JP3590108B2 - Method for manufacturing composite optical element - Google Patents

Method for manufacturing composite optical element Download PDF

Info

Publication number
JP3590108B2
JP3590108B2 JP26972594A JP26972594A JP3590108B2 JP 3590108 B2 JP3590108 B2 JP 3590108B2 JP 26972594 A JP26972594 A JP 26972594A JP 26972594 A JP26972594 A JP 26972594A JP 3590108 B2 JP3590108 B2 JP 3590108B2
Authority
JP
Japan
Prior art keywords
mold
resin layer
optical element
gas
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26972594A
Other languages
Japanese (ja)
Other versions
JPH08132452A (en
Inventor
博之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP26972594A priority Critical patent/JP3590108B2/en
Publication of JPH08132452A publication Critical patent/JPH08132452A/en
Application granted granted Critical
Publication of JP3590108B2 publication Critical patent/JP3590108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光学素子基材表面に樹脂層を載置した複合型光学素子の製造方法に関する。
【0002】
【従来の技術】
従来、複合型光学素子を製造した後に金型と樹脂層を剥離する方法に関しては種々の方法が提案されており、例えば特開平4−244819号公報および特開平4−5010号公報記載の発明が挙げられる。
特開平4−244819号公報記載の発明は、剥離開始時に基材の一部へ集中荷重をかけ、そこから次第に荷重を分散させて金型と樹脂層との剥離を行う方法である。
また、特開平4−5010号公報記載の発明は、金型と硬化した樹脂層との間に挿入された気体噴出ノズルから気体を噴出させる方法である。
【0003】
【発明が解決しようとする課題】
しかしながら、前記各従来技術には以下のような問題点があった。
すなわち、大気圧下(1013±200hpa程度、標高,気候および室内の空調等に影響される)において、金型と樹脂層とを剥離させるためには、密着または接着している金型と樹脂層とを剥し、次に金型と樹脂層との間に空気を流入させなければならないが、特開平4−244819号公報記載の発明ではこの工程をすべて機械的な力で行っている。このため、金型に密着または接着している樹脂層を剥し、真空だった金型と樹脂層との空間に空気を流入させるには、樹脂層または基材を変形させなければならず、金型と樹脂層との剥離に必要な力が大きくなるのは避けられない。
【0004】
特に、複合型光学素子の金型と樹脂層との密着する面積が大きい,樹脂層が薄い,または基材の剛性が高いと、金型と樹脂層との間にかかる力が大きくなるために剥離が不可能であったり、剥離の際に基材を破損する率が高くなったり、樹脂層の変形により光学面精度が低下したりする。また、高い精度が必要とされる複合型光学素子の製造装置に力がかかるため、頻繁に調整が必要だったり、製造装置の剛性が必要とされるため高価になる等の問題が生じ、製品のコストが高くなるという不具合が生じてしまう。
【0005】
また、特開平4−5010号公報のように、大気圧下において金型と成形された複合型光学素子との間に挿入された気体噴出ノズルから気体を噴出させる方法では、金型と密着している樹脂層の界面を除く複合型光学素子の表面に接している気体が複合型光学素子を金型に押しつけている圧力に逆らい、金型と樹脂層との密着または接着を剥し、金型と樹脂層との界面に空間を形成する事が可能な圧力で気体を噴出させなければならないが、気体が噴出されても樹脂層と金型の界面には広がり難い。また、金型の有効光学面の精度を確保する理由で、周辺部に気体の噴出口があるため、噴出した気体が均等に広がった場合でも、光学面の中心部に噴出した気体が到達する前に、金型または樹脂層の外周部に流出してしまう。
【0006】
つまり、噴出された気体の圧力がいくら高くても、金型と樹脂層とを剥離させる効果があるのは噴出した気体が金型と樹脂層との間に広がった部分だけであり、金型から気体を噴出させるだけで金型と樹脂層とを完全に剥離させる事は難しい。また、あまりにも高い圧力を持った気体を噴出させると、気体の圧力による樹脂層の変形や気体の体積変化による急激な温度変化により、有効径光学面の外側から噴出された気体であっても有効光学面に悪影響を及ぼす恐れがある。さらに、高圧の気体を瞬時に噴出させるために製造装置の構造が複雑となるため高価になり、製品のコストが高くなるという不具合が生じてしまう。
【0007】
請求項1の目的は、金型と樹脂層とを容易に剥離できる方法の提供にある。
【0008】
【課題を解決するための手段】
請求項1の発明は、複合型光学素子を製造するため、光学素子のガラス基材表面にエネルギー硬化型の樹脂を供給し、所望の光学面を有する金型と上記ガラス基材とを相対的に接近させて所望の樹脂層を形成した後、エネルギーを照射することにより硬化した樹脂層と上記金型とを剥離するにあたり、上記金型と密着している上記樹脂層の界面を除いた上記複合型光学素子に接している気体を大気圧よりも低くし、上記ガラス基材をベル受けに載置したまま上記金型を剥離することを特徴とする複合型光学素子の製造方法である。
【0009】
【作用】
請求項1の作用は、複合型光学素子の製造工程において、従来の金型と密着している樹脂層の界面を除く複合型光学素子の表面は、大気圧(1013±200hpa程度、標高,気候および室内の空調等に影響される)またはそれ以上の圧力による気体(嫌気性樹脂表面を硬化するための窒素噴出等)により押されている。しかし、金型に密着または接着している樹脂層を剥すには、真空である金型と樹脂層との界面に空気を流入させなければならなかった。
【0010】
そこで、樹脂硬化後の金型と樹脂層とを剥離する際に、金型と密着している樹脂層の界面を除く複合型光学素子の表面に接している気体の圧力を大気圧よりも低くすることにより、真空である金型と樹脂層の界面と、それ以外の複合型光学素子表面との気体圧力差が減少する。
