JP3664847B2 - Optical multiplexer / demultiplexer device - Google Patents

Optical multiplexer / demultiplexer device Download PDF

Info

Publication number
JP3664847B2
JP3664847B2 JP15270497A JP15270497A JP3664847B2 JP 3664847 B2 JP3664847 B2 JP 3664847B2 JP 15270497 A JP15270497 A JP 15270497A JP 15270497 A JP15270497 A JP 15270497A JP 3664847 B2 JP3664847 B2 JP 3664847B2
Authority
JP
Japan
Prior art keywords
wavelength
optical multiplexer
demultiplexer
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15270497A
Other languages
Japanese (ja)
Other versions
JPH112732A (en
Inventor
旭 熊谷
徹 高橋
直成 笹野
健一 牟田
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP15270497A priority Critical patent/JP3664847B2/en
Publication of JPH112732A publication Critical patent/JPH112732A/en
Application granted granted Critical
Publication of JP3664847B2 publication Critical patent/JP3664847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の異なった情報信号を波長分割多重することができる光合分波器装置に関する。
【0002】
【従来の技術】
従来より、電話やテレビやデータなど多種類の情報信号を伝送させるために、複数の波長を利用して1本の光ファイバにのせる波長分割多重(wavelength div-ision multiplexing , WDM)方式が採用されており、この波長分割多重は光合分波器装置により行われている。
【0003】
このような光合分波器装置は図8に示すように、1本の光導波路52および2本の光導波路53、54間で2個の波長λ1、λ2の信号を各波長λ1、λ2について遮断、通過させる光合分波器55で構成されている。このように構成された光合分波器装置51において、光合分波器55の入力ポート55aに入力ポートパワーP11で2個の波長λ1、λ2の光を入力すると、2本の光導波路53、54の一方の導波路53に接続されている光合分波器55の出力ポート55b′に出力される波長λ1の信号の出力ポートパワーP13、および他方の導波路54に接続されている光合分波器55の出力ポート55bに出力される波長λ2の出力ポートパワーP14は、
P13=P11*(1+cos(Δφ))/2・・・・(1)
P14=P11*(1−cos(Δφ))/2・・・・(2)
となる。ここで、Δφは波長λ1の光および波長λ2の光のモードの位相差とする。
【0004】
したがって、波長λ1を1.31μm、波長λ2を1.55μmとすると、波長1.55μmの出力ポートパワーP13、および波長1.31μmの出力ポートパワーP14と波長との関係は図9に示すように、理論上、サイン波になることがわかる。また、図10に示すように、波長分離度が例えば−23dBでは帯域幅は理論上、21.6nmになる。
【0005】
【発明が解決しようとする課題】
しかしながら、このような光合分波器装置51では、波長分離度の帯域幅が狭いという難点があった。
【0006】
このような難点に対して上述のような光合分波器を2個直列接続させた光合分波器装置が提案されている。例えば図11(a)に示すように、第1の光合分波器61と第2の光合分波器71とを直列接続させると、第1の光合分波器61の入力ポート61aに入力する例えば2個の波長1.31μm、1.55μmの信号は第1の光合分波器61で分波され、波長1.55μmの信号が第2の光合分波器71を介して導波路30に出力される。この光合分波器装置100によれば、第2の光合分波器71の出力ポート71b′の出力ポートパワーP23は図12に示すように、理論上、波長分離度が−23dBの場合の帯域幅が81.6nmになる。
【0007】
また、図11(b)に示すように、第1の光合分波器81と第2の光合分波器91とを直列接続させると、第1の光合分波器81の入力ポート81aに入力する例えば2個の波長1.31μm、1.55μmの信号は第1の光合分波器81で分波され、波長1.31μmの信号が第2の光合分波器91を介して導波路40に出力される。この光合分波器装置100′によれば、第2の光合分波器91の出力ポート91b′の出力ポートパワーP24は図12に示すように、理論上、波長分離度が−23dBの場合の帯域幅が81.6nmになる。
【0008】
しかしながら、このような波長分離度の帯域幅でも光ファイバ通信によっては満足できない場合もある。
【0009】
