を長期間維持することが可能な触媒に再生することができるため、工業的な利用価値が高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a platinum-tin catalyst. Specifically, platinum was deposited carbonaceous material by using a dehydrogenation reaction of hydrocarbons - relating to the reproduction method of the tin catalyst.
[0002]
[Prior art]
A platinum-tin catalyst supported on an alumina support or the like is known to be useful for hydrocarbon conversion reactions such as hydrocarbon dehydrogenation or reforming. For example, US Pat. No. 3,851,003 or Japanese Patent Publication No. 48-40322 discloses that a catalyst in which an alkali or alkaline earth metal is added to a platinum-tin catalyst can be used in a hydrocarbon dehydrogenation reaction. ing. Japanese Patent Laid-Open No. 61-133144 discloses that Ge or In is added to a platinum-tin catalyst, and Japanese Patent Laid-Open Nos. 64-511144 and 64-511145 disclose a platinum-tin catalyst. It is disclosed that it is effective to add T1 or the like.
When the hydrocarbon dehydrogenation reaction is performed using the platinum-tin catalyst, the basic reaction formula is as shown in the following formula (I), but the reaction by-products differ depending on the number of carbons of the hydrocarbon. ing.
[0003]
[Chemical 1]
Figure 0003830203
[0004]
Usually, the dehydrogenation reaction of hydrocarbons having 5 or less carbon atoms is carried out at 450 to 650 ° C., and diolefins and skeletal isomers are generated in addition to monoolefins. On the other hand, in the dehydrogenation reaction of a chain hydrocarbon having 6 or more carbon atoms, an aromatic compound in which diolefin or diolefin dicyclization further proceeds as a by-product of the reaction is generated in addition to the monoolefin. To do. In order to prevent the selectivity of the reaction from being lowered thereby, the dehydrogenation reaction is usually carried out at 350 to 550 ° C. Also in this case, when a dehydrogenation reaction is performed for a long time, a carbonaceous material resulting from an aromatic compound is deposited on the catalyst surface, and thus the catalytic activity gradually decreases. Therefore, in order to reuse a catalyst having a reduced activity after being used once, it is necessary to remove the carbonaceous material adhering to the catalyst.
[0005]
The platinum-tin-based catalyst used for hydrocarbon dehydrogenation, or the platinum-tin-based catalyst used for the reforming reaction having similar catalyst components, is generally regenerated in a gas atmosphere containing molecular oxygen. A step of burning carbonaceous material under conditions of 350-550 ° C., followed by oxyhalogenation with halogen (eg chlorine) or halogen-containing compounds (eg alkyl halide) under an oxygen atmosphere to redisperse platinum (US Pat. No. 5,087,792). Japanese Patent Laid-Open No. 58-27643 discloses the use of a gas containing oxygen and carbon dioxide in the combustion process of a carbonaceous material. On the other hand, US Pat. No. 5,183,789 discloses a method of using an ozone-containing gas at 20 to 200 ° C. for combustion of a carbonaceous material as a regeneration method that does not use halogen of a hydrocarbon reforming catalyst. is doing.
[0006]
[Problems to be solved by the invention]
The conventional catalyst regeneration method as described above has the following problems.
For example, in the step of redispersing platinum on the catalyst, the acid sites on the catalyst are increased by using a large amount of halogen. When a catalyst regenerated using this halogen is used for hydrocarbon dehydrogenation, side reactions such as skeletal isomerization or aromatization of hydrocarbons are induced, and the selectivity of the platinum-tin catalyst is increased. You will lose. Therefore, it is preferable to perform catalyst regeneration by a method that does not use halogen.
[0007]
The combustion reaction of the carbonaceous material is an exothermic reaction, and the temperature of the catalyst surface is considered to be considerably higher than the set temperature.
Yang et al., Catal. Lett. , 12 (1992) 267-276, in the regeneration reaction of the catalyst, when the coke is burned, the temperature rises locally, and at a high temperature, the stable surface structure of the catalyst is destroyed, and thereby the dehydrogenation reaction of butane. Although it describes that the PtSn / Al 2 O 3 catalyst is deactivated, no specific method for preventing the deactivation is disclosed.
[0008]
On the other hand, in the conventional method using ozone, the carbonaceous material is burned at a temperature as low as 200 ° C. or less, but there is a problem that ozone is not easy to handle.
Therefore, in the regeneration method of platinum-tin catalyst, it is hoped to develop a catalyst regeneration method that is a simple method that does not use halogen, ozone, etc., and that can maintain the activity and selectivity of the catalyst for a long period of time. It was rare.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the inventor of the present invention has developed a catalyst layer in a combustion process of a carbonaceous material with an oxygen-containing gas to regenerate a platinum-tin catalyst deactivated by the deposition of the carbonaceous material. By controlling the upper limit of the temperature, the inventors have found that sufficient activity and reaction selectivity can be recovered without using halogen, ozone, or the like, and have reached the present invention.