つまり、金型と密着している樹脂層の界面を除く複合型光学素子の表面に接している気体の圧力が減少すれば、、基材と密着している樹脂層が金型に押しつけられる力も同時に減少し、金型と樹脂層との剥離に必要な力も減少する。
このため、従来の様々な剥離手段による金型と樹脂層との剥離が、さらに容易かつスムーズに、小さな力で金型と樹脂層とを剥離することが可能となる。
【0012】
【実施例1】
図1および図2は本実施例で用いる装置を示す概略構成図である。
図1に示すように、樹脂を載置する成形面側が凹面で曲率半径60mm、その裏側の反成形面側が凸面で曲率半径80mm、中心基材厚3mmで直径25mmのメニス形状をしたガラス製の基材3には紫外線硬化型樹脂が必要量吐出され、下軸ベース4に固定されたベル受け5の上に載置されている。この時、基材3の中心軸を、金型1の中心軸と同一になるように調整する。金型1の直径は24mmで、そのうち有効光学面の直径は23mm、凸面形状で曲率半径50mmの光学面を持っている。
【0013】
この金型1を下降し、紫外線硬化型樹脂を押圧して中心軸上の金型1と基材3との距離が0.1mmになるように近付ける。この時、樹脂は最外周部が金型1の有効光学面(φ23mm)に達し、金型1の直径(φ24mm)からはみ出ないように押圧されて広がり樹脂層2となる。
なお、金型1と結合されている気密漏れの無い部材により形成された減圧室6の下端部6aは、金型1が下降すると同時に下軸ベース4の溝へ取り付けられたOリング11と気密漏れ無く接触する。
【0014】
次に、紫外線照射装置7により均一な光束の紫外線を基材3下部より照射して樹脂層2を硬化する。ここで紫外線の光路である下軸ベース4には紫外線の透過率に優れた石英板9が気密漏れの無いように挿入されているため、金型1,樹脂層2および基材3を包含する減圧室6の空間は外気から遮断された状態となり、さらに大気圧だった減圧室6の中の気体を下軸ベース4に取り付けられた排気口8から不図示の真空ポンプにより100hpa以下になるまで減圧する。この時、通気口12により反成形面側も同時に減圧される。
【0015】
つづいて図2に示すように、金型1と樹脂層2とを機械的に剥離させるための剥離爪10をモーター13によりスライドし、基材3の成形面側の金型1の直径よりも外側の位置に剥離爪10を当接させて基材3を固定した後、金型1を8mm/minのスピードで上昇させることにより、金型1と樹脂層2とを剥離する。
なお、減圧室6の下端部6aが嵌合している下軸ベース4の溝の気密性は、樹脂層2を押圧して成形を行う金型1の位置より上方に10mmの範囲にわたって確保されている構造であるため、金型1を剥離の為に上昇させる程度のストロークであれば減圧室6の気密は保たれる。金型1と樹脂層2との剥離後、さらに金型1の移動スピードを早めて上昇を続ける事により、自動的に減圧室6中に空気が流入して大気圧となり、複合型光学素子の製造工程が完了する。
【0016】
実験によれば、大気圧下での金型1と樹脂層2との剥離では金型1と基材3との間に180Nの力をかけなければ剥離しなかったが、通常の大気圧の1/10以下に減圧された状態では、金型1と樹脂層2との界面に働く力が減少し、金型1と樹脂層2との剥離に必要な力も減少するため、金型1と樹脂層2との間に働く力は100Nに減少した。
【0017】
本実施例によれば、従来の剥離爪を用いる複合型光学素子の製造方法に比較し、金型と樹脂層との剥離に必要な力が減少するため、従来では剥離が不可能だった複合型光学素子でも剥離が可能になった。また、剥離の際に基材を破損する率が低くなった。さらに、樹脂層の変形により光学面精度が低下する可能性が減少した。
また、高い精度を必要とする複合型光学素子の製造装置にかかる力が減少するため、調整回数が減少し、製造装置の強化が必要なくなり、製品のコストが低くなる等の効果が生まれる。
【0018】
【実施例2】
図3〜図5は本実施例で用いる装置を示す概略構成図である。
図3に示すように、樹脂を載置して成形を行う成形面側が凹面で曲率半径150mm、その裏側の反成形面側も凹面で曲率半径80mm、中心基材厚は7mmで直径43mmのガラス製の基材23には紫外線硬化型樹脂が必要量吐出され、下軸ベース24に固定された平面受け25の上に、中心軸が金型21の中心軸と同一になるように調整されて載置してある。金型21は所望の樹脂層形状を反転させた凸面の光学面を持ち、直径42mm、光学面の有効直径は34mm、曲率半径125mmである。また、金型21には、直径2mmの気体噴出ピストン30が6個挿入され、有効光学径外に開口部を持つ。この金型21をシリンダーとする。圧縮上死点で光学面と段差の無い形状の気体噴出ピストン30は、不図示の駆動ユニットにより駆動可能である。またシリンダーの内壁には、光学面から5mmの位置に流入口31が空けられている。
【0019】
この金型21を下降し、紫外線硬化型樹脂を押圧して中心軸上の金型21と基材23との距離が0.05mmになるように付近ける。
この時、樹脂量の調整された樹脂層22の最外周部は、直径41mm±0.5mmの範囲に広がる。ここで紫外線照射装置27により紫外線を基材23下部より照射して樹脂層22を硬化する。
【0020】
ここで、図4に示すように、紫外線の光路である下軸ベース24には紫外線の透過率の高い石英板29が気密漏れなく取り付けられている。基材23の載置面と石英板29との間には排気口28が設けられている。この排気口28から不図示の真空ポンプにより、平面受け25と基材23と石英板29とで囲まれた空間の気体を流出させ、20hpaに減圧する。この後、金型21に取り付けられた気体噴出ピストン30を5mm以上上昇させて流入口31から大気圧の空気を流入させ、再度気体噴出ピストン30を10Nの力で金型21の光学面方向に押し出すと、気体は約50N/cm2 となり、圧縮された気体は金型21と樹脂層22との界面に噴出される。
【0021】
図5に示すように、基材23は両凹面形状により中心部の基材厚が最も薄いため変形し易く、さらに基材23の反成形面側は減圧されているため、気体噴出ピストン30から噴出された気体は、瞬時のうちに金型21と樹脂層22との界面の中心部へ向かって広がり、その後周辺部に到達して金型21と樹脂層22とは完全に剥離する。万一、金型21と樹脂層22との界面が部分的に剥離していない場合でも、基材23は反成形面側と成形面側の圧力差により平面受け25に吸いつけられているため、金型21を上昇させる事により金型21と樹脂層22とは完全に剥離する。
【0022】
平面受け25内部を減圧しない従来の方法では、気体を噴出させるために気体噴出ピストンを20Nで押し、約100N/cm2 の圧力にしないと気体が噴出しなかった。また、噴出された気体が樹脂と金型とを完全に剥離する前に金型と樹脂層との外周部に流出してしまい、金型と樹脂層との中心軸付近の剥離を行う事が出来なかったため、最終的に基材を機械的に掴んで金型を上昇させて剥離を完了させていた。