本発明はこのような従来の難点を解決するためになされたもので、光ファイバを溶融して一体化した光合分波器を使用して波長分離度の帯域幅を従来より広くすることができる光合分波器装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
このような目的を達成する本発明の光合分波器装置は、1本の光導波路と少なくとも2本の光導波路との間で少なくとも2個の波長の信号を各波長について遮断、通過させる光合分波器により合波、分波する光合分波器装置において、光合分波器は、少なくとも1つの波長の信号についてそれぞれ異なる遮断中心周波数を有する少なくとも2個の光合分波器で構成され、少なくとも2個の光合分波器の遮断中心周波数は、少なくとも2個の光合分波器のうち一つの光合分波器において少なくとも1つの波長の信号の周波数から所定周波数だけ高い周波数にシフトされ、少なくとも2個の光合分波器のうちの他の光合分波器の一つにおいて少なくとも1つの波長の信号の周波数から所定周波数だけ低い周波数にシフトされて設定されているものである。
【0011】
このように構成された光合分波器装置は、各光合分波器の遮断中心周波数がそれぞれ異なるので、波長分離度の帯域幅を広くすることができる。
【0012】
【発明の実施の形態】
以下、本発明の光合分波器装置の実施の一形態について、図面を参照して説明する。
【0013】
本発明の光合分波器装置は例えば図1に示すように、1本の光導波路2と2本の光導波路3、4との間で例えば2個の波長1.31μm、1.55μmの信号を、各波長1.31μm、1.55μmについて遮断、通過させる2個の光合分波器5、6により合波、分波するもので、2個の光合分波器5、6が直列接続されている。
【0014】
2個の光合分波器5、6はそれぞれ4つの入出力用のポートを有している。第1の光合分波器5は、入力ポート5a、5a′と出力ポート5b、5b′とを有し、出力ポート5bに波長1.55μmの信号を通過させると共に波長1.31μmの信号を遮断させ、出力ポート5b′に波長1.31μmの信号を通過させると共に波長1.55μmの信号を遮断させるものである。また、波長1.31μmの信号について遮断中心周波数を有し、この遮断中心周波数は例えば20nmだけ高い方向にシフトされて設定されている。第2の光合分波器6は、入力ポート6a、6a′と出力ポート6b、6b′とを有し、出力ポート6bに波長1.31μmの信号を通過させると共に波長1.55μmの信号を遮断させ、出力ポート6b′に波長1.55μmの信号を通過させると共に波長1.31μmの信号を遮断させるものである。また、波長1.31μmの信号について遮断中心周波数を有し、この遮断中心周波数は例えば20nmだけ低い方向にシフトされて設定されている。
【0015】
第1の光合分波器5の入力ポート5aには1本の光導波路2が接続され、入力ポート5a′には何も接続されていない。第1の光合分波器5の出力ポート5bには第2の光合分波器6の入力ポート6a′が接続され、出力ポート5b′には他方の光導波路4が接続されている。第2の光合分波器6の出力ポート6b′には一方の光導波路3が接続され、入力ポート6aおよび出力ポート6bには何も接続されていない。
【0016】
このような遮断中心周波数を有する各光合分波器5、6は、図2、図3、図4に示すような波長分離度の帯域幅理論値を具備している。即ち、遮断中心周波数のシフト量が±20nmの場合、挿入損は0.145dB、波長分離度の帯域は92nm、中心波長の分離度は−35.5dBとなる。
【0017】
このように構成された本発明の光合分波器装置1において、1本の光導波路2から入力ポートパワーP1で2個の波長1.31μm、1.55μmの光が入力すると、波長1.55μmの信号は第1の光合分波器5で分波されて出力ポート5bに出力され、さらに第2の光合分波器6で分波されて出力ポート6b′を介して一方の光導波路3に出力される。この際、第1の光合分波器5の出力ポート5b、および第2の光合分波器6の出力ポート6b′の各出力ポートパワーP3は、
P3=P1*(1+cos(Δφ))/2・・・・(3)
となる。ここで、Δφは波長1.31μmの光および波長1.55μmの光のモードの位相差とする。これにより、理論上の波長と損失とは図5に示すようなグラフになる。即ち、図5に示すように、波長分離度が−23dBでは帯域幅が91.6nmになるので、従来の光合分波器装置よりも、波長分離度の帯域幅を広くすることができる。
【0018】
また、波長1.31μmの光の波長分離度の帯域幅を広くする場合には、図6に示すように1本の光導波路2と2本の光導波路3、4との間で例えば2個の波長1.31μm、1.55μmの信号を、各波長1.31μm、1.55μmについて遮断、通過させる2個の光合分波器15、16により合波、分波するもので、2個の光合分波器15、16が直列接続されている。
【0019】
2個の光合分波器15、16は、上述の光合分波器装置1の各光合分波器5、6と同様に、それぞれ4つの入出力用のポートを有している。第1の光合分波器15は、入力ポート15a、15a′と出力ポート15b、15b′とを有し、出力ポート15bに波長1.55μmの信号を通過させると共に波長1.31μmの信号を遮断させ、出力ポート15b′に波長1.31μmの信号を通過させると共に波長1.55μmの信号を遮断させるものである。また、波長1.55μmの信号について遮断中心周波数を有し、この遮断中心周波数は例えば20nmだけ高い方向にシフトされて設定されている。第2の光合分波器16は、入力ポート16a、16a′と出力ポート16b、16b′とを有し、出力ポート16bに波長1.55μmの信号を通過させると共に波長1.31μmの信号を遮断させ、出力ポート16b′に波長1.31μmの信号を通過させると共に波長1.55μmの信号を遮断させるものである。また、波長1.55μmの信号について遮断中心周波数を有し、この遮断中心周波数は例えば20nmだけ低い方向にシフトされて設定されている。