That is, the gist of the present invention is that when the carbonaceous material attached to the platinum-tin catalyst is used in the hydrocarbon dehydrogenation reaction in the presence of the oxygen-containing gas, the temperature of the catalyst layer is set to 200 to 200. The present invention resides in a method for regenerating a platinum-tin catalyst, wherein the temperature change of the catalyst layer is controlled within 100 ° C. within the range of 400 ° C. and when the carbonaceous material burns .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, platinum - combustion reaction of a carbonaceous substance adhering to the tin-based catalyst, the temperature of the catalyst layer is 2 00-400 ° C., during the combustion process at a temperature in the range of good Mashiku is 300 to 400 ° C. The temperature is controlled so that the temperature change of the catalyst layer is within 100 ° C. The temperature of the catalyst layer is measured, for example, by directly measuring by putting a thermocouple in the reaction tube.
[0011]
In the combustion process of the carbonaceous material according to the present invention, a gas inert to the catalyst such as nitrogen, helium or argon, preferably an oxygen-containing mixed gas using nitrogen as an oxygen dilution gas can be used. The oxygen concentration in the mixed gas at the reactor inlet is usually 0.01 to 50 vol%, preferably 0.1 to 20 vol%. If the oxygen concentration in the mixed gas is too low, it takes too much time to burn the carbonaceous material, and if it is too high, it may be difficult to control the combustion of the carbonaceous material.
[0012]
Platinum used in the present invention - as the tin catalyst, those used in the dehydrogenation reaction of hydrocarbons can be used. For example, a platinum-tin catalyst to which an alkali or alkaline earth metal, Ge, In, Tl or the like is added can be preferably used. Furthermore, what carried | supported these on carriers, such as an alumina and a silica, is still more preferable.
Platinum present invention - tin catalyst system, but is intended to be used in the dehydrogenation reaction of hydrocarbons as described above, the method of the present invention are preferably used for the production of olefins by the dehydrogenation of linear hydrocarbons Used in the catalyst.
[0013]
【Example】
EXAMPLES Next, specific embodiments of the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
Reference example 1 (hydrocarbon dehydrogenation with new catalyst)
The platinum-tin-based catalyst was prepared by impregnating a commercially available γ-alumina in a hydrochloric acid solution of chloroplatinic acid and stannic chloride, drying, impregnating in an aqueous lithium nitrate solution, and firing. The metal composition in the catalyst was 0.375% platinum, 0.25% tin, and 0.6% lithium on an element basis. Subsequently, hydrocarbon dehydrogenation was carried out in the same manner as in Example III of US Pat. No. 3,909,451 except that n-dodecane was used as a raw material. That is, the hydrocarbon dehydrogenation reaction uses the above-described platinum-tin catalyst, uses n-dodecane as a raw material, sets the reaction temperature to 450 ° C. so that the monoolefin yield is 10%, and suppresses coking. Therefore, hydrogen gas was used so that hydrogen / n-dodecane (molar ratio) = 8, and the reaction was performed at a reaction pressure of 0.24 MPa. The results are shown in Table-1. Even when the reaction time was about 300 hours, almost no decrease in activity was observed.
[0014]
Example 1
The reduced catalyst prepared catalyst the carbon content using about 30 days dehydrogenation about 9 wt% next activity in Reference Example 1, 1.5 cm 3 in a fixed bed flow reactor having an inner diameter of 0.853cm After filling, the combustion reaction of the carbonaceous material was performed with air (oxygen concentration about 21%). The temperature change range of the catalyst layer at this time was controlled to be 300 to 390 ° C. Table 1 shows the results of the dehydrogenation reaction of n-dodecane performed in the same manner as in Reference Example 1 after removing the carbonaceous material. As a result, even when the reaction time was about 300 hours, the activity and selectivity were hardly decreased as compared with the new catalyst.
[0015]
Example 2
The catalyst prepared in Reference Example 1 was used for a dehydrogenation reaction for about 30 days, and the carbon content was reduced to about 9% by weight and the activity was reduced. The catalyst was reduced to 1.5 cm 3 in a fixed bed flow reactor having an inner diameter of 0.853 cm. The carbonaceous material was subjected to a combustion reaction with a mixed gas (oxygen concentration of about 2%) that was filled and the air was diluted 10 times with nitrogen. The temperature change range of the catalyst layer at this time was 300 to 380 ° C. Table 1 shows the results of the dehydrogenation reaction of n-dodecane performed in the same manner as in Reference Example 1 after removing the carbonaceous material. As a result, even when the reaction time was about 200 hours, the activity and selectivity were hardly decreased as compared with the new catalyst.
[0016]
Comparative Example 1
In Example 2, the carbonaceous material was evaluated in the same manner except that the combustion reaction of the carbonaceous material was performed in the temperature change range of 300 to 450 ° C. The results are shown in Table-1. As can be seen from Table 1, the selectivity decreased from about 300 hours of reaction time, and the performance was greatly different from that of the new catalyst.
[0017]
[Table 1]
Figure 0003830203
[0018]
【The invention's effect】
By regenerating a platinum-tin catalyst by the method of the present invention, it is simpler and can maintain the activity and selectivity of the catalyst for a long period of time compared to conventional methods using halogen, ozone or the like. Since it can be regenerated as a catalyst, it has high industrial utility value.