しかしながら、本実施例によればその必要が無くなり、スムーズかつ容易に複合型光学素子の成形が可能となった。このため、剥離に必要だった工程が減り、製造装置が簡略化出来、成形時間が短縮され、製品のコストが低減された。また、基材や樹脂層変形の恐れが少なくなり、精度向上や不良率を減少させる事が可能となった。
【0023】
【実施例3】
図6および図7は本実施例で用いる装置を示す概略構成図である。
図6に示すように、樹脂を載置する成形面側が凸面で曲率半径200mm、裏側である反成形面側も凸面で曲率半径120mm、中心基材厚3mm、直径36mmのガラス製の基材43は、紫外線硬化型樹脂が必要量吐出されて下軸ベース44に取り付けられたベル受け45の上に載置されている。紫外線の光路となる下軸ベース44には紫外線の透過率の高い石英板49が気密漏れなく取り付けられている。さらに、所望形状の樹脂層42を形成するための光学面を有する金型は、中心軸が基材43の中心軸と同一で、樹脂層42の表面(金型で押圧した面)の有効直径より外側を押圧する位置で分割され、有効径内を押圧する凹面形状の内型41a(直径30mm,曲率半径230mm)と、中心軸に垂直な鏡面の光学面をもつ外型41b(内径30mm,外径35mm)とで構成され、互いに上下動自在に嵌合している。
【0024】
この金型41a,41bを下降し、紫外線硬化型樹脂を押圧して中心軸上の内型41aと基材43との距離が0.025mmになるように近付け、外型41bと内型41aとの光学面に段差が無いように設定する。
この時、下軸ベース44に取り付けられた気密漏れの無い円筒型の減圧室46の上部と外型41bの一体となっている平面とがOリング51により密着される。さらにこの時、樹脂層42の最外周部が外型41bの光学面に達するように樹脂量を調整しておく。
次に、樹脂の収縮率が一定となるような照度分布を持った紫外線を紫外線照射装置47により照射して樹脂層42を硬化する。
【0025】
ここで、図7に示すように、下軸ベース44にある排気口48より気体を吸引し、50hpa以下となるように減圧室46内の圧力を下げ、同時に通気口52により反成形面側の圧力も減圧した後、内型41aを外型41bに対して樹脂層42から離反する方向に2.0mm移動し、内型41aの光学面と樹脂層42とを剥離する。次に、減圧室46の中にある外型41bと樹脂層42とを機械的に剥離させるための剥離爪50を、気密漏れの無いように連結された減圧室46の外にある油圧シリンダー53によりスライドさせ、基材43の成形面側の外型41bの直径よりも外側に当接させて基材43を固定する。
【0026】
この後、外型41bを10mm/minのスピードで上昇し、外型41bと樹脂層42とを剥離する。この時、外型41bと樹脂層42とが剥離するまでには約0.3mmの移動が必要であるが、減圧室46と外型41bと一体になっている平面は、Oリング51の弾性変形により0.9mmまで密閉されているため、外型41bと樹脂層42との剥離が完了する前に空気が流入する事は無く、外型41bと樹脂層42とが完全に剥離した後に減圧室46内は自動的に大気圧に戻り、剥離工程は完了する。
【0027】
従来の、金型41a,41bと樹脂層42との剥離時に減圧行われなかった場合では、内型41aを上昇させるために、樹脂層42と密着している外型41bに対して105Nの力が必要だった。
ここで、内型41aと樹脂層42との界面の剥離により真空の空間が発生すると同時に、内型41aに対応した基材43の反成形面側の表面は大気圧により約10N/cm2 の力を受ける。つまり、内型41aに対応する基材43の面積全体では約70Nになり、剛性の低い基材43はこの瞬間に割れてしまい、樹脂層42と内型41aとの剥離は不可能であった。
【0028】
しかし本実施例によれば、内型41aを剥離するときに必要な力は内型41aと樹脂層42との接着力だけであるため、内型41aと樹脂層42との剥離に必要な力は40Nに減少して剥離が可能となり、さらに外型41bと樹脂層42との剥離に必要な力は12Nであった。
【0029】
因って、剥離の際に基材を破損する事が無くなり、また樹脂層の変形により光学面精度が低下する可能性が減少した。
さらに、高い精度が必要とされる複合型光学素子の製造装置にかかるが減少するため、調整回数が減少し、製造装置の強化が必要なくなり、製品のコストが低くなる等の効果が生まれる。
【0030】
【発明の効果】
請求項1の効果は、従来の剥離方法を用いて、さらに小さな力で金型と光学素子との剥離が可能になることである。つまり、複合型光学素子の剥離時に樹脂層または基材の形状や外観に影響を与える可能性が本発明の効果により減少し、精度のより高い成形を行うことができる。同時に、不良率も減少し、複合型光学素子の製造装置にかかる負担も軽減され、製造装置の頻繁な調整や、製造装置の強化が不必要となったりするため、製品のコストも低減できる。
また、従来では剥離が不可能あるいは困難だった複合型光学素子の形状や剥離方法であっても、容易に金型と樹脂層との剥離が可能となる。
【図面の簡単な説明】
【図1】実施例1を示す概略構成図である。
【図2】実施例1を示す概略構成図である。
【図3】実施例2を示す概略構成図である。
【図4】実施例2を示す概略構成図である。
【図5】実施例2を示す概略構成図である。
【図6】実施例3を示す概略構成図である。
【図7】実施例3を示す概略構成図である。
【符号の説明】
1 金型
2 樹脂層
3 基材
4 下軸ベース
5 ベル受け
6 減圧室
7 紫外線照射装置
8 排気口
9 石英板
10 剥離爪
11 Oリング
12 通気孔
13 モーター
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a composite optical element in which a resin layer is mounted on an optical element substrate surface.
[0002]
[Prior art]
Conventionally, various methods have been proposed for peeling the mold and the resin layer after manufacturing the composite optical element. For example, the inventions described in JP-A-4-244819 and JP-A-4-5010 have been proposed. No.
The invention described in Japanese Patent Application Laid-Open No. 4-244819 is a method in which a concentrated load is applied to a part of a base material at the start of peeling, and the load is gradually dispersed from there to peel the mold and the resin layer.