【0020】
第1の光合分波器15の入力ポート15aには1本の光導波路2が接続され、入力ポート15a′には何も接続されていない。第1の光合分波器15の出力ポート15b′には第2の光合分波器16の入力ポート16aが接続され、出力ポート15bには一方の光導波路3が接続されている。第2の光合分波器16の出力ポート16b′には他方の光導波路4が接続され、入力ポート16a′および出力ポート16bには何も接続されていない。
【0021】
このような遮断中心周波数を有する各光合分波器15、16は上述の光合分波器装置1の各光合分波器5、6と同様に、図2、図3、図4に示すような波長分離度の帯域幅理論値を具備している。即ち、遮断中心周波数のシフト量が±20nmの場合、挿入損は0.145dB、波長分離度の帯域は92nm、中心波長の分離度は−35.5dBとなる。
【0022】
このように構成された本発明の光合分波器装置10において、1本の光導波路2から入力ポートパワーP1で2個の波長1.31μm、1.55μmの光が入力すると、波長1.31μmの信号は第1の光合分波器15で分波されて出力ポート15b′に出力され、さらに第2の光合分波器16で分波されて出力ポート16b′を介して他方の光導波路4に出力される。この際、第1の光合分波器15の出力ポート15b′、および第2の光合分波器16の出力ポート16b′の各出力ポートパワーP4は、
P4=P1*(1−cos(Δφ))/2・・・・(4)
となる。ここで、Δφは波長1.31μmの光および波長1.55μmの光のモードの位相差とする。これにより、理論上の波長と損失とは図5に示すようなグラフになる。即ち、図5に示すように、波長分離度が−23dBでは帯域幅が91.6nmになるので、従来の光合分波器装置よりも、波長分離度の帯域幅を広くすることができる。
【0023】
なお、本発明の実施の一形態においては1本の光導波路と、2本の光導波路との間で2個の波長の信号を各波長について遮断、通過させる光合分波器により分波させていたが、これに限らず、1本の光導波路と、2本以上の光導波路との間で2個以上の波長の信号を各波長について遮断、通過させる光合分波器により分波させてもよい。この際、光合分波器は、1つ以上の波長の信号についてそれぞれ異なる遮断中心周波数を有する2個以上の光合分波器で構成させる。また、このような光合分波器装置は、多重化された異なる波長の信号の分波に限らず、複数の波長の信号を合波させることもでき、さらに、複数波の双方向多重に適用させることもできる。
【0024】
【実施例】
さらに、本発明の光合分波器装置による波長分離度の帯域幅について、実験を行った。なお、本実験においては図1に示す光合分波器装置1を使用して、波長分離度の帯域幅を測定した。測定結果は図7に示すように、波長分離度が−23dBでは、帯域幅が89.7nmになることが確認できた。
【0025】
【発明の効果】
以上、説明したように、本発明の光合分波器装置によれば、少なくとも1つの波長の信号についてそれぞれ異なる遮断中心周波数を有する少なくとも2個の光合分波器で構成したので、波長分離度の帯域幅を従来より広くすることができる。これにより、各波長間の干渉を防ぐことができる。また、誘電体多層膜フィルタや微小光学素子を用いたものに比べて、光学特性が優れ、製造コストも下げることができるので、WDM光伝送機器、WDM伝送を使用した端末等に利用できる。
【図面の簡単な説明】
【図1】 本発明の光合分波器装置の実施の一形態を示す構成図。
【図2】 本発明の光合分波器装置の波長分離度の帯域幅の中心波長の変化と挿入損との関係を理論値で示すグラフ。
【図3】 本発明の光合分波器装置の波長分離度の帯域幅の中心波長の変化と波長分離度の帯域との関係を理論値で示すグラフ。
【図4】 本発明の光合分波器装置の波長分離度の帯域幅の中心波長の変化と中心波長の分離度との関係を理論値で示すグラフ。
【図5】 本発明の光合分波器装置の波長分離度の帯域幅の波長と損失との関係を理論値で示すグラフ。
【図6】 本発明の光合分波器装置の他の実施の一形態を示す構成図。
【図7】 本発明の光合分波器装置の波長分離度の帯域幅の波長と損失との関係を実測値で示すグラフ。
【図8】 従来の光合分波器装置を示す構成図。
【図9】 従来の光合分波器装置の出力パワーと波長との関係を理論値で示すグラフ。
【図10】 従来の光合分波器装置の波長分離度の帯域幅の波長と損失との関係を理論値で示すグラフ。
【図11】 従来の光合分波器装置を示す図で、(a)は波長1.55μmの信号を2個の光合分波器に通過させる構成図、(b)は波長1.31μmの信号を2個の光合分波器に通過させる構成図。
【図12】 図11に示す光合分波器装置の波長分離度の帯域幅の波長と損失との関係を理論値で示すグラフ。
【符号の説明】
1、10・・・・光合分波器装置
2・・・・1本の光導波路
3、4・・・・2本の光導波路
5、6・・・・2個の光合分波器
15、16・・・・2個の光合分波器
1.31μm、1.55μm・・・・2個の波長
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical multiplexer / demultiplexer device capable of wavelength division multiplexing a plurality of different information signals.