Claims (1)

炭化水素の脱水素反応に使用することによって白金−スズ系触媒に付着した炭素質物質を酸素含有ガスの存在下に燃焼させるに当り、触媒層の温度を200〜400℃の範囲内で、かつ炭素質物質が燃焼する際の触媒層の温度変化を100℃以内に制御することを特徴とする白金−スズ系触媒の再生方法。 When the carbonaceous material attached to the platinum-tin catalyst is used in the dehydrogenation reaction of hydrocarbons in the presence of an oxygen-containing gas, the temperature of the catalyst layer is in the range of 200 to 400 ° C. , and A method for regenerating a platinum-tin catalyst, wherein the temperature change of the catalyst layer when the carbonaceous material burns is controlled within 100 ° C.
JP12719696A 1996-05-22 1996-05-22 Method for regenerating platinum-tin catalyst Expired - Lifetime JP3830203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12719696A JP3830203B2 (en) 1996-05-22 1996-05-22 Method for regenerating platinum-tin catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12719696A JP3830203B2 (en) 1996-05-22 1996-05-22 Method for regenerating platinum-tin catalyst

Publications (2)

Publication Number Publication Date
JPH09313952A JPH09313952A (en) 1997-12-09
JP3830203B2 true JP3830203B2 (en) 2006-10-04

Family

ID=14954084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12719696A Expired - Lifetime JP3830203B2 (en) 1996-05-22 1996-05-22 Method for regenerating platinum-tin catalyst

Country Status (1)

Country Link
JP (1) JP3830203B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909092B (en) * 2011-08-01 2015-04-01 中国石油化工股份有限公司 Activating method for dehydrogenation catalyst of low concentration hydrogen high temperature reduction combined with low temperature reduction
JP2018177750A (en) * 2017-04-21 2018-11-15 Jxtgエネルギー株式会社 Method for producing unsaturated hydrocarbon and method for regenerating dehydrogenation catalyst

Also Published As

Publication number Publication date
JPH09313952A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JP4345038B2 (en) Process for selective hydrogenation of unsaturated compounds
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
JP2544917B2 (en) Catalytic reforming process through at least two catalyst beds
JP2898651B2 (en) Method for dispersing Group VIII metal in zeolite catalyst having large pores
US3941682A (en) Regeneration procedure
JP4706945B2 (en) Catalyst comprising a Group 8, 9 or 10 element with excellent accessibility and its use in a paraffin dehydrogenation process
JP5345058B2 (en) Method for reactivating metathesis catalyst and method for producing olefins including reactivation step thereof
WO2013190574A1 (en) Regeneration of spent paraffin dehydrogenation catalyst
JPS583740B2 (en) iridium gun
US6294492B1 (en) Catalytic reforming catalyst activation
US6410472B2 (en) Catalytic reforming catalyst activation
NL8401418A (en) METHOD FOR MANUFACTURING CATALYSTS FOR CONVERSION OF HYDROCARBONS
US4192771A (en) Process for dispersal and redispersal of platinum group metals comprising sulphiding in a stream of inert gas
KR100399303B1 (en) Reforming method using catalyst containing alkali metals or alkaline-earth metals
JP2784944B2 (en) Method for producing aromatic hydrocarbon
JP3830203B2 (en) Method for regenerating platinum-tin catalyst
JPS6116506B2 (en)
KR100367169B1 (en) Hydrogen dechlorination method of catalyst system and chlorofluorohydrocarbon with hydrogenation catalyst on a support
JPH073271A (en) Catalytic hydroreforming
US5183789A (en) Ozone regeneration of platinum, and polymetallic platinum reforming catalysts
RU2132731C1 (en) Method of preparing hydrocarbon-dehydrogenation catalyst
JPWO2015152160A1 (en) Process for producing unsaturated hydrocarbons
US3247128A (en) Regeneration of catalysts
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
RU2128551C1 (en) Method of preparing hydrocarbon-dehydrogenation catalysts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4