Also, the invention described in Japanese Patent Application Laid-Open No. Hei 4-5010 is a method of ejecting gas from a gas ejection nozzle inserted between a mold and a cured resin layer.
[0003]
[Problems to be solved by the invention]
However, each of the conventional techniques has the following problems.
In other words, under atmospheric pressure (approximately 1013 ± 200 hpa, affected by altitude, climate, indoor air conditioning, etc.), in order to separate the mold and the resin layer, the mold and the resin layer which are in close contact with each other are bonded. Must be removed and then air must flow between the mold and the resin layer. In the invention described in Japanese Patent Application Laid-Open No. 4-244819, all of the steps are performed by mechanical force. Therefore, the resin layer or the base material must be deformed in order to peel off the resin layer that is in close contact with or adhere to the mold and allow air to flow into the vacuum space between the mold and the resin layer. It is unavoidable that the force required for separating the mold and the resin layer increases.
[0004]
In particular, if the area of the mold and resin layer of the composite optical element in close contact with each other is large, the resin layer is thin, or the rigidity of the base material is high, the force applied between the mold and the resin layer increases. Peeling is impossible, the rate of damage to the base material at the time of peeling is increased, and optical surface accuracy is reduced due to deformation of the resin layer. In addition, since the force is applied to the manufacturing apparatus of the composite optical element that requires high accuracy, frequent adjustments are necessary, and the rigidity of the manufacturing apparatus is required, so that there is a problem that the manufacturing apparatus becomes expensive and the product becomes expensive. However, there is a problem that the cost is increased.
[0005]
Further, as disclosed in Japanese Patent Application Laid-Open No. Hei 4-5010, in a method of ejecting gas from a gas ejection nozzle inserted between a mold and a molded composite optical element under the atmospheric pressure, a method in which the gas adheres to the mold is used. The gas in contact with the surface of the composite optical element excluding the resin layer interface against the pressure that presses the composite optical element against the mold removes the adhesion or adhesion between the mold and the resin layer, and the mold The gas must be ejected at a pressure capable of forming a space at the interface between the resin layer and the resin layer, but even if the gas is ejected, it is difficult to spread to the interface between the resin layer and the mold. In addition, since there is a gas outlet in the peripheral part to ensure the accuracy of the effective optical surface of the mold, even if the ejected gas spreads evenly, the ejected gas reaches the central part of the optical surface. Before that, it flows out to the outer periphery of the mold or the resin layer.