[0002]
[Prior art]
Conventionally, in order to transmit various types of information signals such as telephones, televisions, and data, a wavelength division-multiplexing (WDM) method that uses a plurality of wavelengths and can be placed on a single optical fiber has been adopted. The wavelength division multiplexing is performed by an optical multiplexer / demultiplexer device.
[0003]
As shown in FIG. 8, such an optical multiplexer / demultiplexer device cuts off signals of two wavelengths λ1 and λ2 between one optical waveguide 52 and two optical waveguides 53 and 54 for each wavelength λ1 and λ2. The optical multiplexer / demultiplexer 55 is made to pass. In the optical multiplexer / demultiplexer device 51 configured as described above, when light of two wavelengths λ1 and λ2 is input to the input port 55a of the optical multiplexer / demultiplexer 55 with the input port power P11, the two optical waveguides 53, 54 are input. The output port power P13 of the signal of wavelength λ1 output to the output port 55b 'of the optical multiplexer / demultiplexer 55 connected to one of the waveguides 53, and the optical multiplexer / demultiplexer connected to the other waveguide 54 The output port power P14 of wavelength λ2 output to the output port 55b of 55 is
P13 = P11 * (1 + cos (Δφ)) / 2 (1)
P14 = P11 * (1-cos (Δφ)) / 2 (2)
It becomes. Here, Δφ is the phase difference between the modes of the light of wavelength λ1 and the light of wavelength λ2.
[0004]
Accordingly, when the wavelength λ1 is 1.31 μm and the wavelength λ2 is 1.55 μm, the relationship between the output port power P13 having a wavelength of 1.55 μm and the output port power P14 having a wavelength of 1.31 μm and the wavelength is as shown in FIG. It turns out that it becomes a sine wave in theory. Further, as shown in FIG. 10, when the wavelength separation is −23 dB, for example, the bandwidth is theoretically 21.6 nm.
[0005]
[Problems to be solved by the invention]
However, such an optical multiplexer / demultiplexer device 51 has a drawback that the bandwidth of wavelength separation is narrow.
[0006]
An optical multiplexer / demultiplexer device in which two optical multiplexers / demultiplexers as described above are connected in series has been proposed for such a difficulty. For example, as shown in FIG. 11A, when a first optical multiplexer / demultiplexer 61 and a second optical multiplexer / demultiplexer 71 are connected in series, they are input to an input port 61a of the first optical multiplexer / demultiplexer 61. For example, two signals having a wavelength of 1.31 μm and 1.55 μm are demultiplexed by the first optical multiplexer / demultiplexer 61, and a signal having a wavelength of 1.55 μm is supplied to the waveguide 30 via the second optical multiplexer / demultiplexer 71. Is output. According to this optical multiplexer / demultiplexer device 100, the output port power P23 of the output port 71b ′ of the second optical multiplexer / demultiplexer 71 is theoretically a band when the wavelength separation is −23 dB as shown in FIG. The width is 81.6 nm.