[0006]
In other words, no matter how high the pressure of the ejected gas is, only the part where the ejected gas spreads between the mold and the resin layer has the effect of separating the mold and the resin layer, It is difficult to completely separate the mold and the resin layer only by ejecting a gas from the mold. In addition, when a gas having an excessively high pressure is ejected, even if the gas is ejected from the outside of the effective diameter optical surface due to a sudden temperature change due to deformation of the resin layer due to the gas pressure and a change in the volume of the gas. The effective optical surface may be adversely affected. Furthermore, since the structure of the manufacturing apparatus is complicated due to the instantaneous ejection of the high-pressure gas, the manufacturing apparatus becomes expensive and the cost of the product increases.
[0007]
An object of the present invention is to provide a method capable of easily separating a mold and a resin layer.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, in order to manufacture a composite optical element, an energy-curable resin is supplied to the surface of a glass substrate of an optical element, and a mold having a desired optical surface and the glass substrate are relatively positioned. after forming the desired resin layer is brought closer to, upon peeling the cured resin layer and the mold by irradiation with energy, excluding the interface of the resin layer in close contact with the mold above A method for manufacturing a composite optical element, wherein the gas in contact with the composite optical element is made lower than the atmospheric pressure, and the mold is peeled off while the glass substrate is placed on a bell receiver .
[0009]
[Action]
The effect of claim 1 is that, in the manufacturing process of the composite optical element, the surface of the composite optical element other than the interface of the resin layer which is in close contact with the conventional mold has an atmospheric pressure (about 1013 ± 200 hpa, altitude, climate). And is influenced by air conditioning in the room) or by a gas with a pressure higher than that (such as a nitrogen jet for curing the surface of the anaerobic resin). However, in order to peel off the resin layer which is in close contact with or adhered to the mold, air had to flow into the vacuum interface between the mold and the resin layer.
[0010]
Therefore, when separating the resin layer from the mold after curing the resin, the pressure of the gas in contact with the surface of the composite optical element excluding the interface of the resin layer that is in close contact with the mold is lower than the atmospheric pressure. By doing so, the gas pressure difference between the vacuum interface between the mold and the resin layer and the other composite optical element surface is reduced.
In other words, if the pressure of the gas in contact with the surface of the composite optical element except for the interface of the resin layer that is in close contact with the mold decreases, the force with which the resin layer in close contact with the base material is pressed against the mold will also increase. At the same time, the force decreases, and the force required to separate the mold from the resin layer also decreases.
For this reason, the mold and the resin layer can be more easily and smoothly separated by a variety of conventional peeling means, and the mold and the resin layer can be separated with a small force.
[0012]
Embodiment 1
FIG. 1 and FIG. 2 are schematic configuration diagrams showing an apparatus used in the present embodiment.
As shown in FIG. 1, the molding surface side on which the resin is placed is concave and has a radius of curvature of 60 mm, and the opposite molding surface on the back side is convex and has a radius of curvature of 80 mm. A required amount of UV-curable resin is discharged onto the base material 3 and is placed on a bell receiver 5 fixed to the lower shaft base 4. At this time, the central axis of the substrate 3 is adjusted to be the same as the central axis of the mold 1. The diameter of the mold 1 is 24 mm, of which the diameter of the effective optical surface is 23 mm and the convex surface has an optical surface with a radius of curvature of 50 mm.
[0013]
The mold 1 is lowered, and the ultraviolet-curing resin is pressed so that the distance between the mold 1 and the base material 3 on the central axis becomes close to 0.1 mm. At this time, the resin reaches the effective optical surface (φ23 mm) of the mold 1 at the outermost peripheral portion, and is pressed so as not to protrude from the diameter (φ24 mm) of the mold 1, and becomes the resin layer 2.
The lower end portion 6a of the decompression chamber 6 formed by a member having no airtight leakage connected to the mold 1 is hermetically sealed with the O-ring 11 attached to the groove of the lower shaft base 4 at the same time as the mold 1 descends. Contact without leakage.
[0014]
Next, the resin layer 2 is cured by irradiating a uniform luminous flux of ultraviolet light from below the base material 3 with an ultraviolet irradiation device 7. Here, since the quartz plate 9 having an excellent transmittance of ultraviolet rays is inserted into the lower shaft base 4 which is an optical path of ultraviolet rays so as not to leak airtightly, it includes the mold 1, the resin layer 2 and the base material 3. The space in the decompression chamber 6 is cut off from the outside air, and the gas in the decompression chamber 6 that has been atmospheric pressure is further reduced to 100 hpa or less by an unillustrated vacuum pump from an exhaust port 8 attached to the lower shaft base 4. Reduce pressure. At this time, the pressure on the side opposite to the molding surface is also reduced by the vent 12.
[0015]
Subsequently, as shown in FIG. 2, a release claw 10 for mechanically separating the mold 1 and the resin layer 2 is slid by a motor 13 so as to be larger than the diameter of the mold 1 on the molding surface side of the base material 3. After the base 3 is fixed by bringing the release claw 10 into contact with the outer position, the mold 1 is raised at a speed of 8 mm / min, thereby separating the mold 1 and the resin layer 2.