[0007]
Further, as shown in FIG. 11B, when a first optical multiplexer / demultiplexer 81 and a second optical multiplexer / demultiplexer 91 are connected in series, an input is made to the input port 81a of the first optical multiplexer / demultiplexer 81. For example, two signals having a wavelength of 1.31 μm and 1.55 μm are demultiplexed by the first optical multiplexer / demultiplexer 81, and the signal having a wavelength of 1.31 μm is waveguided via the second optical multiplexer / demultiplexer 91. Is output. According to this optical multiplexer / demultiplexer device 100 ′, the output port power P24 of the output port 91b ′ of the second optical multiplexer / demultiplexer 91 is theoretically the case where the wavelength separation is −23 dB as shown in FIG. The bandwidth is 81.6 nm.
[0008]
However, even such a wavelength separation bandwidth may not be satisfactory depending on the optical fiber communication.
[0009]
The present invention has been made in order to solve such a conventional problem, and it is possible to widen the bandwidth of wavelength separation by using an optical multiplexer / demultiplexer in which an optical fiber is fused and integrated. An object of the present invention is to provide an optical multiplexer / demultiplexer device.
[0010]
[Means for Solving the Problems]
The optical multiplexer / demultiplexer device of the present invention that achieves such an object is an optical multiplexer / demultiplexer that blocks and passes signals of at least two wavelengths for each wavelength between one optical waveguide and at least two optical waveguides. In an optical multiplexer / demultiplexer device that multiplexes and demultiplexes with a wave multiplexer, the optical multiplexer / demultiplexer includes at least two optical multiplexer / demultiplexers each having a different cutoff center frequency for a signal of at least one wavelength, and at least 2 The cutoff center frequency of each optical multiplexer / demultiplexer is shifted from the frequency of the signal of at least one wavelength to a frequency higher by a predetermined frequency in one optical multiplexer / demultiplexer among at least two optical multiplexers / demultiplexers. One of the other optical multiplexers / demultiplexers is set to be shifted from the frequency of the signal of at least one wavelength to a frequency lower by a predetermined frequency in one of the optical multiplexers / demultiplexers A.
[0011]
In the optical multiplexer / demultiplexer device configured as described above, since the cutoff center frequencies of the optical multiplexer / demultiplexers are different from each other, the bandwidth of wavelength separation can be widened.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an optical multiplexer / demultiplexer device of the present invention will be described with reference to the drawings.
[0013]
For example, as shown in FIG. 1, the optical multiplexer / demultiplexer device according to the present invention has, for example, two signals having a wavelength of 1.31 μm and 1.55 μm between one optical waveguide 2 and two optical waveguides 3 and 4. Are combined and demultiplexed by two optical multiplexers / demultiplexers 5 and 6 that block and pass through each wavelength of 1.31 μm and 1.55 μm, and the two optical multiplexer / demultiplexers 5 and 6 are connected in series. ing.
[0014]
Each of the two optical multiplexers / demultiplexers 5 and 6 has four input / output ports. The first optical multiplexer / demultiplexer 5 has input ports 5a, 5a ′ and output ports 5b, 5b ′, and allows a signal having a wavelength of 1.55 μm to pass through the output port 5b and blocks a signal having a wavelength of 1.31 μm. Thus, a signal having a wavelength of 1.31 μm is allowed to pass through the output port 5b ′ and a signal having a wavelength of 1.55 μm is blocked. Further, a signal having a wavelength of 1.31 μm has a cutoff center frequency, and this cutoff center frequency is set to be shifted in a higher direction by, for example, 20 nm. The second optical multiplexer / demultiplexer 6 has input ports 6a and 6a ′ and output ports 6b and 6b ′, and allows a signal having a wavelength of 1.31 μm to pass through the output port 6b and blocks a signal having a wavelength of 1.55 μm. Thus, a signal having a wavelength of 1.55 μm is allowed to pass through the output port 6b ′ and a signal having a wavelength of 1.31 μm is blocked. Further, a signal having a wavelength of 1.31 μm has a cutoff center frequency, and this cutoff center frequency is set to be shifted in a lower direction by, for example, 20 nm.
[0015]
One optical waveguide 2 is connected to the input port 5a of the first optical multiplexer / demultiplexer 5, and nothing is connected to the input port 5a '. The output port 5b of the first optical multiplexer / demultiplexer 5 is connected to the input port 6a 'of the second optical multiplexer / demultiplexer 6, and the other optical waveguide 4 is connected to the output port 5b'. One optical waveguide 3 is connected to the output port 6b 'of the second optical multiplexer / demultiplexer 6, and nothing is connected to the input port 6a and the output port 6b.
[0016]
Each of the optical multiplexers / demultiplexers 5 and 6 having such a cutoff center frequency has a theoretical bandwidth value of wavelength separation as shown in FIGS. That is, when the amount of shift of the cutoff center frequency is ± 20 nm, the insertion loss is 0.145 dB, the wavelength separation band is 92 nm, and the center wavelength separation is −35.5 dB.
[0017]
In the optical multiplexer / demultiplexer device 1 of the present invention configured as described above, when two light beams having a wavelength of 1.31 μm and 1.55 μm are input from one optical waveguide 2 at the input port power P1, the wavelength is 1.55 μm. The signal is demultiplexed by the first optical multiplexer / demultiplexer 5 and output to the output port 5b, and further demultiplexed by the second optical multiplexer / demultiplexer 6 to the one optical waveguide 3 via the output port 6b '. Is output. At this time, the output port powers P3 of the output port 5b of the first optical multiplexer / demultiplexer 5 and the output port 6b 'of the second optical multiplexer / demultiplexer 6 are:
P3 = P1 * (1 + cos (Δφ)) / 2 (3)
It becomes. Here, Δφ is a phase difference between modes of light having a wavelength of 1.31 μm and light having a wavelength of 1.55 μm. Thereby, the theoretical wavelength and loss become a graph as shown in FIG. That is, as shown in FIG. 5, since the bandwidth becomes 91.6 nm when the wavelength separation is −23 dB, the bandwidth of the wavelength separation can be made wider than that of the conventional optical multiplexer / demultiplexer device.
[0018]
When the bandwidth of the wavelength separation degree of the light having a wavelength of 1.31 μm is widened, for example, two between one optical waveguide 2 and two optical waveguides 3 and 4 as shown in FIG. The signals having the wavelengths of 1.31 μm and 1.55 μm are combined and demultiplexed by the two optical multiplexers / demultiplexers 15 and 16 that block and pass the signals at the wavelengths of 1.31 μm and 1.55 μm. Optical multiplexers / demultiplexers 15 and 16 are connected in series.
[0019]
The two optical multiplexers / demultiplexers 15 and 16 each have four input / output ports, like the optical multiplexer / demultiplexers 5 and 6 of the optical multiplexer / demultiplexer device 1 described above. The first optical multiplexer / demultiplexer 15 has input ports 15a and 15a ′ and output ports 15b and 15b ′, and allows a signal having a wavelength of 1.55 μm to pass through the output port 15b and blocks a signal having a wavelength of 1.31 μm. The signal having the wavelength of 1.31 μm is allowed to pass through the output port 15b ′ and the signal having the wavelength of 1.55 μm is blocked. Further, a signal having a wavelength of 1.55 μm has a cutoff center frequency, and this cutoff center frequency is set to be shifted in a higher direction by, for example, 20 nm. The second optical multiplexer / demultiplexer 16 has input ports 16a and 16a ′ and output ports 16b and 16b ′, and allows a signal having a wavelength of 1.55 μm to pass through the output port 16b and blocks a signal having a wavelength of 1.31 μm. The signal having the wavelength of 1.31 μm is allowed to pass through the output port 16b ′ and the signal having the wavelength of 1.55 μm is blocked. Further, a signal having a wavelength of 1.55 μm has a cutoff center frequency, and this cutoff center frequency is set to be shifted in a lower direction by, for example, 20 nm.
[0020]
One optical waveguide 2 is connected to the input port 15a of the first optical multiplexer / demultiplexer 15, and nothing is connected to the input port 15a '. The input port 16a of the second optical multiplexer / demultiplexer 16 is connected to the output port 15b 'of the first optical multiplexer / demultiplexer 15, and one optical waveguide 3 is connected to the output port 15b. The other optical waveguide 4 is connected to the output port 16b 'of the second optical multiplexer / demultiplexer 16, and nothing is connected to the input port 16a' and the output port 16b.
[0021]
Each of the optical multiplexers / demultiplexers 15 and 16 having such a cutoff center frequency is similar to the optical multiplexer / demultiplexers 5 and 6 of the optical multiplexer / demultiplexer device 1 described above, as shown in FIGS. It has the theoretical bandwidth of wavelength separation. That is, when the amount of shift of the cutoff center frequency is ± 20 nm, the insertion loss is 0.145 dB, the wavelength separation band is 92 nm, and the center wavelength separation is −35.5 dB.