The airtightness of the groove of the lower shaft base 4 into which the lower end portion 6a of the decompression chamber 6 is fitted is ensured over a range of 10 mm above the position of the mold 1 for pressing and molding the resin layer 2. Therefore, the airtightness of the decompression chamber 6 is maintained if the stroke is such that the mold 1 is lifted for peeling. After the mold 1 and the resin layer 2 are separated from each other, the moving speed of the mold 1 is further increased to continue the ascending, whereby the air automatically flows into the decompression chamber 6 and becomes the atmospheric pressure. The manufacturing process is completed.
[0016]
According to the experiment, when the mold 1 and the resin layer 2 were separated under the atmospheric pressure, the separation was not performed unless a force of 180 N was applied between the mold 1 and the base material 3. When the pressure is reduced to 1/10 or less, the force acting on the interface between the mold 1 and the resin layer 2 decreases, and the force required for peeling the mold 1 from the resin layer 2 also decreases. The force acting on the resin layer 2 was reduced to 100N.
[0017]
According to the present embodiment, the force required for peeling the mold and the resin layer is reduced as compared with the conventional method of manufacturing a composite optical element using a peeling claw. Peeling was also possible with a mold optical element. In addition, the rate of damage to the substrate during peeling was reduced. Further, the possibility that the optical surface accuracy is reduced due to the deformation of the resin layer is reduced.
In addition, since the force applied to the composite optical element manufacturing apparatus requiring high precision is reduced, the number of adjustments is reduced, and there is no need to strengthen the manufacturing apparatus, and effects such as a reduction in product cost are produced.
[0018]
Embodiment 2
FIG. 3 to FIG. 5 are schematic configuration diagrams showing an apparatus used in the present embodiment.
As shown in FIG. 3, the molding surface on which the resin is placed and molded is concave and has a radius of curvature of 150 mm, the opposite molding surface on the back side is also concave and has a radius of curvature of 80 mm, and the central base material has a thickness of 7 mm and a diameter of 43 mm. A required amount of an ultraviolet curable resin is discharged onto a base material 23 made of glass, and adjusted on a flat support 25 fixed to a lower shaft base 24 so that the center axis is the same as the center axis of the mold 21. It is mounted. The mold 21 has a convex optical surface obtained by inverting the desired resin layer shape, a diameter of 42 mm, an effective diameter of the optical surface of 34 mm, and a radius of curvature of 125 mm. Further, six gas ejection pistons 30 each having a diameter of 2 mm are inserted into the mold 21 and have openings outside the effective optical diameter. This mold 21 is used as a cylinder. The gas ejection piston 30 having a shape with no step from the optical surface at the compression top dead center can be driven by a drive unit (not shown). An inflow port 31 is provided on the inner wall of the cylinder at a position 5 mm from the optical surface.
[0019]
The mold 21 is lowered, and the ultraviolet-curable resin is pressed so that the distance between the mold 21 and the base material 23 on the central axis becomes close to 0.05 mm.
At this time, the outermost peripheral portion of the resin layer 22 in which the amount of resin has been adjusted spreads over a range of 41 mm ± 0.5 mm in diameter. Here, ultraviolet rays are irradiated from below the substrate 23 by the ultraviolet irradiation device 27 to cure the resin layer 22.
[0020]
Here, as shown in FIG. 4, a quartz plate 29 having a high transmittance of ultraviolet rays is attached to the lower shaft base 24, which is an optical path of ultraviolet rays, without airtight leakage. An exhaust port 28 is provided between the mounting surface of the substrate 23 and the quartz plate 29. The gas in the space surrounded by the flat receiver 25, the base material 23, and the quartz plate 29 flows out from the exhaust port 28 by a vacuum pump (not shown), and the pressure is reduced to 20 hpa. Thereafter, the gas ejection piston 30 attached to the mold 21 is raised by 5 mm or more to allow air at atmospheric pressure to flow from the inlet 31, and the gas ejection piston 30 is again moved toward the optical surface of the mold 21 by a force of 10 N. When extruded, the gas becomes about 50 N / cm 2 , and the compressed gas is jetted to the interface between the mold 21 and the resin layer 22.
[0021]
As shown in FIG. 5, the base material 23 is easily deformed because the base material thickness at the center portion is the thinnest due to the biconcave surface shape, and further, since the pressure on the non-molding surface side of the base material 23 is reduced. The jetted gas instantaneously spreads toward the center of the interface between the mold 21 and the resin layer 22 and thereafter reaches the peripheral portion, where the mold 21 and the resin layer 22 are completely separated. Even if the interface between the mold 21 and the resin layer 22 is not partially peeled off, the base material 23 is sucked into the flat receiver 25 by the pressure difference between the opposite molding surface side and the molding surface side. By raising the mold 21, the mold 21 and the resin layer 22 are completely separated.
[0022]
In the conventional method that does not depressurize the inside of the flat receiver 25, the gas ejection piston is pushed with 20N in order to eject the gas, and the gas is not ejected unless the pressure is set to about 100 N / cm 2 . In addition, the ejected gas may flow out to the outer peripheral portion between the mold and the resin layer before completely separating the resin and the mold, and may peel around the center axis between the mold and the resin layer. Since it was not possible, the substrate was finally mechanically grasped and the mold was lifted to complete the peeling.