[0022]
In the optical multiplexer / demultiplexer device 10 of the present invention configured as described above, when two light beams having wavelengths of 1.31 μm and 1.55 μm are input from one optical waveguide 2 at the input port power P1, the wavelength is 1.31 μm. Is demultiplexed by the first optical multiplexer / demultiplexer 15 and output to the output port 15b ', and further demultiplexed by the second optical multiplexer / demultiplexer 16 and the other optical waveguide 4 via the output port 16b'. Is output. At this time, the output port powers P4 of the output port 15b 'of the first optical multiplexer / demultiplexer 15 and the output port 16b' of the second optical multiplexer / demultiplexer 16 are:
P4 = P1 * (1-cos (Δφ)) / 2 (4)
It becomes. Here, Δφ is a phase difference between modes of light having a wavelength of 1.31 μm and light having a wavelength of 1.55 μm. Thereby, the theoretical wavelength and loss become a graph as shown in FIG. That is, as shown in FIG. 5, since the bandwidth becomes 91.6 nm when the wavelength separation is −23 dB, the bandwidth of the wavelength separation can be made wider than that of the conventional optical multiplexer / demultiplexer device.
[0023]
In one embodiment of the present invention, a signal having two wavelengths is blocked by one optical waveguide and two optical waveguides by an optical multiplexer / demultiplexer that blocks and passes each wavelength. However, the present invention is not limited to this, and a signal having two or more wavelengths may be demultiplexed between one optical waveguide and two or more optical waveguides by an optical multiplexer / demultiplexer that blocks and passes each wavelength. Good. At this time, the optical multiplexer / demultiplexer is composed of two or more optical multiplexers / demultiplexers having different cutoff center frequencies for signals of one or more wavelengths. In addition, such an optical multiplexer / demultiplexer device is not limited to demultiplexing signals with different wavelengths, but can also multiplex signals with multiple wavelengths, and can be applied to bidirectional multiplexing of multiple waves. It can also be made.
[0024]
【Example】
Furthermore, an experiment was conducted on the bandwidth of wavelength separation by the optical multiplexer / demultiplexer device of the present invention. In this experiment, the bandwidth of wavelength separation was measured using the optical multiplexer / demultiplexer device 1 shown in FIG. As shown in FIG. 7, the measurement result confirmed that the bandwidth was 89.7 nm when the wavelength separation was −23 dB.
[0025]
【The invention's effect】
As described above, according to the optical multiplexer / demultiplexer device of the present invention, at least two optical multiplexer / demultiplexers having different cutoff center frequencies for signals of at least one wavelength are used. The bandwidth can be made wider than before. Thereby, interference between each wavelength can be prevented. In addition, since the optical characteristics are excellent and the manufacturing cost can be reduced as compared with those using a dielectric multilayer filter or a micro optical element, it can be used for WDM optical transmission equipment, terminals using WDM transmission, and the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an optical multiplexer / demultiplexer device according to the present invention.
FIG. 2 is a graph showing the relationship between the change in the center wavelength of the wavelength separation bandwidth of the optical multiplexer / demultiplexer device of the present invention and the insertion loss as a theoretical value;
FIG. 3 is a graph showing the relationship between the change in the center wavelength of the bandwidth of wavelength separation and the bandwidth of wavelength separation in the optical multiplexer / demultiplexer device of the present invention as theoretical values.
FIG. 4 is a graph showing the relationship between the change in the center wavelength of the wavelength separation bandwidth of the optical multiplexer / demultiplexer device according to the present invention and the separation between the center wavelengths as a theoretical value;
FIG. 5 is a graph showing the relationship between the wavelength and the loss of the bandwidth of the wavelength separation degree of the optical multiplexer / demultiplexer device of the present invention as a theoretical value.
FIG. 6 is a configuration diagram showing another embodiment of the optical multiplexer / demultiplexer device of the present invention.
FIG. 7 is a graph showing the relationship between the wavelength and the loss of the wavelength separation bandwidth of the optical multiplexer / demultiplexer device according to the present invention as measured values.
FIG. 8 is a configuration diagram showing a conventional optical multiplexer / demultiplexer device.
FIG. 9 is a graph showing the relationship between the output power and wavelength of a conventional optical multiplexer / demultiplexer device as a theoretical value.
FIG. 10 is a graph showing the relationship between the wavelength and the loss of the wavelength separation bandwidth of the conventional optical multiplexer / demultiplexer device as a theoretical value.
11A and 11B are diagrams showing a conventional optical multiplexer / demultiplexer device, where FIG. 11A is a configuration diagram for passing a signal having a wavelength of 1.55 μm through two optical multiplexers / demultiplexers, and FIG. 11B is a signal having a wavelength of 1.31 μm. FIG. 2 is a configuration diagram for passing a signal through two optical multiplexer / demultiplexers.
12 is a graph showing the relationship between the wavelength of the wavelength separation bandwidth and the loss of the optical multiplexer / demultiplexer device shown in FIG. 11 as a theoretical value;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10 .... Optical multiplexer / demultiplexer apparatus 2 .... One optical waveguide 3, 4, ... Two optical waveguides 5, 6, ... Two optical multiplexer / demultiplexers 15, 16 ··· 2 optical multiplexers / demultiplexers 1.31 µm, 1.55 µm ··· 2 wavelengths

Claims (1)

1本の光導波路と少なくとも2本の光導波路との間で少なくとも2個の波長の信号を各波長について遮断、通過させる光合分波器により合波、分波する光合分波器装置において、
前記光合分波器は、少なくとも1つの波長の信号についてそれぞれ異なる遮断中心周波数を有する少なくとも2個の光合分波器で構成され、
前記少なくとも2個の光合分波器の遮断中心周波数は、前記少なくとも2個の光合分波器のうち一つの光合分波器において少なくとも1つの波長の信号の周波数から所定周波数だけ高い周波数にシフトされ、前記少なくとも2個の光合分波器のうちの他の光合分波器の一つにおいて前記少なくとも1つの波長の信号の周波数から所定周波数だけ低い周波数にシフトされて設定されていることを特徴とする光合分波器装置。
In an optical multiplexer / demultiplexer device that multiplexes and demultiplexes signals of at least two wavelengths between one optical waveguide and at least two optical waveguides with respect to each wavelength by an optical multiplexer / demultiplexer that passes the signals.
The optical multiplexer / demultiplexer includes at least two optical multiplexers / demultiplexers each having a different cutoff center frequency for a signal of at least one wavelength,
Cutoff center frequency of said at least two optical coupler, said shifted from at least one frequency of the wavelength of the signal to a higher frequency by a predetermined frequency in one of the optical coupler of the at least two optical multiplexer In one of the at least two optical multiplexers / demultiplexers, the frequency is set to be shifted to a frequency lower by a predetermined frequency from the frequency of the signal of the at least one wavelength. Optical multiplexer / demultiplexer device.
JP15270497A 1997-06-10 1997-06-10 Optical multiplexer / demultiplexer device Expired - Lifetime JP3664847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15270497A JP3664847B2 (en) 1997-06-10 1997-06-10 Optical multiplexer / demultiplexer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15270497A JP3664847B2 (en) 1997-06-10 1997-06-10 Optical multiplexer / demultiplexer device

Publications (2)

Publication Number Publication Date
JPH112732A JPH112732A (en) 1999-01-06
JP3664847B2 true JP3664847B2 (en) 2005-06-29

Family

ID=15546331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15270497A Expired - Lifetime JP3664847B2 (en) 1997-06-10 1997-06-10 Optical multiplexer / demultiplexer device

Country Status (1)

Country Link
JP (1) JP3664847B2 (en)

Also Published As

Publication number Publication date
JPH112732A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
CN101401340B (en) Controllable optical add/drop multiplexer
JPH11202152A (en) Optical device having optical multiplexer and optical demultiplexer
US6160932A (en) Expandable wavelength division multiplexer based on interferometric devices
US7171071B2 (en) Optical wavelength division multiplexed system using wavelength splitters
EP1016884A2 (en) Interferometric optical device including an optical resonator
US6600852B1 (en) Wavelength selective device and switch and method thereby
EP0936483A2 (en) Optical router with coherent connecting paths
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
JP3664847B2 (en) Optical multiplexer / demultiplexer device
EP1089097A2 (en) Duplicated-port waveguide grating router having substantially flat passbands
JP2003185876A (en) Wavelength division multiplexer and wavelength division multiplexing system
US7330658B2 (en) Device and method for optical add/drop multiplexing
EP1158318A2 (en) Reconfigurable multi-channel filters having enhanced channel bandwidth
EP1249718A2 (en) Optical multiplexer based on interferometer with couplers
JP2003124913A (en) Wavelength division multiplexing transmission apparatus
EP1581828B1 (en) Integrated optical add drop device having switching function and method of switching
JPH11119173A (en) Light wavelength selective filter and light wavelength tuning type transceiver
JP3581661B2 (en) Polarization controller
JP2002174741A (en) Optical multiplexing and demultiplexing device
JPS62171335A (en) Multiwavelength optical fiber transmission system
JPH10148791A (en) Optical multiplexer and wavelength multiplexing light source using it
CN116582186A (en) Wavelength division multiplexing optical circuit implemented in photonic integrated circuits for optical transmitters
KR19990048060A (en) Wavelength-tunable optical splitter / combiner using fiber grating elements
JP2005003832A (en) Optical wavelength-multiplex-demultiplex device
JP3026399B2 (en) Polarization-independent tunable optical multiplexing / demultiplexing circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term