However, according to the present embodiment, the necessity is eliminated, and the composite optical element can be formed smoothly and easily. Therefore, the number of steps required for peeling was reduced, the manufacturing apparatus could be simplified, the molding time was shortened, and the cost of the product was reduced. In addition, the risk of deformation of the base material and the resin layer was reduced, and it became possible to improve accuracy and reduce the defect rate.
[0023]
Embodiment 3
FIG. 6 and FIG. 7 are schematic configuration diagrams showing an apparatus used in this embodiment.
As shown in FIG. 6, a glass substrate 43 having a convex surface on the molding surface on which the resin is placed and a radius of curvature of 200 mm, and a rear surface opposite to the molding surface also having a convex surface with a radius of curvature of 120 mm, a center substrate thickness of 3 mm and a diameter of 36 mm. Is mounted on a bell receiver 45 attached to the lower shaft base 44 after discharging a required amount of ultraviolet curable resin. A quartz plate 49 having a high transmittance of ultraviolet rays is attached to the lower shaft base 44 serving as an optical path of ultraviolet rays without airtight leakage. Further, in the mold having an optical surface for forming the resin layer 42 having a desired shape, the central axis is the same as the central axis of the base material 43, and the effective diameter of the surface of the resin layer 42 (the surface pressed by the mold). A concave inner mold 41a (diameter 30 mm, radius of curvature 230 mm) that is divided at a position where the outer side is pressed and presses the inside of the effective diameter, and an outer mold 41b (an inner diameter 30 mm, which has a mirror optical surface perpendicular to the central axis). (Outer diameter 35 mm), and are fitted to each other so as to be vertically movable.
[0024]
The molds 41a and 41b are lowered, and the ultraviolet curing resin is pressed so that the distance between the inner mold 41a and the base material 43 on the central axis becomes closer to 0.025 mm. Is set so that there is no step on the optical surface.
At this time, the upper part of the cylindrical decompression chamber 46 attached to the lower shaft base 44 and having no airtight leak and the flat surface integrated with the outer mold 41b are brought into close contact with the O-ring 51. Further, at this time, the resin amount is adjusted so that the outermost peripheral portion of the resin layer 42 reaches the optical surface of the outer mold 41b.
Next, the resin layer 42 is cured by irradiating ultraviolet rays having an illuminance distribution such that the shrinkage ratio of the resin is constant by an ultraviolet irradiation device 47.
[0025]
Here, as shown in FIG. 7, the gas is sucked from the exhaust port 48 in the lower shaft base 44, the pressure in the decompression chamber 46 is reduced to 50 hpa or less, and at the same time, the vent 52 is After reducing the pressure, the inner mold 41a is moved 2.0 mm away from the resin layer 42 with respect to the outer mold 41b, and the optical surface of the inner mold 41a and the resin layer 42 are separated. Next, a peeling claw 50 for mechanically separating the outer mold 41b and the resin layer 42 in the decompression chamber 46 is connected to a hydraulic cylinder 53 outside the decompression chamber 46 connected so as to prevent airtight leakage. The base material 43 is fixed by bringing the base 43 into contact with the outer side of the outer mold 41b on the molding surface side of the base material 43.
[0026]
Thereafter, the outer mold 41b is raised at a speed of 10 mm / min, and the outer mold 41b and the resin layer 42 are separated. At this time, it is necessary to move about 0.3 mm until the outer mold 41b and the resin layer 42 are separated. However, the plane integrated with the decompression chamber 46 and the outer mold 41b is the elasticity of the O-ring 51. Since it is sealed up to 0.9 mm by deformation, air does not flow in before the separation of the outer mold 41b and the resin layer 42 is completed, and the pressure is reduced after the outer mold 41b and the resin layer 42 are completely separated. The inside of the chamber 46 automatically returns to the atmospheric pressure, and the peeling step is completed.
[0027]
If the pressure is not reduced when the conventional molds 41a and 41b and the resin layer 42 are separated from each other, a force of 105 N is applied to the outer mold 41b in close contact with the resin layer 42 in order to raise the inner mold 41a. Was needed.
Here, a vacuum space is generated due to the separation of the interface between the inner mold 41a and the resin layer 42, and the surface on the side opposite to the molding surface of the base material 43 corresponding to the inner mold 41a is caused to have a pressure of about 10 N / cm 2 by atmospheric pressure. Receive strength. In other words, the entire area of the base material 43 corresponding to the inner mold 41a is about 70 N, and the base material 43 having low rigidity is broken at this moment, and the resin layer 42 and the inner mold 41a cannot be separated. .
[0028]
However, according to the present embodiment, the force required for peeling the inner mold 41a is only the adhesive force between the inner mold 41a and the resin layer 42. Was reduced to 40 N and peeling was possible, and the force required for peeling the outer mold 41 b and the resin layer 42 was 12 N.
[0029]
Therefore, the substrate is not damaged at the time of peeling, and the possibility that the optical surface accuracy is reduced due to the deformation of the resin layer is reduced.
Further, since the cost of the manufacturing apparatus for the composite optical element requiring high accuracy is reduced, the number of adjustments is reduced, and it is not necessary to strengthen the manufacturing apparatus, and effects such as a reduction in the cost of the product are produced.
[0030]
【The invention's effect】
The effect of claim 1 is that the mold and the optical element can be separated with a smaller force by using the conventional separation method. That is, the possibility of affecting the shape and appearance of the resin layer or the base material when the composite optical element is peeled off is reduced by the effect of the present invention, and molding with higher precision can be performed. At the same time, the defect rate is reduced, the burden on the manufacturing apparatus for the composite optical element is reduced, and frequent adjustment of the manufacturing apparatus and the strengthening of the manufacturing apparatus are not required, so that the cost of the product can be reduced.
In addition, the mold and the resin layer can be easily separated from each other even in the case of a composite optical element having a shape or a separation method which has conventionally been impossible or difficult to separate.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment.
FIG. 2 is a schematic configuration diagram showing a first embodiment.
FIG. 3 is a schematic configuration diagram showing a second embodiment.
FIG. 4 is a schematic configuration diagram showing a second embodiment.
FIG. 5 is a schematic configuration diagram showing a second embodiment.
FIG. 6 is a schematic configuration diagram showing a third embodiment.
FIG. 7 is a schematic configuration diagram showing a third embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 mold 2 resin layer 3 base material 4 lower shaft base 5 bell receiver 6 decompression chamber 7 ultraviolet irradiation device 8 exhaust port 9 quartz plate 10 peeling claw 11 O-ring 12 vent hole 13 motor

Claims (1)

複合型光学素子を製造するため、光学素子のガラス基材表面にエネルギー硬化型の樹脂を供給し、所望の光学面を有する金型と上記ガラス基材とを相対的に接近させて所望の樹脂層を形成した後、エネルギーを照射することにより硬化した樹脂層と上記金型とを剥離するにあたり、上記金型と密着している上記樹脂層の界面を除いた上記複合型光学素子に接している気体を大気圧よりも低くし、上記ガラス基材をベル受けに載置したまま上記金型を剥離することを特徴とする複合型光学素子の製造方法。 In order to manufacture a composite optical element, an energy-curable resin is supplied to the glass substrate surface of the optical element, and a mold having a desired optical surface and the above-described glass substrate are relatively brought close to each other to obtain a desired resin. after forming the layer, upon peeling the cured resin layer and the mold by irradiation with energy, in contact with the composite-type optical element, excluding the surface of the resin layer in close contact with the mold A method of manufacturing a composite optical element, wherein the mold is peeled while the gas contained therein is lower than the atmospheric pressure and the glass substrate is placed on a bell receiver .
JP26972594A 1994-11-02 1994-11-02 Method for manufacturing composite optical element Expired - Fee Related JP3590108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26972594A JP3590108B2 (en) 1994-11-02 1994-11-02 Method for manufacturing composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26972594A JP3590108B2 (en) 1994-11-02 1994-11-02 Method for manufacturing composite optical element

Publications (2)

Publication Number Publication Date
JPH08132452A JPH08132452A (en) 1996-05-28
JP3590108B2 true JP3590108B2 (en) 2004-11-17

Family

ID=17476301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26972594A Expired - Fee Related JP3590108B2 (en) 1994-11-02 1994-11-02 Method for manufacturing composite optical element

Country Status (1)

Country Link
JP (1) JP3590108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117021439B (en) * 2023-08-11 2024-04-05 江苏运科橡胶科技有限公司 Vehicle sealing strip injection molding device with rapid cooling function

Also Published As

Publication number Publication date
JPH08132452A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
CN100408316C (en) Inflatable membrane apparatus and process for transferring a coating onto a surface of a lens blank
US4707208A (en) Method for covering a lens blank with a protective plastic film
WO2021253748A1 (en) Photocuring 3d printing method and photocuring 3d printing system
CN111152540B (en) Curved surface laminating device, laminating equipment and curved surface product laminating method
WO2011122439A1 (en) Device for forming and method for forming micro-textured pattern, method for producing transfer substrate, and transfer substrate
JP2004537440A (en) Method and apparatus for assembling a contact lens mold
JP3590108B2 (en) Method for manufacturing composite optical element
JP6557428B2 (en) Resin sealing device and resin sealing method
CN111810387A (en) Batch manufacturing method and manufacturing equipment for micropump integrated with chip
WO1999010153A1 (en) Apparatus and method of production of optical recording medium
JPH02162016A (en) Method for forming composite material
CN206116360U (en) A device for wafer paster
JP2005161528A (en) Plastic laminate and its manufacturing method
JPH0866972A (en) Manufacture of composite type optic
US7086175B2 (en) Method of manufacturing liquid crystal panel and gap adjusting apparatus therefor
JP2014069339A (en) Stamper, stamper production apparatus and production method of the same, and fine structure transfer method
JPH04284208A (en) Manufacture of plastic lens
JP4171936B2 (en) Resin-molding mold for resin-bonded optical element and manufacturing method
US6984346B2 (en) Composite element manufacturing method
JPH08156099A (en) Method and apparatus for adhering
JPH0796527A (en) Production of front surface mirror
JP2008230176A (en) Method of peeling sheet and its apparatus
CN219505444U (en) Diaphragm laminating device
JP4695798B2 (en) Separation method for ophthalmic lens and separation apparatus used therefor
CN111589477B (en) Micro-channel device processing technology

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees